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ABSTRACT: It is necessary to identify infrastructures relelyvdeteriorating fast, and to monitor, repair and
renew the infrastructures. However, regarding mighio extract the infrastructures from inspectiatad
obtained through ordinary inspections, there isiabt no systematized methodology. In this paplee, t
authors propose the multi-stage mixed Markov detation hazard model and its multi-hierarchical
Bayesian estimation. Furthermore, the benchmarkinglysis towards stratified deterioration speeds
corresponding to decision making levels and the hopdalogy to extract intensively monitored
infrastructures on each level are proposed. Inraeerify the effectiveness of the proposed methagy,
empirical analysis is carried out using the visingpection data of 10,689 expansion joints in 2&diof
actual highway. The authors first mentioned thatdeterioration process significantly depends Qrkigid

of expansion joint, (2) kind of surface layer paestand (3) traffic volume, and clarified that #agected
life span of the expansion joints is about 18 yeard it varies about 5 years due to the above oweadi
factors. Then, it was found that the expecteddifan of the expansion joints varies from about &g¢o
about 55 years by considering the heterogeneitgagh line. Furthermore, the authors clarified that
expect life span varies from about 5 years to ntben 100 years in the fastest deteriorating line by
considering the heterogeneity of each expansiamt.j&iinally, by using the estimated result, thehatg
carried out the relative evaluation of hazard eate extract the intensively monitored expansiontfoi
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1. INTRODUCTION 2006) accelerated the practical application of tasse
management. In addition, the mixed Markov
In the asset management of infrastructures, Degterioration hazard model (Obama et al., 2008 and
conducting the decision making process fdvlizutani et al., 2013) was proposed by taking into
maintenance, which has been based on implieitcount the heterogeneity of each structure or
knowledge, with explicit knowledge, it is expectednember, which exists in a deterioration procesd, an
to (1) fulfill accountability based on objectivetda it became possible to benchmark the deterioration
and (2) pass technologies efficiently inside amte of infrastructure.
organization (Kobayashi, 2010). In recent years,
statistical deterioration prediction methods uitilip Meanwhile, if the sophistication of the coming
visual inspection data have remarkably beeasset management is aimed, it is necessary to
developed. Especially, the development of ttensider the utilization of not only the visual
Markov deterioration hazard model (Tsuda et alnspection but also the monitoring using sensaois. |



realistic that the monitoring is preferentially ipd monitored by using sensors.
to the member deteriorating fast, and the Chapter 2 outlines the multi-stage mixed
characteristic of the monitoring differs from théviarkov deterioration hazard model, and Chapter 3
characteristic of visual inspection obtaining thdescribes a multi-hierarchical Bayesian estimation
uniform information of all members. Howevermethod in detail. Lastly, Chapter dmpirically
because the fundamental purpose of assetalyzes actual expansion joints by using visual
management is to fulfill the accountability ofinspection data.
maintenance, it is necessary to specify the detisio
making process of installation of monitoring syssen2. MULTI-STAGE MIXED MARKOV HAZARD
to practice the asset management. At this timis, itM ODEL
important to pay attention to the hierarchical tiela
in the decision making processes of ass2tl Markovchain model
management such as the installation of monitoring
system, the extraction of intensively monitore@he deterioration process of infrastructure can be
members, the priority of repair and the budgetagxpressed with a Markov chain model using a
allocation. The decision making processes of asseinsition probability matrix. The  Markov
management follow the concrete order below. Firsteterioration hazard model (Tsuda et al.,, 2006) in
the long term maintenance plan is designed for theder to estimate the Markov transition probabiility
entire targeted infrastructures. Second, thproposed. Here, for reader’s convenience, thermutli
consideration with macro perspective is carried oof the Markov deterioration hazard model is
corresponding to deterioration characteristics described. The transition between the condition
management office and region. Finally, through trstates of two time points can be expressed as the
consideration with micro perspective targetinlylarkov transition probability. Consider the
infrastructure groups more fragmented in theansition of states between two time points. The
management office and individual infrastructurestate at timez, is h(r,), and the state at timég
the decision making is conducted. Thus, in theactis h(zg). If h(z,)=i and h(z;)=j, the Markov
asset management, it is required not teansition probability isProbh(r;) = j|h(r,) =1i].
simultaneously evaluate the entire targetethe condition for this Markov transition probalbjlit
infrastructure but to relatively evaluate the indiwal is that the state isat time 7,, and the conditional
infrastructures with the multi hierarchical decisiotransition probability that the state will lpeat time
making processes. Ty can be defined as:

Based on the above problem awareness, in thFi)ert{h(TB)= : lh(TA)ZI]Z i M
paper, the authors propose the multi-stage mixBy deriving the pair of states(i, ) from a
Markov deterioration hazard model innovatingransition probability in this way, we can also aiht
hierarchical heterogeneity parameters and #sMarkov transition probability matrix.
estimation method. In addition, by relatively T
comparing deterioration rates of each member usirl]%]: - N @
the heterogeneity parameters, it becomes possible t

. : : 7,
extract intensively monitored members, for example,



The Markov transition probability (1) expresses thn1=1,... K1, .xm1) are divided into Ky  xm

transition probability between the two conditionahumber of groupgk, (kw=1,...Ky. . .km1) Named the

time points 7, and 75. Naturally, if the inspection mth stage group, and the division are repeated until
intervals differ, the transition probability willlso m=M. At this time, them(m=1,... M)th stage group

differ. As long as there are no repairs, deterionat

consists of Ka | § K number
proceeds constantly, sa, =0 (i > j) is true. Also, Zkl'lz 1 Z K1,..km

ko=

from the definition of the transition probability,of groups, and the number of all groufisare:
4/ =1 Is true. In other words, regarding the Ky,
Markov transition probability, the following must K® =K "'Z(K +Z(Kk1k2
kZ
hold true.

Kiq ko Kig ko kg

+ K + K
m20(,j=1....]) kzl( s kzl( ukekoks 4)
=0 (when i>j): (3)
|
Z,_, T, =1 Kiq....ky -2 Kiq.. k-1
o DN CONPEE DN GRS ED)))
The condition statel is the absorbing state in the Ku-1=1 Ky =1

Markov chain as long as there are no repairs, amd addition, the Mth stage group Ky

m, =1 is true. Moreover, the Markov transitionky=1,... Ky, 1) consists ofSq,..., number of
probability is defined independently of pasimembers.

deterioration records. The Markov chain model

satisfies the Markov property that, regardlesshef t  Now, in order to establish a unique hazard rate
time at which the state transitions from-1 to i , of eachmth stage group, heterogeneity parameter
the probability of the transition taking place beem €. jma (M=1..., M7k =1, K\ 04) are
time 7, and time 7, depends only on theimplemented. At this time, the state of member

condition state at timer ,. Sa....v Of groupky, ks, ..., ky isi (i=1,...]-1), and its

hazard rate can be expressed as:

2.2 Multi-stage mixed Markov hazard model Ao = )Tfkl“’*M £ s Egor,
E, .1..6’1 o (5)

The purpose of this paper is the deterioration Kooy KK
prediction of the individual members based on thgere, A%« is the standard hazard rate of state |
visual inspection data. The entire members ai@ member s, | Heterogeneity parameter
divided into M stage infrastructure groups. Thefimks... k- |sarandom variablderived from gamma
group is assessment unit. First, the entire membé@igiribution G(e, . i@} omy) With average of 1
are divided intaKo number of grougk (k:=1,...K, andvarianceofi/ g . .-
named the 1st stage group. Second, the memberﬁ(‘}kmkl . A .
the 1st stage group are divided intdKy; number of m
groupk, (k.=1,..., Kx;) named the 2nd stage group;#( k. ke kml)@? """ ha 7 (6)
Similarly, the members in the 2nd stage gr&upre Ko
divided into Ky, number of groupks (ks=1,..., EXp(_@:---km-lgkmku---km-l)
Kax) named the 3rd stage group. Thus, tHadere, & =g} . )%=, and gn =g when

members in the milth stage group kn, MF1. Variance parameteg , . is defined in each



N # .........

The Mth stage group

Members in the Mth stage group

Figure 1 Hierarchy of heterogeneity

heterogeneity parameter grougs, (-, &y i1 ) S
| 7 (27 & k)

and the total number ofpy | is: " T )
« e exp(_A_lsklkM ZsklwkM )
ky
P —
KP=K "‘kzl(K +klek1 ke However, — Jswsw =g .Also,  the
} g probability 7 (z%* |z, ) that the state will be
Kklvkz Kkl,kz,k;; ij k1..kM
+ Z(Kkbk?ks + Z(Kklvkbkyka @ at inspection 73« and | at inspection
kg=1 k,=1 T;klm,kM - sz.,.v,km + Zskl.v.,kM can be expressed as (Tsuda et
al., 2006):
Kkl ----- KM -2 Kkl KM -1 s
+ Z(Kk ...... o T szl _____ kM) N) ACA N R
Ky-1=1 Ky =1 - 0
N " = e L
The above mentioned hierarchical division of & L1 % — 3w (10)
heterogeneity parameters is shown in Figurel. [eXp(ATe s Zhe )

Here, the heterogeneity parametef ., .,

u=i

of the mth stage group is fixed ag, ., ,.,- IN Due to the Markov transition probability’s conditio

addition, the product of heterogeneity parametersthe probability 7z, (z%-» |z, ,,) can be expressed

expressed as: as:
Evkn — EkCiCrakiky * Ekikirn ks ®) (2 | & K, )
ng Kir-Kn-1 — N Sk | E (11)
= ___7Tij(z |“:k1 ..... kM)
At this time, the probabilitys, (z* |z, ) that =
the state of ararbitrary membesy . v Will stay in However, 75w = (fsuw .. Jsew) and, using the

condition statei at inspectionzs#, as well as the only standard hazard rat% (25 is defined as:

following inspection Tomw = e 4 750w can  be

12)
(Lancaster, 1990):



2.3 Visual ingpection data and hazard rate the average deterioration process of all
infrastructures as well as deterioration charasties

Now, let us mention inspections are carried out at the targeted infrastructure or infrastructureugr

time 7w and rgew =g +z%  on the from visual inspection data records for the same

expansion jointsq . The inspection sample ofinfrastructure group (assessment unit). In paricul

member sq. i includes the inspection intervalthe multi-stage mixed Markov hazard model
2w and ratingsh(rj~~) and h(rg~*). The assumeshat the heterogeneity parameter of thih
symbol “ ” signifies an actual inspected valuestage groupe, . .~ is subject to a prior distribution
Based on inspected ratings, the dummy varialdepressed as a gamma distribution with a mead of
g+ is defined as: and variance of 1/¢; ,, . Furthermore, with
5:;%"” hierarchical Bayesian estimation, we can estabdish

_— o (13 prior distribution for the heterogeneity parameter’
:{1 when h(z* ) =i,h(Tg* ™) =] (13) variance parametegy, ,, (hyper parameter). These

0 otherwise models with hierarchical prior distributions ardlea

Moreover, the dummy variable vector is expresséierarchical Bayesian modélsThe method is studied
as  gue = (5 L G, , and the F mostly in marketing analysis. This paper also uses
dimensions characteristic variable vector isierarchical Bayesian model to estimate the mixed
expressed asg - =(xx ... x*-»). Also, the Markov deterioration hazard model.

standard hazard ratg>« varies depending on

characteristic variables, and the standard hazded r  Bayesian estimatidnis an estimation method that
Ax-» can be expressed, using characterisii@es a parameter’s prior distribution and the iliiaeid
variables, as: function defined from observed data to estimate the
parameter’s posterior distribution. Now, the unknow
parameter vector is@ = (f,p,&) and the visual

However, g =(g,,--,B,.) IS the row vector of jhgpection data is=, therefore the likelihood function

unknown parameter, and the symbol “ * ” signifiesan be expressed ds(@ | Z). If @ is the random
transposition. Becausgj+ =1, g, is a constant variable and it is subject to the prior probabitignsity
term. function (@), the joint posterior probability density

function (@ | £) when visual inspection datd is
3. HIERARCHICAL BAYESIAN ESTIMATION  obtained, according to Bayes’' theofemcan be
expressed as:

3.1 Hierarchical Bayesian estimation method -
— L@|Z)x(0
202) = L015)70)

j L0 | =Z)xn(0)do
A infrastructure’s visual inspection data are ©

necessary in order to assess the heterogeneifyabf However, © is the parameter space. At this time, the
specific infrastructure, but in general there aieint posterior probability density functiom (0 | )
usually no adequate records of visual inspectiga d&2" Pe expressed as:

for individual infrastructures. Even under this z(@|Z)DLEO]Z)=(0) (16)

situation, the mixed Markov deterioration hazart] general, Bayesian estimation is conducted in the

model suggested in this paper can be used to mal%jer of: 1) Establish the parameter’s prior prokizb



density function 72(#) based on prior experiencefunction z(f,) of unknown parameterf, . The
information, 2) Define the likelihood functionprobability density function of theF-dimensional
L(Z |0) using the obtained data, 3) Revise the primormal distribution is derived from:
probability density functionz(@) based on Bayes’ z(g,)
theorem (14), and obtain the posterior probability 1 1 . . (19

. . —_ = —expl=Z (B — )X (B —m)'}
density function (@ |Z) of parameter® . The  (vJ2m) 2
unknown parameter’s prior probability density fuant However, 4. is an expected value vector aml, is
w(f) in the mixed Markov deterioration hazard -

variance-covariance matrix. The prior probability

model is: . . . . .
density functionz(e|¢p) of & is already given in
n(0)=n(.p.&) = (pf)n(e|p)n(p) gamma distribution (equation 6). Furthermore, a
11 K T m .
_ 2 gamma distribution h( |a, He ) s
= []2B) =@ ]{a(e)2(62) . o LTt )
] o established for prior probability density functiard
Kiy equation (17)’s variance parameter. Hence, the prior
El_l{ ”(£k2|kl)7[(¢fl,k2) 17) probability density function can be defined as:
Kig ko ”(%ln,...km)
Dﬂ{ ”(£k3|k1,k2 ) ”(Qi,kz,k3 ) _ 1
Kig, o1 (VE,...km,l)akl""'k”'l Moy x ) (20)
O rl{”(ng kl...kM)} 1 q
ky =1 E{@:mkm ) akl Km-1 eXp( ,...km 1 )
- e kl,...km_l
We can see that probability distribution Of(mz 2)

heterogeneity parameterin this paper’s multi-stage
mixed Markov deterioration hazard model and therprifowever, whenm=1, the prior probability density

distribution of parameter ¢ in the probability function can be expressed as:

distribution have hierarchical structures. The multﬂ 21)
hierarchical Bayesian estimation method establishes————— (41{})”0 —ﬁ)

0
prior distributions for each unknown parameter

0=(8,p.2), and calculates conditional posterloTherefore the joint posterior probability density

function (@ | £) can be formulated as:
n(@|%)
OL@|E)x(0)

-1 1 Ko M Kigokma 3«1 K

RUIiel
Let's say parameted) = (f8,¢,€) is a given condition. ' Skl e o
At this time, the joint probability (likelihood) {77 (2" X ™* I/)’,w)}""

probability density functions for each parameter.

3.2 Formulation of posterior distributions

L(@|Z) of the visual inspection dat& is: 1-1 Ko
-1 1 Ko M Kk1 ..... Km-1 Sq ..... Knt EIJ ”(ﬂi )n(%)!__ll{ ”(Ekl ) ﬂ(ﬂfl) (22)
LEO|Z)= EI L_l rL =

..... kM =1 (18) El_l{ﬂ'(fk |k1) ((/f kz)

K|
{ (Zﬁq kM Xskl ..... Kk |ﬂ(0,8)}6 Kekn K, =1

Kklkz
Also, the prior probability density functions ofDﬂl{”(‘gkslklkz) (@ kzks) o
unknown parameterd) = (f,¢,&) in equation (17) K,
are as follows. First, a multi-dimensional normal] I‘l{;r(gkM Kk )31
distribution was used for prior probability density *u=



However, it is difficult to analytically estimatbe joint Tablel Description of condition state

probability density function (20) and acquire direc Rating Description of condition

samples. Therefore, in this paper the unknowg Except the following conditions.
parameter vectord was estimated from a Markov The case that it is necessary to observe
chain Monte Carlo method (Gill, 2007 and Lianglet a 2 condition of damage.

2010) (MCMC method). An MCMC method obtains There is malfunction and it is necessary
samples from posterior distributions by repeate§ to take measures.

random generation of parametér samples from each There is marked malfunction and it is
parameter’s conditional probability density funaso 4 necessary to take measures immediately
In a MCMC method, the authors employ the considering safety.

methodology combined a Gibbs sampler and a

Metropolis-Hastings algorithm (Chib and GreenlOer%’r’lspection on the road, the deterioration condition

1995) (MH algolithm). can be directly observed, but the frequency of
inspection is low due to the traffic control. Oreth
4.EMPIRICAL STUDY other hand, the inspection data from below the road
without the traffic control is abundant. In thispes,

4.1 Outline of visual inspection data the authors employed the inspection data from below

the road to estimate the multi-stage mixed Markov
The Bayesian estimation for the multi-stage mlXeéjeterioration hazard model because of the large

Markov deterioration hazard model is carried OL(’l,]tuantity of the inspection data. Table 2 shows data

with the actual visual inspection data for eXpa"S'Ospecifications. The 10,689 expansion joint used in

joints of expressway. The visual inspection resoits this paper are installed in 21 lines, and 32,273

the expansion joints are given four CIaSSiﬁCaﬁongamples can be obtained to estimate the multi-stage
Table 1 shows specific valuation standards. Wh?‘rﬂxed Markov deterioration hazard model

expansion joint's rating are classified in fourpste

the hazard rate of rating 1, 2 and 3 (excludinmgat The authors applied the multi-stage mixed

4) can be defined in the multi-stage mixed MarkoMarkov deterioration hazard model to the above

deterioration hazard model. In the foIIOVVm%entioned visual inspection data of expansion $int

description, the 1st stage group is defined as Iir}jﬁ]d estimated the unknown parameter vegtqrthe

and the 2nd stage group is defined as each eer’ln%'(gterogeneity parameter vecter of the lines and

joint. the heterogeneity parameter vecter of the

expansion joints. In Table 2, the average of the

The daily inspection for expansion joint can b|€rl1spection intervals and the sample breakdown

divided into two kinds of inspection method: (1¢thfocusing on the prior and posterior ratings aressho

inspection viewing above position on the road Su%hsed on previous study (Murakami et al., 2006), as

as the direct inspection driving the mSpeCt'O{he characteristic variable, the authors consider 1

vehicles and the tap test on the expressway Wf{lélms: (1) joint type, (2) traffic volume, (3) heav

traffic control, and (2) the inspection viewing fino traffic volume, (4) surface layer type, (5) grae)

below the expressway using binoculars targetingrgdius of curvature, (7) acclivity, (8) road wid(s)

leakage of water or an extraordinary noise. In ﬂ?leaffic lane, (10) up and down line, (11) slab type



Table 2 Data specifications

No. of lines 21 lines (line Ato U)
No. of expansion joints 10,689
No. of samples 32,273
Average of inspection intervals 2.846 years
Posterior rating
1 2 3 4
1 6,385 1,054 6,044 1,245
Sample breakdown
_ _ 2 - 920 985 211
Prior rating
3 - - 10,820 | 1,904
4 - - - 2,675

Table 3 Estimated results of unknown parameters

, L . o Type of surface Heavy traffic
Posterior  distribution Rating Constantterm  Type of joint

layer pavement volume

statistic _

' Bio Bia Biz Bis
Expected value 1 -1.121 -0.560 0.184 0.744
(Geweke test statistic) (-0.788) (0.376) (0.192) (0.115)
Expected value ) -0.062 -0.272 0.406 ]
(Geweke test statistic) (-0.382) (0.188) (0.110)
Expected value 3 -2.806 -0.133 0.270 0.337
(Geweke test statistic) (-0.191) (0.069) (0.190) (-0.109)

(12) declivity, (13) pavement area and (14) lergfth 4.2 mentions the change of expected deterioration
bridge. From these candidates, through thpaths and life expectancy due to a difference of
comparison of Geweke test statistic (Geweke, 1996)aracteristic variables. Chap#8 and4.4 describe
and AIC (deLeeuw, 1992), joint type, surface laydreterogeneity parameters and life expectancy
type and heavy traffic volume are finally selected focused on each assessment unit.
the characteristic variables in this paper. Not&t th
the joint type and heavy traffic volume are In the estimation of unknown parameter vector
considered by (Murakami et al., 2006) as a factgt, three kinds of characteristic variable (jointeyp
influencing the deterioration of expansion joints.  surface layer type and heavy traffic volume) can be
selected. Regarding the joint type, a dummy vagiabl
4.2 Estimation of expected deterioration paths was established, the dummy variable is 1 when a
joint type is steel or simplified steel, and therohay
By employing the Bayesian estimation for theariable is O when a joint type is rubber. In aiddif
multi-stage mixed Markov deterioration hazardegarding the surface layer type, another dummy
model, all unknown parameters included in theariable was established, the dummy variable is 1
model can be simultaneously estimated. This chaptdnen a surface layer type is a drainage pavement,



and the dummy variable is 0 when a surface laye

type is excluding a drainage pavement (mainly dens —Rubber joint
—Steel joint

graded asphalt concrete). The heavy traffic volum

was normalized so that the maximum heavy traffi

Rating

volume is 1. Estimated unknown parameter vectc
pis shown in Table 3. In 11 kinds of unknown

3

parameter (excluding,,), an absolute value of

4

Geweke test statistic is lower than 1.96, and a sic 0 s 10 15 20 05 20
condition is satisfied. A difference of the Elapsed years
characteristic variable can be shown in Figure 2 as (a) Focused on joint type
expected deterioration paths. Figure 2 (a) focoses

a joint type, (b) focuses on a surface layer tyrel 1

(c) focuses on a heavy traffic volume. Regardirgg th —Drainage pavement
=——0ther pavement

joint type, the life expectancy of a rubber joist i

18.5 years, and the life expectancy of a steet jsin |
22.8 years. Figure 2 (a) can quantitatively show E

rubber joint deteriorates fast than a steel joint

Regarding the surface layer type, a joint with

drainage pavement deteriorates fast than it whierot 0 s 10 15 20 05 20

pavement. Regarding the heavy traffic volume, th Elapsed years
larger traffic volume becomes, the faster a joint (b) Focused on surface layer type
deteriorates.
1
4.3 Heterogeneity of lines ——Maximum value

—Average value

Heterogeneity parameter of the 1st stage group w
c
set in each line. Figure 3 shows heterogeneilE

parameters of all 21 lines. The heterogeneit
parameters of line vary from 0.347 to 2.017, an

4

their average is 1.012. As mentioned in equation ! 0 5 10 15 20 o5 30

the heterogeneity parameter influences the stande Elasped years
hazard rate as the product. This is why the diffeee (c) Focused on heavy traffic volume

among life expectancies of lines under the sarRggure 2 Changes of expected deterioration paths
characteristic variable condition can beue to differences of characteristic variables
guantitatively obtained by comparison of

heterogeneity parameters. For example, infast as the joint in line E. Thus, by a comparisbn
deterioration rate’s comparison between the line dbly heterogeneity parameter, the relative evabnati
with minimum heterogeneity parameter 0.347 aruf life expectancy becomes possible. For this neaso
the line B with maximum parameter 2.017, the joirthe heterogeneity parameter is very important index
in line B deteriorates 2.017/0.347=5.991 times &g compare life expectancies.
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Figure 3 Estimated heterogeneity parameter of 21 Figure 5 Distribution of 1,135 expansion joints
lines heterogeneity parameters in line B
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—— :The others

—— :Benchmark path of line B
— :Paths of 1,135 joints
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Figure 4 Expected deterioration paths considerifggure 6 Expected deterioration paths of 1,135t$oin
heterogeneity of lines inline B

In order to visually confirm the change of life4.4 Heterogeneity of expansion joints
expectancy, expected deterioration paths of 2Xkline
is shown in Figure 4. The life expectancy of linket us evaluate the heterogeneity of each expansion
varies from about 10 years to 60 years. In Figyrejdint installed in line B. Figure 5 shows the
as concrete characteristic variables, a joint tgpbe distribution of 1,135 heterogeneity parametersria |
rubber joint, a surface layer type is the oth@& which are parameters of the 2nd stage group. The
pavement, and a normalized heavy traffic volume @verage value of the distribution is 0.997. The
the average value 0.294. The heterogeneitjfference among deterioration rates of 1,135 fint
parameter set in each line can be utilized aan be expressed as life expectancies and expected
benchmark of each line. The red curve in Figured®terioration paths. Figure 6 shows expected
and 4 is line B. Line B deteriorates fast than tteeterioration paths of 1,135 joints. As the
other lines. As detailed description in Section, 405 heterogeneity parameter of the 1st stage group, the
line B, the authors attempt extracting intensivelgstimated heterogeneity parameter 2.017 of ling B i
monitored members. employed, and the characteristic variables are same



as Figure4. In Figure 6, the red curve indicates t 4-j e
. - L 8 * [| —95 percentile curve

benchmark path of all joints in line B which is sam 835 || — Average mixed hazard rate curve
with the expected deterioration path of line B in § 3

. . . >2.5
Figure 4. In the case of consideration of budgetal £ 5

<
allocation and the like in each line, the detetiora %1.5
prediction result of targeting the 1st stage gr@ip %0;
effective. On the other hand, it is necessary éaliot 0 §
. . . . .. 0.7 0.8 0.9 1 11 1.2 1.3

the deterioration process in detail when the intens Normalized standard hazard rate

monitored member is extracted in a specific line. Figure 7 Relative evaluation of hazard rates

4.5 Extraction of intensively monitored members  mixed hazard rate curve is larger than the average
value (these joints deteriorate faster than the
By using the standard hazard rate and tlaerage), and the expansion joints which lie below
heterogeneity parameter of each extraction joim, tthe average mixed hazard rate curve deteriorate lat
intensive monitored member can be extracted fraiman the average. In addition, Figure 7 shows the 9
expansion joints installed in line B. Figure 7 slsowpercentile curve which indicates a product of a
the relation between rating 3's standard hazamksrastandard hazard rate and heterogeneity parameter of
of expansion joints in line B and heterogeneitgach joint. The intensively monitored members are
parameters of each joint. The average value of ttie joints which lie above the 95 percentile cutve.
standard hazard rates isvE(1")=0080. The this study, six expansion joints marked with a red
horizontal axis in Figure 7 indicates normalizedolor were extracted as the intensively monitored
standard hazard rateg~ / AVE(A>*"). The mixed joint to practically install monitoring sensors. In
hazard rate of each expansion joint in line B Bigure 7, the control level is set at 95% as one
primarily defined as the product of a standard thzaexample. Needless to say, the control level shbeld
rate, a heterogeneity parameter of each line andletermined by an administrator considering a
heterogeneity parameter of each joint. In thisisect number of targeted members, a budget and so on.
in order to extract intensive monitored joints fram
set of expansion joints in one line (line B), th&. CONCLUSION
heterogeneity parameter of line B is hormalized,as
and the analysis is conducted focusing on standaémdthis paper, the authors proposed the multi-stage
hazard rates and heterogeneity parameters of eamtked Markov hazard model and its multi
joint. Since the average value of heterogeneihyerarchical Bayesian estimation method in order to
parameters of each joint iBVE(£ ;)= 0997, the relatively evaluate deterioration rates correspogdi
average mixed hazard rate can be defined tasthe decision making level. The empirical study
AVE(I§va)DAVE(ém|B) = 00800J0997= 0079 - T he targeting extension joints in viaducts of expresswa
black curve indicates the average mixed hazard ratas carried out. In the empirical study, first,
curve that a product of a standard hazard rateaandeterioration rates of each line (the 1st stagero
heterogeneity parameter of each joint becomes 0.Gv¥€re relatively evaluated. Second, the authors
It is indicated in Figure 7 that the mixed hazaatks conducted the relative evaluation among
of the expansion joints which lie above the averageterioration rates of each joint (the 2nd stageig)y



installed in line B deteriorating faster than tithew Dawid, A P., and Smith, A.F.M.(eds.Bayesian
lines. Last, concrete joints monitored intensivel@atistics, Oxford University Press, pp.169-193.
were extracted to install monitoring sensors. Hence
it becomes possible to extract intensively mondorésill, J., 2007. Bayesian Methods: A Social and
members with the systematized scheme utilizing tBehavioral Sciences Approach, CRC Press.
visual inspection data obtained in the present
inspection system. Kobayashi, K., 2010. Practical Research in Civil
Engineering: Perspectives and Methodsyrnal of
However, the authors have not discussed seveCanstruction Management and Engineering, JSCE,
points, which will be considered as topics fovol. 1, pp.143-155. (In Japanese).
extending this study in the future.
The monitoring system for extracted expansidmancaster, T., 1990The Econometric Analysis of
joints as an intensively monitored member arftansition Data, Cambridge University Press.
the analytical method for the obtained
monitoring data have not been discussed in thigang, F., Liu, C. and Carroll, R.J., 2018dvanced
paper. It is necessary to construct the statistiddhrkov Chain Monte Carlo Methods: Learning from
algorithm to detect malfunction utilizing thePast Samples, Wiley.
continuously obtained data over a long period. Mizutani, D., Matsuoka, K. and Kaito, K., 2013.
The correlation between two kinds of inspectioBtatistical Deterioration Prediction Model
for expansion joints has not discussed in th{Sonsidering the Heterogeneity in Deterioration
paper. It is necessary to develop thRates by Hierarchical Bayesian Estimation,
simultaneous decision model of hazard rates &ructural Engineering International, IABSE.
heterogeneity parameters by utilizing a copul@rinting)
function or the like.
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