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ABSTRACT: It is necessary to identify infrastructures relatively deteriorating fast, and to monitor, repair and 

renew the infrastructures. However, regarding methods to extract the infrastructures from inspection data 

obtained through ordinary inspections, there is actually no systematized methodology. In this paper, the 

authors propose the multi-stage mixed Markov deterioration hazard model and its multi-hierarchical 

Bayesian estimation. Furthermore, the benchmarking analysis towards stratified deterioration speeds 

corresponding to decision making levels and the methodology to extract intensively monitored 

infrastructures on each level are proposed. In order to verify the effectiveness of the proposed methodology, 

empirical analysis is carried out using the visual inspection data of 10,689 expansion joints in 21 lines of 

actual highway. The authors first mentioned that the deterioration process significantly depends on (1) kind 

of expansion joint, (2) kind of surface layer pavement and (3) traffic volume, and clarified that the expected 

life span of the expansion joints is about 18 years and it varies about 5 years due to the above mentioned 

factors. Then, it was found that the expected life span of the expansion joints varies from about 9 years to 

about 55 years by considering the heterogeneity of each line. Furthermore, the authors clarified that the 

expect life span varies from about 5 years to more than 100 years in the fastest deteriorating line by 

considering the heterogeneity of each expansion joint. Finally, by using the estimated result, the authors 

carried out the relative evaluation of hazard rate and extract the intensively monitored expansion joints. 
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1. INTRODUCTION  

 

In the asset management of infrastructures, by 

conducting the decision making process for 

maintenance, which has been based on implicit 

knowledge, with explicit knowledge, it is expected 

to (1) fulfill accountability based on objective data 

and (2) pass technologies efficiently inside an 

organization (Kobayashi, 2010). In recent years, 

statistical deterioration prediction methods utilizing 

visual inspection data have remarkably been 

developed. Especially, the development of the 

Markov deterioration hazard model (Tsuda et al., 

2006) accelerated the practical application of asset 

management. In addition, the mixed Markov 

deterioration hazard model (Obama et al., 2008 and 

Mizutani et al., 2013) was proposed by taking into 

account the heterogeneity of each structure or 

member, which exists in a deterioration process, and 

it became possible to benchmark the deterioration 

rate of infrastructure. 

 

Meanwhile, if the sophistication of the coming 

asset management is aimed, it is necessary to 

consider the utilization of not only the visual 

inspection but also the monitoring using sensors. It is 



realistic that the monitoring is preferentially applied 

to the member deteriorating fast, and the 

characteristic of the monitoring differs from the 

characteristic of visual inspection obtaining the 

uniform information of all members. However, 

because the fundamental purpose of asset 

management is to fulfill the accountability of 

maintenance, it is necessary to specify the decision 

making process of installation of monitoring systems 

to practice the asset management. At this time, it is 

important to pay attention to the hierarchical relation 

in the decision making processes of asset 

management such as the installation of monitoring 

system, the extraction of intensively monitored 

members, the priority of repair and the budgetary 

allocation. The decision making processes of asset 

management follow the concrete order below. First, 

the long term maintenance plan is designed for the 

entire targeted infrastructures. Second, the 

consideration with macro perspective is carried out 

corresponding to deterioration characteristics of 

management office and region. Finally, through the 

consideration with micro perspective targeting 

infrastructure groups more fragmented in the 

management office and individual infrastructures, 

the decision making is conducted. Thus, in the actual 

asset management, it is required not to 

simultaneously evaluate the entire targeted 

infrastructure but to relatively evaluate the individual 

infrastructures with the multi hierarchical decision 

making processes. 

 

Based on the above problem awareness, in this 

paper, the authors propose the multi-stage mixed 

Markov deterioration hazard model innovating 

hierarchical heterogeneity parameters and its 

estimation method. In addition, by relatively 

comparing deterioration rates of each member using 

the heterogeneity parameters, it becomes possible to 

extract intensively monitored members, for example, 

monitored by using sensors.  

Chapter 2 outlines the multi-stage mixed 

Markov deterioration hazard model, and Chapter 3 

describes a multi-hierarchical Bayesian estimation 

method in detail. Lastly, Chapter 4 empirically 

analyzes actual expansion joints by using visual 

inspection data.  

 

2. MULTI-STAGE MIXED MARKOV HAZARD 

MODEL 

 

2.1 Markov chain model 

 

The deterioration process of infrastructure can be 

expressed with a Markov chain model using a 

transition probability matrix. The Markov 

deterioration hazard model (Tsuda et al., 2006) in 

order to estimate the Markov transition probability is 

proposed. Here, for reader’s convenience, the outline 

of the Markov deterioration hazard model is 

described. The transition between the condition 

states of two time points can be expressed as the 

Markov transition probability. Consider the 

transition of states between two time points. The 

state at time Aτ  is )( Ah τ , and the state at time Bτ  

is )( Bh τ . If ih A =)(τ  and jh B =)(τ , the Markov 

transition probability is ])(|)(Prob[ ihjh AB == ττ . 

The condition for this Markov transition probability 

is that the state is i at time Aτ , and the conditional 

transition probability that the state will be j at time 

Bτ  can be defined as: 

( ) ( )[ ] ijAB ihjh πττ === |Prob  (1) 

By deriving the pair of states ),( ji  from a 

transition probability in this way, we can also obtain 

a Markov transition probability matrix. 
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The Markov transition probability (1) expresses the 

transition probability between the two conditional 

time points Aτ  and Bτ . Naturally, if the inspection 

intervals differ, the transition probability will also 

differ. As long as there are no repairs, deterioration 

proceeds constantly, so )(0 jiij >=π  is true. Also, 

from the definition of the transition probability, 

∑ = =I
ij ij 1π  is true. In other words, regarding the 

Markov transition probability, the following must 

hold true. 
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The condition state I  is the absorbing state in the 

Markov chain as long as there are no repairs, and 

1=IIπ  is true. Moreover, the Markov transition 

probability is defined independently of past 

deterioration records. The Markov chain model 

satisfies the Markov property that, regardless of the 

time at which the state transitions from 1−i  to i , 

the probability of the transition taking place between 

time Aτ  and time Bτ  depends only on the 

condition state at time Aτ . 

 

2.2 Multi-stage mixed Markov hazard model 

 

The purpose of this paper is the deterioration 

prediction of the individual members based on the 

visual inspection data. The entire members are 

divided into M stage infrastructure groups. The 

group is assessment unit. First, the entire members 

are divided into K0 number of group k1 (k1=1,…,K0) 

named the 1st stage group. Second, the members in 

the 1st stage group k1 are divided into Kk1 number of 

group k2 (k2=1,…, Kk1) named the 2nd stage group. 

Similarly, the members in the 2nd stage group k2 are 

divided into Kk1,k2 number of group k3 (k3=1,…, 

Kk1,k2) named the 3rd stage group. Thus, the 

members in the m-1th stage group km-1 

(km-1=1,…,Kk1,…,km-1) are divided into Kk1,…,km-1 

number of group km (km=1,…,Kk1,…,km-1) named the 

mth stage group, and the division are repeated until 

m=M. At this time, the m(m=1,…,M)th stage group 

consists of ∑ ∑ ∑= = =
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In addition, the Mth stage group kM 

(kM=1,…,Kk1,…,kM-1) consists of Sk1,…,kM number of 

members. 

 

Now, in order to establish a unique hazard rate 

of each mth stage group, heterogeneity parameter 

),,1;,,1( 1,,11,,1| −− == kmkmkmkkm KkMm
KK

KKε  are 

implemented. At this time, the state of member 

sk1,…,kM of group k1, k2, …, kM is i (i=1,…,I-1), and its 

hazard rate can be expressed as: 

1111

213121

,...,1,...,1

,...,|,...,|

,||

~

−−

=

MMmm

MkkMkk

kkkkkk

kkkkkk

s

i

s

i

εε
εεελλ

L

L
 (5) 

Here, kMks
i

,,1
~

Kλ  is the standard hazard rate of state I 

for member sk1,…,kM. Heterogeneity parameter 

1,,1| −kmkkm K
ε

 
is a random variable derived from gamma 

distribution )|( 1,,11,,1|
m

kmkkmkkmg −− KK
φε with average of 1 

and variance of m
kmk 1,,1/1 −K

φ . 
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Here, m
kmkm

kmk
m

kmk
1,...1)( 1,...11,...,1

−
−− = φφΦ , and 1

01,...,1 φφ =−
m

kmk  
when 

m=1. Variance parameter m
kmk 1,...,1 −φ  

is defined in each 



 
Figure 1 Hierarchy of heterogeneity 

 

heterogeneity parameter group (
1,...,1|1 ,, −kmkkmk εε L ), 

and the total number of m
kmk 1,...,1 −φ is: 
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The above mentioned hierarchical division of 

heterogeneity parameters is shown in Figure1.  

 

Here, the heterogeneity parameter 1,,1| −kmkkm K
ε

 
of the mth stage group is fixed as 1,,1| −kmkkm K

ε . In 

addition, the product of heterogeneity parameters is 

expressed as: 
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At this time, the probability )|( ,...,1
,...,1

kMk
s

ii
kMkz επ  

that 

the state of an arbitrary member sk1,…,kM will stay in 

condition state i at inspection kMks
A

,...,1τ , as well as the 

following inspection kMkkMkkMk ss
A

s
B z ,...,1,...,1,...,1 += ττ can be 

expressed, using the hazard rate (equation 5), as 

(Lancaster, 1990): 
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al., 2006): 
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Due to the Markov transition probability’s condition, 

the probability )|( ,...,1
,...,1

kMk
s
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2.3 Visual inspection data and hazard rate 

 

Now, let us mention inspections are carried out at 

time kMks
A

,...,1τ  
and kMkkMkkMk ss

A
s
B z ,...,1,...,1,...,1 += ττ  

on the 

expansion joint sk1,…,kM. The inspection sample of 

member sk1,…,kM includes the inspection interval 
kMksz ,...,1

 
and ratings )( ,...,1 kMks

Ah τ  
and )( ,...,1 kMks

Bh τ . The 

symbol “ ” signifies an actual inspected value. 

Based on inspected ratings, the dummy variable 
kMks

ij
,...,1δ  is defined as: 
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Moreover, the dummy variable vector is expressed 

as ),,( ,...1,...1,...,1

111
kMkkMkkMk s

II
ss

−= δδ Lδ  , and the F 

dimensions characteristic variable vector is 

expressed as ),,( ,...,1,...,1,...1

1
kMkkMkkMk s

F
ss xx L=x . Also, the 

standard hazard rate kMks
i

,...,1
~λ  

varies depending on 

characteristic variables, and the standard hazard rate 
kMks

i
,...,1

~λ  can be expressed, using characteristic 

variables, as: 

)exp(
~ ,...,1,...,1

i

ss

i
MkkMkk βx ′=λ  (14) 

However, ),,( ,1, Fiii ββ L=β  
is the row vector of 

unknown parameter, and the symbol “ ‘ ” signifies 

transposition. Because 1,...,1

1 =kMksx , 
1,iβ  

is a constant 

term.  

 

3. HIERARCHICAL BAYESIAN ESTIMATION 

 

3.1 Hierarchical Bayesian estimation method 

 

A infrastructure’s visual inspection data are 

necessary in order to assess the heterogeneity of that 

specific infrastructure, but in general there are 

usually no adequate records of visual inspection data 

for individual infrastructures. Even under this 

situation, the mixed Markov deterioration hazard 

model suggested in this paper can be used to analyze 

the average deterioration process of all 

infrastructures as well as deterioration characteristics 

of the targeted infrastructure or infrastructure group 

from visual inspection data records for the same 

infrastructure group (assessment unit). In particular, 

the multi-stage mixed Markov hazard model 

assumes that the heterogeneity parameter of the mth 

stage group 
Mm kkk ,...,| 1

ε  is subject to a prior distribution 

expressed as a gamma distribution with a mean of 1 

and variance of m
kMk ,...,1/1 φ . Furthermore, with 

hierarchical Bayesian estimation, we can establish a 

prior distribution for the heterogeneity parameter’s 

variance parameter m
kMk ,...,1φ  (hyper parameter). These 

models with hierarchical prior distributions are called 

hierarchical Bayesian models4. The method is studied 

mostly in marketing analysis. This paper also uses a 

hierarchical Bayesian model to estimate the mixed 

Markov deterioration hazard model. 

 

Bayesian estimation5 is an estimation method that 

uses a parameter’s prior distribution and the likelihood 

function defined from observed data to estimate the 

parameter’s posterior distribution. Now, the unknown 

parameter vector is ),,( εφβθ =  and the visual 

inspection data is Ξ , therefore the likelihood function 

can be expressed as )|( ΞθL . If θ  is the random 

variable and it is subject to the prior probability density 

function )(θπ , the joint posterior probability density 

function )|( Ξθπ  when visual inspection data ξ  is 

obtained, according to Bayes’ theorem6, can be 

expressed as: 

∫Θ
=

θθπΞθ

θπΞθ
Ξθπ

dL

L

)()|(

)()|(
)|(  (15) 

However, Θ  is the parameter space. At this time, the 

joint posterior probability density function )|( Ξθπ  

can be expressed as: 

)()|()|( θπΞθΞθπ L∝  (16) 

In general, Bayesian estimation is conducted in the 

order of: 1) Establish the parameter’s prior probability 



density function )(θπ  based on prior experience 

information, 2) Define the likelihood function 

)|( θΞL  using the obtained data, 3) Revise the prior 

probability density function )(θπ  based on Bayes’ 

theorem (14), and obtain the posterior probability 

density function )|( Ξθπ  of parameter θ . The 

unknown parameter’s prior probability density function 

)(θπ  in the mixed Markov deterioration hazard 

model is: 
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We can see that probability distribution of 

heterogeneity parameter ε in this paper’s multi-stage 

mixed Markov deterioration hazard model and the prior 

distribution of parameter φ  in the probability 

distribution have hierarchical structures. The multi 

hierarchical Bayesian estimation method establishes 

prior distributions for each unknown parameter 

),,( εφβθ = , and calculates conditional posterior 

probability density functions for each parameter. 

 

3.2 Formulation of posterior distributions 

 

Let’s say parameter ),,( εβθ φ=  is a given condition. 

At this time, the joint probability (likelihood) 

)|( ΞθL  of the visual inspection data Ξ  is: 
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Also, the prior probability density functions of 

unknown parameters ),,( εβθ φ=  in equation (17) 

are as follows. First, a multi-dimensional normal 

distribution was used for prior probability density 

function )( iβπ  of unknown parameter iβ . The 

probability density function of the F-dimensional 

normal distribution is derived from: 
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However, iµ  is an expected value vector and iΣ  is 

a variance-covariance matrix. The prior probability 

density function )|( φεπ  of ε  is already given in 

gamma distribution (equation 6). Furthermore, a 

gamma distribution ),|(
111111 ,...,,...,,...,

m
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m
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established for prior probability density function of 

equation (17)’s variance parameter φ . Hence, the prior 

probability density function can be defined as: 
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However, when m=1, the prior probability density 

function can be expressed as: 
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Therefore, the joint posterior probability density 

function )|( Ξθπ  can be formulated as: 
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However, it is difficult to analytically estimate the joint 

probability density function (20) and acquire direct 

samples. Therefore, in this paper the unknown 

parameter vector θ  was estimated from a Markov 

chain Monte Carlo method (Gill, 2007 and Liang et al., 

2010) (MCMC method). An MCMC method obtains 

samples from posterior distributions by repeated 

random generation of parameter θ  samples from each 

parameter’s conditional probability density functions. 

In a MCMC method, the authors employ the 

methodology combined a Gibbs sampler and a 

Metropolis-Hastings algorithm (Chib and Greenberg, 

1995) (MH algolithm). 

 

4. EMPIRICAL STUDY 

 

4.1 Outline of visual inspection data 

 

The Bayesian estimation for the multi-stage mixed 

Markov deterioration hazard model is carried out 

with the actual visual inspection data for expansion 

joints of expressway. The visual inspection results of 

the expansion joints are given four classifications. 

Table 1 shows specific valuation standards. When 

expansion joint’s rating are classified in four steps, 

the hazard rate of rating 1, 2 and 3 (excluding rating 

4) can be defined in the multi-stage mixed Markov 

deterioration hazard model. In the following 

description, the 1st stage group is defined as line, 

and the 2nd stage group is defined as each expansion 

joint. 

 

The daily inspection for expansion joint can be 

divided into two kinds of inspection method: (1) the 

inspection viewing above position on the road such 

as the direct inspection driving the inspection 

vehicles and the tap test on the expressway with 

traffic control, and (2) the inspection viewing from 

below the expressway using binoculars targeting a 

leakage of water or an extraordinary noise. In the  

Table1 Description of condition state 

Rating Description of condition 

1 Except the following conditions. 

2 
The case that it is necessary to observe 

condition of damage. 

3 
There is malfunction and it is necessary 

to take measures. 

4 

There is marked malfunction and it is 

necessary to take measures immediately 

considering safety. 

 

inspection on the road, the deterioration condition 

can be directly observed, but the frequency of 

inspection is low due to the traffic control. On the 

other hand, the inspection data from below the road 

without the traffic control is abundant. In this paper, 

the authors employed the inspection data from below 

the road to estimate the multi-stage mixed Markov 

deterioration hazard model because of the large 

quantity of the inspection data. Table 2 shows data 

specifications. The 10,689 expansion joint used in 

this paper are installed in 21 lines, and 32,273 

samples can be obtained to estimate the multi-stage 

mixed Markov deterioration hazard model. 

 

The authors applied the multi-stage mixed 

Markov deterioration hazard model to the above 

mentioned visual inspection data of expansion joints, 

and estimated the unknown parameter vector β , the 

heterogeneity parameter vector ε  of the lines and 

the heterogeneity parameter vector ε′  of the 

expansion joints. In Table 2, the average of the 

inspection intervals and the sample breakdown 

focusing on the prior and posterior ratings are shown. 

Based on previous study (Murakami et al., 2006), as 

the characteristic variable, the authors consider 14 

items: (1) joint type, (2) traffic volume, (3) heavy 

traffic volume, (4) surface layer type, (5) grade, (6) 

radius of curvature, (7) acclivity, (8) road width, (9) 

traffic lane, (10) up and down line, (11) slab type, 



Table 2 Data specifications 

No. of lines 21 lines (line A to U) 

No. of expansion joints 10,689 

No. of samples 32,273 

Average of inspection intervals 2.846 years 

Sample breakdown 

  Posterior rating 

  1 2 3 4 

Prior rating 

1 6,385 1,054 6,044 1,245 

2 - 920 985 211 

3 - - 10,820 1,904 

4 - - - 2,675 

 

Table 3 Estimated results of unknown parameters 

Posterior distribution 

statistic 

Rating Constant term Type of joint 
Type of surface 

layer pavement 

Heavy traffic 

volume 

i βi,0 βi,1 βi,2 βi,3 

Expected value 

(Geweke test statistic) 
1 

-1.121 

(-0.788) 

-0.560 

(0.376) 

0.184 

(0.192) 

0.744 

(0.115) 

Expected value 

(Geweke test statistic) 
2 

-0.062 

(-0.382) 

-0.272 

(0.188) 

0.406 

(0.110) 
- 

Expected value 

(Geweke test statistic) 
3 

-2.806 

(-0.191) 

-0.133 

(0.069) 

0.270 

(0.190) 

0.337 

(-0.109) 

 

(12) declivity, (13) pavement area and (14) length of 

bridge. From these candidates, through the 

comparison of Geweke test statistic (Geweke, 1996) 

and AIC (deLeeuw, 1992), joint type, surface layer 

type and heavy traffic volume are finally selected as 

the characteristic variables in this paper. Note that 

the joint type and heavy traffic volume are 

considered by (Murakami et al., 2006) as a factor 

influencing the deterioration of expansion joints. 

 

4.2 Estimation of expected deterioration paths 

 

By employing the Bayesian estimation for the 

multi-stage mixed Markov deterioration hazard 

model, all unknown parameters included in the 

model can be simultaneously estimated. This chapter 

4.2 mentions the change of expected deterioration 

paths and life expectancy due to a difference of 

characteristic variables. Chapter 4.3 and 4.4 describe 

heterogeneity parameters and life expectancy 

focused on each assessment unit. 

 

In the estimation of unknown parameter vector 

β , three kinds of characteristic variable (joint type, 

surface layer type and heavy traffic volume) can be 

selected. Regarding the joint type, a dummy variable 

was established, the dummy variable is 1 when a 

joint type is steel or simplified steel, and the dummy 

variable is 0 when a joint type is rubber. In addition, 

regarding the surface layer type, another dummy 

variable was established, the dummy variable is 1 

when a surface layer type is a drainage pavement, 



and the dummy variable is 0 when a surface layer 

type is excluding a drainage pavement (mainly dense 

graded asphalt concrete). The heavy traffic volume 

was normalized so that the maximum heavy traffic 

volume is 1. Estimated unknown parameter vector 

β is shown in Table 3. In 11 kinds of unknown 

parameter (excluding 3,2β ), an absolute value of 

Geweke test statistic is lower than 1.96, and a sign 

condition is satisfied. A difference of the 

characteristic variable can be shown in Figure 2 as 

expected deterioration paths. Figure 2 (a) focuses on 

a joint type, (b) focuses on a surface layer type, and 

(c) focuses on a heavy traffic volume. Regarding the 

joint type, the life expectancy of a rubber joint is 

18.5 years, and the life expectancy of a steel joint is 

22.8 years. Figure 2 (a) can quantitatively show a 

rubber joint deteriorates fast than a steel joint. 

Regarding the surface layer type, a joint with 

drainage pavement deteriorates fast than it with other 

pavement. Regarding the heavy traffic volume, the 

larger traffic volume becomes, the faster a joint 

deteriorates.  

 

4.3 Heterogeneity of lines 

 

Heterogeneity parameter of the 1st stage group was 

set in each line. Figure 3 shows heterogeneity 

parameters of all 21 lines. The heterogeneity 

parameters of line vary from 0.347 to 2.017, and 

their average is 1.012. As mentioned in equation 5, 

the heterogeneity parameter influences the standard 

hazard rate as the product. This is why the difference 

among life expectancies of lines under the same 

charac te r i s t i c  va r iab le  cond i t i on  can  be 

quant i tat ively obtained by compar ison of 

heterogeneity parameters. For example, in a 

deterioration rate’s comparison between the line E 

with minimum heterogeneity parameter 0.347 and 

the line B with maximum parameter 2.017, the joint 

in line B deteriorates 2.017/0.347=5.991 times as  

 

(a) Focused on joint type 

 

 

(b) Focused on surface layer type 

 

 

(c) Focused on heavy traffic volume 

Figure 2 Changes of expected deterioration paths 

due to differences of characteristic variables 

 

fast as the joint in line E. Thus, by a comparison of 

only heterogeneity parameter, the relative evaluation 

of life expectancy becomes possible. For this reason, 

the heterogeneity parameter is very important index 

to compare life expectancies.  



 

 

Figure 3 Estimated heterogeneity parameter of 21 

lines 

 

 

 

Figure 4 Expected deterioration paths considering 

heterogeneity of lines 

 

In order to visually confirm the change of life 

expectancy, expected deterioration paths of 21 lines 

is shown in Figure 4. The life expectancy of line 

varies from about 10 years to 60 years. In Figure 4, 

as concrete characteristic variables, a joint type is the 

rubber joint, a surface layer type is the other 

pavement, and a normalized heavy traffic volume is 

the average value 0.294. The heterogeneity 

parameter set in each line can be utilized as 

benchmark of each line. The red curve in Figure 3 

and 4 is line B. Line B deteriorates fast than the 

other lines. As detailed description in Section 4.5, to 

line B, the authors attempt extracting intensively 

monitored members. 

 

 

Figure 5 Distribution of 1,135 expansion joints’ 

heterogeneity parameters in line B 

 

 

 

Figure 6 Expected deterioration paths of 1,135 joints 

in line B 

 

4.4 Heterogeneity of expansion joints 

 

Let us evaluate the heterogeneity of each expansion 

joint installed in line B. Figure 5 shows the 

distribution of 1,135 heterogeneity parameters in line 

B which are parameters of the 2nd stage group. The 

average value of the distribution is 0.997. The 

difference among deterioration rates of 1,135 joints 

can be expressed as life expectancies and expected 

deterioration paths. Figure 6 shows expected 

deterioration paths of 1,135 joints. As the 

heterogeneity parameter of the 1st stage group, the 

estimated heterogeneity parameter 2.017 of line B is 

employed, and the characteristic variables are same 



as Figure4. In Figure 6, the red curve indicates the 

benchmark path of all joints in line B which is same 

with the expected deterioration path of line B in 

Figure 4. In the case of consideration of budgetary 

allocation and the like in each line, the deterioration 

prediction result of targeting the 1st stage group is 

effective. On the other hand, it is necessary to predict 

the deterioration process in detail when the intensive 

monitored member is extracted in a specific line. 

 

4.5 Extraction of intensively monitored members 

 

By using the standard hazard rate and the 

heterogeneity parameter of each extraction joint, the 

intensive monitored member can be extracted from 

expansion joints installed in line B. Figure 7 shows 

the relation between rating 3’s standard hazard rates 

of expansion joints in line B and heterogeneity 

parameters of each joint. The average value of the 

standard hazard rates is 080.0)
~

( ,

3 =mBsAVE λ . The 

horizontal axis in Figure 7 indicates normalized 

standard hazard rates )
~

(/
~

,,

33
mBmB ss AVE λλ . The mixed 

hazard rate of each expansion joint in line B is 

primarily defined as the product of a standard hazard 

rate, a heterogeneity parameter of each line and a 

heterogeneity parameter of each joint. In this section, 

in order to extract intensive monitored joints from a 

set of expansion joints in one line (line B), the 

heterogeneity parameter of line B is normalized as 1, 

and the analysis is conducted focusing on standard 

hazard rates and heterogeneity parameters of each 

joint. Since the average value of heterogeneity 

parameters of each joint is 997.0)ˆ( | =BmAVE ε , the 

average mixed hazard rate can be defined as 

079.0997.0080.0)ˆ()
~

( |3
, =∗=∗ Bm

s AVEAVE mB ελ .  T h e 

black curve indicates the average mixed hazard rate 

curve that a product of a standard hazard rate and a 

heterogeneity parameter of each joint becomes 0.079. 

It is indicated in Figure 7 that the mixed hazard rates 

of the expansion joints which lie above the average 

 
Figure 7 Relative evaluation of hazard rates 

 

mixed hazard rate curve is larger than the average 

value (these joints deteriorate faster than the 

average), and the expansion joints which lie below 

the average mixed hazard rate curve deteriorate later 

than the average. In addition, Figure 7 shows the 95 

percentile curve which indicates a product of a 

standard hazard rate and heterogeneity parameter of 

each joint. The intensively monitored members are 

the joints which lie above the 95 percentile curve. In 

this study, six expansion joints marked with a red 

color were extracted as the intensively monitored 

joint to practically install monitoring sensors. In 

Figure 7, the control level is set at 95% as one 

example. Needless to say, the control level should be 

determined by an administrator considering a 

number of targeted members, a budget and so on. 

 

5. CONCLUSION 

 

In this paper, the authors proposed the multi-stage 

mixed Markov hazard model and its multi 

hierarchical Bayesian estimation method in order to 

relatively evaluate deterioration rates corresponding 

to the decision making level. The empirical study 

targeting extension joints in viaducts of expressway 

was carried out. In the empirical study, first, 

deterioration rates of each line (the 1st stage group) 

were relatively evaluated. Second, the authors 

conducted the relative evaluation among 

deterioration rates of each joint (the 2nd stage group) 



installed in line B deteriorating faster than the other 

lines. Last, concrete joints monitored intensively 

were extracted to install monitoring sensors. Hence, 

it becomes possible to extract intensively monitored 

members with the systematized scheme utilizing the 

visual inspection data obtained in the present 

inspection system.  

 

However, the authors have not discussed several 

points, which will be considered as topics for 

extending this study in the future. 

� The monitoring system for extracted expansion 

joints as an intensively monitored member and 

the analytical method for the obtained 

monitoring data have not been discussed in this 

paper. It is necessary to construct the statistical 

algorithm to detect malfunction utilizing the 

continuously obtained data over a long period.  

� The correlation between two kinds of inspection 

for expansion joints has not discussed in this 

paper. It is necessary to develop the 

simultaneous decision model of hazard rates or 

heterogeneity parameters by utilizing a copula 

function or the like. 
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