3.空・海・大地と環境へのモニタリング

3 - 3

地球観測衛星「だいち」搭載立体視センサによる災害監視への取組み Disaster Monitoring by Using Stereo Image Sensor Mounted on Japanese Satellite ALOS

高木方隆

1. 地球観測衛星「だいち」の特徴

地球観測衛星「だいち」は、2006年に運用が開始さ れた. 立体視センサ (PRISM), マルチスペクトルセン サ (AVNIR2), マイクロ波センサ (PALSAR) の三つ のセンサを搭載し、観測を続けていたが、2011年4月 に電源系統のトラブルから運用が停止された. PRISM はモノクロ画像であるが、空間分解能は2.5mと高分解 能である.更に PRISM は衛星直下を観測するだけでな く,前方視と後方視センサを備え,立体画像を取得する ことができるため、三次元計測が可能である。AVNIR2 は,空間分解能が10mであるが,可視光域のRGBに 加えて近赤外域の波長(0.76~0.89 µm)も観測してい るため、土地被覆分類に利用されている. PALSAR は、 Lバンド(1.27 GHz)のマイクロ波センサなので、気象 状況の影響を余り受けずに観測することができる.更 に、複数回の観測することで、軌道の僅かな違いから位 相情報を処理(インタフェロメトリ)することによって 地表面の形状を把握することも可能である.

2. ステレオ画像による三次元計測

前述のように、地球観測衛星「だいち」による三次元 計測は、PRISM と PALSAR それぞれで可能である. 特に PALSAR は、災害発生前と発生後の画像をインタ フェロメトリ処理することによって、地殻変動に伴う地 盤の変化状況を数 cm のオーダーで把握することが可能 である.したがって、災害監視にも応用可能なセンサと

高木方隆 高知工科大学システム工学群

E-mail takagi.masataka@kochi-tech.ac.jp Masataka TAKAGI, Nonmember (School of Systems Engineering, Kochi University of Technology, Kami-shi, 782-8502 Japan). 電子情報通信学会誌 Vol.94 No.10 pp.871-873 2011 年 10 月 ©電子情報通信学会 2011 みなされる.しかし、インタフェロメトリによる地盤の 変化状況の把握は、広範囲が僅かに変化するような変化 を検出することは可能であるが、非常に狭い範囲が大き く変化するような場合は、検出が困難である.つまり斜 面崩壊などの災害の検出には不向きとなる.そこで、斜 面崩壊のような災害の検出には、ステレオ画像を用いた 三次元計測が期待される.

2.2 幾何モデル

ステレオ画像を用いた三次元計測には、まず地上にお けるある点の座標 (x, y, z)が、画像上のどの座標 (u, v)に投影されるかについての関数が必要である.この関数 は、幾何モデルと呼ばれ、最近は RPC (Rational Polynomial Coefficients) モデルと呼ばれるものが一般的に 利用されている⁽¹⁾. RPC モデルは、次式のように三次 多項式により表現されている.

$$\begin{aligned}
u &= \frac{a_1 x^3 + a_2 y^3 + a_3 z^3 + \dots + a_{20}}{b_1 x^3 + b_2 y^3 + b_3 z^3 + \dots + b_{20}} \\
v &= \frac{c_1 x^3 + c_2 y^3 + c_3 z^3 + \dots + c_{20}}{d_1 x^3 + d_2 y^3 + d_3 z^3 + \dots + d_{20}}
\end{aligned}$$
(1)

ここで, *u*, *v* は画像座標, *x*, *y*, *z* は地上座標, *a*, *b*, *c*, *d*, は変換係数を表している.変換係数は,人工衛星の軌道 情報と姿勢情報,そしてセンサの内部ひずみを考慮した もので,画像を購入すれば変換係数の情報も付属してい る.ただ,RPC モデルは,若干システムエラーを含ん でいるために,精密な計測のためには基準点情報により 補正を行う必要がある.衛星画像の幾何モデル構築にお ける基準点とは,地上のある点の座標(*x*, *y*, *z*)が精密に 求められているとき,その点画像上での座標(*u*, *v*)がど こに当たるかが分かる点のことである.この基準点情報 を用いて PRC モデルに原点移動に当たるシフト項を与

図1 基準点公開ページ

えて補正する方法が一般に用いられている(2).

2.2 基準点データベース

地上分解能が,10m未満となると,既存地図は基準 点として十分な精度を有していないため, 高分解能人工 衛星画像のためには,基準点を別途精密に計測しておく 必要がある. そこで当研究室は, 高分解能衛星画像を幾 何補正する際に必要な基準点の整備を四国を対象に行っ てきた. 道路の交差点・橋の中央・堤防の角等を基準点 として選定し、三次元座標を計測している、その計測 は, GPS VRS (Virtual Reference Station) 測量である. GPS を用いた精密計測は、複数の GPS を用いる干渉測 位が有効であるが、それは非常に手間のかかる作業とな る. それに対して現在は、国土地理院が設置している電 子基準点を活用し、計測地点付近に仮想的な GPS の データを生成するサービスが行われている. これにより GPS 単体で数 cm の精度で計測が可能となっており, GPS VRS 測量と呼ばれている.この手法を用いて計測 した基準点の三次元座標を測量風景・衛星画像サンプル とともに Web 上で公開している. 2010年2月現在, そ の基準点の数は556点に及んでいる.図1は、公開して いる Web ページの例である (http://www.infra.kochitech.ac.jp/takalab/Information/research/GCPDB/ GCPDB.html).

本基準点データベースは、オルソ画像(正射投影画 像,一般の人工衛星画像はリニアアレーセンサで取得さ れ、カラム方向が中心投影でライン方向が平行投影と なっている.これを地図と重ね合わせるためには正射投 影への変換が必要である)やDSM (Digital Surface Model,地表面の標高データをモデル化したもので、地 盤のみの地形に関する標高データではなく,森林の樹冠 形状や家屋の屋根を含んだ土地被覆に対する標高データ の集まりである)等のプロダクトの生成に利用できる が,1m未満の高分解能人工衛星画像の場合は,点では なく道路形状等を基準点と利用する方が精度が向上す る⁽³⁾.

2.3 ステレオマッチングと三次元座標計算

一般に、ステレオ画像を用いた三次元計測のために は、左画像のある点が、右画像のどの点に相当するかを 抽出する必要がある.これをステレオマッチングと呼 び、非常に重要な処理である.PRISM 画像の場合、直 下視画像に加えて、前方視と後方視のトリプレット画像 である.トリプレット画像の場合は、対応点を三つの画 像から得られるため、三次元計測の精度の向上が期待さ れるが、現実には直下視と後方視の組合せでのステレオ マッチングが安定した結果となる場合が多い.北半球の 場合、後方視は太陽光が後方にある順光での画像が得ら れるが、前方視は太陽光が前方にある逆光での画像とな り、複雑な形状の物体では、光の反射・散乱の状況が前 方視と後方視で大きく異なる状況にある.このことか ら、ステレオマッチング処理において、日本では直下視 と後方視の組合せで行うのが好ましい.

ステレオマッチング処理は、面積相関法や最小二乗 マッチング法など様々な手法が提案されている。精度的 には、最小二乗マッチングが優れているようであるが、 初期値が必要なので、幾つかのマッチング手法と組み合 わせるのが一般的である⁽⁴⁾.

ステレオマッチングによって, 直下視画像のある点の 座標(*u_n*, *v_n*)が, 後方視画像の(*u_b*, *v_b*)に対応すると判定

図2 作成された標高モデル(DSM)の例

表1 標高の BMSE

シーン	RMSE (m)	備考
四万十市周辺	2.71	平野部
高知市周辺	3.03	平野部
高松市周辺	2.71	平野部
四国カルスト周辺	7.19	山間部
剣山周辺	14.0	山間部

されたとき、1シーンにつき二つの幾何モデルがあるため、合計四つの式が得られるのに対して、未知数は (x, y, z)の三つなので、最小二乗法により解を得ること ができる.以上が、ステレオ画像による三次元計測の流 れである.非線形方程式の解法は様々であるが、RPC モデルの場合、複雑な式ではないため、モンテカルロ法 などでも十分な精度の解を得ることができる.

PRISM による三次元計測結果

PRISM 画像を用いて DSM の作成を行った.用いた 画像は,Level 1B2の直下視画像と後方視画像である. 今回,バイアス補正済みの RPC モデルを用いて,五つ のエリアを対象に DSM 作成を行った.図2に作成され た DSM の例を示す.高知市周辺のデータより作成され た DSM から,物部川流域を切り出して作成した鳥瞰図 である.

作成した DSM の精度検証を基準点データベースを用いて行った.基準点の x, y 座標における DSM での z 値を比較し,基準点の z 座標を最確値として平均二乗誤差(RMSE)を計算した.その結果を表1に示す.

DSM 作成において山間部では、誤差の多い結果と

なった.

4. 災害監視に向けた課題

基準点データベースを構築し,四国全域を対象とした ALOS PRISM 画像から,DSM 作成を行った.その結 果,平野部の多い画像においては、3m 程度の精度を達 成し,満足のいく成果であったが、山間部の画像におい ては、10mを超える誤差となった.RPC モデルをバイ アス補正するだけでは十分な精度が得られなかったた め、20m 未満の地盤の変動を捉えるためには、モデル の改良が必要である.

例えば、DLT (Direct Linear Transfer) モデルと呼 ばれている幾何モデルは、写真測量の原理に基づいた幾 何モデルのため、精度向上が期待できる.7点以上の基 準点が必要であるが、構築された基準点は、1シーン当 り 20 点程度確保されているので十分実用可能と考えら れる.今後、DLT モデルを用いて DSM 作成を行い、 10 m 規模の地盤変動を捉えるためのベースマップ作成 を行っているところである⁽⁵⁾.

最後に、本研究は、独立行政法人宇宙航空研究開発機構における「ALOS データ利用公募型研究」の支援を 受けて行っている成果の一部をまとめたものである.

献

文

- C.V. Tao and Y. Hu, "A comprehensive study of the rational function model for photogrammetric processing," Photogramm. Eng. Remote Sens., vol. 66, no. 12, pp. 1477-1485, 2001.
- (2) C.S. Fraser and H. Hanley, "Bias-compensated RPC's for sensor orientation of high resolution satellite imagery," Photogramm. Eng. Remote Sen., vol. 71, no. 8, pp. 909-915, 2005.
- (3) 高木方隆,國友達也,小島光博,石田圭佑, "高分解能衛星画像 のためのペクトル図形基準点の精度検証,"写真測量とリモート センシング, vol. 49, no. 6, pp. 381-386, 2010.
- (4) A. Gruen and D. Akca, "Geospatial goes global: From your neighborhood to the whole planet," Least Squares 3D Surface Matching, ASPRS 2005 Annual Conference, Baltimore, Maryland, March, 2005.
- (5) K. Ishida, M. Kojima, and M. Takagi, "Cange detection of surface elevation by ALOS/PRISM for disaster monitoring," ISPRS Technical Commission VIII Symposium, no. TS19-1, Kyoto, Japan, 2010.

(平成 23 年 4 月 11 日受付 平成 23 年 5 月 9 日最終受付)

高木 方隆

昭60愛媛大・農・農工卒.平2同大学院博 士課程了.平5東大・生産技術研究所・助手. 以来,衛星リモートセンシングの研究に従事. 現在,高知工科大・システム工学群・教授.農 博.日本写真測量学会理事.

873