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ABSTRACT 

After the 2011 Great East Japan earthquake and tsunami, overestimated and 

unexpected damage, such as overturned buildings in Onagawa town, was a result of 

earthquake and subsequent tsunami. In the future, more severe and different unexpected 

damage by earthquake and subsequent tsunami may occur in the Tokai, Tonankai, and 

Nankai region. The occurrence of building overturning in Onagawa town encouraged the 

author to focus on structural damage of RC wall-frame buildings from earthquake and 

subsequent tsunami. Previously, macro plate model had been proposed to simulate 

earthquake response of a wall member in RC walls. In this research, macro plate model was 

proposed to simulate tsunami response as same as nonlinear analysis in earthquake 

response. Since macro plate model had been developed based on nodal displacement, 

distributed force from tsunami was converted to nodal force in order to evaluate out-of-

plane strain using average curvature. Then, nonlinear analysis of out-of-plane behavior was 

performed using hysteresis rules. For verification of macro plate model, the analytical 

results of a six-story RC wall-frame building were compared with the test results at E-

Defense. For in-plane behavior of macro plate model, the verification results show a good 

correlation with the test results without considering post-peak behavior. For out-plane 

behavior, the analysis results of macro plate model were compared with observed damage 

of a three-story RC wall-frame building from transverse tsunami load in the 2011 Great 

East Japan earthquake and tsunami. The verification results seem to comply with observed 

damage. The main objective of this research is to understand failure mechanism of 

sequential behavior in RC wall-frame buildings suffering damage from earthquake and 

subsequent tsunami. In order to perform nonlinear structural analysis, a nonlinear analytical 

model of the six-story RC wall-frame building was carried out to investigate structural 

damage of beam, column, and wall. For simulating sequential behavior of earthquake and 

tsunami response, nonlinear structural analysis was performed by means of the same 

hysteresis models for a series of earthquake, striking wave, and receding wave of tsunami. 

In this analysis, input tsunami load was modified to induce out-of-plane bending failure of 

transverse wall at 1st floor in order to investigate sequential behavior of other structural 
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CHAPTER I  

 INTRODUCTION   

 

1.1 GENERAL OVERVIEW   

After the 2011 Great East Japan earthquake and tsunami, overestimated and 

unexpected damage, such as overturned buildings in Onagawa town, was a result of 

earthquake and subsequent tsunami. In the future, more severe and different unexpected 

damage by earthquake and subsequent tsunami may occur in the Tokai, Tonankai, and 

Nankai region. Therefore, it is interesting to consider structural damage from earthquake 

and subsequent tsunami. After earthquake, structural properties of RC buildings can be 

changed to resist against the coming tsunami which may be stronger or weaker. The main 

objective in a research field of earthquake engineering is to reduce the loss of human life 

during earthquake and tsunami. Based on this objective, it is necessary to prevent building 

collapse from earthquake and subsequent tsunami. 

1.2 RESEARCH OBJECTIVE  

1.2.1 Originality  

Development of sequential earthquake and tsunami simulation was aimed to predict 

structural damage of all RC buildings in a city area from earthquake and subsequent 

tsunami. This simulation tool was developed originally from IES (earthquake simulation 

tool proposed by Prof. Hori) and macro plate model in OBASAN (structural analysis 

program proposed by Prof. Kai). 
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combination of following items; earthquake ground motion, liquefaction, tsunami 

hydrodynamic force, and floating debris. All damaged buildings can be classified into 

different levels of building damage, such as minor damage (level 1), moderate damage 

(level 2), major damage (level 3), complete damage (level 4), collapse (level 5), and wash 

away (level 6) recommended by the Ministry of Land, Infrastructure and Transportation of 

Japan (MLIT ) as shown in Table 1.1. The MLIT website also provide damage inspection of 

252,268 buildings, which are classified to RC building, steel building, and wooden building 

for each damage level as shown in Table 1.2. 

Table 1.1 Description of damage level for building damage in the 2011 Great East Japan 

earthquake and tsunami recommended by MLIT 

Damage 
level Classification Description Condition 

1 Minor 
damage 

There is no significant structural 
or nonstructural damage, 

possibly only minor flooding 

Possible to be used 
immediately after cleaning 

up minor floor and wall  

2 Moderate 
damage 

Slight damage to nonstructural 
components 

Possible to be used after 
moderate repair  

3 Major 
damage 

Heavy damage to some walls 
but no damage to columns 

Possible to be used after 
major repair 

4 Complete 
damage 

Heavy damage to many walls 
and some columns 

Possible to be used after 
complete repair and 

retrofitting 

5 Collapse 

Destructive damage to many 
walls (more than half of wall 
density) and many column 

(bended or destroyed)  

Loss of functionality 
(Structural system collapse), 
Irreparable or great cost for 

retrofitting  

6 Wash away Wash away, only foundation 
remains, completely overturning Irreparable, reconstruction 
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Table 1.2 Number of damaged buildings from all affected area in the 2011 Great East Japan 

earthquake and tsunami investigated by MLIT  

Damage level RC building Steel building Wooden building 

1 555 895 16,952 

2 1,176 2,221 30,808 

3 1,158 2,099 27,357 

4 1,215 1,904 5,005 

5 793 2,222 25,092 

6 407 1,375 63,396 

Fig. 1.1 shows overall damage in Onagawa town from the 2011 Great East Japan 

earthquake and tsunami. Some buildings were collapsed and some were survived. As can 

be seen in Fig. 1.1, steel-frame buildings were damaged from earthquake and tsunami. 

Some RC buildings were overturned and some were damaged. Moreover, Fig. 1.1(a) shows 

wooden house washed away by tsunami and became floating debris as shown in Fig. 1.1(b). 

Fig. 1.2 shows an example of individual damage from earthquake and tsunami consist of a 

damaged steel-frame building in Fig. 1.2(a) and a collapsed wooden house in Fig. 1.2(b). 

           
(a)                                                              (b) 

Fig. 1.1 Overall damage from earthquake and tsunami 
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                                      (a)                                                                  (b) 

Fig. 1.2 Individual damage of steel-frame building and wooden house 

 

         
(a)                                                                 (b) 

               
                                      (c)                                                                  (d)                    

Fig. 1.3 Failure type of RC buildings from earthquake and tsunami 
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Fig. 1.3 shows a failure type of RC buildings in the 2011 Great East Japan 

earthquake and tsunami. As can be seen in Fig. 1.3(a), this building was collapsed by strong 

ground motion due to column failure at the first floor. Fig. 1.3(b) shows RC walls damaged 

by tsunami in out-of plane direction. As can be seen in Fig. 1.3(c), this RC frame building 

was damaged by earthquake and tsunami. Fig. 1.3(d) shows an overturned RC building 

from earthquake and tsunami in Onagawa town. 

         

               

Fig. 1.4 Importance of RC building during earthquake and tsunami 

Fig. 1.4 shows public buildings such as school, hospital, apartment, and hotel. As 

can be seen in Fig. 1.4, these buildings were survived from the 2011 Great East Japan 

earthquake and tsunami. During earthquake and tsunami, these public buildings are very 

important because these must be temporary evacuation building for people in surrounding 

area. 
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1.3.2 Unexpected occurrence of overturned buildings in Onagawa town  

After the 2011 Great East Japan earthquake and tsunami, overestimated and 

unexpected damage was a result of earthquake and subsequent tsunami. Six buildings (five 

RC buildings and one steel-frame building) in Fig. 1.5 were founded unexpectedly 

overturned in Onagawa town. A field survey revealed that one of these six overturned 

buildings in Onagawa town was on a shallow foundation and the others had pile 

foundations; one of those was overturned and moved 70 m from its original position. In 

Onagawa town, maximum inundation depth exceeded the height of all overturned buildings. 

Therefore, it was assumed that all of those buildings were overturned during overtopping 

tsunami flow. 

   

   

Fig. 1.5 Six overturned buildings in Onagawa town  

Previously, overturning failure of buildings had not been observed in past 

earthquake and tsunami which was not considered in foundation design. However, 

overturning failure is now considered in the design guideline of building foundations [1] 

especially in tsunami evacuation buildings. In recent seismic performance design of pile 






























































































































































































































