
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.5 MAY 2007
799

PAPER

A Labeled Transition Model A-LTS for History-Based Aspect
Weaving and Its Expressive Power

Isao YAGI†a), Nonmember, Yoshiaki TAKATA†b), and Hiroyuki SEKI†c), Members

SUMMARY This paper proposes an event-based transition system
called A-LTS. An A-LTS is a simple system consisting of two agents, a
basic program and a monitor. The monitor observes the behavior of the ba-
sic program and if the behavior matches some pre-defined pattern, then the
monitor interrupts the execution of the basic program and possibly triggers
the execution of another specific program. An A-LTS models a common
feature found in recent software technologies such as Aspect-Oriented Pro-
gramming (AOP), history-based access control and active database. We in-
vestigate the expressive power of A-LTS and show that it is strictly stronger
than finite state machines and strictly weaker than pushdown automata
(PDA). This implies that the model checking problem for A-LTS is decid-
able. It is also shown that the expressive power of A-LTS, linear context-
free grammar and deterministic PDA are mutually incomparable. We also
discuss the relationship between A-LTS and pointcut/advice in AOP.
key words: labeled transition system, pushdown automaton, formal model,
aspect-oriented programming, AspectJ

1. Introduction

In this paper, we consider a simple system consisting of two
agents, namely a basic program and a monitor. The mon-
itor observes the behavior of the basic program and if the
behavior matches some pre-determined pattern, such as de-
viation from a security policy, then the monitor interrupts
the execution of the basic program and possibly triggers the
execution of a specific program (e.g., an error handler). As
described in detail later, this kind of systems can be found
in a few fields of computer science, such as history-based
access control in system security, aspect-oriented program-
ming (AOP) and active database.

This paper proposes an event-based system called
A-LTS for modeling the above-mentioned systems. An A-
LTS is a set of finite state machines (FSMs) consisting of
a basic program, a monitor and other machines that are in-
serted (or woven) into the basic program. The aims of the
paper are two-fold: One of them is rather theoretical. Since
an A-LTS is a transition system, it is natural to consider an
A-LTS as a language recognizer that accepts every sequence
of events that brings the A-LTS from the initial state to a
final state. Thus, it is interesting to compare the expressive
power of A-LTS with those of standard models such as FSM

Manuscript received August 3, 2006.
Manuscript revised December 1, 2006.
†The authors are with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, Ikoma-shi, 630–
0101 Japan.

a) E-mail: isao-y@is.naist.jp
b) E-mail: y-takata@is.naist.jp
c) E-mail: seki@is.naist.jp

DOI: 10.1093/ietisy/e90–d.5.799

and pushdown automata (PDA). The other is to investigate
automatic verification (or model checking [6]) method for
systems that can be modeled as A-LTS. Among a number
of types of formal verification, we are interested in formal
verification in which a verification property is modeled as
a subset of execution histories of a system. This type of
formal verification clearly captures behavior of a system,
and by appropriate modeling, automatic verification called
model checking can be performed. Much research on formal
modeling of this kind of systems has been done; however, a
simple and clear model suitable for model checking has not
been established yet (see Sect. 2.1.2). Furthermore, these
two aims are closely related since there is certain relation
between the language expressive power and the decidability
of model checking. Thus, clarifying the expressive power of
a new class of system models may shed light on the decid-
ability and complexity of model checking of the class.

We show that the expressive power of A-LTS is strictly
stronger than FSM and strictly weaker than PDA under lan-
guage equivalence, bisimulation, and isomorphism. This re-
sult implies that formal verification of a program modeled as
an A-LTS is decidable using a model checking method for
PDA [9]. Next we compare in detail the expressive power
of A-LTS with a few subclasses of PDA (or equivalently of
context-free grammars): classes of deterministic PDA and
linear grammars.

A-LTS resembles PA (pointcut and advice, cf.
Sect. 2.1.1) of AOP languages such as AspectJ [3], but is
simper than PA in the following sense:

1. An A-LTS is a data-less (or value-free) event-based
transition system.

2. A basic program of an A-LTS is an FSM.

We assume a value-free system since if we allow an infinite
domain, automatic verification becomes impossible. When
we conduct model checking of a real-world program, we
first construct an abstract model that approximates the pro-
gram by making the value domain finite. As for the second
point, since we are interested in the expressive power of the
monitor (or pointcut), we would like to let a basic program
be very simple, namely finite-state, and to know how the
expressive power increases when we add the monitor.

In the rest of the paper, we will borrow the terminolo-
gies of PA in AOP since they can express many concepts on
A-LTS very well although A-LTS is a very restricted model
when it is considered as a formal model of PA.

Section 2 describes related work, especially studies on

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers

800
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.5 MAY 2007

formal models of PA and other areas, and compares them
with A-LTS. In Sect. 3, we mention the design principle of
A-LTS, followed by a formal definition of A-LTS in Sect. 4.
In Sect. 5, we compare the expressive power of A-LTS with
FSM and PDA under language equivalence, bisimulation,
and isomorphism. In Sect. 6, we state the relationship be-
tween pointcuts of A-LTS and AspectJ. Finally, we give a
conclusion and future work in Sect. 7.

2. Related Work

2.1 Aspect-Oriented Programming

2.1.1 Overview

AOP is a new programming paradigm addressing the short-
comings of Object-Oriented Programming (OOP). OOP is
not always suitable for describing functions and operations
that cannot be encapsulated within a single class of objects
(e.g., logging and synchronizing). These functions and op-
erations are called crosscutting concerns because they strad-
dle more than one class. AOP introduces a new module unit
“aspect” for describing a crosscutting concern as a single
module. In AOP, any procedure describing a crosscutting
concern can be inserted into a specific execution point of a
program.

Various AOP mechanisms have been proposed. Ma-
suhara et al.[12] classify existing AOP mechanisms into the
following four categories:

(1) PA in AspectJ
(2) Traversal specifications as in Demeter, DemeterJ and

DJ
(3) Class composition as in Hyper/J
(4) Open classes as in AspectJ

In PA, each execution point where a procedure can be in-
serted is called a join point, and the inserted procedure is
called an advice. When an advice is inserted into a pro-
gram, we say the advice is woven into a basic program. The
set of join points to which a specific advice should be con-
nected is called a pointcut. An aspect is a pair of an advice
and a pointcut. In (2), a concern is represented by an object
called a visitor. A visitor traverses a class structure graph
according to a specified traversal strategy, executing a spec-
ified advice on each visited object. A join point at which a
concern is woven is thus determined statically by traversal
strategy. In (3), each concern is an independent program ex-
tracted from a whole program. A join point (a location of
concern in the program) is determined statically at compile
time as well. In (4), a uniform change of static structure of
multiple classes (e.g., method and field declaration) is re-
garded as a concern. Thus, a join point (a location of static
structure declarations) is statically determined.

As described in Sect. 1, we are interested in formal
modeling of a system whose behavior depends on execu-
tion history of a system. Hence, A-LTS is most related to
PA whose dynamic behavior depends on situation in system

execution. Furthermore, A-LTS can represent the recursive
weaving of state machines. Recursive weaving is supported
by AspectJ, and it sometimes brings unexpected behavior
of a system to the system’s designer. Thus it is arguable
to support recursive weaving in AOP. However, in real ap-
plications such as communication protocol software, nested
exceptions sometimes occur, which is a situation similar to
recursive weaving. Hence, having a model that can correctly
represent the recursive weaving is beneficial.

2.1.2 Formal Models of PA

There have been studies on formal modeling of PA [5], [7],
[18], [20]. Douence et al.[7] proposed a formal model of PA
based on a functional language Haskell. Their framework is
based on the following simple principles:

• Points of interest of program execution are modeled as
events.
• Each pointcut is specified as a pattern of event se-

quences.
• When an execution trace of a program matches a point-

cut, the advice associated with the pointcut is executed.

However, the formal semantics of the pattern language,
which is defined by the number of equations, is not sim-
ple, so it is not easy to use in formal verifications and other
applications. Moreover, only a mechanism for selecting ad-
vice at each execution step is proposed, and one for weaving
advices into a basic program is not described.

Wand et al.[20] provide denotational semantics for PA
on top of an object-oriented language called BASE. A join
point is an abstract runtime stack containing information on
execution of procedures and advices. This enables us to de-
fine temporal pointcuts such as cflow in AspectJ in a simple
way. Argument passing, also, is clearly defined by monad
operations. Walker et al.[18] defines two-layered AOP, the
core aspect calculus and the external language MinAML,
by using simply-typed lambda-calculus. The core calculus
is orthogonal to the underlying language design and a join
point is an arbitrary portion of a program. In the core cal-
culus, temporal pointcuts are defined by using regular ex-
pression to describe stack patterns. Since the main purpose
of the above studies is providing formal semantics to ac-
tual AOPs, none of the studies give formal results on how
the expressive power increases when PA is added to the un-
derlying language. On the other hand, the semantics of A-
LTS is value-free and finite-state, and is too simple to model
PA, compared with these studies. This is partly because the
purpose of this paper is to formally show how adding PA
increases the expressive power as a recognizer of event se-
quences.

Bruns et al.[5] uses concurrency theory. In their set-
ting, a join point is simply a message passing. They show
that their language µABC can encode core MinAML. How-
ever, µABC does not consider temporal pointcuts. The tem-
poral pointcuts in [18], [20] can be considered as a special
case of the execution control known as stack inspection. As

YAGI et al.: A LABELED TRANSITION MODEL A-LTS FOR HISTORY-BASED ASPECT WEAVING AND ITS EXPRESSIVE POWER
801

mentioned in 2.2, the expressive power of stack inspection is
known to be incomparable with that of history-based model
including the monitor of A-LTS.

Nakajima et al.[14] proposed an aspect-oriented exten-
sion of UML State Diagrams. Their framework follows
three principles of [7] and inherits the clarity of State Di-
agrams as well. Moreover, the constructs of pointcuts are
simple but powerful: one can specify a pointcut such as “any
configuration where a component state machine M is in a
specified state s and when an event e just occurs.” Switch-
ing between the basic program and a woven advice is rep-
resented by general-purpose control primitives, which can
pause and resume any component state machine. Since the
main purpose of [14] is model checking, the model keeps
the state space of the whole model finite by prohibiting the
recursion of the suspension of state machines.

2.2 Security and Database

An active database [16] consists of a set of active rules and
a database instance. An active rule typically has the form
of ECA (event-condition-action), which means that ‘when
a specified event occurs, a specified action should be per-
formed on the current database instance if a specified con-
dition is satisfied.’ An ECA can be modeled as A-LTS by
defining event-condition and action as pointcut and advice,
respectively.

The access control technology most related to A-LTS
is history-based access control [2], [10], [17], which is an
extension of the stack inspection in Java and C�. Schnei-
der [17] defines an enforceable security policy as a prefix-
closed nonempty set of event sequences. He also defines
security automata, which exactly recognize enforceable se-
curity policies. However, the expressive power of security
automaton is Turing powerful and thus too large. Fong [10]
introduces several subclasses of security automata and com-
pares their expressive power. In particular, Fong [10] defines
shallow history automata with finite state space and shows
that the class of policies recognized by shallow history au-
tomata is incomparable with stack inspection.

Both security automata and A-LTS take automata-
theoretic approaches. The main difference between them
is that in security automata, once the execution history of
a controlled program deviates from a given security pol-
icy (i.e., a given pattern), the execution of the program
is aborted. Hence, it is impossible for security automata
including shallow history automata to simulate recursive
weaving.

3. Basic Design of Program Model

A program (or a fragment of a program) is modeled as a la-
beled transition system (LTS), which defines a set of pos-
sible sequences of atomic actions (called events). Both a
basic program (a program to which advices are woven) and
each advice are modeled as finite LTSs, i.e., finite state ma-
chines (FSMs).

Fig. 1 A-LTS framework.

A join point where an advice is connected is deter-
mined by the following mechanism, which is similar to the
one in [7]. There are two parallel synchronized virtual ma-
chines: main thread and monitor (Fig. 1). The main thread
is used for the execution of a basic program and advices, and
at first it invokes the basic program. The monitor observes
the event sequence performed by the main thread, decid-
ing whether the sequence matches each pointcut. When it
matches pointcut Pi, the monitor tells the main thread to join
advice Ai, which is associated with Pi. After the execution
of Ai is finished, the main thread resumes the execution of
the program that was running just before Ai was invoked.

Each pointcut is defined as a pattern of event sequences
(or equivalently, a set of event sequences). When an event
sequence starting at the beginning of a whole program
matches a pointcut, the advice associated with the pointcut
is invoked. In our model, a pointcut is defined by a deter-
ministic finite automaton.

The execution of each advice terminates when control
reaches a specified final state. Since a finite automaton can
be regarded as an LTS with specified final states, we model
each basic program, pointcuts, and advices as an LTS with
final states.

4. Program Model A-LTS

An A-LTS is a tuple of a basic program, n pointcuts, and n
advices. An A-LTS specifies a single infinite LTS.

4.1 Labeled Transition System

In this paper, we use LTSs with final states as the fundamen-
tal constructs. Each basic program, pointcuts, and advices
is modeled as a finite LTS with final states. In a basic pro-
gram and an advice, a final state is regarded as a terminating
point of execution. A pointcut is used as a language accep-
tor. That is, for pointcut Pi, every event sequence from the
initial state to a final state represents a join point specified
by Pi. The behavior of a whole A-LTS is defined as an in-
finite LTS (in Definition 4). We only use the final states
of a whole A-LTS for defining language equivalence, which
shows the difference between the expressive powers of A-
LTS and other models. The final states of an A-LTS can be
ignored when we analyze its behavior, and thus we can use
A-LTS even for modeling non-stopping systems.

802
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.5 MAY 2007

Definition 1: A labeled transition system with final
states on alphabet Σ is a 5-tuple

L = (Σ,QL,→L, IL, FL),

where QL is a finite or an infinite set of states,→L (⊂
=

QL ×
Σ × QL) is a transition relation, IL(∈ QL) is an initial state,
and FL(⊂

=
QL) is a set of final states.

We denote (q1, a, q2) ∈ →L as q1
a→L q2. �

Let QL, →L, IL, and FL denote the set of states, the
transition relation, the initial state, and the set of final states
of an LTS L, respectively. We assume that the alphabets of
all LTSs are the same and denoted by Σ.

Definition 2: An LTS L is deterministic if for all q ∈ QL

and a ∈ Σ, there exists exactly one q′ ∈ QL such that q
a→L

q′. �

4.2 A-LTS

Definition 3: A-LTS is a (2n + 1)-tuple of finite LTSs

PR = (B, P1, A1, P2, A2, . . . , Pn, An),

where n ≥ 0. B is a basic program, P1, . . . , Pn are point-
cuts, and A1, . . . , An are advices. They should satisfy the
following constraints:

• Each pointcut is deterministic.
• QB,QA1 , . . . ,QAn are pairwise disjoint.
• The initial states are not final states for B, P1, . . . , Pn,

A1, . . . , An.
�

An intuitive semantics of an A-LTS is as follows. First,
the execution of B starts. When the event sequence starting
at the beginning of B (time 0) matches pointcut Pi; that is,
the sequence is accepted by Pi, the execution of B is sus-
pended and advice Ai is invoked. After that, when the event
sequence from time 0 grows according to the execution and
matches pointcut P j, the execution of Ai is suspended, and
advice A j is invoked. In this way, executions of advices are
inserted recursively. When control reaches a final state of an
advice, the suspended execution of the basic program or an
advice is resumed. A-LTS terminates when control reaches
a final state of the basic program.

When an event sequence simultaneously matches more
than one pointcut, all advices associated with them are exe-
cuted in a specific order. This order is defined by the indexes
of pointcuts and advices. When a sequence simultaneously
matches both Pi and P j for i < j, Ai is invoked first, and A j

is invoked just after Ai terminates.

4.3 Formal Semantics of A-LTS

First we define some terminologies. The formal semantics
of A-LTS is given in Definition 4. In the following, we fix
an A-LTS PR = (B, P1, A1, . . . , Pn, An).

• For arbitrary set X, let X∗ be the set of all finite se-
quences of elements in X. Let ε be the empty sequence.
The singleton sequence that consists of element x is de-
noted by x itself. ξ : ν denotes the concatenation of two
sequences, ξ and ν.
• Let Q = QB∪QA1∪· · ·∪QAn . Note that by Definition 3,

QB,QA1 , . . . ,QAn are pairwise disjoint. Let M : Q →
{B,A1, . . . , An} be a mapping that maps q ∈ Q to the
LTS to which q belongs. For example, M(q) = B if
q ∈ QB.
• A mapping AD : QP1 × · · · × QPn → Q∗ is defined as

follows.

AD(q1, . . . , qn) = IAi1
: IAi2

: . . . : IAim
,

where 1 ≤ i1 < i2 < · · · < im ≤ n and {i1, i2, . . . , im} =
{i | qi ∈ FPi}. Intuitively, AD(q1, . . . , qn) represents
the list of the initial states of advices that should be
started when each pointcut Pi goes to qi. The order of
the initial states in AD(q1, . . . , qn) corresponds to the
execution order of the advices.

• A mapping EF : Q→ Q∗ is defined as follows.

EF(q) =

{
ε if q ∈ FM(q),
q otherwise.

Definition 4: The formal semantics of an A-LTS PR is de-
fined as the following LTS TSPR.

TSPR = (Σ,Q∗ × QP1 × · · · × QPn ,→PR,

(IB, IP1 , . . . , IPn), FPR),

where FPR = {(ε, q1, . . . , qn) | qi ∈ QPi for 1 ≤ i ≤ n} and
→PR is defined by the following inference rule.

s
a→M(s) s′ qi

a→Pi q′i (1 ≤ i ≤ n)

(s : ξ, q1, . . . , qn)
a→PR

(AD(q′1, . . . , q
′
n) : EF(s′) : ξ, q′1, . . . , q

′
n)

�

Figure 2 shows an A-LTS PR recognizing {ambm | 0 <
m}. An A-LTS PR recognizes L if L is the set of sequences
each of which brings TPR to a final state (cf. Definition 8).
Figure 3 is the TSPR for the A-LTS PR in Fig. 2. A double
circle denotes a final state. When PR in the initial config-
uration reads a, B and P1 enter final states. Thus B termi-
nates and A1 starts. Next, A1 can read either a or b. If A1

reads a, then P1 is entering a final state again, and thus A1 is
newly invoked. A1 is recursively invoked m times just after

Fig. 2 A-LTS recognizing {ambm | 0 < m}.

YAGI et al.: A LABELED TRANSITION MODEL A-LTS FOR HISTORY-BASED ASPECT WEAVING AND ITS EXPRESSIVE POWER
803

Fig. 3 TSPR for PR in Fig. 2.

PR reads am. When a newly invoked A1 reads b, it simply
terminates. Since P1 enters a non-final state whenever PR
reads b, A1 is not invoked at that time. Each suspended A1

can only read b, which terminates A1. Just after PR reads
ambm, all the suspended A1 terminates.

5. Expressive Power of A-LTS

In this section, we compare the expressive power of A-LTS
with the other state transition models, such as FSM and
pushdown automaton (PDA). For two classes C1 and C2 of
state transition models, “C2 includes C1” (C1 ⊂= C2) if for
any model M1 in C1, there exists some model M2 in C2 that
is equivalent to M1. “C1 is equivalent to C2”(C1 = C2) if
C1 ⊂= C2 and C2 ⊂= C1.

There are a few different definitions of equivalence be-
tween the two models [13]. We use three different defini-
tions of equivalence: isomorphism, bisimulation, and lan-
guage equivalence. These equivalences have the following
properties:

• Two models are bisimilar if they are isomorphic.
• Two models are language equivalent if they are bisimi-

lar.

5.1 Equivalence of Models

We define the three equivalences (isomorphism, bisimula-
tion, and language equivalence) between two LTSs as fol-
lows.

Definition 5 (Isomorphism): LTSs L1 and L2 are isomor-
phic if there exists a bijection R : QL1 → QL2 with the
following properties.

(a) For any states s1, s′1 ∈ QL1 and any event a ∈ Σ, s1
a→L1

s′1 if and only if R(s1)
a→L2 R(s′1).

(b) For any s ∈ QL1 , s ∈ FL1 if and only if R(s) ∈ FL2 . �

Definition 6 (bisimulation relation): For any pair of LTSs
(L1, L2), a relation R ⊂

=
QL1 ×QL2 is a bisimulation relation

on (L1, L2) if for every (s1, s2) ∈ R and a ∈ Σ, R satisfies the
following properties.

(a) If s1
a→L1 s′1, then there exists some s′2 ∈ QL2 such that

(s′1, s
′
2) ∈ R and s2

a→L2 s′2.

(b) If s2
a→L2 s′2, then there exists some s′1 ∈ QL1 such that

(s′1, s
′
2) ∈ R and s1

a→L1 s′1.
(c) s1 ∈ FL1 if and only if s2 ∈ FL2 . �

Definition 7 (bisimulation): LTSs L1 and L2 are bisimi-
lar if a bisimulation relation exists R on (L1, L2) such that
(IL1 , IL2) ∈ R. �

The behavior of two models are identical if they are
bisimilar. Note that the usual definition of bisimulation re-
lation does not require property (c) of Definition 6, since
the definition is over LTSs without final states. Property
(c) is needed to obtain the above relation between bisimula-
tion and language equivalence, i.e., two models are language
equivalent if they are bisimilar. However, the addition of
property (c) is insignificant because if we assume that LTSs
L1 and L2 satisfy the following properties, then properties
(a) and (b) imply (c) and thus Definition 6 coincides with
the usual definition.

(1) At least one transition exists from every non-final state.
(2) There is no transition from final states.

Every A-LTS satisfies property (2) by Definition 4. Ev-
ery A-LTS in which at least one transition exists from every
non-final state of the basic program and the advices satis-
fies property (1). In practice this assumption does not spoil
generality.

Definition 8: For an LTS L, Lang(L) ⊂
=
Σ∗ is defined as

follows.

Lang(L) = {a1a2 . . .an ∈ Σ∗ | There exist

s0, . . . , sn ∈ QL such that

IL = s0 and si−1
ai→L si (1 ≤ i ≤ n)

and sn ∈ FL}.
Lang(L) is called the language of L. We say that L recog-
nizes a set S ⊂

=
Σ∗ if and only if S = Lang(L). For any

sequence w ∈ Lang(L), we say L accepts w. �

Definition 9 (Language equivalence): LTSs L1 and L2 are
language equivalent if Lang(L1) = Lang(L2). �

5.2 Comparisons with FSM and PDA

An FSM is an LTS with a finite number of states. The class
of languages recognized by FSMs equals the class of regular
languages. The class of languages recognized by pushdown
automata (PDA) equals the class of context-free languages.

Now we discuss the expressive power of A-LTS. We
denote the classes of A-LTSs, FSMs, and PDAs as A-LTS,
FSM, and PDA, respectively. Below we will show that A-
LTS ⊂

=
PDA and FSM ⊂

=
A-LTS under isomorphism and

PDA /⊂= A-LTS and A-LTS /⊂= FSM under language equiv-
alence (Theorem 2). Let LA-LTS, REG, and CFL be the
classes of languages recognized by A-LTSs, FSMs, and
PDAs, respectively. We will show that CFL /⊂= LA-LTS and
LA-LTS /⊂= REG, which imply PDA /⊂= A-LTS and A-LTS /⊂=

804
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.5 MAY 2007

Fig. 4 A-LTS recognizing L2.

Fig. 5 A-LTS recognizing L3.

FSM under language equivalence.
We also discuss a relation among LA-LTS and two sub-

classes of CFL: the classes of deterministic context-free
and linear languages. A PDA is deterministic if no more
than one transition exists from every configuration reach-
able from the initial configuration. A language recognized
by a deterministic PDA is a deterministic context-free lan-
guage. A linear context-free grammar (or a linear gram-
mar) is a context-free grammar in which at most one non-
terminal symbol can occur on the right-hand side of every
production. A linear language is a language generated by a
linear grammar. Let DCFL and Llinear be the classes of de-
terministic context-free and linear languages, respectively.

Now we define the following eight context-free lan-
guages to discuss the inclusion relation between classes of
languages.

• L1 = {ambm | 0 < m}
• L2 = {ambmcndn | 0 < m, 0 < n}
• L3 = {ambn | 0 < m ≤ n ≤ 2m}
• L4 = {ambn | 0 ≤ n ≤ m, 0 < m}
• L5 = {akbkcmdn | 0 < m ≤ n ≤ 2m, 0 < k}
• L6 = {ambn | 0 < m, n ∈ {0,m, 2m}}
• L7 = {ambnckdk | 0 ≤ n ≤ m, 0 < m, 0 ≤ k}
• L8 = {ambnckdk | n ∈ {0,m, 2m}, 0 < m, 0 ≤ k}

Lemma 1: L1, L2, L3, L5 ∈ LA-LTS.

[Proof] As mentioned in Sect. 4.3, the A-LTS in Fig. 2 rec-
ognizes L1. Figures 4, 5, and 6 show A-LTSs rec-
ognizing L2, L3, and L5, respectively. A-LTS PR2 in
Fig. 4 is obtained from PR in Fig. 2 by adding P22 and
A22, which resemble P21 and A21 and guarantee that
the numbers of cs and ds are identical. PR3 in Fig. 5
is obtained from PR in Fig. 2 by replacing advice A1

with A3, which nondeterministically consumes one or
two bs for each a. A3 thus guarantees that PR3 exactly
accepts ambn such that m ≤ n ≤ 2m. PR5 in Fig. 6 is a

Fig. 6 A-LTS recognizing L5.

combination of PR2 and PR3.
�

To show that some languages are not in LA-LTS, we use
the following lemma.

Lemma 2: If A-LTS PR accepts sequence w, then no
pointcuts of PR accept w.

[Proof] We show the contraposition. Let w be a sequence
accepted by some pointcut of PR. When the event se-
quence starting at time 0 becomes w, the advice cor-
responding to the pointcut that accepts w is invoked.
Since any state precisely when an advice is invoked is
not a final state of PR by Definition 4, PR does not ac-
cept w. �

Lemma 3: Let L be the language of an A-LTS PR such
that L′ − {ε} ⊂

=
L for some prefix-closed language L′. Then

a constant m exists that satisfies the following condition. If
uw ∈ L, u ∈ L′, |u| ≥ m and w ∈ Σ∗, then u can be decom-
posed into u = xyz such that |y| > 0 and |xy| ≤ m and xykz
for any k ≥ 0 also belongs to L.

[Proof] By Lemma 2, no pointcuts of PR accept any u ∈
L′−{ε}. Therefore, since L′ is prefix-closed, no advices
of PR are invoked while PR reads a fixed sequence u ∈
L′ − {ε}. Let m be the cardinality of QB × QP1 × · · · ×
QPn . Fix a sequence uw ∈ L such that u ∈ L′ and
|u| ≥ m, and also fix an accepting execution of PR while
reading uw. Then for the first part of the execution of
PR while reading u, at least one configuration exists
of PR that the execution visits twice or more, and an
execution obtained by removing or repeating the part
between the occurrences of the same configuration is
also a valid accepting execution of PR. Letting y be the
fragment corresponding to the pumped part, we obtain
this lemma. �

Lemma 4: L4, L6, L7, L8 � LA-LTS.

[Proof] Note that each of these languages includes a+,
which equals a∗−{ε} and a∗ is prefix-closed. Assuming
that each of the languages is recognized by an A-LTS,
then we can show a contradiction to Lemma 3 by se-
lecting uw = ambm for L4 and L7 and uw = amb2m for
L6 and L8 for the constant m in Lemma 3. �

YAGI et al.: A LABELED TRANSITION MODEL A-LTS FOR HISTORY-BASED ASPECT WEAVING AND ITS EXPRESSIVE POWER
805

Fig. 7 Deterministic PDA recognizing L1.

Fig. 8 Deterministic PDA recognizing L2.

Fig. 9 Deterministic PDA recognizing L4.

Fig. 10 Deterministic PDA recognizing L7.

Lemma 5: L1, L2, L4, L7 ∈ DCFL and L3, L5, L6, L8 �
DCFL.

[Proof] Figures 7, 8, 9, and 10 are deterministic PDAs that
recognize L1, L2, L4, and L7, respectively. In these fig-
ures, each circle denotes a control state, and each dou-
ble circle denotes a final state. The label on each transi-
tion specifies a triple (a, g)/w where a is either an event
or ε, g is a stack symbol at the top of the stack, and w
is a sequence of stack symbols to which the top of the
stack will be replaced [11]. Z is the start symbol of the
stack. A deterministic PDA M accepts sequence w if
M enters a final state just after reading w.
We prove L3 � DCFL by contradiction. Assume that a
deterministic PDA exists that recognizes L3. Then we
can construct a PDA that recognizes the following L′3
using a technique shown in [11, p.196].
L′3 = {ambnck | ambn ∈ L3, ambn+k ∈ L3} = {ambnck |
0 < m ≤ n ≤ n + k ≤ 2m}
However, L′3 � CFL by the pumping lemma for
context-free languages. Therefore, L3 � DCFL.
In a similar way, if a deterministic PDA exists that rec-
ognizes L5, then we can construct a PDA that recog-
nizes L′5 = {akbkcmdnel | akbkcmdn ∈ L5, akbkcmdn+l ∈
L5} = {akbkcmdnel | 0 < k, 0 < m ≤ n ≤ n + l ≤ 2m}.
Let h be a homomorphism such that h(a) = h(b) = ε,
h(c) = a, h(d) = b, and h(e) = c. Then h(L′5) = L′3.
Since CFL is closed under homomorphism, L′3 must be
in CFL, contradicting the above fact that L′3 � CFL.
Therefore, L5 � DCFL.
We prove L6 � DCFL by contradiction. Assume that

Fig. 11 Relationship between LA-LTS and well-known classes of lan-
guages.

L6 ∈ DCFL. Since DCFL is closed under intersection
with a regular language, L′6 = L6 ∩ a∗b+ = {ambn |
n ∈ {m, 2m}, 0 < m} ∈ DCFL. From a deterministic
PDA recognizing L′6, we can construct a nondetermin-
istic PDA that recognizes L′′6 = {ambnck | m > 0, n ∈
{m, 2m}, n + k ∈ {m, 2m}}. However, L′′6 � CFL by the
pumping lemma for context-free languages. Therefore,
L6 � DCFL.
Since L8 ∩ a∗b+ = L′6 and DCFL is closed under inter-
section with a regular language, L8 � DCFL. �

Lemma 6: L1, L3, L4, L6 ∈ Llinear and L2, L5, L7, L8 �
Llinear.

[Proof] Following linear grammars G1, G3, G4, and G6

generate L1, L3, L4, and L6, respectively.

• G1 = ({S }, {a, b}, {S → ab | aS b}, S)
• G3 = ({S }, {a, b}, {S → ab | abb | aS b | aS bb}, S)
• G4 = ({S }, {a, b}, {S → a | ab | aS | aS b}, S)
• G6 = ({S , A, B,C}, {a, b}, {S → A | B | C, A →

aA | a, B→ aBb | ab, C → aCbb | abb}, S)

We can easily show that L2, L5, L7, L8 � Llinear by the
pumping lemma for linear languages [11]. �

Lemma 7: L1 � REG.

[Proof] We can show this lemma by the pumping lemma
for regular languages. �

Lemma 8: FSM ⊂
=

A-LTS under isomorphism and REG ⊂
=LA-LTS.

[Proof] An FSM is an A-LTS without pointcuts and ad-
vices. Therefore, FSM ⊂

=
A-LTS under isomorphism,

which implies REG ⊂
=
LA-LTS. �

Figure 11 shows the relationship between LA-LTS and
the classes discussed above. The following Theorem 1 states
that each subset (1)–(8) in Fig. 11 is not empty.

Theorem 1: The following sets of languages are not
empty.

(1) (LA-LTS ∩ DCFL ∩ Llinear) − REG
(2) (LA-LTS ∩ DCFL) − Llinear

(3) (LA-LTS ∩ Llinear) − DCFL
(4) (DCFL ∩ Llinear) − LA-LTS

(5) LA-LTS − (DCFL ∪ Llinear)
(6) DCFL − (LA-LTS ∪ Llinear)

806
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.5 MAY 2007

(7) Llinear − LA-LTS ∪ DCFL
(8) CFL − (Llinear ∪ LA-LTS ∪ DCFL)

[Proof] By Lemmas 1, 4, 5, 6, and 7, L1, L2, . . . , L8 belong
to set (1), (2), . . . , (8), respectively. �

The following theorem is the main result of this sec-
tion.

Theorem 2: FSM ⊂
=

A-LTS ⊂
=

PDA under language equiv-
alence, bisimulation, and isomorphism.

[Proof] By Lemma 8, FSM ⊂
=

A-LTS under isomorphism.
By Theorem 1, none of the subsets (1), (2), (3), and
(5) is empty. Therefore, A-LTS /⊂= FSM under lan-
guage equivalence. For any A-LTS PR, there exists a
PDA isomorphic to PR, whose set of control states is
QP1×· · ·×QPn and the set of stack symbols is Q. There-
fore, A-LTS ⊂

=
PDA under isomorphism. By Theorem

1, none of the subsets (4), (6), (7), and (8) is empty.
Therefore, PDA /⊂= A-LTS under language equivalence.

�

In a general PDA, the stack is modified depending on
the input event, the control state, and the topmost symbol
of the stack at that time instance. In an A-LTS, however,
the sequence of symbols pushed onto the stack at a transi-
tion depends on the input event and the control state (i.e.,
the current states of the pointcuts) and not on the contents of
the stack. Moreover, the pushed sequence is uniquely deter-
mined by the event sequence starting at the beginning of the
basic program since every pointcut is deterministic. These
properties make A-LTS a proper subclass of PDA.

6. A-LTS and AspectJ

In this section, we discuss the relationship between the
pointcuts of A-LTS and AspectJ, which is the most popu-
lar implementation of PA.

6.1 AspectJ

AspectJ is an AOP language implementing PA based on
Java. A program in AspectJ consists of a set of classes and
aspects. An aspect consists of pointcuts and advices. The
main constructs of pointcuts are as follows.

• call(m) – the set of method calls to m.
• execute(m) – the execution of the body of method m.
• cflow(p) – the set of all join points subsequent to any

join point jp specified by pointcut p.
• get(f) – the set of execution points at which the value

of data field f is used.
• set(f) – the set of execution points at which a value is

assigned to data field f .

Note that for call and execute pointcuts, the execution of
the whole body of method m is regarded as a single join
point. For each advice, one of the three keywords {before,
after, around} as well as a pointcut is given. Before/after

denotes that the advice should be inserted before/after each
join point specified by the pointcut. Around denotes that
each join point specified by the pointcut should be replaced
with the advice. For example, when we want to execute
an advice before every method call to a method proc, we
specify pointcut “before call(proc)” for the advice.

6.2 Discussion

We model a basic program and advices written in AspectJ
as follows. Event set of a program is the set of join points
and other related actions. For example, call to a method
and assignment to a data field are regarded as events. A ba-
sic program and advices are defined as processes executing
events in a specific order. As stated above, in AspectJ, the
execution of the whole body of a method is regarded as a
single join point. However, if we consider this join point
as an atomic event, then we cannot represent the recursion
of method call. Endoh et al.[8] proposed a new join point
model that is finer grained than AspectJ. In the model, the
start and end points of a method execution are considered as
distinct join points. We follow this idea to represent “before
call(m)” and “after call(m).”

Let callm be an event that represents the call to method
m and receptionm be an event that represents the return from
m. Pointcut “before call(m)” of AspectJ is denoted as a reg-
ular language Pcallm = Σ

∗callm in A-LTS. Pointcut “after
call(m)” is represented as Σ∗receptionm. We consider point-
cut “execute(m)” in a similar way.

Next we consider pointcut “before get(f).” Let get f be
an event that represents a reference of the value of data field
f . In A-LTS, an advice is invoked just after an event that
leads the current state of a pointcut to a final state. That
event should not be get f itself because we want to invoke an
advice before get f occurs. Thus, we need a prelude event
preludeget f

that represents just before the reference of f , and
we define “before get(f)” as Σ∗preludeget f

. We can consider
pointcut “set(f)” in a similar way.

Finally we consider pointcut “cflow(pc).” Let Ppc be
a pointcut of A-LTS represented by a regular language that
represents pc. Then “after cflow(pointcut)” is represented
as Ppc +PpcΣ

∗Σ jp, where Σ jp is the set of all events that cor-
respond to join points. Similarly, “before cflow(pointcut)”
is represented as Ppc + PpcΣ

∗Σb jp where Σb jp is the set of all
callm, all executem

†, and all the prelude events.

7. Conclusion

In this paper, we proposed a simple formal model A-LTS
for history-based aspect weaving. We compared the expres-
sive power of A-LTS with FSM and PDA under language
equivalence, bisimulation, and isomorphism. As a result, we
showed the relationship among a few subclasses of context-
free languages and the class of the languages of A-LTSs,

†Let executem be an event that represents the beginning of the
execution of the body of method m.

YAGI et al.: A LABELED TRANSITION MODEL A-LTS FOR HISTORY-BASED ASPECT WEAVING AND ITS EXPRESSIVE POWER
807

shown in Fig. 11, and FSM ⊂
=

A-LTS ⊂
=

PDA under lan-
guage equivalence, bisimulation, and isomorphism. Finally,
we stated the relationship between pointcuts in A-LTS and
in AspectJ, the most popular implementation of the pointcut
and advice mechanism. Since A-LTS is a subclass of PDA,
formal verification of a program modeled as an A-LTS is
decidable using a model checking method for PDA.

As future work, we will compare the expressive
power of A-LTS with other models; e.g., context-free
processes [19] and recursive state machines (RSM)[1], [4].
Moreover, we will discuss a verification of A-LTS using
model checking proposed by [1], [4], because we conjecture
that A-LTS is a subclass of RSM. Benedikt et al.[4] dis-
cussed the complexity of the verification of a few subclass
of RSM. Following their results, we will try to find an upper
and a lower bound of the complexity of the verification of
A-LTS.

References

[1] R. Alur, K. Etessami, and M. Yannakakis, “Analysis of recursive
state machines,” 13th Conference on Computer Aided Verification
(CAV 2001), LNCS 2102, pp.207–220, Paris, France, July 2001.

[2] M. Abadi and C. Fournet, “Access control based on execution his-
tory,” Network & Distributed System Security Symp., pp.107–121,
San Diego, USA, Feb. 2003.

[3] AspectJ Team, http://aspectj.org/
[4] M. Benedikt, P. Godefroid, and T. Reps, “Model checking of unre-

stricted hierarchical state machine,” 28th International Colloquium
on Automata, Languages and Programming (ICALP 2001), LNCS
2076, pp.652–666, Crete, Greece, July 2001.

[5] G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely, “µABC: A mini-
mal aspect calculus,” 15th International Conference on Concurrency
Theory (CONCUR 2004), LNCS 3170, pp.209–224 London, Eng-
land, Aug. 2004.

[6] E.M. Clarke, Jr., O. Grumberg, and D. Peled, Model Checking, MIT
Press, 2000.

[7] R. Douence, O. Motelet, and M. Sudholt, “A formal definition of
crosscuts,” 3rd International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns (REFLECTION 2001),
LNCS 2192, pp.170–186, Kyoto, Japan, Sept. 2001.

[8] Y. Endoh, H. Masuhara, and A. Yonezawa, “Continuation join
point,” Foundations of Aspect-Oriented Languages Workshop
2006(FOAL 2006), pp.1–10, Bonn, Germany, March 2006.

[9] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon, “Efficient al-
gorithms for model-checking pushdown systems,” 12th Conference
on Computer Aided Verification (CAV 2000), LNCS 1855, pp.232–
247, Chicago, USA, July 2000.

[10] P.W. Fong, “Access control by tracking shallow execution history,”
IEEE Security & Privacy, pp.43–55, Oakland, USA, May 2004.

[11] P. Linz, An Introduction to Formal Languages and Automata,
pp.196–198, Jones and Bartlett Publishers, Sudbury, 2001.

[12] H. Masuhara and G. Kiczales, “Modeling crosscutting in aspect-
oriented mechanisms,” 17th European Conference on Object-
Oriented Programming (ECOOP 2003), LNCS 2743, pp.2–28,
Darmstadt, Germany, July 2003.

[13] M. Mukund, “From global specifications to distributed implemen-
tations,” in Synthesis and Control of Discrete Event Systems, ed.
B. Caillaud, P. Darondeau, L. Lavagno, and X. Xie, pp.19–35,
Kluwer Academic Publishers, 2002.

[14] S. Nakajima and T. Tamai, “Aspect-oriented software design with
a variant of UML/STD,” 5th International Workshop on Scenarios
and State Machines: Models, Algorithms and Tools (SCESM 2006),
pp.44–50, Shanghai, China, May 2006.

[15] N. Nitta, Y. Takata, and H. Seki, “An efficient security verification
method for programs with stack inspection,” 8th ACM Computer
& Communications Security, pp.68–77, Philadelphia, USA, Nov.
2001.

[16] N.W. Paton and O. Diaz, “Active database systems,” ACM Comput.
Surv., vol.31, no.1, pp.63–103, March 1999.

[17] F.B. Schneider, “Enforceable security policies,” ACM Trans. on In-
formation & System Security, vol.3, no.1, pp.30–50, Feb. 2000.

[18] D. Walker, S. Zdancewic, and J. Ligatti, “A theory of aspects,” 8th
ACM SIGPLAN International Conference on Functional Program-
ming (ICFP 2003), pp.127–139, Uppsala, Sweden, Aug. 2003.

[19] I. Walukiewicz, “Pushdown processes: Games and model checking,”
8th Conference on Computer Aided Verification (CAV ’96), LNCS
1102, pp.62–74, New Brunswick, July 1996.

[20] M. Wand, G. Kiczales, and C. Dutchyn, “A semantics for advice and
dynamic join points in aspect-oriented programming,” ACM Trans.
on Programming Languages and Systems (TOPLAS), vol.3, no.5,
pp.890–910, Sept. 2004.

Isao Yagi received the Ph.D. degree in in-
formation science from Nara Institute of Science
and Technology, Japan, in 2006. He has been a
Research Assistant Professor at Nara Institute of
Science and Technology since 2006. His current
research interests include formal verification of
software systems.

Yoshiaki Takata received the Ph.D. de-
gree in information and computer sciences from
Osaka University, Japan, in 1997. He has been
an Assistant Professor at Nara Institute of Sci-
ence and Technology since 1997. His current re-
search interests include formal specification and
verification of software systems.

Hiroyuki Seki received the Ph.D. degree in
information and computer sciences from Osaka
University in 1987. He was with Osaka Uni-
versity as an Assistant Professor in 1990–1992
and an Associate Professor in 1992–1994. In
1994, he joined the faculty of Nara Institute of
Science and Technology, where he has been a
Professor since 1996. His current research inter-
ests include formal language theory and formal
approach to software development.

