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ABSTRACT: This manuscript proposes a bridge deterioration prediction method using a Markov chain 

model, whose transition probabilities are expressed as a function of environmental conditions. These 

conditions are obtained from a Geographic Information System (GIS) bridge database developed in Ehime 

University (E-GISDB). In addition, this paper validates the proposed method using the inspection results of 

bridges in City J in Ehime prefecture, Japan. The method enables different deterioration predictions to be made 

for different bridges, which is not possible with conventional methods. As a result, it is shown that predictions 

obtained by the proposed method are much more accurate than those obtained by conventional methods, 

especially for RC bridges near the coast, which experience the most severe degradation of all bridges due to the 

salt breeze.  
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1. INTRODUCTION 

 

The deterioration of bridges due to aging is a serious 

problem. For example, roughly half the bridges in 

Japan will be 50 years old or more within 15 years 

(Fujino & Abe 2002). In order to prevent future 

catastrophes involving bridges, maintenance, repair, 

and replacement (MR&R) action is required. This  

will maximize the effect of spending and reduce or 

minimize the deterioration rate. If underestimation of 

the deterioration of a bridge occurs, it is very likely 

that the best opportunity to use an MR&R strategy 

will be lost and bridge damage will accelerate, which 

will shorten the service life of the bridge. Meanwhile, 

overestimation of the deterioration would result in an 

unnecessary expenditure on maintenance (Huang 

and Rao, 2010). 

 

Therefore, many statistical deterioration 

prediction models have been developed. (Li et al. 

1996, Estes and Frangopol 2001, Frangopol et al. 

2004, Mariza et al. 2009, Lounis & Vanier, 2010). 

These models predict the future health condition of 

bridges from the current and past health conditions 

obtained from visual inspection. 

 

The health condition is often rated from A to E 

in Japan, where A represents a perfect or near perfect 

condition, and E represents the poorest condition 

(hereafter health rating). A linear or polynomial 

regression curve obtained from the current and past 

health condition is generally used to predict the 

future health condition in practice (e.g. Miyamoto et. 

al. 2001, Wirahadikusumah et al. 2001, Adams & 

Kang 2009). However, this model has suffered from 

the difficulty that some of the inspection results have 

been quite different from the predicted damage 

condition.  

 

One of the reasons behind this is that 



environmental conditions which affect bridge 

deterioration phenomena are not adequately 

considered in the prediction model. For example, 

these conditions are roughly divided into only a few 

categories including “coastal area” and “mountain 

area”, but these are not enough. To consider these 

conditions more quantitatively and realistically, we 

have developed a prediction model which considers 

the environmental conditions as quantitative 

parameters obtained from a GIS bridge database 

developed in the structural engineering laboratory at 

Ehime University (hereafter E-GISBD).  

 

We have employed the Markov chain model to 

predict the future health condition of bridges. The 

Markov chain model is widely studied these days 

because it is considered to be accurate (e.g. Madanat 

& Ibrahim 1995, Morcous 2006, Amador-Jiménez & 

Mrawira 2009, Kobayashi et al. 2010). The model 

has the characteristic that a change in the proportions 

of each health rating can be considered. The key to 

modeling the condition deterioration process is to 

develop appropriate transition probabilities from one 

condition state to another. The probabilities are 

generally expressed in a matrix form, called the 

transition probability matrix. Though the Markov 

chain model is useful, there has been little effort to 

include the effect of environmental conditions in the 

model. Therefore, this paper addresses this issue. 

 

In this research, inspection results and other 

related information on bridges in City J, which is one 

of the municipalities in Ehime prefecture in Japan, 

are used for the analysis. The case study of City J 

shows that the proposed model is more reasonable 

than the conventional models, particularly if the 

future health condition of RC bridges near the coast 

is predicted. This means that the proposed model is 

effective for bridges where the effect of 

environmental conditions is significant. 

2. GIS BRIDGE DATABASE (E-GISBD) 

 

2.1 Overview of E-GISBD 

The E-GISBD is being developed on the ArcGIS 

Desktop and ArcGIS Server platforms (Ormsby et. al. 

2004). The database includes information on bridges 

including bridge dimensions, inspection results, 

photos of damaged members, and traffic volume. 

Geographical information is also provided on all the 

bridges in the database, such as the distance from 

coast and altitude. Typical screenshots of the 

E-GISDB are shown in Fig. 1, where bridges with 

different health condition ratings are shown on a 

map (Fig. 1(a)) and all the related data can be 

investigated by selecting the bridge (Fig. 1(b)) and 

using the options available from the ArcGIS Desktop 

and Server.  

 

The E-GISBD has been developed with the aim 

of efficient management of municipal infrastructure 

systems including bridges, by integrating asset and 

geographical data. Data integration is defined by the 

Federal Highway Administration (FHWA) as the 

process of combining or linking two or more data 

sets from different sources to facilitate data sharing, 

promote effective data gathering and analysis, and 

support overall information management activities in 

an organization (FHWA 2001). Integrating these data 

into a consistent form is recognized as a critical step 

towards successful asset management (Halfawy and 

Figueroa 2006). 

 

The FHWA report also identifies a number of 

benefits for data integration: integrated analysis, 

consistency and clarity, completeness, reduced 

duplication, faster processing and turnaround time, 

lower data acquisition and storage costs, informed 

and defensible decisions, and integrated decision 

making (Halfawy and Figueroa 2006). This paper 

particularly focuses on the integrated analysis, where 



E-GISDB provides geographical information for the 

future deterioration prediction.  

 

 

(a) Map of bridges with different health conditions 

 

 

(b) Information about bridge 

Fig. 1. Typical screenshot of the E-GISBD 

 

2.2 Bridge inspection results stored in E-GISBD 

The inspection results obtained in City J were used 

for analysis in this research. Bridge members 

inspected in City J are shown in Table 1. Each 

member had several items to be inspected. For 

example, cracks, reinforced steel bar exposure, and 

water leaks were checked for RC beams. 

 

In addition to the health rating, the percentage 

of the members with the worst health rating is also 

recorded, e.g. “Cracks on the deck concrete: C, 

50%”. This means that the worst part of the deck 

concrete is rated as C, which covers 50% of the area 

of the deck, while there is no information on the 

other 50%. Therefore, it is assumed in this research 

that an undetermined percentage is equally 

distributed in the other possible health ratings. For 

example, in the case of “C, 50%”, the health ratings 

of A and B are 25%. Note that the percentages of D 

and E are 0% in this example because it is recorded 

that C is the worst health rating. Hereinafter, the 

percentage of health ratings at discrete time step t is 

expressed as {pt}, which is a five-dimensional vector, 

as follows: 

 

{ } { }, , , ,t A B C D Ep p p p p p=          (1) 

 

Table 1.  Bridge members inspected in City J 

Members Inspection item 

Road surface Pavement 

Joint 

Wheel guard/Guardrail 

Drainage 

Superstructure Girder 

Deck 

Interfilling 

Support Corrosion, Failure, etc. 

Substructure Abutment 

Bridge restrainer system 

Pier, Column, Footing 

 

2.3 Environmental conditions of bridges 

The E-GISBD associates the bridge inspection data 

with the environmental conditions. This research 

considers the environmental conditions of distance 

from the coast, and altitude. Because a salt breeze 

affects the speed of corrosion of reinforced steel bars 

and girders, the distance from the coast is an 

important factor when predicting future deterioration. 



On the other hand, altitude is also an important 

factor because the effect of a salt breeze decreases as 

altitude increases.  

 

The E-GISBD has information on the altitude 

and distance from the coast of arbitrary locations, 

provided by the Geographical Survey Institute. For 

example, Fig. 2 shows the contours of altitude in 

City J. Inspection results of bridges with 

environmental conditions are used for the analysis in 

a later chapter. 

 

 

Fig. 2. Contours of altitude in City J 

 

3. DETERIORATION PREDICTION 

 

3.1 Markov Chain model 

The Markov chain model is widely accepted for 

predicting future conditions. It works by defining 

discrete condition states and accumulating the 

probability of transition from one condition state to 

another over discrete time intervals. The probability 

of transition is generally expressed by the transition 

probability matrix [P]. Using the transition 

probability matrix, the condition at time t can be 

developed from that at time t-1 as follows: 

 

      { } { }1 [ ]t tp p P-=             (2) 

 

The following Eq. (3) shows a typical transition 

probability matrix of order (5×5) when MR&R work 

is not conducted. 
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Pij in the matrix means the probability that the 

health rating will change from the current state i to 

state j after one discrete time interval of the 

transition process. All the elements of the matrix are 

0 except for the on-diagonal elements and the 

elements above them. This formulation is based on 

the assumption that is generally made in the 

literature that a bridge element can change by at 

most one health rating in a year, and would never 

recover without any MR&R work. 

 

To predict multiple time intervals, Eq. (2) can 

be developed as in the following Eq. (4).  
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where k is the arbitrary discrete time, and {p0} is the 

initial health condition vector of the bridge, which is 

expressed as {p0} = {1,0,0,0,0} because no failure 

will exist at the beginning of the bridge’s life. 

 

It is essential to decide the transition 

probabilities in Eq. (3) to predict the future condition 

using Eq. (4). This research develops the transition 



probabilities as a function of environmental 

conditions by multiple regression analysis so that the 

effect of the environmental conditions on the 

deterioration of any bridges in the E-GISBD is 

derived. The following sections show how to 

conduct a multiple regression analysis. 

 

3.2 Derivation of transition probabilities from 

inspection results 

It is assumed that we have conducted the inspection 

at the discrete time t = T, and obtained the health 

condition vector as {pT}R={pA
R ,pB

R ,pC
R ,pD

R ,pE
R}, 

where superscript R indicates that the vector is the 

health condition of a real bridge obtained from an 

inspection. At the same time, we can calculate the 

health condition {pT} from {p0} and [P] as: 

 

{ } 0{ }[ ]
C T

Tp p P=
          (5) 

where superscript C indicates that the vector is the 

health condition predicted by the calculation. There 

are four unknowns (PAB, PBC, PCD, and PDE) in Eq. 

(5). To determine these unknowns, several 

researchers have proposed various methods. 

However, previous studies have limitations, such as 

requiring more than two sets of inspection results 

from one bridge; however it is not easy for local 

municipalities to archive these. Therefore, we have 

developed a method that requires only one 

inspection result from one bridge, as shown below. 

One possible way to determine unknowns PAB to PDE 

is to solve {pT}C={pT}R which takes the form of 

simultaneous equations in which the number of 

equations is five. However, because the number of 

equations is different from that of unknowns (=4), an 

exact solution cannot be obtained. This study derives 

the approximate solution by the least-square method, 

as shown below. 
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In the minimization process, the Nelder-Mead 

method, which is one of the most widely used 

methods for nonlinear unconstrained optimization, is 

employed. The method requires only function 

evaluations, not derivatives (Nelder & Mead 1965, 

Press et al. 2002). 

 

3.3 Multiple regression analysis 

This section develops a function to derive the 

transition probabilities from the environmental 

conditions by multiple regression analysis. This 

research considers the distance from coast dc and 

altitude h as the environmental conditions. First of 

all, bridges in City J are divided into five groups by 

structure type and by distance from the coast. Table 

2 shows details of the groups.  

 

Table 2. Detailed information of the bridge groups 

Group Structure type Distance from coast 

a RC bridges <1000m 

b RC bridges ≧1000m 

c PC bridges <1000m 

d PC bridges ≧1000m 

e Entire bridges 

 

Next, for each group, multiple regression 

analysis to investigate the relation between the 

transition probability and environmental conditions 

is computed as follows: 

 

1 2 3

, , ,
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


           (7) 

 

where k is the index of the group, Pij is the transition 



probability changed from health condition i to health 

condition j, C1ijk to C3ijk are coefficients to derive Pij 

in group k, and C1ijk to C3ijk are derived from the 

multiple regression analysis. After these coefficients 

are determined, transition probabilities can be easily 

obtained by substituting the altitude and distance 

from the coast into Eq. (7). The derived transition 

probabilities are considered to reflect environmental 

conditions, and more accurate future deterioration 

prediction is expected by using them. 

 

4. CASE STUDY OF CITY J 

 

The bridge inspection data offered by City J is used 

to show the effectiveness of the method developed 

here. There are 18 items to be inspected per bridge, 

and the weighted average of these is derived to 

evaluate the health condition of a bridge as in the 

following Eq. (8). 

 
18

1

   ( , , , , )ib h ih
h

p g p i A B C D E


        (8) 

 

where pih and pib are respectively the percentage of 

health rating i of inspection item h and the entire 

bridge, and gh is the weighting factor of inspection 

item h. This study uses gh values as used in City J, 

which are determined based on (Sato et. al. 2010). 

 

From the health rating of the entire bridge pib 

and bridge age t, the transition probabilities are 

derived using the least-square method shown in Eq. 

(6). Then, by the multiple regression analysis, the 

coefficients C1ijk to C3ijk in Eq. (7) are derived for 

each bridge group in Table 2. For example, Table 3 

shows the coefficients of group 3. Next, the 

transition probabilities of the target bridge to be 

inspected are derived by substituting the altitude and 

distance from the coast obtained from the E-GISBD 

into Eq. (7). Finally, the future health condition is 

predicted from Eq. (4). 

 

Table 3. Coefficients of group 3 (∴k=3) 

ij C1ijk C2ijk C3ijk 

AB 5.9×10-3 -2.9×10-4 4.1×10-6 

BC 6.3×10-2 -3.4×10-3 1.2×10-4 

CD 3.4×10-2 -1.4×10-3 3.3×10-5 

DE 5.3×10-3 -8.3×10-4 9.6×10-5 

 

Fig. 3 shows a comparison between the bridge 

health index (BHI) of inspection and the prediction 

results of bridges A, B, and C belonging to group a. 

The BHI is derived from the following equation. 

  

BHI 1 0.75 0.5

0.25 0
A B C

D E

p p p

p p

= ´ + ´ + ´ +
´ + ´

    (9)
 

 

 

 

 

Fig. 3. Comparison between proposed and 

conventional methods 

 

These figures have inspection results of other 

bridges in group a expressed as white circles. In 

addition, the results of the following two 

conventional prediction methods are shown for 

comparison. 

1. Results from the 4th order regression curve 

derived from the inspection results of all bridges 

in group a. 



2. Results from the Markov chain model without 

considering the environmental conditions. 

3.  

As seen in Fig. 3, an important characteristic of the 

present method is that different prediction curves can 

be developed for different bridges, which is not 

possible with conventional methods. This 

characteristic improves the accuracy of prediction 

because the proposed model considers the 

environmental conditions thoroughly. For example, 

the present method shows better prediction than the 

conventional methods for bridges B and C. In 

contrast, conventional method 1 shows the best 

prediction for bridge A. This is because the 

inspection result of bridge A is incidentally very 

close to the 4th order regression curve. However, it 

can be judged that the present method is better 

overall by comparing the R2 value, which is the 

determination coefficient defined as the goodness of 

fit of the model (Krus 2010). 

 

 

Fig. 4. Determination coefficient R2 of the proposed 

and conventional methods 

 

Fig. 4 shows the R2 values of the proposed 

method and conventional methods for every group 

shown in Table 2. It can be seen from the figure that 

the accuracy of conventional method 1 is not very 

good. Especially for group b and e, the R2 value is 

less than 0, which means that just using the simple 

average value of BHI without considering aging 

deterioration is better. Conventional method 2 is 

better than conventional method 1; however the 

proposed method is much better. Specifically, the 

proposed method shows superiority over 

conventional method 2 when group a (RC bridges 

near the coast) is analyzed. A possible reason is that 

the bridges in group a are the most sensitive to the 

salt breeze; therefore the present method, which 

considers environmental conditions thoroughly, 

gives much better results for the group. 

 

5. CONCLUSION 

 

This paper proposes a novel bridge deterioration 

prediction method using the Markov Chain model, 

whose transition probabilities are derived from 

environmental conditions. These conditions are 

obtained from the E-GISBD, which is the GIS bridge 

database system developed in Ehime University. 

 

This paper demonstrates the validity of the 

proposed model using the inspection results of 

bridges in City J. It is shown that the proposed 

model is more reasonable than conventional models. 

Specifically, the effectiveness of the present method 

is indicated for RC bridges near the coast, in which 

damage, including corrosion due to the salt breeze, is 

the most serious.  

 

In future work, it is suggested to consider not 

only the altitude and distance from coast in the 

prediction model, but also other conditions, 

including traffic volume and structural dimensions. It 

is expected that this will lead to more accurate 

predictions. We have already started this work and 

the details of our research will be reported in our 

next paper. 
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