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要約：より快適な情報環境を実現するためには多様なサービスを必要に応じて提供することが重要で
あり、特に映像など 負荷が非常に大きな情報を処理するためには、ネットワーク上に分散する資源を
自由に活用するための技術が求められる。ユビキタス環境では、遠く離れた複数地点からデータを収
集しリアルタイムで処理するといったこともできるが、データの流れを考えたときデータを集約する
必然性は そもそもなく、分散処理することが自然である。そこで、ネットワークや端末の機能を意 
識せずに、ネットワーク上の計算資源やDB資源を自由に活用できる、進化するユビキタス環境である、
サラウンディング・ コンピューティング環境を確立する。本稿では、サラウンディング・コンピューティ
ング技術の基礎であるユビキタス環境で有用なデータ駆動プロセッサによるファイアウォールと情報
再現に適した信号処理方式について述べている。

Abstract : For comfortable information networking,　it is necessary to provision variety of services 
for responding the requirements and to flexibly use of the distributed resources。In the "ubiquitous" 
environment,the distributed processing is natural to push data for realtime application。The 
purpose of this research is to establish the "surrounding computing technology",which is evolution of 
the ubiquitous environment.　In this paper,an embedded data-driven firewall processor and a signal 
processing method that is suitable for an information reproduction are proposed.
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Abstract : For comfortable information networking, it is necessary to provision variety of

services for responding the requirements and to flexibly use of the distributed resources. In

the “ubiquitous” environment, the distributed processing is natural to push data for real-

time application. The purpose of this research is to establish the “surrounding computing

technology”, which is evolution of the ubiquitous environment. In this paper, an embed-

ded data-driven firewall processor and a signal processing method that is suitable for an

information reproduction are proposed.

1. Introduction

JGN II is an open testbed network envi-

ronment for research and development, which

was previously operated by JGN (Japan Giga-

bit Network : Gigabit network for R&D) from

April 1999 to March 2004, and expanded by

the National Institute of Information and Com-

munications Technology (hereinafter NICT) as

a new ultra-high-speed test bed networks for
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R&D collaboration between industry, academia,

government with the aim of promoting a broad

spectrum of research and development projects,

ranging from fundamental core research and de-

velopment to advanced experimental testing, in

areas including the advancement of network-

related technologies for the next generation and

diverse range of network application technolo-

gies.

Further, seven own research centers for re-

search and development (hereinafter Research

Center) are also being provided in collaboration

with JGN II.

The seven Research Centers collaborating

with JGN II are conducting the research and

development in relation to the following four

themes regarding Research and Development on

Advanced Networks and Application Technolo-

gies.

1. Highly Reliable Core Network Technology

2. Access Network Technology

3. Grid Technology

4. Platform and Application Technology

Kochi JGN II Research Center has been es-

tablished since April 2004, as a center of the or-

dinary research in the JGNII project, the R&D

for “Platform and Application Technology” is

being carried out. Specifically, we are focusing

on the “Surrounding Computing Technology”.

2. Design Concept of An Embedded

Data-Driven Firewall Processor

With rapid advancement of information net-

working technology, various networked systems/

devices are permeating among our daily lives

and offices. It can be said that surrounding net-

working/computing environment will be coming

soon around us. In order to keep this com-

fortable environment robust and safe against

malicious or legitimate intruders and viruses,

there are developing many security products

such as firewall systems, network intrusion de-

tection systems, virus protection systems, and

so on [1][2]. Since most of firewall systems mon-

itor packets on the network wire, they cannot

completely prevent all accidents and attacks es-

pecially among local hosts. On the other hand,

software-based security solutions like [3] can be

rendered useless if the OS is exploited, compro-

mising the computer and potentially the internal

network.

This paper describes the design concept of

hardware-based firewall processor embedded in-

side to local hosts in order to eliminate the possi-

bility of internal attack from behind the perime-

ter firewall and then it illustrates some experi-

mental results in our feasibility study. This kind

of embedded firewall processor is required to

be robust, secure and evolutional even against

a newly-discovered attack, as well as to be

low power consumption and high performance.

Thus, our firewall processor was decided to be

designed by introducing the self-timed super-

pipelined data-driven chip-multiprocessor archi-

tecture [4] incorporating a specific instruction

set for firewall functions. The data-driven prin-

ciple provides us natural multiprocessing capa-

bility without any process scheduling or complex

interrupt handling. Furthermore, the self-timed

pipeline scheme serves us flexible pipeline pro-

cessing capability for high-speed packet stream

and flexible power saving feature.

The first prototype system implemented

for our feasibility study is equipped with a

packet classification, a stateful packet inspec-

tion for the layer 4 protocols, and a simple

URL filtering. Since every function is realized

by super-pipelined algorithms, it can be exe-

cuted in highly-parallel on the data-driven chip-

multiprocessor. Preliminary evaluation results

in our feasibility study show that our firewall

processor potentially operates at over 100 M b/s

in wire-speed, even if it is equipped with a sin-

gle processor. Furthermore, since scalable per-

formance increasing along with the number of

processors is also observed, a single chip incor-

porating 10 processors could be expected to op-

erate over 1 G b/s packet stream.
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2.1 Design Considerations on Embed-

ded Firewall

2.1.1 Specific Features of Embedded

Firewall

Recently mobile users, telecommuters and

business-to-business extranets are significantly

increasing. Those are no longer protected by

only normal perimeter firewalls because they

can directly access to the protected intranet us-

ing dial-in, P2P, encrypted application traffic.

Thus, those hosts might be potentially unwit-

ting insiders if they are infected with some virus

or worm at the outside of the protected network.

These trends lead necessity of an embedded fire-

wall attached to the mobile hosts such as mo-

bile PC, PDA, mobile phone, etc. The embed-

ded firewall is placed on a network interface card

of a host computer and filters Internet Protocol

(IP) traffic to and from the host. The embedded

firewall is tamper-resistant because it is indepen-

dent of the host’s operating system. The basic

concept of an embedded firewall was originally

proposed by C. Payne et al. [5].

The basic functions of the embedded fire-

wall are shown in Fig.1. At first, an incoming

packet to the host is stored to the packet buffer

and its IP header and TCP/UDP header are

transferred to a dynamic packet filtering func-

tion. In this case, its destination IP address

must be same as the IP address of the host

except for multicast addresses. In case of the

outgoing packet from the host, its source IP

address must be same as that of the host as

long as the host is not a willing/ unwilling in-

truder. This means that filtering cost of one

of IP address fields can be reduced. In the dy-

namic packet filtering function, the TCP header

is identified whether it belongs to a new connec-

tion or not. If it will establish a new connec-

tion, a packet classification module (classifier)

checks it using a filtering rule database. If it

belongs to the existing connections managed in

the firewall, the packet is examined by a state-

ful packet inspection (SPI) whether it will cause
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Figure 1 Basic Function of the Embedded Fire-

wall.

a legitimate state-transition of the connection.

Although UDP is a kind of connectionless proto-

col, a virtual connection for the UDP stream can

be assumed by the pair of IP addresses and port

numbers. Therefore, even for the UDP packets,

a SPI is useful to make the host more secure. Af-

ter the stateful inspection of the layer-4 packet

header, only the acceptable packet can be passed

to an application layer filtering (AF) to inspect

its contents such as URL or e-mail attached file.

Finally, the forwarding packet is determined and

forwarded from the packet buffer.

In order to accept high-speed packet stream

at the embedded firewall, pipelined parallel al-

gorithms for those functions must be investi-

gated and further their efficient hardware plat-

form should be established. So, our final ob-

jective is to realize a small, low-power, high-

performance embedded firewall processor capa-

ble to be employed into the CF card or mobile

phone.

2.1.2 Data-Driven Processing Paradigm

The data-driven computation paradigm al-

lows us to represent system functions in natu-

ral way, including both software and hardware

portions seamlessly. This advantage leads to

improve deign productivity of the system-on-

chip (SoC) LSI’s in contrast to the conventional

Von Neumann computation. Furthermore, the

data-driven execution control significantly fits

the self-timed super-pipeline circuit. It is neces-
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sary for realizing high-performance, low-power,

and easy-to-design SoC systems even if it is

realized by a deep sub-micron semiconductor

process. These excellent features have been

proved by successfully developing a self-timed

super-pipelined data-driven multimedia proces-

sor (DDMP) chip in which ten processors are in-

terconnected to each other via an on-chip packet

router [4].

Furthermore, in order to apply its high-

speed stream processing capability to Inter-

net routers or IP forwarding engines, a multi-

protocol data-driven network processor (DDNP)

is currently developed. DDNP can accept both

IPv4 and IPv6 packet streams without any pro-

cess scheduling so that it can process both proto-

cols simultaneously at around 2 G b/s. Further-

more, we proposed a super-pipelined IP lookup

scheme on DDNP by introducing some com-

pound lookup instructions. This scheme can

search a forwarding path from a large routing ta-

ble (100 K routing entries) at over 50 M IP pack-

ets/s [6] and furthermore classify layer 4 packets

at around 12 M IP packets/s [7]. In this paper,

design concept of an embedded data-driven fire-

wall system is proposed as one of applications of

DDNP.

2.2 Architecture of Embedded Data-

Driven Firewall

Essential data-dependencies among func-

tions in the embedded firewall can be expressed

as shown in Fig.2. If the maximum dataflow

based on these data-dependencies is always kept

on DDNP, many architectural advantages of

DDNP can be fully utilized. That is, the

dataflow diagram in Fig.2 shows us the following

key points in designing the data-driven firewall

system.

(a) Efficient dynamic multiprocessing, i.e., pro-

cess creation, execution, and deletion, in-

cluding state-transition process.

(b) Parallel implementation of all filtering func-

tions, i.e., classification, stateful packet in-
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Figure 2 Basic Dataflow of the Embedded Fire-

wall System.

spection (SPI), and application layer filter-

ing (APF).

(c) High speed packet buffering mechanism

which is capable to access off-chip memory

modules, e.g., SDRAM, DDR-RAM, etc.

2.2.1 Software Structure

(a) Dynamic multiprocessing based on the

data-driven computation

Using the tag identifier of the dynamic data-

driven computation principle, active data be-

longing to each process can be identified by its

tag identifier. Thus, the data-driven processor

can carry out multiple instances of the same

program in the highly-parallel manner, even if

they are state-transition processes. The state-

transition process such as SPI is basically a sort

of history-sensitive process in which the next

state and one of selective functions are deter-

mined by only the current state and input data.

Each current state of the processes can be rep-

resented as a tagged token data without storing

it into the memory. Therefore, they can be exe-

cuted in parallel same as normal functional pro-

cesses under the data-driven firing rule. How-

ever, in the case of multiple state-transition pro-

cesses, the processor must associate every input

packet header with one of the existing connec-

tions at the firewall and then process it with its
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corresponding current state. This kind of asso-

ciation is essential for the dynamic data-driven

processor to create, execute and delete multipro-

cessing instances associated with the tag identi-

fiers. There is no existing data-driven processor

that supports it.

The association process for the SPI must ac-

cept the following queries; refer request from ev-

ery input IP packet and update request whenever

connections are established or finished. This

leads a quick search scheme for an associative

memory. In our implementation, the associa-

tive memory function is realized by introducing

a hybrid scheme with software hashing and small

content-addressable memory (CAM) [8]. Since

large CAM modules are still expensive due to

complex memory cells and WTA circuits, our

CAM is used to store the conflicted data by the

hashing module so as to reduce the capacity of

CAM. Particularly, it is more useful for the em-

bedded firewalls because distribution of IP ad-

dress of them is smaller rather than that of the

perimeter firewalls. In fact, preliminary evalua-

tion result of the proposed scheme indicates that

the scheme reduces the search time by 30%–90%

in comparison to the software implementation

without CAM.

(b) Parallel implementation of filtering

functions

As described in 2.1,1, the embedded firewall

is required to support static packet classifica-

tion, stateful packet inspection, and application

layer filtering. As for the static packet filtering,

our super-pipelined packet classification scheme

can be applied. Although the level compressed

(LC) trie structure introduced in our classifi-

cation needs little higher update cost in place

of reducing the search space, the classification

rule in the embedded firewall does not often up-

dated usually. Therefore, it is introduced for

the static packet filtering for the embedded fire-

wall. As discussed in 2.1.1, classification fields

of the layer 4 packets can be reduced to 3 fields;

one IP address and two TCP/UDP port num-

bers. Other fields can be checked using a simple

exact-matching method even if they are needed.

Preliminary evaluation estimates that the filter-

ing performance could be from 3.5 M to 5.0 M

IP packets/sec. and its required memory space

could be 8 k bytes when the classification rule

size is assumed as around 2 k entries [9].

Secondly, SPI is required to detect malicious

packets by simulating state transition of the con-

nection and checking their TCP flags with the

current state of the connection. Normally, SPI

for the embedded firewall should operate several

thousands connections at the same time. Our

SPI implementation works at 329 k IP pack-

ets/sec on a single processor [8]. Off course, the

performance can be scaleablly improved in pro-

portion to the number of available processors

because of the elegant multiprocessing capabil-

ity of DDNP.

Thirdly, application filtering is required to

support various protocols such as http/https,

smtp, snmp, and so on to analyze their mes-

sage contents and find malicious messages. This

analysis is a very heavy task and usually needs

some decryption engines and syntactic parsing

engine. In our feasibility study, a simple URL

filtering is implemented in software without spe-

cific hardware mechanism. This URL filtering

program operated around 9.1 k IP packets/sec.

on a single processor when all http packets are

”GET” messages. It could be improved by in-

troducing some strong string matching instruc-

tions in hardware. By the way, in case of embed-

ded firewall, highly functional firewall could be

realized by utilizing process information which

are running on the local host OS. This means

that even if the host might be infected by some

viruses, the embedded firewall can prevent ma-

licious network attacks checking the origin pro-

cess of packets. Even if the host intends to be

a malicious intruder using smart VPN software

like SoftEther [10], it could be detected using

the process information.
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Table 1 Evaluation Results on a single processor.

Classification SPI URL Filtering

Throughput [IP packets/sec.] 3.5 M ∼ 5.0 M 329 K 9.1 K ∼ 1.5 M

Program size [DDNP nodes] 16 443 1027

IM: Internal On-chip Memory
(CAM, SRAM)
EM: External Off-Chip Memory
TF: Timer Function
D: Flow Diverting Module

MM: Matching Memory
HSP: History-Sensitive Processing Unit
FP: Functional Processing Unit
CPS: Cache Program Storage
M: Flow Merging Module

IM

M MM

HSP

FP

CPSD

TF

EM

Input Data

Output Data

Figure 3 Basic Architecture of the Embedded

Data-Driven Firewall Processor.

2.2.2 Basic Hardware Architecture

Fig.3 shows the basic hardware architecture

of a data-driven firewall processor. An input IP

packet is first divided into several data-driven

packets which hold a 32 bit data. Each data-

driven packet is then fed from outside to the

processor to a merging module (M). Passing

through M, the packet arrives at a location in

the matching memory (MM) and is stored there

until its counterpart arrives. In MM, a pair of

packets is identified by comparing their tag iden-

tifier and destination node number each other.

If matching occurs, the two fragments are com-

bined to form an operation packet containing

an operation code, a destination node number,

a color, and a pair of operands. Then, the op-

eration packet will be delivered to the history-

sensitive processing unit (HSP) and the func-

tional processing unit (FP) where operation(s)

indicated by the operation code can be per-

formed. After the specified operation is exe-

cuted, a result packet is generated and sent to

a cache program storage (CPS). The next desti-

nation of the packet is read from the cache pro-

gram store. The old destination node number is

replaced with a new destination number. After

a result packet is generated by CPS, it fed to a

diverting module (D) and switched to an out-

put according to the destination named in the

header of the packet.

In the firewall processor, two lookup instruc-

tions for the high-speed classification are imple-

mented in HSP. Furthermore, HSP allows the

operation packet to access three kinds of mem-

ory modules; on-chip SRAM module, on-chip

CAM module, and off-chip SDRAM module.

To access those RAM memory modules flexi-

bly, three modes of memory addressing are sup-

ported; i.e., absolute address, relative address

by data of the packet, relative address by the

tag identifier of the packet. The last one, which

is a unique feature of the data-driven proces-

sor, helps the operation packets modify data

belonging to their program instance (process).

It is very useful in multiprocessing. The small

CAM module is used for the efficient associa-

tion as mentioned in section 3.1. As for off-

chip SDRAM memory, it is used as an IP packet

buffer to store the payload of the IP packet tem-

porally. In order to utilize a burst access mode of

SDRAM, a small cache memory is implemented

at the interface circuits of off-chip memory mod-

ule.

Since network processing often requires bit-

wise operations like extraction of each field of IP

header, FP supports some bit-wise instructions.

Furthermore, it supports a timer function to re-

alize several time-out operations.

With the customization of FP and HSP, a

specific instruction set suitable for the embed-

ded firewall is realized on DDNP. By utiliz-

ing the specific instruction set, the firewall pro-

grams on DDNP were developed for our feasibil-

ity study. In order to estimate total performance

of the embedded data-driven firewall processor,
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layer 4 packet classification, SPI for TCP pack-

ets, and URL filtering were chosen and imple-

mented. Preliminary evaluation results of them

are summarlized in Table 1. This table shows

that our firewall processor potentially operates

at over 100 M b/s in wire-speed, even when us-

ing only a single processor. Furthermore, since

scalable performance increasing along with the

number of processors is also observed, a single

chip equipped with 10 processors could be ex-

pected to operate over 1 G b/s packet stream.

2.3 Conclusion

This paper presents the design concept of our

embedded data-driven firewall processor and de-

scribes its software structure and processor ar-

chitecture. Preliminary evaluation results show

that our firewall processor potentially operates

at over 100 M b/s in wire-speed, even when us-

ing only a single processor. Furthermore, since

scalable performance increasing along with the

number of processors is also observed, a single

chip integrated 10 processors could be expected

to operate over 1 G b/s packet stream.

The proposed embedded data-driven fire-

wall processor is one of applications for our

data-driven network processor, DDNP. DDNP

scheme has a lot of excellent advantages such

as elegant parallel multiprocessing capability,

natural power-saving capability, easy-to-design

for SoC. Furthermore, the self-timed pipeline

scheme introduced for the development of

DDNP is the most promising scheme to re-

alize highly-functional hardware modules for

larger SoC’s. For example, autonomous priority-

based queuing chip utilizing a self-timed folded

pipeline has been developed for Diffserv queuing

[11]. This queuing hardware could be expected

to be integrated into DDNP to realize a traf-

fic engineering processor. However, this kind of

large self-timed system needs efficient develop-

ment tools such as high-speed simulator [12] or

emulator [13]. Those powerful tools as well as

DDNP applications have to be investigated in

our further work.

3. Upper Limit of Step Gain for

NLMS Algorithm in Noisy Envi-

ronments

With advancements in LSI technology, adap-

tive filtering has recently been put to practical

use, and applied to noise cancellers, automatic

equalizers, echo cancellers and so forth. In such

applications, a fast adaptive algorithm is nec-

essary to actualize a real-time processing. For

example, it is required thousands of adaptive fil-

ter’s coefficients to realize an acoustic echo can-

celler. Therefore, complex algorithms are un-

suitable for such systems. Although many algo-

rithms have proposed and it has been improved

the convergence speed and estimation accuracy,

useful adaptive algorithms are only simple ones

as the LMS algorithm or the normalized LMS

algorithm. Since the normalized LMS (NLMS)

algorithm requires few operations, it is widely

used. However, this algorithm behaves unstably

when a norm of an input vector becomes close

to zero. The division in the procedure of the

NLMS algorithm causes this property. One so-

lution for this problem is addition of a positive

constant to a square norm of an input vector.

On the other hand, it is known that to interrupt

adaptive filter’s coefficients update when a norm

of an input vector is smaller than a threshold is

one of another ways to stabilize behavior of the

NLMS algorithm. Though the stability is im-

proved by using this method, the threshold must

be decided to obtain a desired property. It has

been shown the effects of interruption of adap-

tive filter’s coefficients update and indicated a

guarantee value (least upper bound of the con-

vergence value) and the stochastic fastest con-

vergence step gain (SF-NLMS algorithm). How-

ever, coefficients update interruption causes re-

duction of convergence speed. In this paper, the

upper limit of the step gain that satisfies the

guarantee value without interrupt coefficients

update is shown.

Now, in this paper, (L × N ) matrix A and

(N × 1) vector b are described by ALN and bN
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respectively.

3.1 Normalized LMS Algorithm

We define the notation for the sake of conve-

nience and review the NLMS algorithm.

Let us define an input vector

xN (i) = [x(i), x(i− 1), · · · , x(i−N + 1)]T ,

(1)

and the coefficient vector of the adaptive filter

hN (i) = [h(1), h(2), · · · , h(N )]T , (2)

where N and T denote the number of the filter’s

coefficients and the transpose of a vector respec-

tively. The output signal of the adaptive filter

is expressed as

y(i) = h
T
N (i)xN (i). (3)

Assuming that wN represents the coefficient

vector of the unknown system, the desired signal

is given by

d(i) = w
T
NxN(i), (4)

and the output error signal is defined by

e(i) = d(i)− y(i). (5)

The NLMS algorithm is shown by the follow-

ing:

hN(i + 1) = hN (i) + α
xN (i)

�xN(i)�2
e(i), (6)

where α is the step gain.

3.2 SF-NLMS Algorithm

In this section, we indicate the SF-NLMS al-

gorithm.

Now, we define the observed output signal as

d�(i) = d(i) + v(i), (7)

where v(i) is observation noise.

3.2.1 Guarantee Value

The criterion for interrupting coefficients up-

date to stabilize behavior of the NLMS algo-

rithm is shown as

�xN (i)�2 ≤ ε, (8)

where ε is the threshold. If coefficients up-

date is interrupted according to the above cri-

terion, the worst condition is to continue the

state �xN (i)�2 � ε. Thus the converged norm

of weight error vector (�θ�

N (i+ 1)�2 = �h�

N (i+

1) − wN�2) is smaller than the norm of weight

error vector under the following condition:

E
�

�xN(i)�2
�

= ε. (9)

The converged norm of weight error vector is

shown as

E
�

�θ�

N(∞)�2

�

≈ α2σ2
v

Nσ2
x

eµ

eµ − 1
, (10)

therefore, the guarantee value of the norm of

weight error vector is given by

q =
α2σ2

v

ε

eµ

eµ − 1
, (11)

where σ2
v is the variance of the observation noise

and

µ =
2α− α2

N
. (12)

3.2.2 Threshold of Interrupting Coeffi-

cients Update

From (11), the threshold to ensure the guar-

antee value is given by

ε =
α2σ2

v

q

eµ

eµ − 1
. (13)

3.2.3 Stochastic Fastest Convergence

Step Gain

The probability of executing coefficients up-

date is expressed as

P =

�

∞

ε

1
�

4πNσ4
x

exp

�

−
��xN(i)�2 −Nσ2

x

�2

4Nσ4
x

�

d�xN(i)�2. (14)

The time constant τ is expressed as

τ = − 1

P loge(1 − µ)
. (15)

The time constant is the number of samples to

decay to 1/e (e is the base of natural logarithm).

Now, we define the convergence speed as

c =
1

τ
. (16)
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Figure 4 Comparison of step gain.

Since the convergence speed c is concave at

0 < α ≤ 1, the stochastic fastest convergence

step gain sets the differential
∂c

∂α
to zero. The

differential
∂c

∂α
is given by

∂c

∂α
= − 2 exp(λ)

N (α− 2)


















�

α2 −
�

3 +
ι

σ2
x

�

α + 2

�

�

exp

�

− ια

σ2
x(α− 2)

�

+ exp(λ)

�2

exp

�

− ια

σ2
x(α− 2)

�

+
exp(λ)(α− 1)(α− 2)

�

exp

�

− ια

σ2
x(α− 2)

�

+ exp(λ)

�2



















. (17)

The stochastic fastest convergence step gain αF

is shown as

αF =

2

�

λ− loge

�

ι

σ2
x

��

λ

�

1 +
κ

σ2
x

�

− loge

�

ι

σ2
x

� , (18)

where

ι =
0.85

√
2Nσ2

v

q
, (19)

κ =
σ2

v

q
(20)

and

λ = 0.85
√
2N. (21)

3.3 Upper Limit of Step Gain for

Guarantee Value

This section modifies the threshold for the

guarantee value, and shows the upper limit of

the step gain for guarantee value without coeffi-

cients update interruption.

3.3.1 Upper Limit of Step Gain

By eq.(11), the guarantee value when coeffi-

cients are updated is given as

q =
α2σ2

v

ε

eµ

eµ − 1
. (22)

If N � 1, then the guarantee value q is rep-

resented by

q =
Nσ2

v

ε

α

2− α
. (23)

To give assurance the guarantee value without

coefficients update interruption, �xN(i)�2 ≥ ε

should be satisfied constantly. So, the threshold

ε is set

ε = �xN(i)�2. (24)

From eq.(23), the guarantee value q is shown as

q =
Nσ2

v

�xN (i)�2

α

2− α
, (25)

and the step gain α to satisfy this guarantee

value is given by

α =
2q�xN (i)�2

q�xN(i)�2 +Nσ2
v

. (26)

In general the step gain α ≤ 1,

2q�xN(i)�2

q�xN (i)�2 +Nσ2
v

< 1, (27)

or

�xN (i)�2 <
Nσ2

v

q
, (28)

if �xN (i)�2 ≥ Nσ2
v

q
then the step gain α = 1.

Consequently, coefficients update method to

satisfy the guarantee value is shown as

hN (i+ 1) = hN (i) + γ(i)
xN (i)

�xN (i)�2
e(i), (29)
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where γ(i) is the upper limit of the step gain:

γ(i) =











2q�xN (i)�2

q�xN (i)�2+Nσ2
v

, if �xN (i)�2<
Nσ2

v

q
1, otherwise

(30)

If the guarantee value q is assumed

q =
σ2

v

σ2

d

, (31)

the step gain γ(i) when �xN (i)�2 <
Nσ2

v

q
is

given by

γ(i) =
2q�xN (i)�2

q�xN(i)�2 +Nσ2
v

=
2�xN (i)�2

�xN (i)�2 + Nσ2

d

, (32)

where σ2

d is the variance of the output signal

d(i). In such case,

�xN (i)�2 <
Nσ2

v

q
= Nσ2

d, (33)

therefore, the step gain γ(i) when q = σ2
v/σ2

d is

given as

γ(i) =











2�xN (i)�2

�xN (i)�2 + Nσ2

d

, if �xN (i)�2 < Nσ2

d

1, otherwise

(34)

Figure 4 shows a comparison of the step gain

of the proposed method (eq.(34)) and the SF-

NLMS algorithm[16].

3.4 Computer Simulation

In this section, the result of computer simu-

lation is shown.

The input signals and the observation noise

are speech signals that are voiced speech seg-

ments sampled at 8 kHz. S/N is set as 20 dB.

The impulse response length of adaptive filter is

100 (N = 100).

The stochastic fastest convergence step gain

of the SF-NLMS algorithm is set to 0.816. The

variances of input signals and desired signals are

shown, respectively, as

σ2

x = (1− b)
∞
�

k=0

bkx2(i − k), (35)
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Figure 5 Comparison of convergence properties.

σ2

d = (1− b)
∞
�

k=0

bkd2(i − k), (36)

where b is set to 0.9999.

Figure 5 shows the convergence properties.

The proposed algorithm surpasses the SF-NLMS

algorithm in tracking ability.

3.5 Conclusion

This paper shows the upper limit of the step

gain that satisfies the guarantee value without

coefficients update interruption. The proposed

method improves convergence speed on the SF-

NLMS algorithm. It is clear that the proposed

method is very useful for applying in acoustical

systems, case of unsteady observation noise is

inflicted in particular.
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