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ABSTRACT: In this study, an efficient optimal performance-based seismic design method for bridge system 
subjected to devastating earthquakes is proposed. In the design of a bridge system, the heights of rubber 
bearings are taken into account as the continuous design variables, and cross-sectional dimensions and 
amount of steel reinforcements for RC piers and numbers of pile as the discrete design variables. The relative 
horizontal displacements to the both bridge and transverse directions and ductile factor are dealt with as 
design constraints. The construction cost minimization problem can be expressed as a mixed 
discrete-continuous problem, and it is solved by a classical branch and bound method with dual algorithm 
and convex approximation. In the optimization process, the design of experiments is applied successfully in 
order to calculate the dynamic behaviors and those sensitivities of the bridge system. The proposed optimal 
design method is applied to a five-span continuous steel girder bridge system, and it is demonstrated that the 
proposed method can obtain the optimum solutions quite efficiently and rigorously. 
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1. INTRODUCTION  
 
After the Hyogoken Nanbu Earthquake in 1995, the 
seismic design code for highway bridges (Japan 
Road Association, 2002) has been revised in order to 
ensure sufficient ultimate carrying capacities in the 
bridge systems for large displacements caused by 
devastating earthquakes. Recently, the 
performance-based design method has been 
introduced for the seismic design at ultimate state. 
Due to recent reduction in public investment the 
structural engineers are highly requested to optimize 
the structures so as to minimize the both construction 
costs and maintenance costs satisfying the requested 
seismic performance. This task accompanies with 
tremendous complexity in the process of re-design of 

the structures for the reason of strong nonlinearity at 
ultimate state. Therefore, the establishment of a 
rational and efficient optimal seismic design method 
has been awaited expectantly in the practical design. 
 
   In this study, an efficient optimal 
performance-based seismic design method for bridge 
system subjected to devastating earthquakes is 
proposed. The bridge system consists of 
superstructure, rubber bearings, RC piers and RC 
pile foundations. In the design of a bridge system, 
the dimensions of superstructure are assumed to be 
given, and the heights of rubber bearings, 
cross-sectional dimensions and amount of steel 
reinforcements for RC piers and RC piles, and 
numbers of pile are taken into account as design 



variables. The dynamic nonlinear behaviors of the 
bridge system are analyzed precisely by using the 
general purpose nonlinear analysis software 
(TDAP-III) with the acceleration specified in 
Japanese Specifications for Highway Bridges (Japan 
Road Association, 2002). The relative horizontal 
displacements between superstructure and piers to 
the both bridge and transverse directions are dealt 
with as design constraints for the rubber bearings. 
The ductile factor, which is given by the ratio of 
working curvature to the yield curvature, is also 
dealt with as the design constraints for the RC piers 
so as to ensure the performance specified at the 
ultimate state. The heights of rubber bearings can 
take continuous values, but the other variables must 
be selected from discrete variable sets. Therefore, the 
construction cost minimization problem can be 
expressed as a mixed discrete-continuous problem, 
and it is solved by a classical branch and bound 
method (M.Huang, J.S. Arora, 1997) with dual 
algorithm and convex approximation (C. Fleury and 
V. Braibant, 1986) in this study. The sensitivities of 
the design constraints need in the optimization 
process and the design of experiments is applied 
successfully in order to calculate the dynamic 
behaviors and those sensitivities of the bridge system. 
The estimation formulae for dynamic behaviors are 
introduced in the expression of quadratic functions 
of the design variables. After the determination of 
optimum solution the design constraints with the 

estimation formulae are examined by re-analyzing 
the bridge system. In case that the design constraints 
violate the allowable limit, the estimation formulae 
for dynamic behaviors are improved and the 
minimum cost design problem is re-solved. This 
optimization process is iterated until the relative 
errors between the estimated design constrains and 
the exact ones satisfy the allowable limit. 
 

The proposed optimal design method is applied 
to a five-span continuous steel girder bridge system, 
and the optimal solutions at various allowable 
ductility factors of RC pier are compared. In the 
numerical results, it is demonstrated that the 
reductions of the heights of rubber bearings and 
cross-sectional dimensions can be observed by 
increasing the allowable ductility factor. The 
optimum solutions can be obtained efficiently at a 
few iterations of improvements of the estimation 
formulae for dynamic behaviors. The accuracy of the 
estimation formulae is excellent within 10% relative 
errors between the exact behaviors and estimated 
ones. 
 
2. DESIGN MODEL 
 
In this study, the five-span continuous steel girder 
bridge system shown in Fig.1 is considered in which 
the superstructure is supported by six rubber 
bearings, RC piers and RC pile foundations. The 
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Fig.1 Five-span continuous steel girder bridge system 
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Fig.2 Front and side views of piers and RC 

pile foundation 



front and side views of a pier and RC pile foundation 
are described in Fig.2. The lengths of piles are 15m 
and five types of soil conditions in stratum are 
considered to calculate spring constants. The 
reinforcements in the cross section of piers are 
arranged in two layers for the bridge direction and 
one layer for the transverse direction, and the 
interval of each reinforcement are fixed at 125mm as 
shown in Fig.3. Following an enlargement of cross 
sections the numbers of reinforcements increase so 
as to keep the intervals of reinforcements. The 
stiffnesses of RC piers are taken into account as the 
trilinear rigidity reduction type model (Takeda 
model) shown in Fig.4. The nonlinear seismic 
response analysis model of the bridge system is 
shown in Fig.5. The nonlinear behaviors of the 
bridge system for the both bridge and transverse 
directions subjected to devastating earthquakes are 

analyzed precisely by using the general purpose 
nonlinear analysis software (TDAP-III) in which the 
Type II standard strong acceleration wave motion 
model at the Type II soil ground specified in 
Japanese Specifications for Highway Bridges (Japan 
Road Association, 2002) is applied. In the 
time-history response analysis the spring constants 
of rubber bearings, pile foundations and 
superstructure are elastic, and both the superstructure 
and abutment are assumed as rigid body. The piers 
are divided into 50 segments in order to calculate the 
nonlinear dynamic behaviors accurately. 
 

3. OPTIMUM DESIGN FORMULATION AND 
OPTIMIZATION ALGORITHM 

 

In the design of a bridge system, the dimensions of 
superstructure and widths of rubber bearings are 
assumed to be given. The design variables for rubber 
bearings are the heights of those at abutment and 
piers, 1hB  and 2hB . For RC pile foundations the 
numbers of piles and diameters of pile are 
intensively summarized as the properties of 
horizontal and rotation spring constants. In this study 
the horizontal spring constants of piles, hK , which 
can be commonly used for the time-history response 
analysis to the both bridge and transverse directions, 
are considered as the design variables. The widths to 
the bridge and transverse directions and the amount 
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Fig.3 Cross section of a pier 
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Fig.4 Trilinear rigidity hysteresis model for RC 

pier (Takeda model) 
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of steel reinforcements in a cross section, PH , PB  
and sA , are taken into account as the design 
variables for RC piers. The bridge system shown in 
Fig.1 is symmetrical to the centerline and the total 
number of design variables is six of 

PSPhhh BAHKBB ,,,,, 21 . 
 

Engineers have to design the bridge systems 
which ensure sufficient ultimate carrying capacities 
for large displacements caused by devastating 
earthquakes. Therefore, the relative horizontal 
displacements between superstructure and piers to 
the both bridge and transverse directions are dealt 
with as the design constraints, 2121 ,,, tthh gggg , for 
the safety of the rubber bearings. Furthermore, the 
ductile factors are also dealt with as the design 
constraints for the RC piers, μg , so as to ensure the 
performance specified at the ultimate state. The total 
construction cost minimization problem, which is 
expressed as the summation of bearing construction 
cost, )( h2h1B ,BBCOST ， pier construction cost 

( )hF KCOST  and pier construction cost 
( )PSPP BAHCOST ,, , can be formulated as  

find    PSPhhh BAHKBB ,,,,, 21     which 
minimize ),,,,,( 21 PSPhhh BAHKBBCOST  

)(),( 21 hFhhB KCOSTBBCOST +=  
),,( PSPP BAHCOST+  (1) 

subject to 
0111 ≤−= ahhg δδ  (2) 
0222 ≤−= ahhg δδ  (3) 

0111 ≤−= attg δδ  (4) 
0222 ≤−= attg δδ  (5) 

0≤−= ag μμμ  (6) 

where 1aδ  and 2aδ  are the allowable horizontal 
displacements of bearings at abutment and piers, 
which are given as the products of the heights of 
bearings 1hB , 2hB  multiplied by 2.5. μ  is the 
ductile factor of a pier, which is given by the ratio of 
working curvature to the yield curvature for the 
bridge direction.  
 

In the optimum design problem 1hB  and 2hB  
can take continuous values, but the others must be 
selected from a list of discrete values. In this study, 

SPh AHK ,,  and PB  are selected from the 
following discrete sets in which three types of piles 
summarized in Table 1 are considered to calculate 

hK . 
{ }3352886,2762477),/(2514665 mkNKh ∈  
{ ,2500,2400,2300,2200,2100),(2000 mmH P ∈

}2800,2700,2600  

{ ,2.794,4.642,7.506,1.387,5.286),(6.198 2mmAS ∈  
}1140,6.956  

{ ,5500,5000,4500,4000,3500),(3000 mmBP ∈  

}6500,6000  
Therefore, the construction cost minimization 
problem can be expressed as a mixed 
discrete-continuous problem. Several types of 
optimization techniques have been developed, and 
Huang and Arora (M.Huang, J.S. Arora, 1997) 
investigated the efficiency and reliability of those for 
discrete and mixed discrete-continuous problems. In 
this study the optimization problem is solved by the 
classical branch and bound method with dual 
algorithm and convex approximation (C. Fleury and 
V. Braibant, 1986) for the reason that the approach is 

Table 1 Properties of three types of RC piles 

Diameter φ Number
of piles

Width of
footing B

Width of
footing H

Height of
footing

Construction
cost(103yen)

Kh(kN/m)
Kθ1(kNm/rad)

(bridge
direction)

Kθ2(kNm/rad)
(transverse
direction)

weight(ｋN)

1.0m 9 7.0m 7.0m 2.5m 13,466 2514665 29279320 29279320 3001.3

1.2m 9 8.4m 8.4m 2.5m 16,544 2762477 38430830 38430830 4321.8

1.0m 12 7.0m 9.5m 2.5m 17,965 3352886 57078180 39039100 4073.1



efficient and reliable for a mixed discrete-continuous 
problem without any parameters.  
 

In this optimization process, in general, a number 
of nonlinear seismic response analyses and 
sensitivity analyses are necessary to determine the 
optimal solutions. To avoid these complexity and 
difficulties and make the optimum design process 
tremendously efficient, the design of experiments (G. 
Taguchi, 1987) is applied to introduce the estimation 
formulae for the dynamic behaviors (N. Tokunaga, S. 
Fukaya, C. Shen, K. Tanaka, 2001). According to the 
orthogonal array table )3( 13

27L  (G. Taguchi, 1987)  
given in Table 2, the three levels for all design 
variables are assumed and the twenty seven runs of 
nonlinear seismic response analyses are carried out 
in usage of the software (TDAP-III) for the both 
bridge and transverse directions, respectively. The 
first six factors among thirty factors in Table 1 are 
assigned to the design variables ,,, 21 hhh KBB  

PSP BAH ,, , respectively. Assuming that the intended 
variable for the kth factor is kx  and the mean value 
of three levels )3,,1,ˆ( L=ixki for the kth factor is 

kx , the general form of estimation formula is 
introduced in the expression of quadratic functions 
of the design variables given as eqs.(7)-(10). 
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m and n are respectively the number of factors, i.e. 
the number of design variables (= 6), and the number 
of levels for each factor (= 3). The estimation values 
of 0b , 1kb  and 2kb  in eq.(7) are given as 
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where 

∑
=

=
n

i
kik WS

1

2 , (12) 

r  is the number of runs with the level kix̂  (= 9). 

kiT  is the summation of results by the design of 
experiments with the level of kix̂ . kiW  is the value 
of function of coefficient )( kk zf  in eq.(7) with 
respect to 1kb  and 2kb  where kik zz ˆ= , namely, 

kiki zW ˆ=  and 2
23

2
2 ˆˆ kikkikkki zMzMMW +−−= . 

Table 2 Orthogonal array table )3( 13
27L  

Factor1:       ,      Factor2:        ,     Factor3:        ,    Factor4:        ,    Factor5:        ,    Factor6:

No. 1 2 3 4 5 6 7 8 9 10 11 12 13

No.1 1 1 1 1 1 1 1 1 1 1 1 1 1
No.2 1 1 1 1 2 2 2 2 2 2 2 2 2
No.3 1 1 1 1 3 3 3 3 3 3 3 3 3

No.4 1 2 2 2 1 1 1 2 2 2 3 3 3
No.5 1 2 2 2 2 2 2 3 3 3 1 1 1
No.6 1 2 2 2 3 3 3 1 1 1 2 2 2

No.7 1 3 3 3 1 1 1 3 3 3 2 2 2
No.8 1 3 3 3 2 2 2 1 1 1 3 3 3
No.9 1 3 3 3 3 3 3 2 2 2 1 1 1

No.10 2 1 2 3 1 2 3 1 2 3 1 2 3
No.11 2 1 2 3 2 3 1 2 3 1 2 3 1
No.12 2 1 2 3 3 1 2 3 1 2 3 1 2

No.13 2 2 3 1 1 2 3 2 3 1 3 1 2
No.14 2 2 3 1 2 3 1 3 1 2 1 2 3
No.15 2 2 3 1 3 1 2 1 2 3 2 3 1

No.16 2 3 1 2 1 2 3 3 1 2 2 3 1
No.17 2 3 1 2 2 3 1 1 2 3 3 1 2
No.18 2 3 1 2 3 1 2 2 3 1 1 2 3

No.19 3 1 3 2 1 3 2 1 3 2 1 3 2
No.20 3 1 3 2 2 1 3 2 1 3 2 1 3
No.21 3 1 3 2 3 2 1 3 2 1 3 2 1

No.22 3 2 1 3 1 3 2 2 1 3 3 2 1
No.23 3 2 1 3 2 1 3 3 2 1 1 3 2
No.24 3 2 1 3 3 2 1 1 3 2 2 1 3

No.25 3 3 2 1 1 3 2 3 2 1 2 1 3
No.26 3 3 2 1 2 1 3 1 3 2 3 2 1
No.27 3 3 2 1 3 2 1 2 1 3 1 3 2

Factor

1hB 2hB hK PH SA PBFactor1:       ,      Factor2:        ,     Factor3:        ,    Factor4:        ,    Factor5:        ,    Factor6:

No. 1 2 3 4 5 6 7 8 9 10 11 12 13

No.1 1 1 1 1 1 1 1 1 1 1 1 1 1
No.2 1 1 1 1 2 2 2 2 2 2 2 2 2
No.3 1 1 1 1 3 3 3 3 3 3 3 3 3

No.4 1 2 2 2 1 1 1 2 2 2 3 3 3
No.5 1 2 2 2 2 2 2 3 3 3 1 1 1
No.6 1 2 2 2 3 3 3 1 1 1 2 2 2

No.7 1 3 3 3 1 1 1 3 3 3 2 2 2
No.8 1 3 3 3 2 2 2 1 1 1 3 3 3
No.9 1 3 3 3 3 3 3 2 2 2 1 1 1

No.10 2 1 2 3 1 2 3 1 2 3 1 2 3
No.11 2 1 2 3 2 3 1 2 3 1 2 3 1
No.12 2 1 2 3 3 1 2 3 1 2 3 1 2

No.13 2 2 3 1 1 2 3 2 3 1 3 1 2
No.14 2 2 3 1 2 3 1 3 1 2 1 2 3
No.15 2 2 3 1 3 1 2 1 2 3 2 3 1

No.16 2 3 1 2 1 2 3 3 1 2 2 3 1
No.17 2 3 1 2 2 3 1 1 2 3 3 1 2
No.18 2 3 1 2 3 1 2 2 3 1 1 2 3

No.19 3 1 3 2 1 3 2 1 3 2 1 3 2
No.20 3 1 3 2 2 1 3 2 1 3 2 1 3
No.21 3 1 3 2 3 2 1 3 2 1 3 2 1

No.22 3 2 1 3 1 3 2 2 1 3 3 2 1
No.23 3 2 1 3 2 1 3 3 2 1 1 3 2
No.24 3 2 1 3 3 2 1 1 3 2 2 1 3

No.25 3 3 2 1 1 3 2 3 2 1 2 1 3
No.26 3 3 2 1 2 1 3 1 3 2 3 2 1
No.27 3 3 2 1 3 2 1 2 1 3 1 3 2

Factor

1hB 2hB hK PH SA PB
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Fig.6 Macro-flow of the proposed optimum 
design method 



 
After the determination of optimum solutions the 

design constraints with the estimation formulae are 
examined by re-analyzing the bridge system. In case 
that the design constraints violate the allowable limit, 
the three levels for all design variables and 
estimation formulae for dynamic behaviors are 
improved and the minimum cost design problem is 
re-solved. This optimization process is iterated until 
the relative errors between the estimated design 
constrains and the exact ones satisfy the allowable 
limit. The macro-flow of the proposed optimization 
algorithm is depicted in Fig.6. 
 
4. DESIGN EXAMPLES 
 
The proposed optimal design method is applied to 
the five-span continuous steel girder bridge system 
shown in Fig.1 and the optimal solutions for several 
allowable ductile factors aμ  are compared. In the 
numerical examples, the widths of bearings at 
abutment and each pier are assumed as 70cm and 
80cm, respectively. The unit cost of rubber is as 
45yen/cm3. The construction costs of a pile are 
assumed as 65200yen/m3 for the diameter 1.0m and 
73800yen/m3 for the diameter 1.2m. The 
construction costs of footing and form for pile 
foundation are assumed as 33500yen/m3 and 
8000yen/m2. The construction costs of concrete, 
form and reinforcement for piers are assumed as 
18500yen/m3, 8000yen/m2 and 120000yen/tf, 

respectively. Following the flow-chart in Fig.6 the 
optimizations for 0.2=aμ , 3.0 and 4.0 are initiated 
with the levels of iteration 1 shown in Table 3. In the 
optimization process, the lower and upper limits for 
discrete design variables are set at the adjacent 
discrete values of the minimum and maximum 
values of the three levels. The optimum solution for 

0.2=aμ  can be obtained quite efficiently without 
any improvements of the three levels for all design 
variables. The optimum solutions for 0.3=aμ  and 
4.0 determined by the lower limits. After then, the 
three levels are improved to the values of iteration 2 
in Table 3 referring to the optimum solutions with 
the previous three levels. The optimum solutions for 

0.3=aμ  and 4.0 can be obtained efficiently at this 
stage without additional improvements of the three 
levels. The optimum solutions for aμ =2.0, 3.0 and 
4.0 are summarized in Table 4. 
 

In case of 0.2=aμ  the largest dimensions of 
cross section, PP BH and , and reinforcement in the 
piers SA are required in order to satisfy the 
allowable ductile factor. By increasing the heights of 
rubber bearings 1hB  and 2hB , namely reducing the 
values of spring constant, the period of bridge 
system is made longer and the effect from 
superstructure is minimized. As the result the total 
construction cost is minimized. In case of 0.3=aμ  

PSPhh BAHBB and,,, 21  are reduced compared with 
those in case of 0.2=aμ . BCOST , PCOST  and the 
objective function COST are, respectively, reduced 

Table 3 Improvements of three levels in the optimization process 

Kh(kN/m) Kθ1(kNm/rad) Kθ2(kNm/rad)

1 16.0(15313) 14.0(22857) 2514665 29279320 29279320 2400 794.4 4500
2 14.0(17500) 12.0(26667) 2762477 38430830 38430830 2600 956.6 5000
3 12.0(20417) 10.0(32000) 3352886 57078180 39039100 2800 1140 5500
1 8.0(30625) 8.0(40000) 2514665 29279320 29279320 2400 506.7 3500
2 10.(24500) 9.0(35556) 2762477 38430830 38430830 2600 642.4 4000
3 12.0(20417) 10.0(32000) 3352886 57078180 39039100 2800 794.4 4500

As(mm2) BP(mm)Bh1（cm) (spring
constant(kN/m))

Bh2（cm) (spring
constant(kN/m))

spring constant of pile
Levels

Iteration 1

Iteration 2

HP(mm)



to 24, 19 and 16 percents of those in case of 
0.2=aμ . In case of 0.3=aμ  BCOST , PCOST  and 

COST are, respectively, reduced to 39, 35 and 28 
percents of those in case of 0.2=aμ . The horizontal 
spring constants of piles for all cases are determined 
by the lower limit which indicates the lowest cost 
and the number of piles 9.. 

 
In the investigation of active constraints at the 

optimum solutions, the constraints on relative 
horizontal displacements at abutment to the bridge 
direction 1hg , displacements at piers to the transverse 
direction 2tg  and ductile factors μg  are active for 

0.2=aμ  and 3.0 simultaneously. For 0.4=aμ  

2hB  is determined by the lower limit of 8cm and the 
constraints 2hg  and 2tg  are inactive. The 

maximum relative error between the exact behaviors 
and estimated ones is 10 percent in the constraint 

2tg  for 0.4=aμ . For the other cases the accuracy 
of the estimation formulae is excellent within 5 
percent of relative errors. The exact constraints are 
enough feasible within 3 percent of violation for all 
cases. 
 
5. CONCLUSIONS 
 
The following conclusions can be drawn from this 
study: 
1) The proposed optimal design method can 

determine the heights of rubber bearings, 
cross-sectional dimensions and amount of steel 
reinforcements for RC piers, and numbers of pile 

Table 4 Optimum solutions for =μ 2.0, 3.0 and 4.0 

D.exp.* 1.004 D.exp.* 0.999 D.exp.* 0.999
Anal** 1.013 Anal** 1.006 Anal** 1.001
D.exp.* 0.824 D.exp.* 0.661 D.exp.* 0.422
Anal** 0.834 Anal** 0.669 Anal** 0.446
D.exp.* 0.900 D.exp.* 0.961 D.exp.* 0.982
Anal** 0.910 Anal** 0.961 Anal** 0.930
D.exp.* 1.001 D.exp.* 0.999 D.exp.* 0.921
Anal** 1.015 Anal** 1.008 Anal** 0.824
D.exp.* 0.997 D.exp.* 1.005 D.exp.* 0.981
Anal** 0.959 Anal** 0.988 Anal** 1.030

D.exp.* : Feasibility of design constraints with the estimation formulae by the design of experiments  
Anal** : Feasibility of design constraints using exact behaviors by analysis  

9.9cm
(32291kN/m)

8.0cm
(40000kN/m)（spring constant）

11.6cm
(21121kN/m)

9.0cm
(27310kN/m)

Allowable ductile
factors 2.0

2800mm 2700mm

2514665kN/m 2514665kN/m 2514665kN/m

Total cost (103 yen）

HP

BP

（spring constant）
15.3cm

（16012kN/m)

1140mm2

2600mm

13.0cm
（24655kN/m)

192859 161254

3.0 4.0

139550

3000mm

642.4mm2 387.1mm2

4000mm 3500mm

1hB

2hB

hK

sA

aμ

11 / ah δδ

22 / ah δδ

11 / at δδ

22 / at δδ

aμμ /

 



rigorously and efficiently.  
2) By applying the design of experiments, the 

estimation formulae for the ductile factor in piers 
and the maximum horizontal displacements to the 
bridge and transverse directions can be introduced 
accurately with small number of nonlinear 
seismic response analyses. 

3) A few iterations of improvements for three levels 
are required to obtain the optimum solutions in 
the proposed design method.  

4) In the case that the allowable ductile factor is set 
at a small value, the heights of rubber bearings 
increase in order to make the period of bridge 
system longer, and the effect from superstructure 
is minimized. As increasing the value of allowable 
ductile factor the heights of rubber bearings are 
reduced and the dimension of cross section and 
reinforcement in the piers are also reduced. The 
horizontal spring constants of piles for all cases 
are determined by the lower limit. 

5) The constraints on relative horizontal 
displacements at abutment to the bridge direction, 
displacements at piers to the transverse direction 
and ductile factors are active at the optimum 
solutions simultaneously. 
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