
200
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

PAPER Special Section on Foundations of Computer Science

Formal Language Theoretic Approach to the Disclosure Tree
Strategy in Trust Negotiation

Yoshiaki TAKATA†a) and Hiroyuki SEKI††, Members

SUMMARY Trust negotiation is an authorizing technique based on dig-
ital credentials, in which both a user and a server gradually establish trust
in each other by repeatedly exchanging their credentials. A trust negotia-
tion strategy is a function that answers a set of credentials to disclose to
the other party, depending on policies and the set of already disclosed cre-
dentials. The disclosure tree strategy (DTS), proposed by Yu et al., is one
of the strategies that satisfies preferable properties. DTS in a simple im-
plementation requires exponential time and space; however, neither an ef-
ficient algorithm nor the lower-bound of its complexity was known. In this
paper, we investigate the computational complexity of DTS. We formu-
late subproblems of DTS as problems on derivation trees of a context-free
grammar (CFG), and analyze the computational complexity of the subprob-
lems using the concepts of CFGs. As a result, we show that two subprob-
lems evl and mset of DTS are NP-complete and NP-hard, respectively,
while both are solvable in polynomial time if we modify evl not to require
non-redundancy and mset not to answer any subset useless for leading the
negotiation to success.
key words: trust management, trust negotiation, negotiation strategy, com-
putational complexity, context-free grammar

1. Introduction

Trust management [1]–[4], that is an authorizing technique
based on digital credentials and policy specification, is a
promising technology for modern network applications in
which all potential users are not known in advance. In a
trust management system, an administrator specifies a pol-
icy such as “If a user has a credential issued by company A,
then provide service R to the user” beforehand, and the sys-
tem decides whether or not a user should be provided with a
service based on the policies and the credentials that the user
presents. Digitally signed credentials guarantee the holders’
attributes, and using them the system can provide an appro-
priate authorization to a user without a prior-registered user
ID or password information.

Trust negotiation [5]–[9] is one of the approaches to
trust management, in which both a user and a server grad-
ually establish trust in each other by repeatedly exchanging
their credentials. In contrast to a usual trust management
system where a user should know and trust the server at the
beginning of a transaction, trust negotiation supports trust
establishment between strangers.

Figure 1 shows an example of trust negotiation. The

Manuscript received March 26, 2008.
Manuscript revised July 1, 2008.
†The author is with Kochi University of Technology, Kami-shi,

782–8502 Japan.
††The author is with Nara Institute of Science and Technology,

Ikoma-shi, 630–0192 Japan.
a) E-mail: takata.yoshiaki@kochi-tech.ac.jp

DOI: 10.1587/transinf.E92.D.200

negotiation in this example is performed by Bob, an em-
ployee of Company F, and Company A. Both parties have
their own set of credentials, policies, and services. Assume
that Bob starts the negotiation by requesting a special dis-
count (denoted by R) from A (Fig. 1 (1)). Then, since A has a
policy that A provides the service R only for an employee of
Company F, A asks Bob to disclose a credential that guar-
antees Bob is an employee of F (Fig. 1 (2)). Though Bob
can prove himself to be an employee of F by disclosing his
employee ID B1, his policy PB1 permits disclosing it only
to a partner company of F. Hence, he asks A to disclose a
credential that guarantees A is a partner of F (Fig. 1 (3)). A
discloses its credential A1 for proving itself to be a partner
of F (Fig. 1 (4)). Then Bob discloses his employee ID since
the policy PB1 is satisfied (Fig. 1 (5)). Finally, A provides
the discount for Bob, and the negotiation ends successfully
(Fig. 1 (6)).

We consider a transaction between two parties: a user
and a server. Each party has its own set of credentials as
well as its own policies. A policy is a rule of the form
A ← B1 ∧ . . . ∧ Bn, which means “credential (or service)
A can be disclosed (or provided) to the other party if he/she
has disclosed B1, . . . , Bn.” If a service requested by the user
is protected by the server’s policy, then the server sends back
the policy for the service to the user, which is considered to
be a request for the credentials in the right-hand side of the
policy. Both parties repeatedly send credentials and/or poli-
cies to the other party in turn. The transaction ends either
when the user obtains the requested service or when any of
the parties cannot make the negotiation progress, i.e., the
negotiation fails.

Fig. 1 An example of trust negotiation.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

TAKATA and SEKI: FORMAL LANGUAGE THEORETIC APPROACH TO THE DISCLOSURE TREE STRATEGY IN TRUST NEGOTIATION
201

A trust negotiation strategy (of a party i) is a function
that answers a set of credentials to disclose to the other party,
depending on the policies and credentials of the party i and
those disclosed by the other party. Yu et al. [10] proposed a
set of strategies, the DT family, and showed that it satisfies
preferable properties: If each party chooses his/her strategy
among the DT family, then (1) a negotiation between the
parties always terminates, and (2) whenever there exists a
disclosure sequence obeying the policies of the two parties
to obtain a requested service, the negotiation will end by the
requester obtaining the service. The disclosure tree strategy
(DTS) is the most cautious strategy in the DT family; that
is, it discloses the minimal information to the other party
to evolve the negotiation. DTS in a simple implementation
requires exponential time and space; however, neither an ef-
ficient algorithm nor the lower-bound of its complexity was
known.

In this paper, we investigate the computational com-
plexity of DTS. DTS is defined in terms of a set of trees,
called disclosure trees, which represent the dependency re-
lation among credentials defined by disclosed policies. For
example, if a policy A ← B1 ∧ . . . ∧ Bn has been disclosed,
then each node labeled with A has children labeled with
B1, . . . , Bn. Considering policies to be the productions of a
context-free grammar (CFG), we can formulate the subprob-
lems of DTS as problems on derivation trees of the CFG.
Since the other subproblems of DTS are trivial, this paper
mainly concerns the following two subproblems:

• evl: Decide whether there exists a non-redundant dis-
closure tree with a leaf labeled with some credential of
the other party. A disclosure tree is redundant if there
exists a path from the root to a leaf that has two or more
nodes with the same label.

• mset: Find a minimal subset of credentials and policies
that makes the set of disclosure trees evolvable for the
other party. A set of disclosure trees is evolvable for
one party U if it contains a tree with a leaf labeled with
a credential concerned with U.

We show that the evl is NP-complete and mset is NP-hard,
while both are solvable in polynomial time if we modify evl
not to require non-redundancy and mset not to answer any
subset useless for leading the negotiation to success.

2. Trust Negotiation and Disclosure Tree Strategy

2.1 Access Control Policy

A credential is a digital document that guarantees a subject’s
attributes and is digitally signed by a trusted party. In this
paper, we assume that each credential is concerned with ex-
actly one subject. We say that C is a credential of a party i
if C’s subject is i. As far as a trust negotiation is concerned,
the difference between a service and a credential is that a
service does not occur in the right-hand side of a policy. So
we treat a service as a special case of a credential in the fol-
lowing definitions. An access control scheme of a party i

is a pair (Ci,Pi) where Ci is a finite set of credentials of i
and Pi is a finite set of access control policies (or policies
for short) defined below. For each credential C ∈ Ci, an
access control policy, denoted by p(C), is associated, and
Pi = { p(C) | C ∈ Ci }.
Definition 1. A policy is a logical expression of the form
C ← e where e is either true or a disjunction of conjunctions
of credentials, or ¬C. If C is a credential of party i, then the
subject of each credential in e should be different from i.

The following are sample policies:

R ← (B1 ∧ B2) ∨ B3 ∨ B4

B1 ← A1 ∧ A2

¬B4

In the right-hand side of a policy, a credential is used as a
propositional symbol that is true if the credential has been
disclosed by its subject. For example, the first of the above
policies means that providing R to the other party is allowed
if B1 and B2 have been disclosed or B3 or B4 has been dis-
closed. If the right-hand side of a credential’s policy is satis-
fied by a set C of currently disclosed credentials (including
the case that the right-hand side is true), then we say the
credential is unlocked by C.

Definition 2. A credential X is unlocked by a set C of cre-
dentials, denoted as C |= X, if and only if p(X) = X ← e
where e = true or there exists a conjunction Y1 ∧ . . . ∧ Yk in
e such that {Y1, . . . ,Yk} ⊆ C.

A policy of the form ¬C is called a denial policy, which
means that the subject of C does not possess the credential
or does not want to disclose the credential in any situation.
A policy that is not a denial policy is called a permission
policy.

2.2 Trust Negotiation

A trust negotiation is performed by two parties: a server
(service provider) and a user (service requester). In the fol-
lowing, we fix the parties and call the former Alice and the
latter Bob. The access control schemes of Alice and Bob
are also fixed. We also fix a service R that Bob requests. A
negotiation begins when Bob requests Alice to provide R.
Then, Alice performs one of the following actions:

(1) Provide R if R is unlocked;
(2) Disclose a subset of Alice’s unlocked credentials

and/or a subset of Alice’s policies; or
(3) Quit the negotiation.

If Alice chooses (2), then next Bob performs (2) or (3). And
then Alice and Bob alternately perform one of the above
actions. The negotiation terminates when R is provided to
Bob or when one of the parties quits the negotiation. As a
result of each action, a message, which is either a subset of
credentials and policies or a notice of quitting a negotiation,
is sent to the other party.

202
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

A negotiation strategy (or strategy for short) is a map-
pingσ that takes an access control scheme (C, P) and a set D
of already disclosed credentials and policies as input and an-
swers a message, i.e., credentials and policies to disclose to
the other party (or a notice of quitting). Let (CA, PA) (resp.
(CB, PB)) be the access control scheme of Alice (resp. Bob).
A trust negotiation between Alice and Bob (starting from
Bob) is formally a (finite or infinite) sequence of messages:

ReqR,mA,0,mB,0,mA,1,mB,1, . . . ,

where ReqR represents the request for R and each message
mi, j (i ∈ {A, B}, j ≥ 0) consists of policies and unlocked
credentials. If the sequence is finite, then the last message is
either {R} or Quit. Let Dj (j ≥ 0) be the set of policies and
credentials already disclosed up to point j; i.e.,

D0 = ∅, D1 = D0 ∪ mA,0, D2 = D1 ∪ mB,0,

Let σA (resp. σB) be the negotiation strategy of Alice (resp.
Bob). The trust negotiation obeying σA and σB is the
one that satisfies mA, j = σA((CA, PA),D2 j) and mB, j =

σB((CB, PB),D2 j+1) for j ≥ 0.
If the two parties of a negotiation use arbitrary strate-

gies, then the negotiation does not necessarily terminate.
However, if each party chooses a strategy (that can be differ-
ent from the other party’s strategy) in a family of strategies
called the DT family† [10], then the following good proper-
ties hold:

• Negotiations always terminate.
• Whenever there exists a disclosure sequence obeying

the policies of the two parties to obtain a requested ser-
vice, the negotiation will end by the requester obtaining
the service.

The Disclosure Tree Strategy (DTS) [10], reviewed in
the following subsections, is the most cautious strategy in
the DT family; i.e., it discloses the least number of cre-
dentials. However, a simple implementation of the DTS
requires exponential time and space, and it is not known
whether or not there exists an efficient implementation of
the DTS. This paper aims to investigate the computational
complexity of the DTS.

2.3 Disclosure Tree

A disclosure tree is a tree structure that represents the de-
pendency among credentials defined by a given subset of
policies and credentials. For example, Fig. 2 shows the set of
disclosure trees for a set {R← (B1∧B2)∨B3, B1 ← A1∧A2}
of policies. Note that by Definition 1, the right-hand side of
the policy p(A) of Alice’s credential A only contains Bob’s
credentials (and vice versa).

Definition 3. A disclosure tree for a set P of permission
policies, a setPd of denial policies, and a set C of credentials
is a finite, labeled, unordered tree that satisfies the following
conditions:

• Each node is labeled with a credential’s name.

Fig. 2 Sample disclosure trees.

• The label of the root is R.
• Each node u and u’s label A satisfy the following:

– A � C; i.e., A has not been disclosed yet.
– p(A) � Pd; i.e., disclosing A is not denied.
– If p(A) ∈ P and A is not unlocked by C, then there

exists a conjunction B1∧ . . .∧Bk in the right-hand
side of p(A) that satisfies the following: Assume
that {B1, . . . , Bk} \ C = {Bi1 , . . . , Bim }. (Note that
{B1, . . . , Bk} � C because A is not unlocked by C.)
Then, u has exactly m children u1, . . . , um and u j’s
label is Bij for 1 ≤ j ≤ m. In other words, the set
of the labels of u’s children equals the set of the
credentials that are requested by A’s policy and
that have not been disclosed.

– If p(A) � P or A is unlocked by C, then u is a leaf.

Note that the original definition [10] allows the label of
an internal node to be unlocked. We restrict unlocked cre-
dentials to labels of leaves because permitting an unlocked
node to have children of another disjunction is useless and
the results given in the rest of this paper do not depend on
this restriction.

We say a disclosure tree t is redundant if there exists a
path in t from the root to a leaf that contains more than one
node with the same label. We write the set of all (redundant
and non-redundant) disclosure trees for D = P ∪ Pd ∪ C
as viewr(D) and the set of non-redundant disclosure trees as
viewnr(D).

Definition 4. If a credential A of a party U is the label of a
leaf of a disclosure tree in viewnr(D) (resp. viewr(D)), then
we say viewnr(D) (resp. viewr(D)) is evolvable for U, be-
cause U can make the negotiation progress by disclosing A
itself (if A is unlocked) or A’s policy (if A is not unlocked).

The DTS is a strategy that selects a minimal subset m
of credentials and policies to disclose so that viewnr(D∪m),
the set of disclosure trees in the next state, will be evolvable
for the other party.

Yu et al. [10] only concerned viewnr(D) because of the
following reason. For example, let D = {R ← B1, B1 ←
A1∨A2, A1 ← B1∧B2}, where R, A1, and A2 are Alice’s cre-
dentials and B1 and B2 are Bob’s ones. Figure 3 shows some
of the disclosure trees in viewr(D). Disclosing either B2 or
p(B2) is not necessary for making R be unlocked, because
Bob has to disclose B1 in any way and disclosing B1 imme-
diately unlocks R. In this sense, it is better to ignore redun-
dant disclosure trees when selecting credentials and policies

†Although Yu et al. named the family the DTS family, we call
it the DT family for distinguishability from DTS.

TAKATA and SEKI: FORMAL LANGUAGE THEORETIC APPROACH TO THE DISCLOSURE TREE STRATEGY IN TRUST NEGOTIATION
203

Fig. 3 Redundant and non-redundant disclosure trees.

to disclose. However, the complexity of deciding whether
viewnr(D) is evolvable for given D is NP-complete (Theo-
rem 1), while we can decide whether viewr(D) is evolvable
in linear time (Proposition 2). Hence we define R-DTS, the
same strategy as DTS except that it is based on viewr(D),
and investigate the complexity of DTS and R-DTS.

2.4 Context-Free Grammar for Representing Disclosure
Trees

We can consider given permission policies to be productions
of a context-free grammar (CFG) and disclosure trees to be
derivation trees of the CFG.

Definition 5. For a subset P of permission policies, a sub-
set Pd of denial policies, and a subset C of credentials, we
define CFG G(D) for D = P ∪ Pd ∪ C as follows:

• A credential A is a terminal symbol of G(D) if p(A) �
P ∪ Pd or A is unlocked by C. Any other credentials
are non-terminal symbols of G(D)†.

• The start symbol of G(D) is R.
• The set of productions of G(D) is the smallest set that

satisfies the following: If A is a non-terminal sym-
bol such that p(A) ∈ P and there exists a conjunc-
tion B1 ∧ . . . ∧ Bk in the right-hand side of p(A) and
{B1, . . . , Bk} \ C = {Bi1 , . . . , Bim } � ∅, then the produc-
tion set contains A → Bi1 . . . Bim , where the order of
Bi1 , . . . , Bim in the right-hand side is not important and
is determined arbitrarily. (Note that if {B1, . . . , Bk} ⊆ C,
then A is unlocked by C and A is a terminal symbol.)

Obviously, a tree t is a derivation tree of G(D) if and
only if t is a disclosure tree of viewr(D), if we consider
t to be an unordered tree. Using this CFG representation,
we can reduce problems about the set of disclosure trees to
problems about CFG. For example, we can decide whether
viewr(D) = ∅ (equivalently, viewnr(D) = ∅) by testing
whether the language L(G(D)) of G(D) is empty.

2.5 Disclosure Tree Strategy

The DTS in Alice’s turn is a mapping defined by the follow-
ing input and output:

Input: • (CA, PA): the access control scheme of Alice.

• D: the set of credentials and policies disclosed by
any of the parties so far.

Note that R, the goal of Bob, is in CA. For (CA, PA) and
D, we let LPA = PA \ D (the set of Alice’s undisclosed
policies) and LCA = { Ai | Ai ∈ CA \ D and D |= Ai }
(the set of Alice’s unlocked, undisclosed credentials).

Output: A message m satisfying the following conditions
(1) to (3). The notice of quitting the negotiation is de-
noted by Quit.

(1) If either viewnr(D ∪ PA) = ∅ or viewnr(D) is not
evolvable for Alice, then m = Quit.

(2) Otherwise, if R is unlocked by credentials in D,
then m = {R}.

(3) Otherwise, m is a non-empty minimal subset of
LPA ∪ LCA such that viewnr(D ∪ m) is evolvable
for Bob.

The DTS in Bob’s turn is defined in a similar way. R-DTS
is the strategy obtained from DTS by replacing viewnr with
viewr.

Although the original DTS defined in [10] answers the
set of all non-empty minimal m such that viewnr(D ∪ m) is
evolvable for Bob (and Alice can arbitrarily choose any one
message in the set), the number of such m’s can be expo-
nential to the description length of D ∪ CA ∪ PA. To make
discussions on complexity simple, we modified the DTS so
that it outputs only one message.

Consider (1), (2), and (3) in the output of DTS above.
As mentioned in Sect. 2.4, (1a) deciding whether viewr(D∪
PA) = ∅ (and viewnr(D ∪ PA) = ∅) can be reduced to the
emptiness test of context-free languages, which is solvable
in linear time. (2) Deciding whether R is unlocked is easy.
Hence, the main problems for solving the DTS (resp. R-
DTS) are:

(1b) deciding whether viewnr(D) (resp. viewr(D)) is evolv-
able for Alice and

(3) computing one arbitrary minimal m such that
viewnr(D ∪ m) (resp. viewr(D ∪ m)) is evolvable for
Bob.

We call the former evl (which is a decision problem) and
the latter mset (which is a function problem). We prefix nr-
(resp. r-) to the names of these problems to indicate that
viewnr (resp. viewr) is used in their definitions. In the next
section we investigate the complexity of these problems.

3. NP-Hardness of DTS

Theorem 1. nr-evl is NP-complete.

Proof. Solving nr-evl is equivalent to finding a non-
redundant derivation tree of G(D) with a leaf labeled with a
credential of Alice. This problem is in NP because it is solv-
able by the following non-deterministic polynomial time al-
gorithm: Guess a sequence C0C1 . . .Ck of symbols of G(D),

†If p(A) ∈ Pd, then A is a non-terminal symbol that does not
appear in the left-hand side of any production; i.e., A is a useless
symbol.

204
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

where C0 = R, Ck is a credential of Alice, and no symbol
appears twice or more. Then, check the following:

• Ck is a terminal symbol of G(D).
• For 0 ≤ i ≤ k − 1, G(D) has a production Ci → αCi+1β

for some α and β. Moreover, for each non-terminal
symbol C′ in αβ, there exists a derivation, which does
not include any of C0,C1, . . . ,Ci, from C′ to some
string of terminal symbols.

NP-hardness can be shown by a transformation from
3sat as follows: Let U = {x1, x2, . . . , xm} be the set of vari-
ables and W = {c1, c2, . . . , cn} be the set of clauses of an
arbitrary instance of 3sat. Assume that c j = {l j1, l j2, l j3} for
1 ≤ j ≤ n. Let D be the set of the following policies:

R← Bx1

Bxi ← Axi ∨ Axi

Axi ← Bxi+1 ∨ B0

Axi ← Bxi+1 ∨ B0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ 1 ≤ i ≤ m

Bxm+1 ← A1

A1 ← Bc1 ∧ Bc2 ∧ . . . ∧ Bcn

Bcj ← (A0 ∧ A′j1) ∨ (A0 ∧ A′j2) ∨ (A0 ∧ A′j3)
1 ≤ j ≤ n,

where for 1 ≤ k ≤ 3, A′jk =
{

Axi if l jk = xi,
Axi if l jk = xi.

The label of a leaf of a disclosure tree should be either A0 (a
credential of Alice) or B0 (a credential of Bob). Every dis-
closure tree with a leaf labeled with A0 consists of a single
path from R to A1 and a subtree rooted at A1 (see Fig. 4).
The path from R to A1 should contain either Axi or Axi for
every i. Containing Axi (resp. Axi) in the path encodes the
truth assignment xi = true (resp. false). By the definition of
the policy of each Bcj , there exists a non-redundant disclo-
sure tree with a leaf labeled with A0 in viewnr(D) if and only
if the instance of 3sat is satisfiable. �

Fig. 4 A disclosure tree encoding the truth assignment (x1, x2, x3) =
(true, false, true).

Note that by constructing and storing some data struc-
ture related to viewnr(D) at the end of each step, Alice may
be able to reduce computation time for her next turn. How-
ever, even doing so, Alice cannot solve every step for D in
the proof of Theorem 1 in polynomial time, unless P = NP.

Proposition 2. r-evl is solvable in O(n) time, where n is
the description length of D.

Proof. We can decide whether viewr(D) is evolvable for Al-
ice by testing whether L(G(D)) contains a string of termi-
nal symbols that contains at least one of Alice’s credentials.
This test can be achieved by testing whether the intersection
of L(G(D)) and a regular language RA, which is the set of all
the strings that contains at least one of Alice’s credentials,
is empty. This emptiness test can be performed in O(nm3)
time, where m is the number of states of a finite automaton
that recognizes RA. Since RA can be recognized by a finite
automaton with two states, this proposition holds. �

Theorem 3. r-mset is NP-hard.

Theorem 4. nr-mset is NP-hard.

Proof of Theorems 3 and 4 is given in Sect. A.1. Note
that although Theorem 4 can be proved by the same proof
as Theorem 3, we provide another proof for Theorem 4 be-
cause the latter proof holds even under the monotonicity
condition described in Sect. 4.

Also note that for D and LPA in the proof of Theorem 3,
viewr(D ∪ LPA) = ∅. In the definition of R-DTS, r-mset is
performed after checking viewr(D ∪ LPA) � ∅, and thus r-
mset would not be performed as a part of R-DTS for such
D and LPA. On the other hand, D′ and LPB in the proof of
Theorem 4 satisfies viewnr(D′ ∪ LPB) � ∅ and viewnr(D′) is
evolvable for Bob.

Now we consider an upper bound of the complexity of
r- and nr-mset. For a class X of problems, let NPX be the
class of problems solvable by a polynomial-time nondeter-
ministic oracle Turing machine (PT-NOTM) with oracle for
a problem in X.

Corollary 5. r-mset is in NPNP and nr-mset is in NPNPNP
.

Proof. Since r-evl is solvable in polynomial time, the fol-
lowing problem r-nonminimal-mset is in NP:

INPUT: D and m ⊆ LPA ∪ LCA.
OUTPUT: Does there exist some m′ ⊆ m such that m′ � ∅

and viewr(D ∪ m′) is evolvable for Bob?

Since r-mset can be solved by a PT-NOTM with oracle for
r-nonminimal-mset, r-mset ∈ NPNP. nr-mset ∈ NPNPNP

can
be shown in a similar way. �

The complexity of the subproblems are summarized as
follows:

nr- r-
evl NP-complete O(n) time

mset
NP-hard

in NPNPNP
NP-hard
in NPNP

TAKATA and SEKI: FORMAL LANGUAGE THEORETIC APPROACH TO THE DISCLOSURE TREE STRATEGY IN TRUST NEGOTIATION
205

Note that in the proof of NP-hardness of r-mset (The-
orem 3), we do not depend on minimality of the solution m
of r-mset. We think that the minimality condition imposes
higher complexity than NP on r-mset. Since NP-hardness
of nr-mset (Theorem 4) can be proved by the same proof
of Theorem 3, we think the complexity of nr-mset is also
higher than NP. Improving the lower bound of the com-
plexity of r- and nr-mset is future work.

4. Polynomial Solvability under Practical Assumptions

In this section, we give a polynomial-time algorithm for r-
mset under the following practical modification on the defi-
nition of mset:

Monotonicity: In the definition of r-mset (resp. nr-mset),
the output m should be a minimal non-empty subset of
LPA ∪ LCA such that viewr(D ∪ m′) (resp. viewnr(D ∪
m′)) is evolvable for Bob for any m′ satisfying m ⊆
m′ ⊆ m ∪ LPA.

We denote r-mset (resp. nr-mset) under monotonicity as m-
r-mset (resp. m-nr-mset). M-R-DTS is the strategy obtained
from R-DTS by replacing r-mset with m-r-mset.

As shown in the following example, any solution m
of r-mset (or nr-mset) that does not satisfy monotonicity
is useless for unlocking R. In this sense, excluding solutions
that do not satisfy monotonicity is practical.

Example 1. Let

D = { R← (B1 ∧ B2) ∨ B3, B1 ← A1,
B2 ← A2, B3 ← A3},

LPA = {A1 ← B4, A2 ← B2, A3 ← B5}.
In the definition of r-mset in the previous section, m =

{A1 ← B4} is a correct solution; however, it is not a so-
lution under monotonicity, since in viewr(D ∪ {A1 ← B4,
A2 ← B2}), there no longer exists a disclosure tree with
a leaf labeled with Bob’s credential due to the policies
B2 ← A2 and A2 ← B2 (see Fig. 5). (Each disclosure tree
should be finite by Definition 3, and thus the above cyclic
policies eliminate trees containing B4.) Such m is not useful
for unlocking R, since the effect of the disclosure of m will
finally be canceled by the disclosure of other policies.

Example 2. Let

D = { R← (B1 ∧ B2) ∨ B3, B1 ← A1, B2 ← A2,
B3 ← A3 ∨ A4, B4 ← A5, A3 ← B3 ∧ B4},

LPA = {A1 ← B4, A2 ← B2, A4 ← B5, A5 ← B6}.

Fig. 5 Disclosure trees for showing the effect of monotonicity.

Figure 6 shows disclosure trees in viewr(D), augmented
with policies in LPA denoted by dotted lines. For these D
and LPA, {A1 ← B4} is not a solution of M-R-DTS for the
same reason as Example 1, and {A5 ← B6} is not a so-
lution of DTS since there is no disclosure tree with A5 in
viewnr(D). The following table shows correct solutions of
DTS, R-DTS, and M-R-DTS, respectively.

DTS R-DTS M-R-DTS
{A1 ← B4} � �
{A4 ← B5} � � �
{A5 ← B6} � �

Since the proof of Theorem 4 in Sect. A.1 remains valid
even under monotonicity, m-nr-mset is NP-hard. Below we
discuss polynomial solvability of m-r-mset. Outline of the
rest of this section is as follows:

1. We first show that under monotonicity, it is sufficient
to consider disclosure trees without a label that is “use-
less” in viewr(D ∪ LPA) (Lemma 7). The concept of
uselessness is borrowed from that of CFGs.

2. We define UReq(B) as the family of minimal subsets
of credentials that unlock B. We also define the reach-
ability graph where nodes are credentials and an edge
(x, y) means that x can reach y via an undisclosed pol-
icy followed by a path consisting of already disclosed
policies.

3. By the reachability graph, we characterize a minimal
set that Alice needs to disclose for constructing a tree
evolvable for Bob by “connecting” already disclosed
credentials and policies (Lemmas 8 and 9).

At first we define some additional concepts. We fix
(CA, PA) and D. If a credential B of Bob is unlocked under
D ∪ C for some subset C of Alice’s undisclosed credentials,
then we call C a requested set of B. For example, if p(B) =
B← (A1∧A2)∨ (A2∧A3) and A2 is disclosed in D, then the
minimal requested sets of B are {A1} and {A3}. We define
UReq(B) as the family of the minimal requested sets of B
whose members are unlocked by credentials in D. In the
above example, if A1 and A3 are unlocked by credentials
in D, then UReq(B) = {{A1}, {A3}}. As a special case, if B
is already unlocked by credentials in D, then UReq(B) =
{∅}. For convenience, we define UReq(B) = {∅} if p(B) is
undisclosed. Note that UReq(B) is defined for a fixed D

Fig. 6 Disclosure trees for Example 2.

206
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

Fig. 7 Sequence of policies in LPA that makes viewr(D ∪ m) evolvable
for Bob.

and is also fixed. Also note that C ∈ UReq(B) implies C ⊆
LCA (see Sect. 2.5). By definition, we can easily prove the
following lemma.

Lemma 6. If a credential B of Bob is the label of a leaf of a
disclosure tree in viewr(D ∪ m) for Alice’s message m, then
there exists C ∈ UReq(B) such that C ⊆ m. �

In a CFG, a symbol Y is reachable from a non-terminal
symbol X if αYβ can be derived from X for some α and β. X
is generating if some string of terminal symbols can be de-
rived from X. Let UL be the set of symbols in G(D ∪ LPA)
that are either non-generating or unreachable from R. In
other words, UL is the set of useless symbols; i.e., any dis-
closure tree in viewr(D ∪ LPA) does not contain any sym-
bol in UL as a label. The following lemma says that un-
der monotonicity, it is sufficient to consider disclosure trees
without symbols in UL. Proof of Lemma 7 is given in
Sect. A.2.

Lemma 7. Let m be a subset of LPA ∪ LCA and assume
that viewr(D∪m′) is evolvable for Bob for any m′ such that
m ⊆ m′ ⊆ m∪LPA. Then, viewr(D∪m) contains a disclosure
tree without symbols in UL and with a leaf labeled with a
credential of Bob.

Using Lemma 7, we would like to find m such that
viewr(D ∪ m) contains a disclosure tree without symbols in
UL and with a leaf labeled with a credential of Bob. To do
so, we have to find undisclosed policies that “connect” al-
ready disclosed policies and make a path from R to some
B0 such that UReq(B0) � ∅ (see Fig. 7). To characterize a
sequence p(A1), . . . , p(An) of policies to disclose for con-
structing a path from R to B0, below we define a directed
graph called a reachability graph. Intuitively, the reacha-
bility graph has an edge (x, y) if y is reachable (only using
productions without symbols in UL) from x when p(x) is
disclosed (Fig. 8).

Let GU be the CFG obtained from G(D) by removing
the productions that contains one or more elements of UL.
Thus each derivation tree of GU represents a disclosure tree

Fig. 8 Edge of the reachability graph.

under D without symbols in UL. We define the reachability
graph (V, E) of D as a directed graph as follows:

• Let v0 be a new symbol, VA be the set of the left-hand
sides of the policies in LPA, and VB be the set of Bob’s
credentials. We define V = {v0} ∪ VA ∪ VB.

• E is the smallest set that satisfies the following: For
each x ∈ VA ∪ VB, (v0, x) ∈ E if x is reachable from R
in GU . For each x ∈ VA and y ∈ VA ∪ VB, (x, y) ∈ E if
there is a credential B such that (1) the right-hand side
of p(x) contains a conjunction that contains B and does
not contain any element of UL and (2) y is reachable
from B in GU .

By the definition of E, each vertex in VB has no outgoing
edge. For each x ∈ VA, (x, y) ∈ E for some y if and only if y
becomes reachable from x, only using productions without
symbols in UL, when p(x) is disclosed. For convenience,
we define UReq(x) =

⋃
B∈VB, (x,B)∈E UReq(B) for x ∈ VA. By

definition, UReq(x) � ∅ for x ∈ VA if and only if (x, B) ∈ E
for some B ∈ VB such that UReq(B) � ∅.
Lemma 8. Let m be a subset of LPA ∪ LCA and assume
that viewr(D ∪ m′) is evolvable for Bob for any m′ such
that m ⊆ m′ ⊆ m ∪ LPA. Then, there exists a subset m′′
of m that satisfies the following properties for some ver-
tices v1, . . . , vn ∈ VA:

(i) m′′ ∩ LPA = {p(v1), . . . , p(vn)},
(ii) (vi, vi+1) ∈ E for 0 ≤ i ≤ n − 1,

(iii) (vi, v j) � E for 0 ≤ i and i + 2 ≤ j ≤ n,
(iv) m′′ ∩ LCA ∈ UReq(vn), and
(v) No element of UReq(vi) is a proper subset of m′′ ∩LCA

for 0 ≤ i ≤ n.

Proof. By Lemma 7, viewr(D ∪ m) contains a disclosure
tree t without symbols in UL and with a leaf u labeled
with a credential B of Bob. Let v1, v2, . . . , vn be the creden-
tials in VA that appear in this order on the path in t from
the root to u. By the definition of E, (vi, vi+1) ∈ E for
0 ≤ i ≤ n − 1. If (vi, v j) ∈ E for some i and j such that
0 ≤ i and i + 2 ≤ j ≤ n, then there exists a disclosure tree in
viewr(D∪m) with a leaf u′ labeled with B such that the cre-
dentials in VA that appear on the path from the root to u′ are
v1, . . . , vi, v j, . . . , vn. Since we can choose this tree as t, we
can assume that (vi, v j) � E for 0 ≤ i and i + 2 ≤ j ≤ n. Let
mp = {p(v1), . . . , p(vn)}. Since the policy of each element of
VA is not a member of D by the definition of VA, mp ⊆ m.

Since B is the label of a leaf of t, by Lemma 6 there
exists C′ ∈ UReq(B) such that C′ ⊆ m. If a proper subset C′′
of C′ is a member of UReq(vi) for some i such that 0 ≤
i ≤ n, then there exists B′ ∈ VB such that (vi, B′) ∈ E and

TAKATA and SEKI: FORMAL LANGUAGE THEORETIC APPROACH TO THE DISCLOSURE TREE STRATEGY IN TRUST NEGOTIATION
207

C′′ ∈ UReq(B′) (by the definition of UReq(vi)). Moreover,
there exists a disclosure tree in viewr(D ∪ m) with a leaf u′
labeled with B′ such that the credentials in VA that appear
on the path from the root to u′ are v1, . . . , vi. Since we can
choose this tree as t and let n = i, we can assume that no
member of UReq(vi) is a proper subset of C′ for 0 ≤ i ≤ n.

Let m′′ = mp ∪ C′. By the above discussion, m′′ and
v1, . . . , vn satisfies (i)–(v). �

Lemma 9 (the converse of Lemma 8). Let m′′ be a subset
of LPA ∪ LCA that satisfies properties (i), (ii), and (iv) in
Lemma 8 for some vertices v1, . . . , vn ∈ VA. Then, viewr(D∪
m) is evolvable for Bob for every m such that m′′ ⊆ m ⊆
m′′ ∪ LPA.

Proof. For each m, we can construct a disclosure tree
in viewr(D∪m) with a leaf labeled with a credential of Bob
and without symbols in UL. �

Let EM be the set of all m ⊆ LPA ∪ LCA such that
viewr(D ∪ m′) is evolvable for Bob for every m′ that satis-
fies m ⊆ m′ ⊆ m ∪ LPA. Also let M be the set of all m′′
that satisfies properties (i)–(v) in Lemma 8. m-r-mset is the
problem to find one of the minimal elements of EM. By the
following lemma, m-r-mset is equivalently the problem to
find one arbitrary element of M.

Lemma 10. M equals the set of the minimal elements
of EM.

Proof. Lemma 9 can be rephrased as M ⊆ EM. Lemma 8
can be rephrased as that every m ∈ EM has some subset
m′′ ∈ M. By definition, any proper subset of an element
of M is not a member of M. By these facts, this lemma
holds. �

Theorem 11. m-r-mset is solvable in O(n2) time, where n
is the description length of D ∪ LPA.

Proof. If viewr(D∪ LPA) = ∅, then there exists no m to out-
put. If R is unlocked under D, then any m cannot make
viewr(D ∪ m) evolvable for Bob. Hence we assume that
viewr(D ∪ LPA) � ∅ and R is not unlocked by credentials
in D. Let t be an arbitrary tree in viewr(D ∪ LPA). Then t
does not contain symbols in UL but contains a credential B
of Bob such that UReq(B) � ∅ by Lemma 6. (Note that
UReq(B) may be {∅}.) There thus exists a vertex v ∈ VA in
the reachability graph of D such that UReq(v) � ∅ and a path
from v0 to v exists.

The following polynomial-time algorithm outputs one
element of M:

(1) Construct the reachability graph of D.
(2) Choose a sequence v0, v1, . . . , vn of vertices in VA as

follows: Perform the depth-first search on the reacha-
bility graph starting from v0. When a vertex v ∈ VA

such that UReq(v) � ∅ is found, let the sequence
v0, v1, . . . , vn = v be the path from v0 to v. (Thus
UReq(vi) = ∅ for 1 ≤ i ≤ n − 1.) By the above dis-
cussion, such a path should be found.

(3) If (vi, v j) ∈ E for some i and j such that 0 ≤ i and i+2 ≤
j ≤ n, then remove vi+1, . . . , v j−1 from the sequence.
Repeat this step until no such i and j exist.

(4) Choose an arbitrary one of the minimal elements of
UReq(vn). Let C′ be the chosen element.

(5) Output m = {p(v1), . . . , p(vn)} ∪ C′.
The size |V | of V is O(n) and the size |E| of E is O(n2).

Each of the above steps (1)–(5) can be performed in O(|V |2+
|E|) = O(n2) time. �

The complexity of the subproblems under monotonic-
ity are summarized as follows:

m-nr- m-r-
mset NP-hard O(n2) time

5. Discussion

5.1 Relation among DT Family, R-DTS and M-R-DTS

We review the definition of the DT family and discuss the
relationship among the DT family, R-DTS, and M-R-DTS.

Yu et al. [10] defined the DT family based on the fol-
lowing definition of ‘cautiousness.’

Definition 6 (cautiousness). For given strategies σ1 and σ2

and all possible inputs (CA, PA) and D to σ1 and σ2, if for
every correct answer m of σ2((CA, PA),D) there exists an
answer m′ of σ1((CA, PA),D) such that m′ ⊆ m, then we say
σ1 is at least as cautious as σ2, denoted as σ1 � σ2. Note
that in this definition, we consider Quit to be ∅.

The DT family is defined as {σ | DTS � σ}, i.e., the set
of strategies such that DTS is at least as cautious as them.

As shown in Example 2, DTS � R-DTS since an an-
swer of R-DTS (or its subset) is not an answer of DTS.
DTS � M-R-DTS for the same reason. Thus either R-DTS
or M-R-DTS is not in the DT family, and the properties of
the DT family described in Sect. 2.2 do not necessarily hold
if one party uses R-DTS or M-R-DTS and the other uses a
strategy of the DT family. However, we can define another
family of strategies, R-DT family, as {σ | R-DTS � σ}. The
R-DT family contains R-DTS and M-R-DTS, and if each
party chooses a strategy in the family, then the same proper-
ties as the DT family hold.

Note that R-DTS � M-R-DTS since if m is an answer
of M-R-DTS, then m is also an answer of R-DTS or other-
wise a non-empty subset of m is an answer of R-DTS. On
the other hand, M-R-DTS � R-DTS as shown in Example 2.
Thus we can say R-DTS is more cautious than M-R-DTS.
However, as shown in Example 1, R-DTS (and DTS) may
answer a message useless for unlocking R, and thus cau-
tiousness does not mean that each message only contains
useful policies for unlocking R.

208
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

5.2 Relation among DTS, Formal Language Theory, and
Propositional Logic

Using the terminology in formal language theory, nr-evl is
equivalent to the following problem:

INPUT: a CFG G and a subset ΣA of terminal symbols of G.
OUTPUT: Does there exist a non-redundant derivation tree

containing a symbol in ΣA?

We showed this problem is NP-complete (Theorem 1). r-
evl is a variation of nr-evl that does not require non-
redundancy and can be reduced to the emptiness problem
of CFG (Theorem 2).

Similarly, (an essential part of) nr-mset can be
rephrased as follows:

INPUT: a CFG G = (N,Σ, P1, S) where N is the set of non-
terminal symbols, Σ is the set of terminal symbols, P1

is the set of productions, and S is the start symbol, and
another set P2 of productions over N and Σ such that
P1 ∩ P2 = ∅, and a subset ΣB ⊆ Σ.

OUTPUT: a minimal non-empty subset m of P2 such that
G′ = (N,Σ, P1 ∪ m, S) has a non-redundant derivation
tree containing a symbol in ΣB.

r-mset is a variation of nr-mset obtained by removing the
word ‘non-redundant.’ Both nr- and r-mset are NP-hard.

For nr-evl, the authors could not find any similar prob-
lem in literature on formal language theory and complex-
ity [11]–[13] or on regular tree languages [14]. (Note that
the set of derivation trees of a CFG can be seen as a regu-
lar tree language.) It seems that in formal language theory,
a problem such as nr-evl in which non-redundant trees are
important is rare.

Similarly, for nr- and r-mset, there is no similar result
in literature on propositional logic [15]. Since policies are
defined as propositional formulae and disclosure trees are
similar to proof trees, these problems seem to be related to
propositional logic. However, while most studies on propo-
sitional logic concern algorithms and complexity for decid-
ing satisfiability of formulae, nr- and r-mset do not concern
satisfiability. mset can be rephrased as follows using the ter-
minology of propositional logic:

INPUT: two set PA, PB of propositional formulae.
OUTPUT: Suppose that parties A and B possess PA and

PB, respectively, and they add a subset of his/her for-
mulae to a proof tree in turn. The question is to find a
minimal subset of formulae that prevent the other party
from reaching deadlock.

This problem seems to be a problem in game theory rather
than propositional logic. However, mset is different from a
typical problem in game theory such as finding a move that
force the other party into deadlock.

6. Conclusion

In this paper, we discussed the computational complexity

of a trust negotiation strategy called DTS. We formulated
subproblems of DTS as problems on derivation trees of a
context-free grammar (CFG), and analyzed the computa-
tional complexity of the subproblems using the concepts of
CFGs. As a result, we showed that the original DTS is NP-
hard while it is polynomially solvable if we modify it to
prohibit any useless disclosure for leading the negotiation to
success.

Improving the gap between the lower and upper bound
of the complexity is future work. Future work also includes
the analysis of trust negotiation strategies from a point of
view other than computational complexity, e.g., the number
of credentials disclosed in one negotiation, the number of
actions required for one negotiation, and so on.

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, “The
KeyNote trust-management system version 2,” RFC 2704, Sept.
1999.

[2] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” IEEE Security and Privacy, pp.164–173, June 1996.

[3] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid, “Ac-
cess control meets public key infrastructure: Or, assigning roles to
strangers,” IEEE Security and Privacy, pp.2–14, May 2000.

[4] S. Ruohomaa and L. Kutvonen, “Trust management survey,” Inter-
national Conference on Trust Management, pp.77–92, May 2005.

[5] H. Koshutanski and F. Massacci, “Interactive credential negotiation
for stateful business processes,” International Conference on Trust
Management, pp.256–272, May 2005.

[6] T. Ryutov, L. Zhou, B.C. Neuman, T. Leithead, and K.E. Seamons,
“Adaptive trust negotiation and access control,” ACM Symposium
on Access Control Models and Technologies, pp.139–146, June
2005.

[7] W.H. Winsborough and N. Li, “Towards practical automated trust
negotiation,” IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, pp.92–103, June 2002.

[8] W.H. Winsborough and N. Li, “Safety in automated trust negotia-
tion,” IEEE Security and Privacy, pp.147–160, May 2004.

[9] M. Winslett, T. Yu, K.E. Seamons, A. Hess, J. Jacobson, R. Jarvis,
B. Smith, and L. Yu, “Negotiating trust on the Web,” IEEE Internet
Comput., vol.6, no.6, pp.30–37, Nov. 2002.

[10] T. Yu, M. Winslett, and K.E. Seamons, “Supporting structured cre-
dentials and sensitive policies through interoperable strategies for
automated trust negotiation,” ACM Trans. Information and System
Security, vol.6, no.1, pp.1–42, Feb. 2003.

[11] G. Rozenberg and A. Salomaa, eds., Handbook of Formal Lan-
guages: vol.1. Word, Language, Grammar, Springer, 1997.

[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman & Co.,
1979.

[13] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, 1979.

[14] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C.
Löding, S. Tison, and M. Tommasi, Tree automata techniques and
applications, 2004. Available at http://tata.gforge.inria.fr/

[15] H.K. Büning and T. Lettmann, Propositional Logic: Deduction and
Algorithms, Cambridge Tracts in Theoretical Computer Science,
vol.48, Cambridge University Press, 1999.

TAKATA and SEKI: FORMAL LANGUAGE THEORETIC APPROACH TO THE DISCLOSURE TREE STRATEGY IN TRUST NEGOTIATION
209

Appendix: Proof of Theorems and Lemmas

A.1 Proof of Theorems 3 and 4

Proof of Theorem 3. We show the NP-hardness by a trans-
formation from 3sat. Let (U,W) be an arbitrary instance of
3sat where U = {x1, x2, . . . , xn′ } be the set of variables and
W = {c1, c2, . . . , cn} be the set of clauses. Define D and LPA

as follows:

D: R← Bx1

Bxi ← Axi ∧ Axi 1 ≤ i ≤ n′
Bxn′+1

← A′11 ∧ A′12 ∧ A′13
B′jk ← A′′jk ∧ A′j+1,1 ∧ A′j+1,2 ∧ A′j+1,3

for 1 ≤ j ≤ n and 1 ≤ k ≤ 3,

where A′′jk =
{

Axi if l jk = xi,
Axi if l jk = xi.

LPA: Axi ← Bxi+1

Axi ← Bxi+1

}
1 ≤ i ≤ n′

A′jk ← B′jk 1 ≤ j ≤ n, 1 ≤ k ≤ 3
A′n+1,1 ← B0

For these D and LPA, Alice should have no unlocked cre-
dentials; i.e., LCA = ∅.

For example, consider a sample instance of 3sat in
which n = 3 and W = { {x1, x2, x3}, {x1, x2, x3}, {x1, x2, x3} }.
Figure A· 1 shows a disclosure tree in viewr(D∪m) for some
m ⊆ LPA. Dotted lines denote policies not in D. The upper
part of the tree above Bx4 encodes a truth assignment. The
rest of the tree represents which literal is true in each clause.
In Fig. A· 1, l11 (= x1), l23 (= x3), and l32 (= x2) are true.

Let m be a subset of LPA ∪ LCA (= LPA) such that
viewr(D ∪ m) is evolvable for Bob. Among Bob’s creden-
tials, only B0 can be the label of a leaf of a disclosure tree
in viewr(D ∪ m). Hence m should contain either p(Axi) or
p(Axi) for each i (that encodes the truth assignment for xi);
otherwise, viewr(D ∪ m) would not contain any disclosure
tree with B0. By the same reason, m should contain p(A′j1)
or p(A′j2) or p(A′j3) for each j (1 ≤ j ≤ n). Suppose that
p(A′jk) ∈ m and A′′jk = Axi (i.e., l jk = xi). Then, m contains
p(Axi); otherwise, m contains p(Axi) instead, implying that
infinite recursion would occur and viewr(D ∪ m) would be
empty. In this transformation p(Axi) ∈ m means xi = true
and p(A′jk) ∈ m means that the kth literal of c j evaluates to
true. Therefore if there exists a disclosure tree with B0 in
viewr(D∪m), then each clause c j evaluates to true under the
truth assignment represented by the upper part of the tree,
and thus the instance of 3sat is satisfiable. The converse
direction can be proved in a similar way.

Thus there exists m ⊆ LPA∪LCA such that viewr(D∪m)
is evolvable for Bob if and only if the instance of 3sat is
satisfiable. �

Proof of Theorem 4. In this proof, we exchange the roles of
Alice and Bob; i.e., we assume that Bob is performing DTS
to select m.

Fig. A· 1 A disclosure tree for the set { {x1, x2, x3}, {x1, x2, x3}, {x1, x2,
x3} } of clauses and the truth assignment (x1, x2, x3) = (true, false, true).

Let D′ be the union of D in the proof of Theorem 1 and
{A2 ← B2}, where A2 and B2 are new symbols. Also let the
set LPB of Bob’s undisclosed policies be {B0 ← A2, B2 ←
A3}, where A3 is another new symbol. If viewnr(D′) contains
a disclosure tree with a leaf labeled with A0, i.e., viewnr(D′)
is already evolvable for Alice, then viewnr(D′ ∪ m) is also
evolvable for Alice for any m ⊆ LPB. The minimal non-
empty solutions are therefore m = {B0 ← A2} and m =
{B2 ← A3}. On the other hand, if viewnr(D′) does not
contain a disclosure tree with a leaf labeled with A0, then
viewnr(D′ ∪ m) is evolvable for Alice only if m = LPB;
otherwise, there never exists a path from R to A3, which is
the sole candidate of the label of a leaf of a disclosure tree
among Alice’s credentials in this case (see Fig. A· 2). Thus
we can decide whether or not the instance of 3sat is satis-
fiable by finding a minimal m such that viewnr(D′ ∪ m) is
evolvable for Alice and by checking whether m � LPB. �

A.2 Proof of Lemma 7

At first we show the following auxiliary lemma.

Lemma 12. Let m be a subset of LPA ∪ LCA.

(1) If X is reachable from R in G(D ∪ m), then X is reach-

210
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

Fig. A· 2 Disclosure trees for the proof of Theorem 4.

able from R also in G(D ∪ LPA).
(2) If X is unlocked by credentials in D ∪ m, then X is

generating in G(D ∪ LPA).
(3) If a disclosure tree t ∈ viewr(D ∪ m) contains a node

labeled with a symbol in UL, then t also contains a leaf
labeled with a symbol in UL.

Proof. (1) D ∪ LPA includes more policies and less creden-
tials than D ∪ m, and thus G(D ∪ LPA) preserves the reach-
ability in G(D ∪ m).

(2) If p(X) � D ∪ LPA, then X is a terminal symbol of
G(D∪ LPA) and thus X is generating in G(D∪ LPA). Hence
we assume p(X) ∈ D∪LPA. Since X is unlocked by creden-
tials in D ∪ m, the right-hand side of p(X) contains a con-
junction B1∧. . .∧Bk such that {B1, . . . , Bk} ⊆ D∪(m∩LCA).
Thus G(D ∪ LPA) contains a production X → Bi1 . . . Bij

where {Bi1 , . . . , Bij } = {B1, . . . , Bk} \ D ⊆ LCA. Since all
credentials in LCA are unlocked by D, Bi1 , . . . , Bij are ter-
minal symbols of G(D ∪ LPA), and thus X is generating in
G(D ∪ LPA).

(3) Let u be a node of t labeled with a symbol X in UL.
Since X is a label in a disclosure tree, X is reachable from R
in G(D ∪ m), and thus X is reachable from R also in G(D ∪
LPA) by (1). X is therefore non-generating in G(D ∪ LPA).

Below we show a sufficient condition: if u is not a leaf,
then u has a child labeled with a symbol in UL. If u is not
a leaf, then p(X) ∈ D ∪ m and thus p(X) ∈ D ∪ LPA. As-
sume that a production X → Y1 . . .Yj of G(D ∪ m) is ap-
plied to u; i.e., the children of u are labeled with Y1, . . . ,Yj.
Then, the right-hand side of p(X) should contain a conjunc-
tion Y1 ∧ . . . ∧ Yj ∧ Z1 ∧ . . . ∧ Zk such that {Z1, . . . ,Zk} ⊆
D ∪ m. G(D ∪ LPA) therefore has a production X →
Y1 . . . YjZi1 . . . Zil where {Zi1 , . . . ,Zil } = {Z1, . . . ,Zk} \ D.
Zi1 , . . . ,Zil are members of m ∩ LCA and thus unlocked by
credentials in D. Therefore Zi1 , . . . ,Zil are generating in

G(D∪LPA) by (2). Since X is non-generating in G(D∪LPA),
at least one of Y1, . . . ,Yj is non-generating in G(D ∪ LPA);
i.e., u has a child labeled with a symbol in UL. �

Proof of Lemma 7. We show this lemma by proving its con-
traposition. Assume that every disclosure tree in viewr(D ∪
m) with a leaf labeled with a credential of Bob contains a
node labeled with an element of UL. By Lemma 12 (3),
such a tree contains a leaf labeled with some X ∈ UL. Since
X is reachable from R in G(D ∪ m), X is non-generating
in G(D ∪ LPA) by Lemma 12 (1) and thus X should be a
credential that is not unlocked by credentials in D ∪ m by
Lemma 12 (2) and whose policy p(X) is in D ∪ LPA. Since
X is a leaf’s label, X is a terminal symbol of G(D ∪ m), and
thus p(X) � D ∪ m. Therefore p(X) ∈ LPA \ m.

Now consider the disclosure trees under D∪m∪{p(X)}.
Since X ∈ UL, the disclosure of p(X) only creates or modi-
fies or removes disclosure trees that contain elements of UL.
Thus, every disclosure tree in viewr(D ∪ m ∪ {p(X)}) with a
leaf labeled with a credential of Bob should also contain a
node labeled with an element of UL. We can repeat the same
discussion by substituting m ∪ {p(X)} for m as long as there
exists a disclosure tree with a leaf labeled with a credential
of Bob. However, since LPA is finite, this repetition even-
tually ends. At that time there must be no disclosure tree
with a leaf labeled with a credential of Bob. Therefore for
some m′ such that m ⊆ m′ ⊆ m ∪ LPA, viewr(D ∪ m′) is not
evolvable for Bob. �

Yoshiaki Takata received the Ph.D. de-
gree in information and computer science from
Osaka University in 1997. He was with Nara
Institute of Science and Technology as an As-
sistant Professor in 1997–2007. In 2007, he
joined the faculty of Kochi University of Tech-
nology. His current research interests include
formal specification and verification of software
systems.

Hiroyuki Seki received the Ph.D. degree in
information and computer science from Osaka
University in 1987. He was with Osaka Uni-
versity as an Assistant Professor in 1990–1992
and an Associate Professor in 1992–1994. In
1994, he joined the faculty of Nara Institute of
Science and Technology, where he has been a
Professor since 1996. His current research inter-
ests include formal language theory and formal
approach to software development.

