
Evaluation of Multi-staging and Weight Promotion
for Game 2048

Kiminori Matsuzaki∗

School of Information, Kochi University of Technology
185 Miyanokuchi, Tosayamada, Kami City, Kochi 782–8502, JAPAN

∗ E-mail: matsuzaki.kiminori@kochi-tech.ac.jp

Abstract: Game 2048 is a stochastic single-player game categorized in slide-and-merge games. Several com-
puter players have been developed for 2048, and among them, strong computer players uses N-tuple networks
as evaluation functions that are adjusted by reinforcement learning methods. To enhance those computer
players, multi-staging and weight-promotion techniques have been proposed. However, no paper has directly
compared the effects of those techniques. In this paper, we conduct experiments exhaustively in terms of
multi-staging and weight promotion including newly proposed ways to evaluate their effects. From the results,
the most effective multi-staging implementation differs for the goals, that are, maximizing the average score
and maximizing the maximum score. The computer player developed with the multi-staging implementation
that used the maximum number of the tiles as the index and two weight-promotion implementations achieved
average score 225,078 with the greedy plays and average score 453,776 with the 3-ply expectimax plays.

1. Introduction
The single-player stochastic game 20484), a derivative of the games Threes and 1024, is a very popular one
among similar slide-and-merge games. According to the author, during the first three weeks after its release,
people spent a total time of over 3000 years on playing the game. One of the reasons why the game attracts so
many people is that it is very easy to learn but hard to master. The game also attracts researchers in the field
of computer science and artificial intelligence. Several people have devoted themselves to the development of
strong computer players3, 5–16).

A big trend on the computer players for 20487–10, 12, 13, 15) uses N-tuple networks as approximated evaluation
functions, which are adjusted by reinforcement learning methods such as temporal difference learning. Among
those, the state-of-the-art computer player developed by Jaśkowski7) achieved average score 609,104 under the
timelimit of 1 s/move. The player was developed based on the temporal coherence learning method enhanced
with four techniques, multi-staging, weight promotion, redundant encoding, and carousel shaping.

In my previous work9), I showed that we can improve the learning of the evaluation functions with two
techniques: backward temporal coherence learning and restart. In this paper, we further investigate the per-
formance of N-tuple-network-based computer players focusing on the multi-staging and weight-promotion

1

techniques.
The multi-staging technique is to divide a game into multiple stages and use different evaluation functions

for each of the stages. This technique was used in a master-level Othello playing program Logistello2). The
multi-staging technique was also successfully applied for 2048 by Wu et al.13), Yeh et al. 15) and Jaśkowski7),
while they used different implementation of multiple stages.

Application of the multi-staging technique would slow down the learning process especially for the later
stages. This problem could be resolved with the weight-promotion technique that initialize weights with some
existing learned weights. Jaśkowski7) proposed an inter-stage weight-promotion implementation, which sig-
nificantly improved the performance of the players.

The contributions in the paper are summarized as follows.
• Multi-staging Technique: I design five ways of dividing a game into stages including two existing

ones7, 13, 15).
• Weight-promotion Technique: In addition to the inter-stage weight-promotion implementation pro-

posed by Jaśkowski7), I design an intra-stage weight-promotion implementation.
• Exhaustive Experiments: I conducted a set of experiments exhaustively with the computer players de-

veloped with these multi-staging and weight-promotion techniques. We had several interesting findings
from the results of these experiments.

Here I would like to enumerate interesting and important findings in this paper.
1. The most effective multi-staging implementation differs for the goal. For maximizing the average score,

the multi-staging implementation that uses the maximum number of the tiles as index performed the
best. For maximizing the maximum score, the multi-staging implementations that divide the game into
almost the same size performed the best.

2. The most effective weight-promotion implementation differs for the multi-staging implementation com-
bined. Generally speaking, use of both the inter-stage and intra-stage weight-promotion performed the
best. However, for Jaśkowski’s multi-staging implementation that divides the game into the same size7),
only the inter-stage weight-promotion performed well. The inter-stage weight-promotion implementa-
tion performed better than the intra-stage weight-promotion implementation when the size of stages were
almost the same.

The computer player developed with the eight-stage implementation that uses the maximum number of
the tiles as index and both the weight-promotion implementations achieved average score 225,078 with greedy
plays and average score 453,776 with 3-ply expectimax plays. The computer player developed with the eight-
stage implementation that divides the game based on the existence of 8192-, 16384-, and 32768-tiles and
the inter-stage weight-promotion implementation achieved maximum score 802,050 with greedy plays and
maximum score 828,361 with 3-ply expectimax plays.

The rest of the paper is organized as follows. Section 2 briefly introduces the rule of the game 2048. Sec-
tion 3 reviews the idea of applying N-tuple networks and reinforcement learning methods to the game 2048.
We will use the backward temporal-coherence learning with restart developed in my previous work9). Sec-
tion 4 shows the multi-staging implementations and the weight-promotion implementations including newly
proposed ones. Section 5 reports the experiments and discusses our findings from the experiment results.
Finally, Section 6 concludes the paper.

2. Rules of Game 2048
Game 2048 is played on a 4 × 4 grid. The objective of the original game is to reach a 2048-tile by moving and
merging the tiles on the board according to the rules described below.

2

(a)

4

2

(b)

4 2

2

(c)

4 4

2

(d)

8

2 2

(e)
4

32

16

2

2

4

64

8

2048

128

16

32

2

8

32

2

(a) An example of the initial state. Two tiles are put randomly.

(b) After the first move: down. Two tiles move to the bottom and a new 2-tile appears at cell (3,2).

(c) After the second move: down. Two 2-tiles are merged to a 4-tile, and score 4 is given. A new

tile appears at cell (4,3).

(d) After the third move: left. Two 4-tiles are merged to a 8-tile, and score 8 is given. A new tile

appears at cell (4,3).

(e) An example of the final state where the player cannot move nor merge in any direction.

Figure 1. The process of game 2048

In the initial state (Figure 1 (a)), two tiles are put randomly with numbers 2 (p2 = 0.9) or 4 (p4 = 0.1). The
player selects a direction (either of up, left, down, and right), and then all the tiles will move in that direction
(Figure 1 (b)–(d)). When two tiles of the same number collide they create a tile with the sum value and the
player get the sum as the score. Here, the merges occur from the far side and a newly created tile do not
merge again on the same move: moves to the right from 222␣, ␣422 and 2222 result in ␣␣24, ␣␣44, and ␣␣44,
respectively. Note that the player cannot select a direction in which no tiles move nor merge. After each move,
a new tile appears randomly at an empty cell with number 2 (p2 = 0.9) or 4 (p4 = 0.1).

If the player cannot move the tiles, the game ends (Figure 1 (e)).

3. N-tuple Networks and Reinforcement Learning for 2048
In this section, we first review the idea of applying N-tuple networks and reinforcement learning methods
to the game 2048. We then introduce the learning method used in the paper, that is, backward temporal
coherence learning with restart9). Note that the original method of using N-tuple networks for 2048 was first
given by Szubert and Jaśkowski12) (they showed three methods and the method used in this paper was called
TD-afterstate), and the temporal coherence learning was first introduced for 2048 by Jaśkowski7).

3.1 Evaluation Function with N-tuple Networks
N-tuple networks consist of a number of N-tuples associated with tables of feature weights (Figure 2 (a)). Let
N be the number of cells that an N-tuple covers and K be the number of possible values, then the number of
feature weights (the number of rows) in a table is KN . In this study, we use four 6-tuples shown in Figure 3
and limit the number of possible values K = 16 (let the maximum number of tiles be 32768): the number of
feature weights is 4 × 166 = 67,108,864.

Given a set of N-tuples and corresponding tables of feature weights, we calculate the evaluation value of a
state as follows. Since the board of the game 2048 has rotational and reflectional symmetries, we can consider
eight symmetric boards and look up feature weights for each of them. The evaluation value is the sum of the
feature weights. See an example in Figure 2 with two 3-tuples. We have eight symmetric boards for a state,
and look up two feature weights for each board (in Figure 2 (c), the first two are from the upper-left board and
the last two from the lower-right board). Therefore, in this example, the evaluation value of a state is the sum
of 16 feature weights.

3

(a) Tuples and tables of weights

Tuple A Tuple B

Table for A

0 1 2 weight

– – – 1280.5

– – 2 2351.4
.

.

.

2 4 – 3472.5

2 4 2 3133.9

2 4 4 3324.8

2 4 8 3018.4
.

.

.

Table for B

0 1 4 weight

– – – 1210.1

– – 2 581.4
.

.

.

2 4 – 1347.1

2 4 2 3513.3

2 4 4 2332.9

2 4 8 1801.8
.

.

.

(b) A state and its symmetries

(by rotation and reflection)

2 4

8

2 4

24

8

24

2

4

82

4

2

4

8 2

4

24

8

24

2 4

8

2 4

2

4

8 2

4

2

4

82

4

(c) Evaluation value V(s) for the state s

V(s) = (3472.5 + 1801.8) + · · · + (1280.5 + 1210.1)

Figure 2. An example for calculating an evaluation value of a state9)

Figure 3. N-tuple networks used in the paper: four 6-tuples designed by Wu et al.13)

8 2 2

2 16 16

2 4

4

8 4

2 32

2 4

4

8 4

2 32

4 2 4

4

4

8 32

4 4 8

2 4

8 32

4 4 8

st−1 s
′

t−1
st s

′

t
st+1

move
right

Rt−1 = 36

new
4

move
down

Rt = 12

new
2

∆ = Rt + V(s
′

t
) − V(s

′

t−1
)

Figure 4. Transition of states

Hereafter, we will use the following notation. A state is denoted by s, which is often associated with time
t as st. The feature weight for a specific tuple is denoted by Vi[s], and the evaluation value is V[s]. The number
of N-tuples is denoted by m, where it is multiplied by eight (due to symmetric sampling).

3.2 Temporal Coherence Learning
After designing N-tuple networks, we apply reinforce learning methods to adjust the feature weights. In
reinforcement learning methods, we update feature weights so that certain errors (often called TD-errors) are
minimized. In this paper, I uses the error first formalized by Szubert and Jaśkowski12) (the method was called
TD-afterstate in their paper).

See Figure 4. Let st−1 be a state at time t − 1. After a player selects a move, all the tiles are moved and
merged: we obtain reward Rt−1 and state s′t−1 after the move. Then a new tile appears randomly: this is the
state st at time t. Similarly, after a player selects a move at st, we have state s′t (before the appearance of a new

4

Algorithm 1 Online (Forward) Temporal Coherence Learning TC(λ) 7, 9)

1: function LearnFromSelfplay()
2: t ← 0; s0 ← InitialState()
3: while not Terminal(st) do
4: at ← argmaxa∈AEvaluate(st, a)
5: (Rt, s′t , st+1)← MakeAction(st, at)
6: if t > 0 then TC-Update(t − 1, Rt + V(s′t) − V(s′t−1))
7: t ← t + 1
8: TD-Update(t − 1, −V(s′t−1))

9: function Evaluate(s, a)
10: (R, s′, s′′)← MakeAction(s, a)
11: return R + V(s′)

12: function TC-Update(t,∆)
13: k ← 0
14: while t − k ≥ 0 and λk∆ > ϵ do
15: for i = 1 to m do
16: α = if Ai[s′t−k] = 0 then 1 else |Ei[s′t−k]|/Ai[s′t−k]
17: δ = αλk∆/m
18: Vi[s′t−k]← Vi[s′t−k] + δ
19: Ei[s′t−k]← Ei[s′t−k] + δ
20: Ai[s′t−k]← Ai[s′t−k] + |δ|
21: k ← k + 1

* Function InitialState generates an initial state. Function Terminal judges that given state reaches the end of the

game. Function MakeAction takes a state and a move and return the reward, the state after the move, and the state

after the appearance of a new title.

tile). Here, we define error ∆ as
∆ = Rt + V(s′t) − V(s′t−1) .

In the basic temporal difference algorithm (the online TD(0) algorithm), we update the feature weights with
this error ∆ as

V ′(s′t−1)← V(s′t−1) + α∆
during the selfplays of the game. Parameter α (called learning rate) controls the speed of learning.

Temporal coherence learning (TC learning for short)1) is an adaptive (learning-rate free) algorithm. TC
learning was first introduced for the game 2048 by Jaśkowski7). Algorithm 1 shows the online version of the TC
learning algorithm. In TC learning, we augment each feature weight Vi[s] with two values: the accumulation
of errors Ei[s], and the accumulation of absolute errors Ai[s]. The learning rate is determined by the ratio
|Ei[s]|/Ai[s] (line 16): it is 1 in the beginning and then decreases if the error switches positive and negative
values. Note that TC learning requires three times as much memory as the temporal difference learning does1.

1In the implementation, Vi[s] is represented by a 32 bit fix-point number (with 10 bits below the point) and Ei[s] and Ai[s] by 32 bit
floating-point numbers.

5

Algorithm 2 Backward TC Learning9)

1: function LearnFromSelfplay()
2: t ← 0; s← InitialState()
3: while not Terminal(st) do
4: at ← argmaxa∈AEvaluate(st, a)
5: (Rt, s′t , st+1)← MakeAction(st, at)
6: t ← t + 1
7: BackwardLearning(1, t)

8: function BackwardLearning(t0, t)
9: TC-Update(t − 1, −V(s′t−1))

10: for τ = t − 1 downto t0
11: TC-Update(τ − 1, Rτ + V(s′τ) − V(s′τ−1))

3.3 Backward Temporal Coherence Learning with Restart
The game 2048 has the following unique properties, i.e., difficulties of learning. (1) Long sequence of moves:
A strong player would play tens of thousands of moves until the game end. (2) Larger reward at later part: A
large reward would be obtained at a later part of the game when the player made a large-numbered tile, e.g.,
32768. (3) Increasing difficulty: The game becomes more difficult toward the end of the game.

In my previous work9), I applied two techniques to improve the temporal coherence learning method.
Backward learning This technique is to update the feature weights from the end of the game to speed up the

propagation of rewards. This would resolve the first two difficulties.
Restart This technique is to learn more actions in the later part of the game. This would resolve the third

difficulty.
Considering the first two properties, the long sequence of moves and larger reward at later part, I expected

that the online (forward) learning algorithms would not work well. If a large reward was given near the end of
the game, we would need to update the feature weights more than ten-thousand times to reflect the reward to
the beginning of the game. A solution to this problem is to perform the updates in a backward direction from
the end of the game. Algorithm 2 shows the modification for the backward TC learning algorithm where the
other functions are the same as Algorithm 1. In the backward TC learning, we use λ = 0.

The last property, increasing difficulty, implies that it is important to learn more actions in the later part.
Jaśkowski proposed a technique called carousel shaping7) to improve the learning. In this paper, we use a
simple restart strategy based on the history of states (Algorithm 3)9): if the player ends the game, it recursively
restarts the game at the middle of the history to learn the latter half. By this restart strategy, the player will learn
more actions near the end of the game. The algorithm has additional parameter L: if the length of a restarted
game is shorter than L, we start the next game from an initial state. We used parameter L = 100 in this paper.

4. Multi-staging and Promotion

4.1 Multi-staging
Multi-staging is a technique to divide a game into multiple stages and use different evaluation functions for
each of the stages. This technique was used in a master-level Othello playing program Logistello2).

Multi-staging was also successfully applied for 20487, 9, 13, 15), but different implementations of stages were
used in existing work. In the first implementation by Wu et al.13), a game is divided into three stages where

6

Algorithm 3 Learning with Restart9)

1: function LearnFromSelfplayWithRestart()
2: tstart ← 1; tend ← ∞; s0 ← InitialState()
3: while tend − tstart > L do
4: t ← tstart

5: while not Terminal(st) do
6: at ← argmaxa∈AEvaluate(st, a)
7: (Rt, s′t , st+1)← MakeAction(st, at)
8: t ← t + 1
9: BackwardLearning(tstart, t)

10: tend ← t; tstart ← (tstart + tend)/2

a later stage has shorter length. Yeh et al.15) extended the implementation up to six stages in the same man-
ner. Jaśkowski7) used different implementation where all the stages have exactly same length. In my previous
work9), the stages were simply defined by the maximum number of tiles. It remains unclear which implemen-
tation of the stages performs the best.

In this paper, we borrow the notation by Yeh et al.15) for dividing a game into stages. T512 denotes the
first time when a 512-tile is created. Similarly, T1k, T2k, T4k, T8k, T16k and T32k denote the first time when
1024-, 2048-, 4096-, 8192-, 16384-, and 32768-tile are created, respectively. T32k+16k denotes the first time
when both 32768-tile and 16384-tile are created on a board. Similarly, T32k+16k+8k denotes the first time when
all the 32768-tile, 16384-tile, and 8192-tile are created on a board, and so on.

The baseline ST-1 has a single stage. I use the following nine multi-stage implementations.
ST-TURN4, ST-TURN8 These implementations divide a game by the fixed number of moves. The idea was

used in the implementation by Jaśkowski 7). In the four-stage case, a game is divided at every 8192
moves: 8192, 16384, and 24576. In the eight-stage case, a game is divided at every 4096 moves: 4096,
8192, 12288, 16384, 20480, 24576 and 28672.

ST-TOP4, ST-TOP8 These implementations divide a game into similar numbers of moves, based on the cre-
ation of large-numbered tiles: 16384-tile and 32768-tile in the four-stage case; 8192-tile, 16384-tile and
32768-tile in the eight-stage case. In the four-stage case, a game is divided at T16k, T32k and T32k+16k. In
the eight-stage case, a game is divided at T8k, T16k, T16k+8k, T32k, T32k+8k, T32k+16k and T32k+16k+8k.

ST-MAX4, ST-MAX8 These implementations simply uses the maximum number of the tiles as the index
of stages. In the four-stage case, a game is divided at T8k, T16k and T32k. In the eight-stage case, a
game is divided at T512, T1k, T2k, T4k, T8k, T16k and T32k. Note that the later stage is longer in these
implementations.

ST-DECR4, ST-DECR8 These implementations divide a game into stages so that the later stage is shorter.
The idea 2 was used in the implementation by Wu et al.13) and Yeh et al.15). In the four-stage case, a game
is divided at T32k, T32k+16k and T32k+16k+8k. In the eight-stage case, a game is divided at T32k, T32k+16k,
T32k+16k+8k, T32k+16k+8k+4k, T32k+16k+8k+4k+2k, T32k+16k+8k+4k+2k+1k and T32k+16k+8k+4k+2k+1k+512.

ST-HAND8 This is a hand-designed implementation based on the following two ideas. Firstly, we keep
the length of the shortest stage not too short. Secondly, we have more stages for difficult parts of the
game: before creating a 32768-tile and before creating a 65535-tile. A game is divided at T16k, T16k+8k,
T16k+8k+4k, T32k, T32k+16k, T32k+16k+8k, and T32k+16k+8k+4k.

2In the original implementation, a game was divided at T16k and T16k+8k.

7

ST-TURN4

ST-TOP4

ST-MAX4

ST-DECR4

0 8192 16384 24576 turns

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

Figure 5. The length of stages for four-stage cases. Note that boundary of stages may change slightly in
ST-TOP4, ST-MAX4 and ST-DECR4 (denoted by transverse lines).

ST-TURN8

ST-TOP8

ST-MAX8

ST-DECR8

ST-HAND8

0 8192 16384 24576 turns

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

3 4 5 6 7

0 1 2 3 4

0 1 2 3 4 5 6 7

Figure 6. The length of stages for eight-stage cases. Note that boundary of stages may change slightly in
ST-TOP8, ST-MAX8, ST-DECR8 and ST-DECR8 (denoted by transverse lines).

In the four-stage cases, the tables of feature weights occupy 4 × 4 × 166 × (4 bytes + 4 bytes + 4 bytes) =
3 GB. In the eight-stage cases, the tables occupy 6 GB. Figures 5 and 6 depict the stages of the four-stage
implementations and eight-stage implementations, respectively.

4.2 Weight Promotion
Use of multi-staging techniques considerably increases the number of feature weights and it slow down the
learning process. To resolve this problem, Jaśkowski7) proposed a weight-promotion technique (we call it
inter-stage weight promotion in this paper): Each feature weight is initialized, upon its first access, to the cor-
responding weight in the preceding stage. Jaśkowski reported that this weight-promotion technique improved
the performance of developed players.

Since the number of feature weights is quite large, I propose another weight-promotion technique, namely,
intra-stage weight promotion. With the intra-stage weight promotion, each feature weight is initialized, upon
its first access, to the weight of the one-step-smaller board. Here, given a board, its one-step-small board is
computed by halving the number of each tile (If the original board has 2-tiles, we replace them by empty cells).
Figure 7 show an example.

With these weight-promotion techniques, we have following four implementations.
PR-NO No weight-promotion technique is applied.
PR-IN Only the intra-stage weight-promotion technique is applied.
PR-OVER Only the inter-stage weight-promotion technique is applied.

8

(a)

4

8 32

2 4 8

(b)

2

4 16

2 4

Figure 7. (a) Original Board. (b) The one-step-smaller board of (a).

PR-BOTH Both the intra-stage and the inter-stage weight-promotion techniques are applied. On the first-
time access, the intra-stage weight promotion is applied first, and if it fails (in the first stage or the
corresponding weight was not accessed) the intra-stage weight promotion is applied.

Note that we judge the first-time access with Vi[s′] = 0 to avoid additional storage for it. This implemen-
tation technique was also used in Jaśkowski’s implementation7).

5. Experiments and Discussion
We conducted experiments to evaluate all the combinations of the multi-staging and weight-promotion im-
plementations in Section . Each implementation performed backward TC learning with restart until 4 × 1010

actions, monitoring the learning process at every 1× 109 actions with 10000-game greedy plays and 300-game
3-ply expectimax plays (the number of learned actions followed that in Jaśkowski’s paper7)). The learning took
about 10–13 hours and the monitoring took about 12 hours additionally, on a server with dual Intel Xeon E5645
CPUs (6 cores, 12MB cache, HT off) and 12 GB memory. Each implementation was executed five times.

Figures 8–17 show the learning process monitored with greedy plays. Figures 18–27 show the learning
process monitored with 3-ply expectimax plays. In these figures, the averaged score of 5 runs is used. Tables 1–
3 show the scores after learning 1 × 1010, 2 × 1010 and 4 × 1010. In these tables, each averaged score is
accompanied with the 95% confidence interval. To avoid the effects of perturbation, Table 3 includes the
maximum score monitored at 3.8 × 1010, 3.9 × 1010 and 4.0 × 1010 actions.

Firstly, look at the results of the single-stage cases (Figures 8 and 18 and Table 3). The intra-stage weight
promotion (PR-IN) improved the maximum score and the average score of expectimax plays by 8–10% while it
degraded the average score of the greedy plays. Since the variance was large, the difference was not significant.

Secondly, look at the results of the ST-TURN4, ST-TURN8 and ST-TOP8 cases (Figure 9, 10, 12, 19,
20 and 22 and Table 3). In these cases, the inter-stage weight promotion (PR-OVER) improved both the
average score and the maximum score of both greedy and expectimax plays. Compared with the inter-stage
weight promotion (PR-OVER), the improvement by the intra-stage weight promotion (PR-IN) was small and
sometimes negative. It is interesting that the best scores were with only inter-stage weight promotion (PR-
OVER), and using both weight-promotion techniques (PR-BOTH) performed worse than PR-OVER for these
cases.

From these results, we could conclude that the inter-stage weight promotion only (PR-OVER) achieved the
best performance for multi-staging implementation that have stages of the same or similar sizes. An exception
for this conclusion was for ST-TOP4 (Figure 11 and 21). In the case of ST-TOP4, all the player showed almost
the same performance.

Thirdly, look at the results of the ST-MAX4 and ST-MAX8 cases (Figures 13, 14, 23 and 24 and Table 3).
In these cases, the intra-stage weight promotion (PR-IN) improved more than the inter-stage weight promotion
(PR-OVER), and the best performance was achieved by using both of these weight-promotion techniques
(PR-BOTH). This also partially applied to the ST-DECR4 and ST-DECR8 cases (Figures 15, 16, 25 and 26
and Table 3). (The graphs had different shapes from other cases: the learning seemed not to proceed during

9

0.5 × 1010–1.5 × 1010 actions and did slowly after that.)
From these results, we could conclude that use of both the inter-stage and intra-stage weight-promotion

techniques (PR-BOTH) achieved the best performance for multi-staging implementation that have stages of
different sizes.

Fourthly, look at the results of the ST-HAND8 case (Figures 17 and 27 and Table 3). Unfortunately, the
results of these implementations with hand-designed stages were not good as expected. An interesting fact is
that the graph of expectimax plays (Figure 27) looked quite similar to that of ST-TURN4 (Figure 19).

Now we look at the average scores of the expectimax plays (Table 3) in detail. The best average scores
were achieved by ST-MAX8 with PR-BOTH (453,776) and by ST-MAX4 with PR-BOTH (452,303). It was
not so surprising that these best scores were almost the same, because the first four stages in ST-MAX8 were
almost useless as we can see in Figure 6. The good average scores were also achieved by ST-TOP4 with PR-IN
and ST-TURN8 with PR-OVER.

We then look at the maximum scores of the expectimax plays (Table 3) in detail. The maximum scores of
ST-MAX4 and ST-MAX8 were not so good, while the average scores of them were the best. The best maxi-
mum scores were achieved by ST-TURN4 with PR-OVER (831,120) and ST-TOP8 with PR-OVER (828,361),
followed by ST-TOP4 with PR-BOTH (829,267), ST-DECR8 with PR-BOTH (826,751), ST-HAND8 with PR-
OVER (826,613). From these results, short stages just before the creation of 65536-tile seemed to be important
for the maximum scores.

6. Conclusion
The multi-staging and weight-promotion techniques are considered to improve the N-tuple-based computer
players for 2048. In this paper, I conducted experiments exhaustively to evaluate nine multi-staging imple-
mentations and four weight-promotion implementations. From the experiment results some interesting and
important findings were obtained.

First, the most effective multi-staging implementation differs for the goal. For maximizing the average
score, multi-staging implementation that uses the maximum number of the tiles as the index of stages (ST-
MAX4 and ST-MAX8) performed the best. For maximizing the maximum score, multi-staging implementa-
tions that divide the game into almost the same size (ST-TURN4 and ST-TOP8) performed the best. Secondly,
the most effective weight-promotion implementation differs for the multi-staging implementation combined.
Generally speaking, use of both the inter-stage and intra-stage weight-promotion (PR-BOTH) performed the
best. However, for the multi-staging implementations that divide the game into the same size7), use of the
inter-stage weight-promotion only (PR-OVER) performed well. The inter-stage weight-promotion technique
(PR-OVER) performed better than the intra-stage weight-promotion technique (PR-IN) when the size of stages
was almost the same.

We achieved the average score 225,078 with greedy plays and the average score 453,776 with 3-ply
expectimax plays by the player ST-MAX8 with PR-BOTH. We achieved the maximum score 802,050 with
greedy plays and the maximum score 828,361 with 3-ply expectimax plays by the player ST-TOP8 with PR-
OVER. These results are better than existing results in the similar settings (N-tuple networks defined with four
or five 6-tuples, combined with 3-ply expectimax plays)7, 13, 15).

In this paper I used temporal coherence learning with restart as the learning algorithm. I found in the ex-
periments that the learning algorithm also affects the resulting performance significantly. We could strengthen
the discussion and the conclusions in this paper if we apply different learning algorithms, such as Jaśkowski’s
carousel shaping technique7) and Wu and Yeh et al.’s staged learning technique13, 15).

10

Acknowledgment
All the experiments in this paper were conducted on the IACP cluster of the Kochi University of Technology.
The cumulative machine usage reached more than 240 machine-days including the preliminary experiments.

References
1) D. F. Beal and M. C. Smith. Temporal coherence and prediction decay in TD learning. In Proceedings of

the 16th International Joint Conference on Artificial Intelligence, volume 1, pages 564–569, 1999.
2) M. Buro. Logistello: A strong learning othello program. In 19th Annual Conference Gesellschaft für

Klassifikation e.V., 1995.
3) T. Chabin, M. Elouafi, P. Carvalho, and A. Tonda. Using linear genetic programming to

evolve a controller for the game 2048. http://www.cs.put.poznan.pl/wjaskowski/pub/

2015-GECCO-2048-Competition/Treecko.pdf, 2015.
4) G. Cirulli. 2048. http://gabrielecirulli.github.io/2048/, 2014.
5) A. Dedieu and J. Amar. Deep reinforcement learning for 2048. Available online: http://www.mit.edu/

˜adedieu/pdf/2048.pdf, 2017.
6) H. Guei, T. Wei, J.-B. Huang, and I-C. Wu. An early attempt at applying deep reinforcement learning to

the game 2048. In the Workshop Neural Networks in Games in the International Conference on Computers
and Games (CG 2016), 2016.

7) W. Jaśkowski. Mastering 2048 with delayed temporal coherence learning, multi-stage weight promotion,
redundant encoding and carousel shaping. IEEE Transactions on Computational Intelligence and AI in
Games, 2017.

8) K. Matsuzaki. Systematic selection of N-tuple networks with consideration of interinfluence for game
2048. In Technologies and Applications of Artificial Intelligence (TAAI 2016), 2016.

9) K. Matsuzaki. Developing 2048 player with backward temporal coherence learning and restart. In Pro-
ceedings of Fifteenth International Conference on Advances in Computer Games (ACG2017), 2017.

10) K. Oka and K. Matsuzaki. Systematic selection of N-tuple networks for 2048. In In Proceedings of 9th
International Conference on Computers and Games (CG2016), 2016.

11) P. Rodgers and J. Levine. An investigation into 2048 AI strategies. In 2014 IEEE Conference on Compu-
tational Intelligence and Games, pages 1–2, 2014.

12) M. Szubert and W. Jaśkowski. Temporal difference learning of N-tuple networks for the game 2048. In
2014 IEEE Conference on Computational Intelligence and Games, pages 1–8, 2014.

13) I.-C. Wu, K.-H. Yeh, C.-C. Liang, C.-C. Chang, and H. Chiang. Multi-stage temporal difference learning
for 2048. In Technologies and Applications of Artificial Intelligence, volume 8916 of Lecture Notes in
Computer Science, pages 366–378, 2014.

14) R. Xiao, W. Vermaelen, and P. Morav́ek. AI for the 2048 game. https://github.com/nneonneo/

2048-ai, 2015.
15) K.H. Yeh, I.C. Wu, C.H. Hsueh, C.C. Chang, C.C. Liang, and H. Chiang. Multi-stage temporal difference

learning for 2048-like games. IEEE Transactions on Computational Intelligence and AI in Games, 2016.
16) A. Zaky. Minimax and expectimax algorithm to solve 2048. http://informatika.stei.itb.ac.

id/˜rinaldi.munir/Stmik/2013-2014-genap/Makalah2014/MakalahIF2211-2014-037.pdf,
2014.

11

 10

 12.5

 15

 17.5

 20

 22.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e

ra
g

e
 s

c
o

re
 (

x
 1

0
4
)

number of actions (x 10
10

)

ST1/NO
ST1/IN

Figure 8. Average scores of greedy plays with ST-1

 10

 12.5

 15

 17.5

 20

 22.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

TURN4/NO
TURN4/IN

TURN4/OVER
TURN4/BOTH

Figure 9. Average scores of greedy plays with
ST-TURN4

 10

 12.5

 15

 17.5

 20

 22.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

TURN8/NO
TURN8/IN

TURN8/OVER
TURN8/BOTH

Figure 10. Average scores of greedy plays with
ST-TURN8

 10

 12.5

 15

 17.5

 20

 22.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

TOP4/NO
TOP4/IN

TOP4/OVER
TOP4/BOTH

Figure 11. Average scores of greedy plays with
ST-TOP4

 10

 12.5

 15

 17.5

 20

 22.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

TOP8/NO
TOP8/IN

TOP8/OVER
TOP8/BOTH

Figure 12. Average scores of greedy plays with
ST-TOP8

12

 10

 12.5

 15

 17.5

 20

 22.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

MAX4/NO
MAX4/IN

MAX4/OVER
MAX4/BOTH

Figure 13. Average scores of greedy plays with
ST-MAX4

 10

 12.5

 15

 17.5

 20

 22.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

MAX8/NO
MAX8/IN

MAX8/OVER
MAX8/BOTH

Figure 14. Average scores of greedy plays with
ST-MAX8

 10

 12.5

 15

 17.5

 20

 22.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

DECR4/NO
DECR4/IN

DECR4/OVER
DECR4/BOTH

Figure 15. Average scores of greedy plays with
ST-DECR4

 10

 12.5

 15

 17.5

 20

 22.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

DECR8/NO
DECR8/IN

DECR8/OVER
DECR8/BOTH

Figure 16. Average scores of greedy plays with
ST-DECR8

 10

 12.5

 15

 17.5

 20

 22.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e

ra
g

e
 s

c
o

re
 (

x
 1

0
4
)

number of actions (x 10
10

)

HAND8/NO
HAND8/IN

HAND8/OVER
HAND8/BOTH

Figure 17. Average scores of greedy plays with ST-HAND8

13

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e

ra
g

e
 s

c
o

re
 (

x
 1

0
4
)

number of actions (x 10
10

)

ST1/NO
ST1/IN

Figure 18. Average scores of 3-ply expectimax plays with ST-1

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

TURN4/NO
TURN4/IN

TURN4/OVER
TURN4/BOTH

Figure 19. Average scores of 3-ply expectimax
plays with ST-TURN4

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

TURN8/NO
TURN8/IN

TURN8/OVER
TURN8/BOTH

Figure 20. Average scores of 3-ply expectimax
plays with ST-TURN8

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

TOP4/NO
TOP4/IN

TOP4/OVER
TOP4/BOTH

Figure 21. Average scores of 3-ply expectimax
plays with ST-TOP4

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

TOP8/NO
TOP8/IN

TOP8/OVER
TOP8/BOTH

Figure 22. Average scores of 3-ply expectimax
plays with ST-TOP8

14

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

MAX4/NO
MAX4/IN

MAX4/OVER
MAX4/BOTH

Figure 23. Average scores of 3-ply expectimax
plays with ST-MAX4

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

MAX8/NO
MAX8/IN

MAX8/OVER
MAX8/BOTH

Figure 24. Average scores of 3-ply expectimax
plays with ST-MAX8

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

DECR4/NO
DECR4/IN

DECR4/OVER
DECR4/BOTH

Figure 25. Average scores of 3-ply expectimax
plays with ST-DECR4

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 s

c
o
re

 (
x
 1

0
4
)

number of actions (x 10
10

)

DECR8/NO
DECR8/IN

DECR8/OVER
DECR8/BOTH

Figure 26. Average scores of 3-ply expectimax
plays with ST-DECR8

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e

ra
g

e
 s

c
o

re
 (

x
 1

0
4
)

number of actions (x 10
10

)

HAND8/NO
HAND8/IN

HAND8/OVER
HAND8/BOTH

Figure 27. Average scores of 3-ply expectimax plays with ST-HAND8

15

Table 1. The best scores after learning 1 × 1010 actions. The best scores among the settings with the same
number of stages are in red. The best scores among the settings with the same staging method
are in blue (except for the red ones). The range shows the 95% confidence interval.

Greedy Expectimax (3-ply)
settings Average Maximum Average Maximum

ST-1
PR-NO 191,105 ± 9,072 602,674 ± 49,093 328,259 ± 8,317 574,062 ±223,133
PR-IN 183,413 ± 8,062 617,840 ± 8,942 335,341 ±17,035 723,726 ± 69,711

ST-TURN4

PR-NO 182,648 ± 5,479 619,460 ± 14,314 360,178 ± 5,564 697,912 ± 48,872
PR-IN 172,006 ±17,637 571,919 ± 60,809 336,227 ±37,382 688,895 ± 60,147
PR-OVER 187,690 ± 4,412 660,650 ± 68,716 366,376 ±21,422 739,780 ± 4,079
PR-BOTH 183,804 ±11,580 655,443 ± 38,002 371,207 ±21,525 742,008 ± 25,257

ST-TOP4

PR-NO 191,588 ± 6,432 644,069 ± 34,566 381,873 ±21,351 708,709 ± 21,924
PR-IN 191,540 ±11,874 661,712 ± 29,623 369,471 ±13,512 720,161 ± 18,815
PR-OVER 191,266 ± 5,550 707,668 ± 27,937 379,863 ±29,976 772,717 ± 34,753
PR-BOTH 191,149 ± 6,187 695,739 ± 70,792 369,522 ± 9,762 777,060 ± 31,926

ST-MAX4

PR-NO 176,616 ±11,813 667,452 ± 80,069 360,941 ±16,402 747,325 ± 20,264
PR-IN 183,930 ± 3,363 645,340 ± 45,502 364,074 ±14,790 758,870 ± 30,916
PR-OVER 189,090 ± 7,323 727,040 ± 47,104 370,324 ±21,317 797,101 ± 23,113
PR-BOTH 191,990 ±10,881 701,542 ± 27,707 379,454 ±22,310 788,651 ± 41,476

ST-DECR4

PR-NO 183,888 ±11,004 457,968 ± 81,658 324,369 ± 8,893 504,031 ± 90,391
PR-IN 182,578 ± 8,780 543,626 ± 38,432 324,180 ± 4,439 602,633 ± 31,453
PR-OVER 179,208 ± 7,783 530,653 ±108,045 324,682 ± 6,996 575,672 ±132,289
PR-BOTH 180,727 ± 4,060 584,952 ± 48,144 326,177 ±10,892 678,284 ± 87,288

ST-TURN8

PR-NO 181,097 ± 7,723 590,018 ± 10,279 337,391 ±16,362 607,850 ± 16,485
PR-IN 177,926 ± 8,459 563,432 ± 26,947 335,080 ±19,354 600,372 ± 5,494
PR-OVER 185,220 ±11,430 700,059 ± 42,183 379,681 ±26,955 718,041 ± 28,531
PR-BOTH 172,424 ±19,055 600,288 ± 25,904 356,993 ±41,618 712,031 ± 72,122

ST-TOP8

PR-NO 172,737 ±13,782 609,090 ± 19,754 323,570 ±25,949 622,199 ± 4,032
PR-IN 178,649 ± 7,133 619,263 ± 43,976 354,611 ±10,994 668,213 ± 47,384
PR-OVER 191,130 ±10,631 713,830 ± 62,947 388,033 ±24,909 777,738 ± 37,401
PR-BOTH 191,128 ±10,965 685,677 ± 54,869 376,403 ± 9,457 761,118 ± 33,014

ST-MAX8

PR-NO 170,945 ±11,292 685,484 ± 15,904 363,967 ±18,729 766,110 ± 32,337
PR-IN 176,987 ± 9,566 679,396 ± 62,328 360,022 ±18,069 777,741 ± 10,864
PR-OVER 171,682 ±24,331 642,304 ± 71,747 355,414 ±56,487 742,683 ± 98,100
PR-BOTH 190,260 ± 7,379 710,836 ± 96,784 385,696 ±22,571 807,007 ± 19,893

ST-DECR8

PR-NO 184,949 ± 5,944 504,403 ± 25,702 322,618 ± 8,146 580,269 ± 60,548
PR-IN 184,941 ± 9,605 564,382 ± 48,034 330,445 ± 7,626 607,803 ± 42,921
PR-OVER 185,135 ± 2,913 564,087 ± 61,479 325,309 ± 5,939 483,021 ±163,304
PR-BOTH 187,413 ± 6,027 572,336 ± 60,203 326,613 ±14,047 594,220 ±190,487

ST-HAND8

PR-NO 191,583 ± 7,127 622,954 ± 63,009 349,689 ±22,487 649,608 ± 37,972
PR-IN 190,335 ± 9,608 579,525 ± 46,641 336,537 ±14,779 647,101 ± 30,625
PR-OVER 190,418 ± 3,941 655,175 ± 44,474 376,241 ±24,552 726,916 ± 30,254
PR-BOTH 189,480 ± 4,917 659,546 ± 62,328 377,066 ±22,525 731,672 ± 10,476

16

Table 2. The best scores after learning 2 × 1010 actions. The best scores among the settings with the same
number of stages are in red. The best scores among the settings with the same staging method
are in blue (except for the red ones). The range shows the 95% confidence interval.

Greedy Expectimax (3-ply)
settings Average Maximum Average Maximum

ST-1
PR-NO 194,340 ± 9,750 617,701 ± 18,054 336,271 ±14,773 613,472 ±176,388
PR-IN 190,426 ± 8,870 663,674 ± 76,387 352,650 ±26,932 742,834 ± 23,841

ST-TURN4

PR-NO 195,976 ± 4,346 663,924 ± 59,905 388,545 ± 8,361 755,055 ± 36,979
PR-IN 185,301 ±22,783 639,536 ± 53,721 355,048 ±42,886 721,838 ± 19,703
PR-OVER 203,457 ± 3,536 725,868 ± 13,428 421,471 ±15,707 783,701 ± 37,920
PR-BOTH 196,750 ±14,068 723,875 ± 15,144 405,351 ±16,891 786,048 ± 16,420

ST-TOP4

PR-NO 207,912 ± 7,412 724,649 ± 9,016 409,099 ±14,100 771,526 ± 38,413
PR-IN 207,747 ±12,847 716,194 ± 14,855 411,805 ±15,504 764,543 ± 28,063
PR-OVER 203,485 ± 6,004 776,343 ± 42,803 402,789 ±27,923 810,677 ± 6,207
PR-BOTH 207,745 ±10,862 759,503 ± 47,171 411,853 ± 9,159 817,232 ± 17,498

ST-MAX4

PR-NO 192,165 ±13,296 741,230 ± 54,315 387,257 ±18,266 810,477 ± 24,792
PR-IN 198,342 ± 3,827 760,640 ± 54,564 405,531 ±25,874 818,141 ± 19,235
PR-OVER 205,145 ± 7,297 775,147 ± 27,627 384,367 ±11,466 808,854 ± 19,672
PR-BOTH 208,680 ±12,459 755,752 ± 39,463 405,184 ±32,934 804,019 ± 45,551

ST-DECR4

PR-NO 190,004 ± 6,758 550,709 ± 72,783 324,444 ±12,397 538,263 ±181,401
PR-IN 188,989 ± 8,476 635,400 ± 24,371 331,733 ±11,410 647,925 ± 80,854
PR-OVER 184,076 ± 5,872 604,156 ±113,596 326,960 ±14,574 587,882 ±231,482
PR-BOTH 191,304 ± 7,740 681,431 ± 70,001 352,213 ±27,442 749,678 ± 24,045

ST-TURN8

PR-NO 196,661 ± 6,517 666,222 ± 57,982 370,884 ±25,155 706,318 ± 72,299
PR-IN 193,886 ± 7,473 617,816 ± 15,096 369,090 ±16,098 671,519 ± 51,185
PR-OVER 202,277 ±15,916 741,746 ± 35,154 414,352 ±13,436 794,433 ± 18,914
PR-BOTH 188,098 ±25,770 671,800 ± 71,987 384,626 ±47,967 747,756 ± 34,763

ST-TOP8

PR-NO 184,799 ±17,081 658,957 ± 52,837 357,085 ±38,050 736,619 ± 34,137
PR-IN 192,916 ± 9,935 686,704 ± 48,137 368,697 ±27,314 737,193 ± 23,073
PR-OVER 208,689 ±11,473 715,280 ± 59,442 413,291 ±30,438 796,742 ± 40,847
PR-BOTH 207,338 ±12,136 708,478 ± 64,635 404,274 ±14,479 764,408 ± 33,240

ST-MAX8

PR-NO 188,430 ±16,700 747,304 ± 29,998 406,011 ±24,726 818,402 ± 5,949
PR-IN 195,170 ±10,116 748,357 ± 25,564 405,331 ±20,129 814,432 ± 21,072
PR-OVER 186,877 ±28,477 736,267 ± 80,880 390,952 ±66,801 795,540 ± 40,132
PR-BOTH 207,687 ± 6,101 759,861 ± 28,856 417,712 ±18,350 818,780 ± 18,304

ST-DECR8

PR-NO 190,005 ± 5,423 573,472 ± 48,751 323,445 ±11,988 623,301 ± 10,443
PR-IN 190,775 ±10,129 629,240 ± 75,328 332,100 ±16,292 689,988 ± 50,895
PR-OVER 192,451 ± 5,411 610,637 ± 98,328 325,216 ±23,340 572,732 ±235,544
PR-BOTH 195,141 ± 3,680 681,556 ± 68,322 342,823 ±21,635 706,875 ± 90,820

ST-HAND8

PR-NO 207,522 ± 7,322 687,883 ± 53,330 379,524 ±43,073 705,548 ± 56,846
PR-IN 206,109 ± 7,512 637,828 ± 54,542 347,013 ±16,780 713,320 ± 31,132
PR-OVER 204,064 ± 6,629 737,680 ± 43,130 413,629 ±26,463 791,467 ± 15,215
PR-BOTH 204,746 ± 4,044 736,442 ± 44,254 399,183 ±10,759 797,419 ± 32,972

17

Table 3. The best scores after learning 3.8 × 1010, 3.9 × 1010 or 4.0 × 1010 actions. The best scores among
the settings with the same number of stages are in red. The best scores among the settings with the
same staging method are in blue (except for the red ones). The range shows the 95% confidence
interval.

Greedy Expectimax (3-ply)
settings Average Maximum Average Maximum

ST-1
PR-NO 205,693 ± 7,643 682,379 ±65,972 364,908 ±50,207 707,538 ±107,314
PR-IN 199,748 ± 7,380 734,709 ± 8,485 398,933 ±47,054 773,132 ± 43,895

ST-TURN4

PR-NO 212,059 ± 5,690 724,877 ±37,265 415,263 ±18,666 795,099 ± 11,145
PR-IN 202,110 ±29,055 704,207 ±56,979 393,525 ±52,388 796,976 ± 29,702
PR-OVER 223,884 ± 6,528 783,951 ±41,068 436,666 ± 7,169 831,120 ± 5,235
PR-BOTH 214,411 ±14,180 783,806 ±51,386 435,113 ±13,585 828,444 ± 7,313

ST-TOP4

PR-NO 225,350 ± 7,635 772,820 ±22,417 445,429 ± 9,602 810,192 ± 22,297
PR-IN 221,073 ±12,243 769,588 ±23,713 445,950 ± 8,266 803,621 ± 23,765
PR-OVER 221,273 ±12,484 789,704 ±39,760 437,984 ±26,002 823,971 ± 11,874
PR-BOTH 222,210 ±13,518 799,786 ±21,957 439,192 ±16,026 829,267 ± 8,326

ST-MAX4

PR-NO 205,989 ±17,623 776,203 ±30,764 435,660 ±37,597 814,376 ± 17,328
PR-IN 213,778 ± 6,686 783,090 ±12,558 439,730 ±19,067 818,372 ± 4,819
PR-OVER 221,139 ± 9,582 794,576 ±10,590 412,056 ±58,594 816,891 ± 19,227
PR-BOTH 224,430 ±12,315 790,468 ± 6,690 452,303 ±24,151 816,567 ± 7,016

ST-DECR4

PR-NO 200,401 ± 7,102 703,081 ±67,252 390,898 ±52,574 738,821 ± 44,676
PR-IN 206,716 ±15,169 735,319 ±18,315 381,499 ±29,678 757,686 ± 33,724
PR-OVER 196,471 ±11,281 765,772 ±70,459 381,582 ±63,982 790,544 ± 54,847
PR-BOTH 202,670 ± 8,086 795,707 ±24,785 403,038 ±26,243 824,875 ± 7,085

ST-TURN8

PR-NO 209,905 ± 7,720 733,087 ±13,423 407,298 ±33,118 794,913 ± 41,462
PR-IN 207,230 ± 9,518 726,439 ±22,037 405,330 ±18,542 754,338 ± 39,292
PR-OVER 217,613 ±15,060 769,738 ±31,206 443,226 ±14,821 814,533 ± 2,698
PR-BOTH 202,876 ±32,186 739,674 ±49,641 416,163 ±53,672 818,976 ± 10,399

ST-TOP8

PR-NO 196,143 ±20,204 719,239 ±65,025 367,673 ±33,781 774,576 ± 32,594
PR-IN 206,156 ±10,538 731,569 ±74,433 394,826 ±34,661 782,421 ± 20,430
PR-OVER 224,440 ±12,131 802,050 ±27,617 426,433 ±22,167 828,361 ± 6,186
PR-BOTH 222,235 ±11,127 761,245 ±38,619 423,731 ±17,663 825,834 ± 10,352

ST-MAX8

PR-NO 204,151 ±18,631 773,231 ± 7,968 438,248 ±21,916 810,544 ± 17,142
PR-IN 209,861 ±10,160 789,212 ±20,301 438,537 ±13,533 817,980 ± 8,213
PR-OVER 199,620 ±32,232 757,054 ±56,752 431,379 ±29,783 810,409 ± 11,304
PR-BOTH 225,078 ±10,506 793,422 ±13,224 453,776 ±17,662 817,252 ± 2,861

ST-DECR8

PR-NO 204,924 ±13,961 706,982 ±64,746 355,115 ±49,098 730,139 ± 60,083
PR-IN 202,557 ±14,537 730,839 ±29,040 415,652 ±15,894 779,689 ± 7,854
PR-OVER 207,300 ± 8,292 770,782 ±78,546 376,304 ±43,852 796,070 ± 52,797
PR-BOTH 210,002 ± 2,409 791,286 ±16,743 400,411 ±29,243 826,751 ± 6,141

ST-HAND8

PR-NO 223,052 ±12,242 732,931 ±40,305 401,296 ±51,577 766,470 ± 48,576
PR-IN 223,519 ± 9,020 697,366 ±63,042 375,294 ± 9,801 752,434 ± 26,361
PR-OVER 221,715 ±11,827 783,018 ±32,430 433,189 ±26,861 826,613 ± 5,338
PR-BOTH 219,352 ± 7,972 783,557 ±41,944 436,291 ±12,885 823,411 ± 14,496

18

2048におけるマルチステージ化と重み昇進手法の有効性評価

松崎　公紀 ∗

高知工科大学情報学群
〒 782–8502　高知県香美市土佐山田町宮ノ口 185

∗ E-mail: matsuzaki.kiminori@kochi-tech.ac.jp

要約：ゲーム「2048」は，スライド＆マージ型の確率的一人ゲームである．「2048」におけ
るコンピュータプレイヤとして，Nタプルネットワークを評価関数とし，それを強化学習
により調整したものが提案され，強いコンピュータプレイヤが作られている．さらにその

改良法として，評価関数のマルチステージ化や学習における重み昇進手法についていくつ

かの論文で提案されている．しかし，それらの手法の有効性を直接比較した結果は示され

ていない．本論文では，マルチステージ化と重み昇進手法について，本論文で新しく提案

する手法を含め網羅的に実験を行い，その有効性を比較評価する．その結果，平均値と最

大値のどちらを最大化するかによって，最適なマルチステージ化と重み昇進手法が異なっ

た．タイルの最大値を用いるマルチステージ化と 2つの重み昇進手法を用いて学習した評
価関数を用いるプレイヤは，貪欲的なプレイで平均 225,078点，3層 Expectimaxによるプ
レイで平均 453,776点を達成した．

19

