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Policy Controlled System and Its Model Checking∗∗∗

Shigeta KUNINOBU†∗a), Yoshiaki TAKATA†b), Naoya NITTA†∗∗, and Hiroyuki SEKI†c), Members

SUMMARY A policy is an execution rule (or constraint) for objects in
a system to retain security and integrity of the system. We introduce a sim-
ple policy specification language and define its operational semantics. A
new NFA construction algorithm that works in linear time is proposed and
a model checking method for policy controlled system (PCS) is presented.
We conducted verification of a sample PCS for hotel reservation by our au-
tomatic verification tool and the experimental results showed the efficiency
of the proposed method.
key words: policy control, policy controlled system, verification, model
checking, pushdown system

1. Introduction

Recently, much attention has been paid to an integrated ap-
proach to computer system management, called policy con-
trol. A policy is a rule describing when and on which con-
dition a specified subject can (or cannot or must) perform
a specified action on a specified target. A few specification
languages have been proposed which have rich functions to
describe policies in a concise way (see related works for de-
tails).

A policy controlled system (abbreviated as PCS)
should have its own goal. For example, consider a digital
contents service. A user who watches a movie should pay
for it by executing a certain method that transfers the charge.

Model checking [3] is a well-known technique of au-
tomatically verifying whether a system satisfies such goals.
Most of the existing model checking methods and tools as-
sume that a system to be verified has finite state space.
Hence, if a system has infinite state space, then the system
should be transformed into an abstract system with finite
state space. However, the abstract system does not always
retain the desirable property of the original system, in which
case the verification fails. A pushdown system (PDS) is an
infinite state transition system with a pushdown stack as well
as a finite control. A PDS is a formal model of a system
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with well-nested structure such as a program that involves
recursive procedure calls. Recently, efficient model check-
ing algorithms for PDS and an equivalent model (namely,
recursive state machines (RSM)) have been proposed in [1],
[2], [7], [8].

In this paper, we propose a formal method for verify-
ing whether a given PCS satisfies a given property such as
the security goals mentioned above, by using model check-
ing for PDS. We first introduce a simple policy specifica-
tion language like Ponder [5] as a referential model. The
language has a structure sufficient for describing positive
authorization (permission), negative authorization (prohibi-
tion) and obligation. We formally define the operational se-
mantics of a policy controlled system (PCS) based on this
language. Next, we define the (safety) verification problem
for PCS as the problem to decide for a given PCS S and
a goal (called safety property) Ψ, whether every reachable
state of P satisfies Ψ. As defined later, Ψ is represented as a
regular language. We have implemented a verification tool
for PCS. Our verification tool works as follows. First, a
PDS is abstracted from a given PCS and a nondeterministic
finite automaton (NFA) that accepts the set of all reachable
states of the PDS is constructed. As described in Sect. 3.3,
the NFA construction algorithm in this paper works in lin-
ear time which matches the algorithms in [1] and [2] for
a single-exit RSM (see related works). Next, we decide
whether every state accepted by the NFA satisfies a given
safety property.

The main contribution of the paper is that the proposed
method is one of the first attempts to verify a safety property
of a policy controlled system. Also, this paper presents an
application of model checking for PDS to a real world ver-
ification problem and shows verification results conducted
on an automatic tool.

The rest of this paper is organized as follows. In Sect. 2,
we introduce a simple policy specification language suitable
for distributed policy control and define the operational se-
mantics of PCS. In Sect. 3, a pushdown system (PDS) and
Esparza et al.’s results on model checking for PDS are re-
viewed. Next, we propose an efficient algorithm that con-
structs an NFA accepting the set of all reachable states of
a given PDS. Section 4 is devoted to presenting our ver-
ification method; we provide an abstraction of PDS from
PCS. Example verification results obtained by our verifica-
tion tool are also illustrated. Section 5 concludes the paper.

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers
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Related Works Recently, much effort has been devoted
to applying model checking to security verification. Model
checking for finite state systems has a long history [3], and
a number of model checkers have been developed. In [19],
a computer network configuration together with a set of vul-
nerabilities of each computer node is represented as a state,
and a possible attack to the network can be obtained as a
counterexample against a safety property by using model
checker SMV. In [14], Jha et al. take a similar approach to
[19] to security verification problems of an intrusion detec-
tion system (IDS) by using model checker NuSMV.

Efficient algorithms and complexity of LTL and CTL∗
model checking for PDS are extensively studied in [7], [8].
Verification results using an automatic verification tool are
reported in [9]. Model checking algorithms for RSM, which
is equivalent to PDS, are studied in [1], [2]. Their algorithms
work in the same complexity as [7]’s algorithm for a gen-
eral RSM, and in linear time for a single-exit RSM which
models a usual recursive program. The first work which
applies model checking of a pushdown-type system to secu-
rity verification is Jensen et al.’s study [12]. In that paper,
the authors formally define a verification problem for a pro-
gram with an access control which generalizes JDK (Java
development kit) stack inspection. However, their approach
has severe restrictions, e.g., a mutual recursion is prohib-
ited. Nitta et al. [17], [18] improved the result of [12] by
using indexed grammar in formal language theory, showing
that the verification problem is decidable for programs with
arbitrary recursion and stack inspection. Esparza et al. inde-
pendently showed that the problem for a program with stack
inspection can be reduced to an LTL model checking for a
PDS with regular valuation [8]. Especially, the problem for
a program which contains no stack inspection is equivalent
to the model checking of a safety property (AGΨ) for a PDS
with regular valuation. However, the verification problem is
computationally intractable (deterministic exponential time
complete) [8], [18]. In [18], a subclass of programs which
exactly represents programs with JDK stack inspection is
proposed and it is shown that verification of a safety prop-
erty can be performed in polynomial time of the program
size in the subclass. Jha and Reps show that name reduction
in SPKI can be represented as a PDS, and prove the decid-
ability of a number of security problems by reductions from
decidability properties of the PDS model checking [13].

A number of policy specification languages have been
proposed (for example, [5], [11], [15]). In [11] and their
companion papers, logical languages based on the Horn-
clause are used as specification languages, and various the-
oretical problems such as authorization inheritance and au-
thorization conflict detection/resolution are discussed. In
[15], the model of [11] is extended so that one can express
an obligatory policy.

Ponder [5], [6] is a general purpose policy specification
language in which one can specify obligatory, conditional,
and data-dependent policies. Also the formal semantics of
a subset of the language is defined in [6], [20]. However,
they define only the execution order of methods under given

policies, leaving the rest of the system as a blackbox. In this
paper, the entire behavior of a system under given policies
is formally defined by explicitly describing the change of
runtime stack configuration.

2. Policy Controlled System

We introduce a policy controlled multi-object system, and
describe its formal semantics. Our policy controlled system
models a system in which objects (data and program code)
provided by more than one participants run on a single vir-
tual machine. In other words, the system is a single-threaded
multi-object system. A typical target of our model is a digi-
tal content service in which a digital video and audio is en-
capsuled in an object and distributed to users, though the
model is not restricted to it. In the digital content service,
both the object (say B) containing digital video and a user’s
agent (say A) run on the user’s machine, and when the user
wants to watch the video in B, A would request B to replay
the video by calling B’s method. Moreover, the request is
issued only when A’s policy permits, and the request is ac-
cepted by B only when B’s policy permits.

A policy controlled system (PCS) is a tuple S =

(O,Prog,Policy) where O is a finite set of objects, Prog is
a finite set of bodies of all methods in O, and Policy is a fi-
nite set of policies. In Sect. 2.1, we propose a simple policy
specification language. In Sect. 2.2, we formally define the
structure and the behavior of a PCS.

2.1 Policy Specification Language

In a traditional access control model, 3-tuple (s, t, a) means
that “subject s performs action a on target t.” In an object-
oriented model, (s, t, a) corresponds to “subject s executes
method a on target t.” There are four kinds of basic access
control policy for (s, t, a) as follows.

• positive authorization (or permission or right): s is per-
mitted to perform a on t.

• negative authorization (or prohibition): s is forbidden
to perform a on t by the target’s policy.

• refrainment: s is forbidden to perform a on t by the
subject’s policy.

• obligation: s is obliged to perform a on t (when a spe-
cific event has occurred).

We write t.a ← s to denote (s, t, a). Furthermore, we
write t.a(p1, . . . , pn) ← s to denote that s performs a with
actual arguments p1, . . . , pn on t. In the following, auth+,
auth−, oblg and refrain stand for positive authorization pol-
icy, negative authorization policy, obligation policy and re-
frainment policy, respectively.

In our model, each object has its own policy. When
more than one object interact with one another, the execu-
tion of every method should meet all the policies of the ob-
jects that participate in the method execution. For example,
object A can play the movie contained in object B by execut-
ing method B.play only when both the policies of A and B
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Fig. 1 Syntax of a policy specification language.

Table 1 Form of 〈operation unit1〉 and 〈operation unit2〉.
this.m←this x.m←this this.m←y x.m←y

auth+
√ √

auth− √
refrain

√ √
oblg

√ √

permit A to execute B.play. We use the reserved word “this”
to denote the self object, namely, the object which has that
policy.

We define the syntax of a policy specification language
using BNF notation as Fig. 1. The policy specification lan-
guage is a set of 〈policy〉.

Note that:

• 〈. . . 〉 are nonterminal symbols, A | B is a choice of A and
B, [ A ] means A is an option, A∗ stands for 0 or more
repetition of A, A+ stands for 1 or more repetition of A
and ‘α’ stands for α itself as terminal symbols.

• The microsyntax of 〈binary operator〉, 〈unary operator〉,
〈constant〉, 〈type〉 and 〈identifier〉 are omitted.

• In Table 1, x and y stand for any objects other than
‘this.’

• As defined in the above BNF rules, 〈operation unit3〉 is
used only in the event clause of obligation mode, and
is allowed to have the form this.m←this, x.m←this or
this.m←y where x and y stand for any objects other than
‘this.’

Using the policy specification language, basic access

control policies can be written as follows.

(1) positive authorization
policy auth+ policy name this.m←B if Cond
“If Cond holds, then object B is permitted to execute
method m on this object.”

(2) negative authorization
policy auth− policy name this.m←B if Cond
“If Cond holds, then object B is forbidden to execute m
on this object.”

(3) refrainment
policy refrain policy name B.m←this if Cond
“If Cond holds, then this object is forbidden to execute
m on object B.”

(4) obligation
policy oblg policy name B.m←this on Event if Cond
“If Cond holds when Event occurs, then this object is
obliged to execute m on object B.”
Event should be a time instant (without duration). In
the above policy specification,

• if Event =“beginning of D.m′ ← F” then this ob-
ject must perform m on B just before F performs
m′ on D.

• if Event =“end of D.m′ ← F” then this object
must perform m on B just after F performs m′ on
D.

Example 2.1:
Policy of digital contents (Playing contents):
Consider an object with media contents such as digital audio
and video. This object may specify the following policy. Let
x be an arbitrary user object.

“If x is the owner of this object and if x is older than or
equal to 20 years, then x may play the contents involved in
this object.”

“Just after the execution of play method, x must ex-
ecute pay method with actual arguments x, B and $10.00.
That is, when x has played the contents, then x must pay
$10.00 to B.”

policy auth+ Play 1
var x: user
this.play←x if this.owner==x, x.age>=20

policy oblg Play 2
var x: user
this.pay(x,B,$10.00)←this on end of this.play←x

Policy of a user (Refrainment from playing contents):
A user object (or a personal computer of the user) may have
the following policy. Let z be an arbitrary object that has a
movie as contents.

“If the current user is under 18 years old and if the type
of the contents is ‘v’, then this user object cannot play z.”

policy refrain Age Check
var z: content
z.play←this if this.age<18, z.type==v

2.2 Formal Semantics of PCS

In this section, we formally define a multi-object system in
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which the behavior of each object is controlled by specified
policies. An object in the system calls a method of another
object (or itself) along a given program, and the invocation
of the called method is permitted or forbidden complying
with both the caller’s and callee’s policies. Moreover, an in-
vocation and an ending of a method may cause other oblig-
atory method calls specified by the policies.

In Sect. 2.2.1, we define a simple model of objects
and programs. In Sect. 2.2.2, we introduce several concepts
about policies and define the behavior of a system with poli-
cies. In Sect. 2.2.3, the system is extended by introducing
an exception handling function. In our model, an exception
occurs when a forbidden method call is requested, and thus
policy violations are handled by the uniform exception han-
dling function.

2.2.1 Objects and Programs

Preliminaries In the following, let V , V1, and V2 be ar-
bitrary sets of variables. A substitution for V is a mapping
which maps a variable in V to its value. For a substitution
σ for V and an expression e with variables in V , let σ(e)
denote the value of e obtained by replacing each occurrence
of a variable x in e with σ(x). For a substitution σ for V
and a variable x ∈ V , let σ[x := v] denote the substitution
which is the same as σ except that the value of x is v. For
substitutions σ for V1 and µ for V2 such that V1 ∩ V2 = ∅,
let σ ◦ µ denote the union substitution for V1 ∪ V2 such that
σ ◦ µ(x) = σ(x) for all x ∈ V1 and σ ◦ µ(y) = µ(y) for
all y ∈ V2.

Objects Each object has a finite number of attributes and
methods defined by its class. We may write o.a and o.m
to represent an attribute a and a method m of an object o,
respectively.

Let O be a finite set of objects. A global state σ of O is
a substitution for AttO = {o.a | o ∈ O and a is an attribute of
o}.
Programs The body of a method o.m is a program which
is represented by a directed graph as shown in Fig. 2. A pro-
gram is a tuple (NO,TG, IS, IT,VAR). In the following we
write NO[o.m], TG[o.m], and so on to represent each of the
five components of the body of a method o.m. Let EXP[o.m]
be the set of expressions which consist of built-in functions,
attributes of o, and variables in VAR[o.m] (defined below).

• NO[o.m] is a set of nodes which represent program
points. We assume that for any objects o1, o2, and
methods m1, m2, NO[o1.m1] and NO[o2.m2] are dis-
joint unless o1 = o2 and m1 = m2.

• TG[o.m] ⊆ NO[o.m]×EXP[o.m]×NO[o.m] is a set of
edges called transfer edges. For any n1, n2 ∈ NO[o.m],

n1
e→n2 denotes (n1, e, n2) ∈ TG[o.m], which represents

that the control can move to n2 just after the execution
of n1 if the value of e is true.

• IT[o.m] ∈ NO[o.m] is the entry point of the program
and is called the initial node.

• IS[o.m] is a mapping which maps a node to its label.

Fig. 2 A sample program.

The label of a node represents an atomic action and is
one of the following forms.

– o2.m2(e1, . . . , ek) ← o Invoke o2.m2 with the
arguments e1, . . . , ek ∈ EXP[o.m]; move the con-
trol to IT[o2.m2] and assign the values of expres-
sions e1, . . . , ek to the parameters arg1, . . . , argk in
VAR[o2.m2], respectively.

– return e Return to the caller method and move
the control to the next node. The value of e ∈
EXP[o.m] is returned and is assigned to the special
local variable ret of the caller method.

– o.a := e Assign the value of e ∈ EXP[o.m] to
the attribute a of o itself.

– r := e Assign the value of e ∈ EXP[o.m] to
the local variable r ∈ VAR[o.m].

In the following, let IS be the mapping which is the
union of IS[o.m] for every method m of every object o.

• VAR[o.m] is a set of local variables. A state µ of the
local variables of o.m is a substitution for VAR[o.m].
Note that the value of an expression e ∈ EXP[o.m] at a
global state σ and a state µ of local variables is σ◦µ(e).
The state of local variables in which the values of all
variables are undefined is denoted by ⊥.

2.2.2 Behavior of PCS

Policies Consider an ordered set O = (o1, o2, . . . , on)
of objects. Each object in O has a finite set of policies
as well as the attributes and the methods. Assuming that
each object o j has a set P j of policies for 1 ≤ j ≤ n, let
Policy(O) =

⋃
1≤ j≤n P′j where P′j equals P j except that “this”

in P j is replaced with o j.
Let σ be a global state of the set O of objects, s and t be

objects in O, m be a method of t, and mod be any of auth+,
auth− and refrain. We define a relation σ |= mod(s, t,m) as
follows, which represents that the target t permits (if mod =
auth+) or forbids (mod = auth−) the subject s to call the
method m of t, or s refrains (if mod = refrain) from calling
m of t when the global state is σ.
σ |= mod(s, t,m) if and only if ∃p ∈ Policy(O),

∃θ: a substitution for the variables in p,
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p = “policy mod . . . B.m← A if Cond”,
σ(θ(Cond)) = true, θ(A) = s, θ(B) = t.

Note that the substitution θ is a mapping which maps a vari-
able in a policy p to an object, and θ(Cond) is the expression
which is the same as Cond except that every variable x de-
clared in p is replaced with θ(x).

If σ |= auth+(s, t,m) and σ |= auth−(s, t,m), then we
say that σ causes a conflict between policies upon the oper-
ation (s, t,m). Using an arbitrary conflict resolution method
(cf. [11]), we define CAN(σ, t.m← s) as a predicate which
is true if the operation t.m← s is permitted when the global
state is σ.

For a global state σ and an event ev, we also define
the set oblg(σ, ev) of obligatory method calls which become
effective when the global state is σ and the event ev has just
occurred.

oblg(σ, ev) = { t.m(v1, . . . , vkm)← s |
∃p ∈ Policy(O),
∃θ: a substitution for the variables in p,
p = “policy oblg . . .

B.m(E1, . . . , Ekm )← A on Ev if Cond”,
σ(θ(Ev)) = ev, σ(θ(Cond)) = true, θ(A) = s,
θ(B) = t, σ(θ(Ei)) = vi for 1 ≤ i ≤ km }

Order of Obligations We assume a total order ≺ over the
set oblg(σ, ev) of obligations which represents the order of
performing the obligations in our model, so that a program-
mer can know and control the order. In a real system, the
order would be decided according to a criterion such as the
order of appearing in the policy specification. Thus

oblg(σ, ev) = {op1, . . . , opl} and op1 ≺ · · · ≺ opl

where opi = “ti.mi(vi1, . . . , viki )← si” for 1 ≤ i ≤ l.
opi ≺ opj represents that opi should be performed before
opj. For the above-mentioned oblg(σ, ev), we define a se-
quence Foblg(σ, ev) of stack frames (defined later) as fol-
lows†.

Foblg(σ, ev) = (noblg[op1],⊥) : . . . : (noblg[opl],⊥),

where noblg[op] is a special node newly introduced here
for any obligatory operation op. Note that noblg[op] does
not belong to any method and IS(noblg[op]) is defined as
IS(noblg[op]) = op. Let NOoblg be the set of all noblg[op]’s.

Transition System The multi-object system consists of a
set O of objects and a control stack. The control stack is
a sequence of an arbitrary number of stack frames. Each
stack frame (or simply, frame) is a triple (n, µ, ef ), where
n ∈ NO[o.m] for a method o.m, µ a state of the local vari-
ables of o.m, and ef a truth value. The frame represents that
the control is at n in method o.m with the state µ of the local
variables, and if ef = true, then it also represents that the
label of n is o2.m2(e1, . . . , ek) ← o and the control has al-
ready reached a return node in the callee method o2.m2. We
may abbreviate a frame (n, µ, false) to (n, µ) and (n, µ, true)
to (/n, µ). The concatenation of two sequences ξ and ν is de-
noted by ξ : ν. The empty sequence is denoted by ε. The
leftmost symbol in a sequence of frames corresponds to the

Fig. 3 Inference rules which define the transition relation.

Fig. 4 Behavior of the system with the program in Fig. 2 and no obliga-
tion.

topmost symbol of the stack.
The system is represented by a transition system Sys

defined as follows. A state of Sys is a pair (σ, ξ) where σ is
a global state of O and ξ is the contents of the control stack.
We define the transition relation→ of Sys by inference rules
in Fig. 3. Note that a method invocation o2.m2 ← o1 is per-
formed only when CAN(σ, o2.m2← o1) = true. Moreover,
when a method has been just invoked or has just finished,
a sequence of stack frames which will accomplish the obli-
gations caused by the beginning or the end of the method is
pushed into the control stack (see Figs. 4 and 5).

2.2.3 Exception Handling

We extend our model by a function to handle exceptions,
that is,

†In the case that we cannot assume such an order over
oblg(σ, ev), we can define Foblg(σ, ev) as the set of sequences of
stack frames which are the permutations of (noblg[op1],⊥) : . . . :
(noblg[opl],⊥), though it may increase the complexity of verifica-
tion.
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Fig. 5 Behavior of the system with obligations.

Fig. 6 A sample obligation.

(1) Extend the program model so that we can specify an
action to be performed when an exception has just oc-
curred.

(2) Extend the transition system so that an exception oc-
curs when a forbidden method call is requested.

Consider a situation in which an obligation causes a
policy violation. In the definition of the policy specification
language, we said that the main clause of an obligation pol-
icy is a method call, and thus we cannot specify any action
for the violation exception. However, we extend the speci-
fication language as follows without changing the model of
obligations. In the extended language, we can write an ar-
bitrary program code in the main clause of a specification
of an obligation policy. Figure 6 shows a sample specifi-
cation and part (a) of the figure is the main clause of the
specification. Note that part (a) of Fig. 6 is a text version
of a program with an exception edge described below. We
assume that the main clause is the body of a method which
has no name and when this obligation becomes effective, the
method is called.

Program with Exception Handling A program is a tu-
ple (NO,TG,EG, IS, IT,VAR), where EG is a set of edges
called exception edges. An element in EG is a tuple
(n1, r, ty, n2) where n1, n2 ∈ NO, r ∈ VAR, and ty a type
of an exception such as OperationFailed (see Fig. 7). Note
that in our model an exception occurs only at a method call

and thus IS(n1) should be a method call. n1
r:ty→EG n2 denotes

(n1, r, ty, n2) ∈ EG and represents that if the control is at n1

and an exception ex of the type ty occurs, it can move to n2

assigning ex to r (i.e., the exception is caught). When an

exception ex of a type ty occurs at a node n and n
r:ty→EG n2

does not hold for any n2 and r, ex is delivered to the method
which called the method which n belongs to (i.e., the excep-
tion is thrown).

Transition System with Exception Handling Let expolicy

Fig. 7 A sample program with an exception edge.

Fig. 8 Inference rules for exception handling.

be a constant which represents the policy violation excep-
tion, and typeof(ex) be the type of an exception ex.

Let f1 = (n1, µ1, ef 1) and f2 = (n2, µ2, ef 2) be arbitrary
frames. We define a mapping CASTOFF from and to the set
of sequences of frames as

CASTOFF( f1) = ε
CASTOFF( f2 : f1 : ξ) ={

f1 : ξ if ef 1 = true or n2 � NOoblg

CASTOFF( f1 : ξ) otherwise.

We extend the transition system Sys as follows. A stack
frame can be either the above-mentioned tuple (n, µ, ef ) or
an exception ex. If the topmost element of the control stack
is an exception ex, it represents that ex has occurred and is
to be processed. We add the inference rules in Fig. 8 to the
set of the rules in Fig. 3. We also add “m2 � throw” to the
premise of the rule (CALL) in Fig. 3.

3. Pushdown System

To verify a policy controlled system introduced in Sect. 2,
we use pushdown system (PDS) and its model checking
method. In this section, we first review the definition of
PDS and the model checking method for PDS in [7]. We
then propose a new algorithm for computing the reachable
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configurations of a PDS. This algorithm works faster than
the algorithm in [7] and matches the algorithms in [1], [2]
when we use it for the verification of a policy controlled
system.

3.1 Definitions

A pushdown system is a tuple M = (P, Γ,∆, q0, ω) where
P is the finite set of control locations, Γ is the finite stack
alphabet, ∆ ⊆ (P × Γ) × (P × Γ∗) is the finite set of tran-
sition rules, q0 ∈ P is the initial control location, and
ω ∈ Γ is the bottom stack symbol. For simplicity, we can
write 〈p, a〉 ↪→ 〈q,w〉 instead of ((p, a), (q,w)) ∈ ∆. With-
out loss of generality, we assume that for any p, q ∈ P, if
〈p, ω〉 ↪→ 〈q,w〉, then w is of the form αω. A configuration
of M is a pair 〈q,w〉 where q ∈ P and w ∈ Γ∗. The initial
configuration is 〈q0, ω〉. The empty sequence of stack sym-
bols is denoted by ε. The transition relation of M is the least
relation⇒ satisfying the following condition:

〈p, aw〉 ⇒ 〈q, vw〉 for every w ∈ Γ∗, if 〈p, a〉 ↪→ 〈q, v〉.
The reflexive and transitive closure of⇒ is denoted by⇒∗.
For a given set C ⊆ P × Γ∗ of configurations, the set of suc-
cessors of C, which is {c′ ∈ P × Γ∗ | ∃c ∈ C. c ⇒ c′},
is denoted by post[M](C). The reflexive and transitive clo-
sure of post[M](C), which is {c′ ∈ P × Γ∗ | ∃c ∈ C. c ⇒∗
c′}, is denoted by post∗[M](C). We say that a configura-
tion c is reachable if 〈q0, ω〉 ⇒∗ c (or equivalently c ∈
post∗[M]({〈q0, ω〉})).

We say a PDS M is in normal form if M satisfies |w| ≤ 2
for every transition rule 〈p, a〉 ↪→ 〈p′,w〉, where |w| is the
length of w. Any PDS can easily be converted into a normal
form PDS by adding new control locations, the number of
which is not more than the size of ∆.

3.2 Model Checking Pushdown Systems

As we are interested in security properties of policy con-
trol, we concentrate on the safety verification problem (the
verification problem for short), which is one of the most im-
portant model checking problems. The (safety) verification
problem for PDS is defined as follows:

• Inputs: A PDS M and a verification property Ψ ⊆ P ×
Γ∗.

• Output: Does every reachable configuration belong to
Ψ? (or equivalently, post∗[M]({〈q0, ω〉}) ⊆ Ψ?)

In [8], Esparza et al. show that if a set C of configurations is
regular, then post∗[M](C) is also regular and they present an
algorithm for calculating post∗[M](C). Using their results,
we can solve the verification problem. To represent a regular
set of configurations, we define P-automata which accept
configurations of M.

Definition 3.1 (P-automata): Let M = (P, Γ,∆, q0, ω) be
a pushdown system. A P-automaton is a tuple A =

(Q, Γ, δ, P,F) where Q ⊇ P is the finite set of states, Γ is
the tape alphabet (which equals the stack alphabet of M),

δ : Q × Γ → 2Q is the transition function, P is the set of
initial states (which equals the set of control locations of
M) and F ⊆ Q is the set of final states. We extend δ to
δ̂ : Q × Γ∗ → 2Q in the usual way. A configuration 〈q,w〉
of M is accepted by A if and only if F ∩ δ̂(q,w) � ∅. The
set of configurations accepted byA is denoted by Conf (A).
We say a set C of configurations is regular if there exists a
P-automatonA such that C = Conf (A). �

For a set A, let |A| denote the cardinality of A.

Theorem 3.1: [8] For any pushdown system M =

(P, Γ,∆, q0, ω) and any P-automaton A = (Q, Γ, δ, P,F),
there effectively exists a P-automaton Apost∗ such that
Conf (Apost∗) = post∗[M](Conf (A)). For a normal form
PDS M,Apost∗ can be constructed in O(|P| · |∆| · (|Q|+ |∆|)+
|P| · |δ|) time and space. �

If a verification property Ψ is given by a P-automaton,
then we can solve the verification problem for Ψ using the
algorithm mentioned in Theorem 3.1. We describe the de-
cision algorithm in the next theorem for referential conve-
nience to the following sections.

Theorem 3.2: Let M = (P, Γ,∆, q0, ω) be a PDS and A =
(Q, Γ, δ, P,F) be a P-automaton. The verification problem
for M and verification property Ψ = Conf (A) is solvable.

Proof. Recall that the verification problem is the problem
which decides whether post∗[M]({〈q0, ω〉}) ⊆ Ψ. By Theo-
rem 3.1, we can also construct a P-automaton Apost∗ which
accepts post∗[M]({〈q0, ω〉}). Since the inclusion problem
of regular languages is decidable, we can decide whether
post∗[M]({〈q0, ω〉}) ⊆ Ψ. �

3.3 Computing Reachable Configurations

The proof of theorem 3.2 shown above is based on Es-
parza’s Apost∗ algorithm. The algorithm can construct a P-
automaton Apost∗ such that Conf (Apost∗ ) = post∗[M](C) for
any regular set C of configurations. To solve the verification
problem, however, we need only Apost∗ for C = {〈q0, ω〉},
which can be constructed more efficiently than by using Es-
parza’s algorithm. In the following, we show an algorithm
for constructing Apost∗ for C = {〈q0, ω〉}, which is an ex-
tension of the algorithm in [18]. Instead of constructing a
P-automaton, we construct a left linear grammar GM from a
given PDS M = (P, Γ,∆, q0, ω), which satisfies w ∈ L(GM)
if and only if w = qγ and 〈q0, ω〉 ⇒∗ 〈q, γ〉. Apost∗ can easily
be obtained from GM .

First, we define a relation RM ⊆ P × Γ × P as the least
relation which satisfies the rules in Fig. 9. The following
lemma shows the meaning of RM.

Lemma 3.3: (p, a, q) ∈ RM if and only if 〈p, a〉 ⇒∗ 〈q, ε〉.
Proof Sketch. (Only-if) By induction on the number of
rules used for deriving (p, a,q) ∈ RM .
(If) By induction on the number of transitions between 〈p, a〉
and 〈q, ε〉. �
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Fig. 9 Inference rules for RM .

Fig. 10 Inference rules for GM .

Using RM , we define the left linear grammar GM =

(V, T,D, I) for the given PDS M = (P, Γ,∆, q0, ω) where
V = Q × Γ is the set of variables (for readability, we write
Xp,a to represent (p, a) ∈ V), T = Q ∪ Γ is the set of termi-
nal symbols, D is the set of productions and is defined as the
smallest set which satisfies the rules in Fig. 10, and I = Xq0,ω

is the start symbol.

Lemma 3.4: w ∈ L(GM) if and only if w = qγ and
〈q0, ω〉 ⇒∗ 〈q, γ〉.
Proof Sketch. This lemma is implied by the following
stronger proposition:

w can be derived from Xp,a if and only if w = qγ
and 〈p, a〉 ⇒∗ 〈q, γ〉.

(Only-if) By Lemma 3.3 and induction on the length of the
derivation of w.
(If) By Lemma 3.3 and induction on the number of transi-
tions between 〈p, a〉 and 〈q, γ〉. �

The following theorem can be proved by Lemma 3.4
and the form of the inference rules in Figs. 9 and 10.

Theorem 3.5: For a normal form PDS M = (P, Γ,∆, q0, ω),
a left linear grammer GM such that L(GM) = {qγ |
〈q0, ω〉 ⇒∗ 〈q, γ〉} can be constructed in O(|Pε |2 · |∆|) where
Pε = {q ∈ P | 〈p, a〉 ↪→ 〈q, ε〉 for some p and a}. �

Obviously, |Pε | ≤ min(|P|, |∆|). Note that a PDS which is not
in normal form can be converted into a normal form PDS
without increasing |Pε |.

In the verification of a policy controlled system (PCS)
described in Sect. 4, we construct Apost∗ for a PDS S � =
(P, Γ,∆, p, n0) with |P| = 2. When we use either Esparza’s
algorithm or ours to construct Apost∗ , S � has to be con-
verted into a normal form PDS M′ = (P′, Γ,∆′, p, n0) with
|P′| = O(|P| + ‖∆‖) and |∆′| = O(‖∆‖), where ‖∆‖ is the size
of ∆. Therefore, Esparza’s algorithm takes O(‖∆‖3) time to
constructApost∗ while ours takes only O(‖∆‖) time.

4. Model Checking Policy Controlled Systems

In this section, we present a method for verifying a safety
property of a PCS. When every reachable configuration of a
PCS (or PDS) S belongs to a property Ψ (see Sect. 3.2), we
simply say that S satisfies Ψ. Similar to the case of PDS,
the (safety) verification problem for PCS is defined as the
problem to decide, for a PCS S and a verification property
Ψ, whether S satisfies Ψ. We first present an abstraction of
a PDS S � from a given PCS S . We can verify whether S �

satisfies a given property Ψ by using the method described
in Sect. 3. By the soundness of the abstraction (Theorem
4.2), if S � is known to satisfy Ψ then S is also guaranteed to
satisfy Ψ.

4.1 Abstracting PDS from PCS without Exception Han-
dling

We define a transformation which abstracts PDS from PCS
without exception handling. Abstraction from PCS with
exception handling is described in Sect. 4.2. Remember
that a configuration of a PCS is a pair of global variable
values and a stack (of which frames may involve local
variable values), while a configuration of a PDS is a pair
of a control location and a stack. Hence, program vari-
ables in the PCS must be abstracted. For a given PCS
S = (O,Prog,Policy), the abstract PDS S � = (P, Γ,∆, p, n0)
is defined as P = {p, q} where p and q are new symbols,
Γ = {n, /n | n is a node in Prog}, the initial control location
is p , the bottom stack symbol n0 is a node in Prog, which
represents the initial program point of Prog and ∆ is de-
fined in Fig. 11. Each rule in Fig. 11 has its counterpart in
Fig. 3. In fact, rules in Fig. 11 are obtained from Fig. 3 by
discarding values of global and local variables. Note that
rule (RETURN) in Fig. 3 replaces the topmost two frames.
To simulate this rule, we use the location q and define two
rules which are consecutively applied due to q.

For a sequence of frames ξ = (n1, µ1) : (n2, µ2) :
. . . : (nk, µk) of S , we define ξ� = n1n2 . . .nk. That
is, ξ� is obtained from ξ by discarding values of all lo-
cal variables. CAN� and Foblg� in Fig. 11 are the abstract
versions of CAN and Foblg, respectively. CAN� is any
predicate such that CAN�(o2.m ← o1) = true whenever
CAN(σ, o2.m ← o1) = true for some σ. Specifically, we
define CAN� as follows: delete all conditional negative au-
thorization policies (i.e., which have the if-clauses), and re-
place the if-clauses of all positive authorization policies with
true. Next, define CAN� in the same way as CAN. Like-
wise, Foblg� is any set of sequences of frames which satis-
fies Foblg�(ev) � (Foblg(σ, ev))� for every σ.

For a configuration c = (σ, ξ), let us define c� = 〈p, ξ�〉.
Also, for a given property Ψ, which is a subset of configura-
tions of S , let us define the abstract propertyΨ� asΨ� = {c′ |
every c such that c� = c′ satisfies c ∈ Ψ}. We can obtain the
following soundness property of the abstraction.
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Fig. 11 Abstraction rules.

Lemma 4.1: Let S be a PCS and S � be the corresponding
PDS abstracted from S . For any configurations c1 and c2 in
S , if c1 → c2 then c�1 ⇒∗ c�2.

Proof. By the correspondence of rules in Fig. 3 and rules in
Fig. 11. �

Theorem 4.2 (Soundness of the abstraction): Let S be a
PCS and S � be the corresponding abstract PDS. Also let
Ψ be a property in S and Ψ� be the corresponding abstract
property in S �. If S � satisfies Ψ�, then S also satisfies Ψ.

Proof. Assume that every reachable configuration of S �

belongs to Ψ�. Let c be an arbitrary reachable configuration
of S . By Lemma 4.1, c� is reachable in S �. By assumption,
c� ∈ Ψ�. By the definition of Ψ�, we know c ∈ Ψ. �

By Theorem 4.2, if we can find a P-automaton AΨ such
that Conf (AΨ) ⊆ Ψ� and know that the answer to the veri-
fication problem for S � and Conf (AΨ) is affirmative by the
method in Sect. 3, then we can conclude that the answer to
the original problem for S and Ψ is also affirmative.

4.2 Abstracting PDS from PCS with Exception Handling

We define CAN� as any predicate such that CAN�(o2.m←
o1) = false whenever CAN(σ, o2.m← o1) = false for some
σ. While CAN� in Sect. 4.1 is an over-estimation of CAN
(i.e., the set of events that make CAN� true is larger than
or equal to that of CAN), CAN� is an under-estimation
of CAN. We also define etpolicy = typeof(expolicy) and
EVAL(e) = {et | et = typeof(σ ◦ µ(e)) for ∃σ and ∃µ}

Fig. 12 Abstraction rules for exception handling.

for each expression e appearing as the actual argument of an
invocation of throw.

The PDS S � abstracted from a PCS S with exception
handling is defined as follows. The set P of control loca-
tions of S � is defined as P = {p, q} ∪ {et, êt, ẽt | et ∈ Ex}
where Ex is the set of types of exceptions used in S . The set
∆ of transition rules is defined by Fig. 11 and Fig. 12. The
first four rules in Fig. 12 correspond to the exception han-
dling rules in Fig. 8. The other three rules in Fig. 12 are for
simulating CASTOFF in Sect. 2.2.3.

For each configuration c = (σ, ξ) of S , let us define

c� =


〈typeof(ex), ν〉 ξ = ex : ν and

ex is an exception,
〈p, ξ�〉 otherwise.

Then, the soundness property (Theorem 4.2) of the abstrac-
tion from PCS with exception handling also holds, though
the time complexity increases from O(‖∆‖) to O(|Ex|2 · ‖∆‖).

4.3 Verification Example

In this section, we briefly introduce our verification tool
and show verification results on example policies. For
simplicity, the current version of the verification tool as-
sumes that for a PCS S and a verification property Ψ, au-
thorization policies and program variables have been ab-
stracted from S according to the rules in Fig. 11 and a de-
terministic P-automaton AΨ such that Conf (AΨ) = Ψ is
given. That is, inputs to the verification tool are a PCS
S = (O,Prog,Policy) where Prog is without variables and
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Fig. 13 A hotel reservation system.

Policy is a set of obligation policies, and a deterministic P-
automatonAΨ. The verification tool performs the following
procedure.

(Step1) From a given PCS S , construct a P-automaton
which accepts the set of all reachable configurations
of S � based on the algorithms in Sects. 3.3 and 4.1.
That is, construct a P-automaton Apost∗ such that
Conf (Apost∗) = post∗[S �]({〈p, n0〉}) where 〈p, n0〉 is the
initial configuration of S �.

(Step2) Decide whether Conf (Apost∗ ) ⊆ Conf (AΨ).

The answer issued in (Step2) is “yes” if and only if
post∗[S �]({〈p, n0〉}) ⊆ Conf (AΨ) = Ψ, implying S satisfies
Ψ. The verification tool is implemented by Java.

Example 4.1: Consider a simple online hotel reservation
system which is executed on a server computer and provides
reservation management services for several hotels and their
customers. In the system, every hotel and every customer
have their own object, and each of them can specify its
own policy in its object. Every hotel’s object must pre-
pare ReserveRoom() and CancelRoom() methods for their
customers, and every customer’s object is required to have
NotifyOfCancel() method to receive a notice of cancellation
of a room. If the system receives a request from a hotel or a
customer, then it invokes a corresponding method of his/her
object in a sequential manner. Every hotel’s object and ev-
ery customer’s object must also have the following policies.

“If a reservation at a hotel is canceled by a customer,
then the hotel must give notice of the cancellation to all other
customers.”

“Every customer must cancel his/her reservation of a
hotel before he/she makes a new reservation of another ho-
tel.”

For simplicity, we assume that two hotels h1 and h2 are
registered in the system, and their customers are c1 and c2

only (Fig. 13). They must have the following policies.

Fig. 14 A verification property.

Table 2 Verification profiles of example 4.1.

# of PCS S Apost∗ computation
customers # of nodes # of edges |P| |∆| time† (sec)

10 190 830 791 1309 7.5
40 700 9290 9101 11120 45.9
70 1210 26750 26411 29930 198.3

100 1720 53210 52721 57740 312.8
† JVM build J2SDK.v.1.4.1, on Windows XP (Pentium 4 (2 GHz), 1 GB RAM)

policy oblg Hotel default policy
c2.NotifyOfCancel()←this on end of this.CancelRoom()←c1
c1.NotifyOfCancel()←this on end of this.CancelRoom()←c2

policy oblg Customer default policy
h1.CancelRoom()←this on beginning of h2.ReserveRoom()←this
h2.CancelRoom()←this on beginning of h1.ReserveRoom()←this

Furthermore, assume that c1 wants to reserve at hotel h1

and c2 wants to reserve at hotel h2. Thus they independently
specify the following policies.

policy oblg Policy of C1
h1.ReserveRoom()←this on end of this.NotifyOfCancel()←h1

policy oblg Policy of C2
h2.ReserveRoom()←this on end of this.NotifyOfCancel()←h2

Consider a situation that for some reason, c1 has re-
served at hotel h2 and c2 has reserved at hotel h1. In this situ-
ation, if c2 cancels his/her reservation at h1, then the system
immediately enters an infinite chain of obligation method
calls.

This undesirable behavior could be detected by our ver-
ification tool as follows. First, we specified the verification
property as “the control stack is always shorter than a cer-
tain length.” We will call this length the threshold length.
Let S � = ({p, q}, Γ,∆, p, n0) be the abstracted PDS from the
hotel reservation system and l the threshold length. The ver-
ification property can be represented as a deterministic P-
automaton AΨ = (Q, Γ, δ, {p,q}, F) shown in Fig. 14. Actu-
ally, we verified this property for a few different threshold
lengths, and for any lengths, our verification tool answered
“no” (the hotel reservation system did not satisfy the prop-
erty) and showed the following error trace:

h1.CancelRoom()←c2, c1.NotifyOfCancel()←h1,
h1.ReserveRoom()←c1, h2.CancelRoom()←c1,
c2.NotifyOfCancel()←h2, h2.ReserveRoom()←c2,
h1.CancelRoom()←c2, . . ..

To measure the computation time to verify a larger
PCS, we extended the hotel reservation system to have five
hotels and an arbitrary number of customers. The profiles of
the verification are summarized in Table 2.

In this example, the computation time needed for the
verification hardly increased as the threshold length grew.
That is, the computation time is affected mainly by the size
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of the input PCS. Since the size of the PCS in this exam-
ple is determined by the number nc of customers (namely,
O(nc) of nodes and O(n2

c) of edges), we fixed the threshold
length at 1000 and measured the computation time for dif-
ferent numbers of customers. From Table 2, we can see that
the computation time is within five and a half minutes when
the number of customers is not more than 100. Note that
in this example, Apost∗ contains many unreachable transi-
tions since most nodes of the PCS are unreachable because
of the infinite chain of obligations. For example, there are
only 456 transitions reachable from the initial state when
nc = 100. If we avoid generating unreachable transitions
when constructing Apost∗ , the construction time is reduced
and the total computation time becomes about the half of
that in Table 2.

5. Conclusion

In this paper, a simple policy specification language was
defined together with its operational semantics. An auto-
matic verification method for PCS using PDS model check-
ing was also proposed. Experimental results on verification
of a sample PCS for hotel reservation showed the efficiency
of the proposed method.

Verification of a security goal other than a safety prop-
erty, e.g., a liveness property is left as a future study. The
proposed abstraction of PDS from PCS is such that the data
part of the PCS is discarded and a conditional, which de-
pends on the data part, is replaced with a nondeterministic
choice. However, in some cases, more sophisticated abstrac-
tion is required to succeed in model checking [3]. Such ab-
straction techniques include abstract interpretation, program
slicing [4] and predicate abstraction [10]. We would like to
integrate these techniques into our verification method.
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