
2019

Doctorate thesis

Advanced Direction-of-Arrival

Estimation for Acoustic Signal

Processing and its Applications

1208005 Bandhit Suksiri

Advisor Prof. Masahiro Fukumoto

August 2019

Course of Information Systems Engineering

Graduate School of Engineering, Kochi University of Technology



Abstract

Advanced Direction-of-Arrival Estimation for Acoustic Signal

Processing and its Applications

Bandhit Suksiri

Recent year have seen rapidly increasing demand for services and systems that

depend upon accurate positioning of people and machines. This has led to the devel-

opment and evolution of numerous positioning systems. In addition to these systems,

direction-of-arrival (DOA) estimation in particular plays a critical role in navigation

systems for the exploration of sources in widespread applications, such as voice activ-

ity detection, human computer interaction, automatic camera steering, robotics and

surveillance. Although wide variety of DOA estimation methods have been proposed

for the multitude of applications, DOA estimation for acoustic sources however has not

been widely investigated, and many significant methods cannot be applied to acoustic

circumstances directly. The reason is that the most of DOA estimations are based on

wireless communications and characteristics of wireless signal are totally different from

the acoustic signal. Furthermore, the presence of reverberation and background noise

present challenges that need to be addressed in a realistic environment.

This dissertation therefore aims to bridge a research gap of acoustic source compat-

ibility on recent DOA estimation methods for estimating DOA of the acoustic sources

directly and effectively. Our research works focus on the development of new frame-

works, suitable theories and extended techniques for estimating acoustic DOAs in the

hope of improving efficacy, simplicity, and yet accuracy, to solve practical problem.
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Since the conventional signal modeling techniques solely focus on a narrowband sig-

nal, which is necessary to consider an acoustic source or equivalence to wideband source

for more practical use, especially in case of human speech. Therefore, the first research

work of this dissertation begins with an alternative signal modeling for acoustic sources

with L-shaped microphone array configuration. The problem of estimating acoustic

DOAs is addressed and resolved by declaring terms of temporal and reference frequen-

cies in array manifold matrices of the signal model. In addition to this, the proposed

model is now compatible with almost recent narrowband DOA estimation methods,

it means that this model enables cutting-edge techniques in the existing narrowband

subspace methods to apply acoustic source directly and efficiently.

After the acoustic signal modeling technique has been successfully given, we con-

tinue to present DOA estimation method for acoustic sources by using unsupervised

learning along with this signal model. The problem of estimating DOA of acoustic

signals is addressed by focusing the entire observation subspace in each frequency bin.

In addition to this observation process, we employ the Gaussian mixture model with

a maximum likelihood estimation algorithm as an interpolation scheme, and the DOA

results are estimated easily by interpolating the multi-narrowband DOA results all fre-

quency bins with this interpolation scheme. The performance is evaluated in terms

of root-mean-square-error over a range of signal-to-noise ratio (SNR), and the results

suggest that the proposed method is a particularly effective method of DOA estimation

with a requirement of high computational resources.

In the next part of work, we present an efficient wideband or acoustic 2D DOA

estimation, which is an improved version of the previous method. We propose a way

to construct a wideband sample cross-correlation matrix without any process of DOA

preliminary estimation, such as beamforming technique, by exploiting sample cross-

correlation matrices of two different frequencies for all frequency bins along with the
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Orthogonal Procrustes analysis. Subsequently, wideband DOAs are estimated by using

this wideband matrix along with a recent scheme of estimating DOA in a narrowband

subspace method. A contribution of this work is providing an alternative framework

for recent narrowband subspace methods to estimating the DOA of wideband sources

directly. It means that this framework enables cutting-edge techniques in the exist-

ing narrowband subspace methods to implement the wideband direction estimation for

reducing the computational complexity and facilitating the estimation algorithm. The-

oretical analysis and effectiveness of the proposed method are substantiated through

numerical simulations, and the results show that performance of the proposed method

performs better than others over a range of SNR with just a few microphones.

In addition to Orthogonal Procrustes analysis as used in the previous work, in the

next part of work, we improve accuracy performance of the previous framework for es-

timating wideband or acoustic DOA by proposing an extension theory of Orthogonal

Procrustes analysis with much more efficiently than the original theory. The proposed

framework is inspired by the coherent signal subspace technique with further improve-

ment of linear transformation procedure, and the new procedure no longer require any

process of DOA preliminary estimation by exploiting unique cross-correlation matrices

between received signal and itself on distinct frequencies, along with the higher-order

generalized singular value decomposition of the array of this unique matrix. Wide-

band DOAs are estimated by employing any subspace-based technique for estimating

narrowband DOAs, but using the proposed wideband correlation instead of a conven-

tional narrowband correlation matrix. It implies that the proposed framework enables

cutting-edge researches in the recent narrowband subspace methods to estimate DOA

of the wideband sources directly, which result in the reducing computational complex-

ity and facilitating the estimation algorithm. This thus be a major contribution of the

proposed framework as same as the previous framework, but much more efficiently than
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the previously. Practical examples are presented to showcase its applicability and ef-

fectiveness, and the experimental results show that the performance of fusion methods

perform better than others over a range of SNR with just a few sensors, which make it

suitable for practical use.

Unlike all previous methods that have focused on estimating wideband or acoustic

DOAs, the final part of this work addresses a problem to estimate a variance of sources

for all frequency bins and its DOAs simultaneously. Signal model is renovated into a

tensor representation of the three features: x-subarray angle, variance-of-frequencies,

and z-subarray manifold angle. In particular, complex-valued parallel factor analysis is

used as the tensor factorization, and the variance-of-frequencies and its DOAs are now

estimated simultaneously via this factorization technique. Effectiveness of proposed

method is substantiated through numerical simulations, and it suggests that our method

provides a promising alternative for intelligent source localization.

In the end, we believe that our research findings presented in this dissertation will

appeal to researchers who wish to develop a sound source based navigation system and

improve its robust estimation. We also hope that these findings can be a good alternative

for estimating DOA of acoustic sources, especially human speeches and musical sounds.

key words direction-of-arrival (DOA); higher-order generalized singular value de-

composition (HOGSVD); wideband sources; sound source; array processing; sub-

space method; cross-correlation
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Chapter 1

Fundamentals of Position

Location and its Recent Issues

Recent year have seen rapidly increasing demand for services and systems that

depend upon accurate positioning of people and objects. This has led to the development

and evolution of numerous positioning systems. This chapter provides an overview of the

main positioning techniques. We introduce the positioning systems that are in use for

a variety of applications including in acoustic signal processing. The chapter concludes

by reviewing recent positioning techniques and outlining the research objectives.

1.1 Introduction of Positioning System

Positioning systems determine the location of a person or an object either relative

to a known position or within a coordinate system. In the last few decades, various

positioning systems have been motivated by demand and have been developed. Some

of the applications of positioning systems include law enforcement, security, road safety,

tracking personnel, vehicles, and other assets, situation awareness, and mobile ad hoc

networks. Nowadays, the local positioning in indoor environments with mobile devices

is becoming increasingly relevant. Some applications of local positioning system are the

location, tracking and guidance of people in indoor environments, as well as new ways

of interacting with the objects in their surroundings.
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1.2 Basic Methods Used in Positioning

1.2 Basic Methods Used in Positioning

In this section, the fundamental techniques of positioning systems are explained.

The first category is based on the propagation time of the signals as an estimate for

a distance between target and node. This time-based techniques can be grouped in

time-of-arrival (TOA) and time-difference-of-arrival (TDOA) techniques. The second

category measures a received signal strength (RSS). The strength of received signal indi-

cates the distance traveled by the signal. The third category is based on the directional

property of antenna arrays for detecting a direction-of-arrival (DOA). In fact, TOA,

TDOA, RSS, DOA can be used alone or in combinations to improve the qualities of

measurements of received signals.

1.2.1 Time-of-Arrival Estimation

Time-of-arrival (TOA) estimation allows the measurement of distance by measuring

propagation times in each node. Multiple base nodes collaborate to localize a target

node via triangulation. It is assumed that the positions of all base nodes are known. If

these nodes are dynamic, a positioning technique is used to allow base nodes to localize

their positions. In some circumstances, multiple base nodes may cooperate to find their

own position before any attempt to localize a target node.

Assuming known positions of base nodes, three base nodes and three measurements

of distances are required to localize a target node as illustrated in Fig. 1.1. Using the

measurement of distance, the position of a target node is localized within a sphere of

radius with the ith receiver at the center of the sphere. The localization of the target

node can be carried out either by base nodes using a master station or by the target

node itself. TOA has a few drawbacks: (1) it requires all nodes to precisely synchronize,

(2) the transmitted signal must be labeled with a time stamp in order to allow the base

– 2 –



1.2 Basic Methods Used in Positioning

τ1 τ1 τ1

τ2 τ2τ3

B1 B1 B1

B2 B2 B2

B3

Target location
B3 B3

Potential target location will lie 
on a circle with radius R1 , τ 1 .

Potential target location is one of the 
two points of intersection of the circ-
les with radius               and R1 , τ 1 R2 , τ 2 .

Final target location will be the 
point that passes through the ci-
rcle with radius  R3 , τ 3 .

Fig. 1.1 Operation of TOA.

node to determine the time at which the signal was initiated at the target, and (3) the

positions of the base nodes should be known.

1.2.2 Time-Difference-of-Arrival Estimation

Time-difference-of-arrival (TDOA) estimation requires the measurement of the dif-

ference in time between the signals arriving at two base nodes. Similar to TOA estima-

tion, this method assumes that the positions of base nodes are known; TOA difference

at the base nodes can be represented by a hyperbola as shown in Fig. 1.2. A hyperbola

is the locus of a point in a plane such that the difference of distances from two fixed

points is a constant.

Assuming known positions of base nodes, three base nodes and two TDOA mea-

surements are required to localize a target node. The base station that first receives the

signal from the target node is considered as the reference base station as illustrated in

Fig. 1.2. TDOA measurements are made with respect to the reference base station.

Although TDOA addresses the first drawback of TOA by removing the requirement

of synchronizing the target node clock with base node clocks, TDOA is the time differ-
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1.2 Basic Methods Used in Positioning

Target location

B1 B1 B1B2 B2 B2

B3 B3 B3(1-2)

(1-3)
(1-2)

r1 r1
r1r2 r2

r3This line (1-2) is formed using 
TDOA from        to        .B1 B2

First sensor that first receives the 
signal from the target location 
becomes the reference point.

Potential target location will be on 
a hyperbola that is formed using 
one TDOA measurement (1-2) with 
respect to reference point.

Final target location will be the point 
of intersection of two hyperbolas, 
which are formed using two TDOA 
measurements (1-2) and (1-3) with re-
spect to the reference point. 

Fig. 1.2 Operation of TDOA.

ence between the end times. Therefore, only base node clocks need to be synchronized

to ensure minimum measurement error. The base node clock can be synchronized ex-

ternally by using a backbone network or internally using timing standards provided at

the nodes. The fact that synchronization of target nodes is not required enables many

applications for TDOA-based systems. With respect to the second drawback of TOA,

since a single TDOA measurement is the difference in the arrival time at the respective

base nodes, the transmitted signal from the target node in TDOA need not contain a

time stamp. This advantage of TDOA is again exploited by many applications as well.

1.2.3 Received Signal Strength Indicator

In this method, a location estimation is carried out using the received signal

strength indicator (RSSI). The strength of the received signal indicates the distance

traveled by the signal by assuming that the transmission strength and channel charac-

teristics are known. Similar to the TOA, in RSSI, multiple base nodes collaborate to

localize a target node via triangulation.
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θ1 θ1

θ2

Target location

B1 B1
B2

Potential target location will lie on a line whose 
direction is determined by peak incoming energy 
signal using sensor array. 

Final target location will be a point that passed through 
the intersection of two lines whose directions are deter-
mined by peak incoming energy signals using sensors 
arrays at two base nodes.

Fig. 1.3 Operation of DOA.

1.2.4 Direction-of-Arrival Estimation

In direction-of-arrival (DOA) estimation, base nodes determine the angle of the

arriving signal. The system is required to equip with antenna arrays in order to allow

base stations to estimate DOA as shown in Fig. 1.3. Similar to TOA and TDOA esti-

mation, in DOA estimation, the positions of base nodes should be known. Unlike TOA

and TDOA, only two base nodes along with two DOA measurements are required; it

means that only two base nodes equipped with antenna arrays are sufficient to maintain

full localization of a target node. This adds a higher flexibility to DOA estimation tech-

niques compared with TOA or RSSI estimation methods. Furthermore, DOA addresses

the first and second drawback of TOA by removing the requirement of synchronizing

the target node clock with base node clocks because it does not require the time.

A wide variety of DOA estimation algorithms have been proposed for a multitude

of applications such as sonar localization, radar detection, and mobile communication

systems. DOA estimation in particular also plays a critical role in navigation systems

for the exploration of sound sources in acoustic signal processing, which the next section

will address further.
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Microphone Array

Automatic Moving Camera Microphone Array

Microphone Array

Target Location #2

Target Location #1Target Location #1

Target Location #2

Drone

Target Location

Target Location

Fig. 1.4 Examples of acoustic source based positioning system; (a) Moving

source localization for automatic camera steering, which has found with lots of

applications recently such as lecture recording. (b) Passive acoustic detection

and computer-based signal processing to locate a shooter in less than a second;

it detects small arms fire travelling toward it for bullets passing within approx-

imately 30 meters of the mast-mounted compact array of microphones.(c) Mi-

crophone array technology for the “robot ears” in finding victims needing rescue

at disaster sites; the three keys are sound source localization technology to esti-

mate where sound is coming from, sound source separation technology to extract

the direction from which the sound originates, and automatic speech recognition

technology to recognize separated sounds from background noise. (d) A real-time

direction-of-arrival estimation for sequential movement events of vehicles.
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1.3 Positioning System in Acoustic Signal Processing

There are some positioning system, as the one proposed in this dissertation, that

benefit from the low propagation speed of sound in air to achieve centimeter accuracy

by measuring the DOA of acoustic signals. These acoustic local positioning systems

can be easily implemented in portable devices or smart speaker since most of them are

equipped with audio recording hardware off-the-shelf. The frequency response of mobile

device’s microphones and speakers is always below 22 kHz and their audio acquisition

sampling rates are not higher than 96 kHz, which is enough for a plenty of acoustic-based

applications such as voice activity detection, human computer interaction, automatic

camera steering, beamforming, robotics and surveillance as shown in Fig. 1.4.

1.4 Motivations and Objectives of this Dissertation

Historically, measurement of the features of received signals needed for input to

position estimation algorithms have relied on four methods: TOA, TDOA, RSSI and

DOA. In addition to these methods, DOA estimation has been attracting a great deal of

attention in acoustic signal processing and applications as shown in Fig. 1.4. According

to the literature reviews, however, there are only few numbers of high efficient techniques

and suitable theory when it comes to the acoustic DOA estimation. The reason is that

the most of DOA estimations are based on wireless communications and characteristics

of wireless signal are totally different from the acoustic signal. Furthermore, the presence

of reverberation and background noise present challenges that need to be addressed in

a realistic environment.

Therefore, this dissertation focuses on the development of extension of techniques,

new framework and suitable theory for estimating acoustic DOAs, which a capable of

high accuracy detection for acoustic sources. Given that DOA estimation plays a criti-
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The Existing DOA Estimation for Acoustic Sources

DOA Estimation in Application of Wireless Communication

DOA for Wideband Source

DOA for Narrowband Source

Classic & Simplest

Level of Robustness

High Efficiency

Extension of 
framework,

theory, techniques

Fig. 1.5 Motivations and objectives of this research works.

cal role in navigation systems for the exploration of sources in widespread applications,

especially including in acoustic signal processing recently. DOA estimation for acous-

tic sources, however, has not been widely investigated, and many significant methods

for narrowband DOA estimation cannot be applied to acoustic circumstances directly.

Therefore, this dissertation aimed to bridge a research gap of acoustic source compatibil-

ity on the recent narrowband and wideband subspace methods to estimate DOA of the

acoustic sources directly and effectively. We believe that our findings presented in this

dissertation will appeal to researchers who wish to develop a sound source based naviga-

tion system and improve its robust estimation. We also hope that this new framework

and theory can be a good alternative for estimating DOA of acoustic sources, especially

human speeches and musical sounds.

1.5 Dissertation Organization

This dissertation is organized into 7 chapters. Chapter 2 presents an alternative

signal modeling for wideband sources (or equivalence to acoustic sources) with L-shaped
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microphone array configuration. The previous approaches focus on a narrowband sig-

nal model, which is necessary to consider a wideband source for more practical use,

especially in human speeches and musical sounds. The problem of estimating DOA of

multi-narrowband signals is addressed and resolved by declaring new terms of temporal

and focusing frequencies in array manifold matrices of the new signal model. In ad-

dition to this, the proposed model is also compatible with almost recent narrowband

DOA estimation methods, it means that this model enables cutting-edge techniques

in the existing narrowband subspace methods to apply acoustic source directly and

efficiently. Furthermore, performance of the proposed model is evaluated in terms of

the root-mean-squared error (RMSE) over a range of the signal-to-noise ratio (SNR)

along with the recent DOA estimation methods, and the results demonstrated that the

proposed model can efficiently handle wideband sources with acceptable SNR levels.

Chapter 3 presents a novel DOA estimation method for wideband sources by us-

ing unsupervised learning. The problem of estimating DOA of wideband signals are

addressed by focusing the entire observation subspace in each frequency bin along with

employing a multi-narrowband signal model as was previously proposed in Chapter 2.

In addition to this observation process, we employ the Gaussian mixture model with

a maximum likelihood estimation algorithm as an interpolation scheme, and wideband

DOA results are estimated easily by interpolating the multi-narrowband DOA results

all frequency bins with this interpolation scheme.

Chapter 4 presents an efficient wideband two-dimensional direction-of-arrival

(DOA) estimation for an L-shaped microphone array. We propose a way to construct

a wideband sample cross-correlation matrix without any process of DOA preliminary

estimation, such as beamforming technique, by exploiting sample cross-correlation

matrices of two different frequencies for all frequency bins along with the Orthogonal

Procrustes analysis. Subsequently, wideband DOAs can be estimated by using this
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wideband matrix along with a recent scheme of estimating DOA in a narrowband

subspace method. Therefore, a contribution of our study is providing an alterna-

tive framework for recent narrowband subspace methods to estimating the DOA

of wideband sources directly. It means that this framework enables cutting-edge

techniques in the existing narrowband subspace methods to implement the wideband

direction estimation for reducing the computational complexity and facilitating the

estimation algorithm. Theoretical analysis and effectiveness of the proposed method

are substantiated through numerical simulations, which are performed in reverberating

environments. The results show that performance of the proposed method performs

better than others over a range of SNR with just a few microphones. All these

advantages make the proposed method a powerful tool for navigation systems based on

acoustic signal processing.

After the proposed method in Chapter 4 has been successfully applied to acoustic

sources by employing Orthogonal Procrustes analysis. Chapter 5 further extend and pro-

pose an efficient framework for estimating DOA of wideband sound sources. We extend

a theory of Orthogonal Procrustes analysis for estimating wideband DOAs much more

efficiently than the previously. The proposed framework provides an efficient way to con-

struct a wideband cross-correlation matrix from multiple narrowband cross-correlation

matrices for all frequency bins via the proposed extension theory of Orthogonal Pro-

crustes analysis. In addition, the proposed framework is inspired by the coherent signal

subspace technique with further improvement of linear transformation procedure, and

the new procedure no longer require any process of DOA preliminary estimation by

exploiting unique cross-correlation matrices between received signal and itself on dis-

tinct frequencies, along with the higher-order generalized singular value decomposition

(HOGSVD) of the array of this unique matrix. Wideband DOAs are estimated by em-

ploying any subspace-based technique for estimating narrowband DOAs, but using the
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proposed wideband correlation instead of the narrowband correlation matrix. It implies

that the proposed framework enables cutting-edge researches in the recent narrowband

subspace methods to estimate DOA of the wideband sources directly, which result in

the reducing computational complexity and facilitating the estimation algorithm. This

thus be the major contribution of the proposed framework as same as the contribution

on Chapter 4, but much more efficiently than the previously. Practical examples are

presented to showcase its applicability and effectiveness, and the experimental results

show that the performance of fusion methods perform better than others over a range

of SNR with just a few sensors, which make it suitable for practical use.

Unlike all previous methods in Chapters 3 to 5 that have focused on wideband

DOA estimation, Chapter 6 proposes a new way to estimate a variance each temporal

frequency and DOA of wideband sources simultaneously. Signal model is renovated

into a tensor representation of the following features: x-subarray angle, variance-of-

frequency, and z-subarray manifold angle. DOAs and variance-of-frequency are now

estimated simultaneously by employing a tensor factorization on the proposed signal

model. In particular, complex-valued parallel factor analysis is utilized as the tensor

factorization. This novel method provides a promising alternative for intelligent source

localization.

Finally, Chapter 7 conclude the overall proposed methods. The advantages and

discussion of all techniques are given.
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Chapter 2

An Alternative Signal

Modeling for Wideband

Sources with L-Shaped

Microphone Array

Configuration

This chapter presents an alternative signal modeling for wideband sources with L-

shaped microphone array configuration. The previous approaches focus on a small and

narrowband of frequency of signal model, which is necessary to consider a wideband

source for more practical use. The problem of estimating direction-of-arrival of multi-

narrowband signals are addressed and resolved by declaring new terms of temporal and

focusing frequencies in array manifold matrices of the new signal model. Additionally,

the proposed model is also compatible with almost recent direction-of-arrival estimation

methods, such as, the multiple signal classification and the other cross-correlation based

techniques. Performance of the proposed model is evaluated in terms of the root-mean-

squared error over a range of the signal-to-noise ratio along with the recent direction-of-

arrival estimation methods, and the simulation results demonstrated that the proposed
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model can efficiently handle wideband sources with acceptable noise levels.

2.1 Reviews on Recent Signal Modeling Techniques

As mentioned in Section 5.1, the fundamental competence of source localization

has been extensively implemented in navigation systems for the exploration of sources,

which is known as direction-of-arrival (DOA) estimation, and DOA estimation in partic-

ular has been widely implemented in many areas [1–6]. The major efficiency drawbacks

of the source localization in navigation system are depended on background noise, mul-

tiple source locations, and variation in the sound patterns and source frequencies. A

number of methods have been introduced to improve the source localization efficiency,

including, generalized cross correlation method [7–10], maximum cross-correlation meth-

ods [11] and subspace method [12–37,40,41]. In addition to this, subspace methods are

increasingly utilized for the DOA estimation of multiple sources. In case of the one-

dimensional (1D) DOA estimation, the uniform linear array (ULA) structure has been

developed, and its effective methods of dealing with 1D DOA estimation can be found

in [12–15]. On the contrary, such model is unable to offer simultaneous angles of azimuth

and elevation.

Recently, the two-dimensional (2D) DOA estimation using a 2D geometrical struc-

ture of sensors has received considerable attention in the array signal processing and

widespread applications. Among various array geometrical structures such as the rect-

angular array, the parallel uniform linear array and circular array, the L-shaped array

has attracted a lot of attention. In addtion, it was previously found that the structure of

L-shaped array is considerably effective for estimating 2D DOAs as shown in Table 2.1,

and the literature [18]. Several L-shaped array-based 2D DOA estimation methods

have been proposed for estimating 2D DOA of narrowband sources [16–18]. Although
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Table 2.1 Cramer-Rao bound of array geometrical structures

Structure Figure CRB

Octagon Array (Circle Array)

4,12,16,20,...

57

δM3

L-Shaped Array

3,5,...,15,17,19,...

60

δM3

Cross Array

5,9,...,17,21,....

96

δM3

Triangle Array

3,6,9,12,18,21,...

108

δM3

* δ = 2SNR
(
2πd
λ

)2
, CRB represents the lowest error bound of DOA.

these methods calculate the direction of narrowband sources using noise subspace via

eigendecomposition (EVD), which result in a superior multiple sources localization. In

particular, these methods also employ s spectrum peak searching algorithm or nonlinear

searching algorithm, which result in huge computational costs and not suggestible for

real-time applications. Due to its computational complexities, many computationally

efficient algorithms for 2D DOA estimation have been proposed in order to overcome

this problem. For example, Tayem et al. [20] and Wu et al. [21] initially proposed the
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Fig. 2.1 L-shaped microphone array configuration for 2D DOA estimation.

computationally efficient 2D DOA estimation by using the propagator method (PM) in

order to avoid the EVD operation; however, the additional angle pair matching algo-

rithm is required for matching azimuth and elevation angles. [19–21]. According to this

issue, there are two options to overcome this difficulty: Of course, the first solution is

utilizing the angle pair matching algorithm [22]. One the other hand, the automatic

pairing 2D DOA estimation were proposed for avoiding this problem [23–35]. According

to the resent methods on this issue, only narrowband sources can be used because the

previous signal model is based on a narrowband signal.

Therefore, we aim to propose an alternative signal modeling for wideband sources

with L-shaped microphone array configuration. The problem of estimating 2D DOA of

multi-narrowband signals are addressed and resolved by declaring new terms of temporal

and focusing frequencies in array manifold matrices of the new signal model, which the

next section will address this matter.
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Fig. 2.2 Normalized radiation patterns of the L-shaped arrays respect to DOA

angles; (a) f = fc and (b) f = fc/4 where M = 8, d = λ/2.

2.2 Phase Difference Equation

The traditional difference equation of time-delayed signal is given by Euler’s formula

as ei2πft where f is source frequency and t is time difference of arrival due to the distance

between a source and microphone. Assume that two microphones in x-z plane, the phase

difference equation of the x-z plane is defined as

q (ϕk, θk) = e
j2πf(ϵx cosϕk+ϵz cos θk)

c , (2.1)
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Fig. 2.3 Normalized radiation patterns of the L-shaped arrays respect to coor-

dinates; (a) f = 4fo, (b) f = 2fo, (c) f = fo, (d) f = fo
2

where M = 12, λ = d
2
.

where ϕk is an angle between x axis and the sources, θk is an angle between x axis and

the sources, ϵx and ϵz are spacing of the microphone elements in the x and z axis, and

c is the speed of sound. According to the literature [40], the spacing of the microphone

elements in any axis should be set to λ
2 where λ = c/fc is the wavelength and fc is

frequency corresponding to the wavelength. The reason is that to avoid angle confusion

caused by grating lobes and the lower power beam-width of main lobe in radiation

pattern of array structure.

As the fact that the power beam-width of the grating lobes in the radiation patterns

depends on f and fc, the phase difference function can be redefined as

q (ϕk, θk) = e
( f

fc
)·
(

j2π(ϵx cosϕk+ϵz cos θk)
λ

)
. (2.2)

Consider the L-shaped array as illustrated in Fig. 2.1, where it consists of two orthogonal
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M -element ULAs in the x-z plane. The spacing of the microphone elements and the

spacing between z0 and x1 is also d. The reference point is pinned at the origin of

coordinates z1. Form Eq. (2.2), the magnitude of the L-shaped array factor represents

a radiation pattern and correspond to the following equation;

AF =
1

2M

∣∣∣∣∣
M∑
m=1

αm (ϕk) +

M∑
m=1

βm (θk)

∣∣∣∣∣ , (2.3)

where

α (ϕk) =
[
1 ejαk . . . ej(M−1)αk

]T
,

β (θk) =
[
ejβk ej2βk . . . ejMβk

]T
,

αk =

(
f

fc

)
·
(
2πd cosϕk

λ

)
,

βk =

(
f

fc

)
·
(
2πd cos θk

λ

)
.

(2.4)

It can be seen from Fig. 2.2 that power beam-width of the grating lobes in Eq. (2.3)

is apparently affected by f/fc. As the ratio of f and fc decreases from 1 to 1/4, the

overall power beam-width decreases significantly; therefore, it suggests that range of

source frequency f should be selected to be less than or equal center frequency fc.

In order to avoid the confusion when lower source frequency is chosen, the number of

microphone elements M should be increased as well as illustrated in Fig. 2.3.

2.3 The New Data Model

Consider P far-field multi-narrowband sources impinging on the L-shaped arrays

as shown in the previous section, the output of each microphone is sampled and de-

composed into n snapshots by a short-time Fourier transform (STFT), with each frame

containing a set of frequencies f . Therefore, the received signal vector vectors in x and

z subarrays are represented as follows:

X (n, f) = Ax (ϕ)S (n, f) +W x (n, f) , (2.5)
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Z (n, f) = Az (θ)S (n, f) +W z (n, f) , (2.6)

Ax (ϕ) =
[
α (ϕ1) α (ϕ2) . . . α (ϕP )

]
, (2.7)

Az (θ) =
[
β (θ1) β (θ2) . . . β (θP )

]
, (2.8)

where the remaining components in Eqs. (2.7) and (2.8) are

X (n, f) =
[
x1 (n, f) x2 (n, f) . . . xM (n, f)

]T
,

Z (n, f) =
[
z0 (n, f) z1 (n, f) . . . zM−1 (n, f)

]T
,

S (n, f) =
[
s1 (n, f) s2 (n, f) . . . sP (n, f)

]T
,

W x (n, f) =
[
wx1

(n, f) wx2
(n, f) . . . wxM

(n, f)
]T
,

W z (n, f) =
[
wz0 (n, f) zz1 (n, f) . . . wzM−1

(n, f)
]T
.

(2.9)

Note that X (n, f) and Z (n, f) represent sum of received signals in x and z subarrays

for all P sources with different angles. S (n, f) represents source signals. W x (n, f) and

W z (n, f) are an additive noise vectors in x and z subarrays for all microphone elements.

Ax (ϕ) and Az (θ) are the proposed array manifold matrices of x and z subarrays. n is

a snapshot and f is source frequency. The relationship between the azimuth angle ϕ̄,

elevation angle θ and x subarray angle ϕ is expressed by Euler’s formula as follows;

cosϕk = sin θk cos ϕ̄k. (2.10)

Now, the proposed data model is able to represent the source signals on wideband

frequency bands because of Eq. (2.4) on Eqs. (2.7) and (2.8). We can use the proposed

data model for estimating multi-narrowband DOAs by employing the recent narrowband

DOA estimation, which the next section will address further.
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2.4 Example of DOA Estimation Schemes with the

New Data Model

In order to verify those Eqs. (2.7) and (2.8) are compatible with most classical

subspace-based methods, 2D MUSIC method [16], the Wang et al. [34] and Dong et

al. [31] method are chosen and we replace the conventional array manifold matrix to

the proposed array manifold matrix, which explains in the next three subsections.

2.4.1 Extension of 2D MUSIC Method

Under the assumptions of data model from [34,40,41] and assuming noise free en-

vironment, the cross-correlation matrix from the received signals in Eqs. (2.5) and (2.6)

can be described as follows:

Ryy = E

[X (n, f)

Z (n, f)

][
X (n, f)

Z (n, f)

]H
=

[
Ax (ϕ)

Az (θ)

]
E
[
S (n, f)S (n, f)

H
] [Ax (ϕ)

Az (θ)

]H

=

[
Ax (ϕ)

Az (θ)

]
Rss

[
Ax (ϕ)

Az (θ)

]H
(2.11)

where E [·] is the statistical expectation, Rss is the correlation matrix of sources S (n, f).

Applying EVD, Ryy can be represented as the factorization of matrix into a canonical

form as follows:

Ryy = U sΛsU s
H +UwΛwUw

H (2.12)

where U s and Λs are the matrix of eigenvector and eigenvalue in the signal subspace.

Uw and Λw are the matrix of eigenvector and eigenvalue in the noise subspace.

After the matrix Uw is estimated, we can obtain ϕk and θk by maximizing the

following cost function with Eq. (2.4) as follows:{
ϕ̂k, θ̂k

}P
k=1

= argmax
ϕ,θ

(ln |fMUSIC (ϕ, θ)|) (2.13)
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where

fMUSIC (ϕ, θ) =
1[

α (ϕ)

β (θ)

]H
UwUw

H

[
α (ϕ)

β (θ)

] . (2.14)

2.4.2 Extension of Wang et al. Method

The computationally efficient narrowband subspace-based 2D DOA estimation

method without EVD was proposed by Wang et al [34]. This method begin by

constructing the cross-correlation matrix Ryy which already described in Eq. (2.11).

In summary, the modified cost function with Eq. (2.4) are given by:

{
ϕ̂k, θ̂k

}P
k=1

= argmin
ϕ,θ

[α (ϕ)

β (θ)

]H
Π̂

[
α (ϕ)

β (θ)

] , (2.15)

or {
ϕ̂k, θ̂k

}P
k=1

= argmax
ϕ,θ

−

[
α (ϕ)

β (θ)

]H
Π̂

[
α (ϕ)

β (θ)

] , (2.16)

where

Π̂ = Q̂

(
I2M−P − P̂

H
(
P̂ P̂

H
+ IP

)−1

P̂

)
Q̂
H
,

P̂ =
(
Ĝ1Ĝ

H

1

)−1

Ĝ1Ĝ
H

2 ,

Q̂ =
[
P̂
T

−I2M−P

]T
,

Ryy =

[
G1

G2

]
.

(2.17)

Note that size of matrices G1 and G2 are 2M × P and 2M × 2M − P , respectively.

2.4.3 Extension of Dong et al. method

To estimates the DOA angles without employing 2D peak finding algorithm, Dong

et al. proposed the efficient method with only employing 1D peak finding algorithm

[31, 32]. This method begin by constructing the cross-correlation matrix Rxz between
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x and z subarrays as follows:

Rxz = E
[
X (n, f)Z (n, f)

H
]

= Ax (ϕ)E
[
S (n, f)S (n, f)

H
]
AH
z (θ)

= Ax (ϕ)RssA
H
z (θ) .

(2.18)

As the conjugate system property posses in the proposed array manifold matrix

Eqs. (2.7) and (2.8), we can have:

JM (Ax (ϕ))
∗
= Ax (ϕ) Φ̃xr (ϕ) , (2.19)

JM (Az (θ))
∗
= Az (θ) Φ̃zr (θ) , (2.20)

Az2 (θ) = Az1 (θ)Φz (θ) , (2.21)

where

Φ̃xr (ϕ) = diag
([
e−j(M−1)α1 . . . e−j(M−1)αP

])
,

Φ̃zr (θ) = diag
([
e−j(M−1)β1 . . . e−j(M−1)βP

])
,

Φz (θ) = diag
([
ejβ1 ejβ2 . . . ejβP

])
,

(2.22)

Az1 (θ) and Az2 (θ) are the first and the last M − 1 rows of Az (θ). Then, the new

cross-correlation matrix can be reconstructed with the similar scheme on [25, 31], as

follows:

Y =

[
Y 1,JMY ∗

2

Y 2,JMY ∗
1

]
= Ag (ϕ,θ)Sg (ϕ,θ)

(2.23)

where

Ag (ϕ,θ) =
[
AT
x (ϕ) (Ax (ϕ)Φ

∗
z (θ))

T
]T
,

Sg (ϕ,θ) =
[
RssA

H
z1 (θ) Φz (θ) Φ̃xr (ϕ)RssA

T
z1 (θ)

]
,

Y 1 = Ax (ϕ)RssA
H
z1 (θ) = Rxz (:, 1 :M − 1) ,

Y 2 = Ax (ϕ)RssA
H
z2 (θ) = Rxz (:, 2 :M) .

(2.24)

In the same way of 2D MUSIC method, applying EVD to RY Y = Y Y H , the matrix

RY Y can be factorized as summation of two matrices, including, the matrix of eigenvec-

tor and eigenvalue in the signal subspace and noise subspace. After the noise subspace
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2.5 Numerical Simulation

matrices is obtained, the new cost function for estimating multi-narrowband DOAs can

be expressed as follows:{
ϕ̂k, θ̂k

}P
k=1

= argmin
ϕ,θ

(
qH (θ)F (ϕ) q (θ)

qH (θ) q (θ)

)
, (2.25)

or {
ϕ̂k, θ̂k

}P
k=1

= argmax
ϕ,θ

(
−qH (θ)F (ϕ) q (θ)

qH (θ) q (θ)

)
, (2.26)

where

q (θ) =
[
1 e−jβ

]T
,

F (ϕ) = (I2 ⊗α (ϕ))
H
Uw,RY Y

UH
w,RY Y

(I2 ⊗α (ϕ)) ,

⊗ is Kronecker product. In order to solve Eq. (2.26) without using 2D search, Dong et

al. described the relationship between the eigenvalue and its determinant which can be

rewritten as 1D search optimization problem as follows:

ϕ̂k = argmax
ϕ

(
1

F (ϕ)

)
. (2.27)

In the end, θ̂k can be estimated via the eigenvector corresponding to the minimum

eigenvalue of F
(
ϕ̂k

)
;

ϕ̂k = arccos

(
angle

(
e1min

e2min

)
·
(

λ

2πd

)
·
(
fc
f

))
. (2.28)

where e1min and e2min are the first and second elements of the eigenvector corresponding

the minimal eigenvalue of F
(
ϕ̂k

)
. Those Eqs. (2.27) and (2.28) showed that method

can pair the angles automatically without using 2D search.

2.5 Numerical Simulation

In this section, the performance of the proposed array manifold matrix was demon-

strated with three types of cost functions; 2D MUSIC method [16], the Wang et al.

method [34], and Dong et al. method [31]. We merged the proposed array manifold
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Fig. 2.4 Search space results of three types of cost functions along with the

proposed array manifold matrices; (a), (b) 2D MUSIC in Eq. (2.13); (c), (d) the

Wang et al. method in Eq. (2.16); (e), (f) Dong et al. method in Eq. (2.26),

where source frequency in (a), (c), (e) are 3.4 kHz and (b), (d), (f) are 2.26 kHz.
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matrix with the selected methods for estimating multi-narrowband DOAs as shown in

the previous section. All the method was tested by computer simulation and imple-

mented in MATLAB software. The output of each microphone was decomposed into

192,000 snapshots. The sampling frequency was 192 kHz, the center frequency was 3.4

kHz, the number of subarray elements M was 12, the spacing of microphone elements

was 5 cm and speed of sound was assumed to be 340 m/s. The 2D search ranges for

azimuth and elevation are [0◦, 180◦] and [0◦, 180◦] with interval 0.01. The definition of

root-mean-square error (RMSE) of the 2D DOA estimation was expressed as

RMSE =

√√√√ 1

LP

L∑
l=1

P∑
k=1

((
ϕ̄DOA
k − ϕ̄

(l)
k

)2
+
(
θDOA
k − θ

(l)
k

)2)
, (2.29)

where L is the number of times of the Monte Carlo experiment. ϕ
(l)
k and θ

(l)
k are the lth

estimated azimuth and elevation angles of the kth. ϕ̄DOA
k and θDOA

k are the true DOA

azimuth and elevation angles of the kth.

2.5.1 Robustness of the Cost Functions

Fig. 2.4 showed example of estimation results by employing the three types of cost

functions; 2D MUSIC method in Eq. (2.13) as showed in Fig. 2.4 (a), (b). Wang et al.

method in Eq. (2.16) as showed in Fig. 2.4 (c), (d). Dong et al. method in Eq. (2.26)

as showed in Fig. 2.4 (e), (f). Note that the horizontal axis represents a elevation

angle, and the vertical axis represents a azimuth angle. The relationship between the

azimuth angle ϕ̄, elevation angle θ and ϕ is given by Eq. (2.10). Three sources were

placed
(
θDOA
k , ϕDOA

k

)
at (30◦, 75.52◦), (45◦, 60◦) and (60◦, 41.41◦), where three sources

are human voices with containing source frequency range from 100 to 16,000 Hz. Two

simulation scenarios were considered. First scenario, Fig. 2.4 (a), (c), (e) are conducted

with source frequency f is 3.4 kHz. Second scenario, Fig. 2.4 (b), (d), (f) are conducted

with source frequency f is 2.26 kHz.
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2.5 Numerical Simulation

As can be seen from Fig. 2.4 (b) and (d) that the proposed array manifold matrix

with Eqs. (2.13) and (2.16) can handle the source frequency lower than the reference

frequency fc effectively. Additionally, the surface of cost functions in Fig. 2.4 (d) and

(e) spread out around true DOA areas, which may be leaded to an ineffective DOA

estimation. On the one hand, the surface of cost function Eq. (2.16) is influenced by the

asymptotic mean-square-error expressions [34], which is shown in Fig. 2.4 (c) and (d)

because the computationally intensive and EVD process is no longer used in Wang et al.

method. On the other hand, the surface of cost functios of 2D MUSIC method spread

out less than Wang et al. method due to utilizing EVD in Eqs. (2.12) and (2.13). In

case of Dong et al. method, it can be seen from Eq. (2.26) that surface of cost function

is dominated by athe Rayleigh quotient problem [31]. However, all confusions can avoid

by increasing the number of microphone elements M and employs the constraint of

0 < f ≤ fc as shown in Eq. (2.3).

2.5.2 RMSE versus SNR

Three methods were tested for comparison with the proposed array manifold ma-

trix: 2D MUSIC method in Eq. (2.13) as illustrated in Fig. 6.3 (a). Wang et al. method

in Eq. (2.16) as illustrated in Fig. 6.3 (b) Dong et al. method in Eqs. (2.27) and (2.28)

as illustrated in Fig. 6.3 (c). Note that the horizontal axis represents the signal-to-noise

ratio (SNR). This SNR varies from -10 to 40 dB with interval 2 dB. The vertical axis

represents RMSE, which was calculated by Eq. (5.76) where 100 Monte Carlo trials

have been conducted for every fixed SNR. Three sources were placed
(
θDOA
k , ϕ̄k

DOA
)

at (60◦, 30◦), (45◦, 45◦) and (30◦, 60◦), where the source frequencies were 1.6, 2.8 and

3.4 kHz, respectively. To estimates the azimuth angle ϕ̄ and elevation angle θ in each

source, multi-narrowband DOA estimates are considered, where the number of sources

P was assumed to be 1 in each narrowband. Simulation results in Fig. 6.3 indicated that
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2.6 Conclusions

the performance of all the method is significantly dominated by the source frequencies.

As the source frequency is 2.8 kHz, all the methods exhibits good performance at SNR

range from 0 to 40 dB. Likewise, in case of the source frequency is 1.6 kHz, all the meth-

ods exhibits good performance at SNR range from 8 to 40 dB. This problem cause by

the interfered power beam-width of the side lobe in L-array structure radiation pattern

as discussed in Figs. 2.2 and 2.3. In the end, DOA estimation for multi-narrowband

sources can be done by implementing the proposed data model along with the existed

narrowband DOA estimations, and the results showed that the fusion methods are able

to estimate multi-narrowband DOA sources with acceptable SNRs.

2.6 Conclusions

This chapter presented an alternative signal modeling for wideband sources with

L-shaped microphone array configuration. We addressed an efficient way for estimating

multi-narrowband DOAs by using the proposed signal model. The problem of estimat-

ing multi-narrowband DOAs is resolved by using the proposed signal model along with

remodeling the array manifold matrices. Extension of most classical subspace-based

methods for multi-narrowband DOA estimation were described and given by employing

2D MUSIC method [16], the Wang et al. method [34], and Dong et al. method [31].

Simulation results indicated that the new array manifold matrices by using the pro-

posed signal model along with the classical subspace-based methods have achieved the

multi-narrowband DOA estimation with acceptable noise levels. The modified method

provides a potential alternative to intelligent local positioning systems in voice control

applications.
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Fig. 2.5 RMSE estimation performance of DOA cost functions along with the

proposed array manifold matrices; (a) 2D MUSIC method in Eq. (2.13), (b) the

Wang et al. method in Eq. (2.16) and (c) Dong et al. method in Eq. (2.26).

Three sources are placed
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k , ϕ̄k

DOA
)
at (60◦, 30◦), (45◦, 45◦) and (30◦, 60◦).
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Chapter 3

Wideband Direction-of-Arrival

Estimation by using

Unsupervised Learning

This chapter presents an alternative direction-of-arrival estimation method for

wideband sources by using unsupervised learning. The problem of estimating direction-

of-arrival of wideband signals are addressed and resolved by focusing the entire obser-

vation subspace in each frequency bin along with employing a multi-narrowband signal

model as was previously proposed in Chapter 2. In addition to this observation pro-

cess, we employ the Gaussian mixture model with a maximum likelihood estimation

algorithm as an interpolation scheme, and wideband DOA results are estimated by

interpolating the narrowband DOA results all frequency bins with this interpolation

scheme. The performance is evaluated in terms of the root-mean-squared error over a

range of the signal-to-noise ratio, and it is sufficient for exhibiting wide-band sources

angle estimation.

3.1 Reviews on Recent Wideband DOA Estimations

As stated in Section 5.1, the fundamental competence of source localization has

been extensively implemented in navigation systems for the exploration of sources,

– 34 –
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which is known as direction-of-arrival (DOA) estimation. The main factors reducing

the efficiency of source localization in navigation systems are background noise, multi-

ple source locations, and variation in the sound patterns and source frequencies [1]. A

number of methods have been introduced in order to improve the source localization ef-

ficiency, including, time-difference-of-arrival (TDOA)-based DOA estimation [2], delay

and sum beamforming [3] and subspace method [4–6].

Subspace methods are increasingly utilized for the DOA estimation of multiple

sources in array signal processing. The conventional subspace method known as multiple

signal classification (MUSIC) decomposes the observation space into a signal subspace

and a noise subspace by using eigenvalue decomposition [4]. Such conventional methods

calculate the directions of sources using the noise subspace, leading to superior multiple-

source localization. Nonetheless, only narrow-band sources can be localized.

In order to estimate the DOA for wide-band sources, the coherent signal subspace

(CSS) method was introduced [7]. This method constructively focuses the observation

subspace at distinct frequency bins to a single subspace associated with a reference

frequency, producing a smoothed correlation matrix. Conventional narrow-band DOA

estimators such as MUSIC may then be used for DOA estimation. A common shortcom-

ing of CSS methods is the requirement of an initial DOA estimation. It was previously

found that the estimation performance is sensitive to the initial conditions [8]. Poor

initial conditions can lead to biased estimates.

This research therefore aims to propose a new DOA estimation scheme for wideband

sources without any requirement of DOA initial estimation. Unlike the CSS method,

in which the signal and noise subspaces in each frequency bin must be arranged into a

single viable correlation matrix, the problem of estimating DOA of wideband signals are

addressed and resolved by focusing the entire observation subspace in each frequency

bin along with employing a multi-narrowband signal model as was previously proposed
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3.2 DOA Estimation Scheme

in Chapter 3. In addition to this observation process, we employ the Gaussian mixture

model with a maximum likelihood estimation algorithm as an interpolation scheme.

After narrow-band DOA estimation is employed in each correlation matrix, the set of

estimated DOAs can be classified into groups by the Gaussian mixture model with a

maximum likelihood estimation algorithm. Furthermore, the proposed method provides

synthesis of signal sources.

3.2 DOA Estimation Scheme

Consider a one-dimensional ULA model in which the microphones are uniformly

spaced [1] with longitudinal wave-front sources, and the output of each microphone is

uniformly sampled and decomposed into snapshots or frames by a short-time Fourier

transform (STFT), with each frame containing a set of frequencies. The received signal

vector from P incident sources at τk snapshot can be represented as

x (τk, ωj) = W (θ, ωj) s (τk, ωj) + n (τk, ωj) , (3.1)

where τk, k = 1, 2, ...,K are snapshots, ωj , j = 1, 2, ..., J are discrete frequencies, x ∈ CM

is the sum of received signal vectors for all sources with different phases or angles,

s ∈ CP is a signal source vector, n ∈ CP is a noise vector, θ ∈ RP is an angle vector

and W ∈ CM×P is a phase difference matrix. Each attribute in W depends on the

data model, which was already described in Chapter 2;

wm (θ, ω) = exp

(
i2πω (m− 1) d sin θ

ωλλ

)
. (3.2)

where d is the spacing of microphone elements, m is the index of microphone elements,

θ is the angle and λ is the wavelength. Note that ω = 2πf and ωλ = 2πfλ. According

to Chapter 2, to avoid confusion caused by many grating lobes and the lower power

beam-width of the lobe in ULA radiation, d should be set to λ
2 , where λ = c

fλ
is the

wavelength and fλ is the frequency corresponding to the wavelength.
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The classical subspace-based methods, called MUSIC and the estimation of signal

parameters via a rotational invariance technique (ESPRIT) [4, 5], are the two most

popular DOA estimation methods. In this work, the MUSIC method is chosen to

estimate the angle sources using a modified phase difference function. The MUSIC

spectrum is expressed as follows

PMUSIC (θ, ωj) =
w (θ, ωj)

H
w (θ, ωj)

w (θ, ωj)
H
E (ωj)E (ωj)

H
w (θ, ωj)

, (3.3)

where PMUSIC (θ, ωj) is the reciprocal of the ordinary Euclidean distance from w (θ, ωj)

to E (ωj). w (θ, ωj) is the angle steering vector, which can also be described by (3.2).

E ∈ CM×(M−P ) is the set of eigenvectors of noise known as the noise subspace, which

is calculated from the covariance matrix of x (τ , ωj). One previous study suggested

that the number of microphones M is larger than number of incident sources P [4].

Prior information of P can be determined from the eigenvalues [4]. The DOAs of

signal sources are estimated by locating the peaks of the MUSIC spectrum for each ωj .

Because the MUSIC method has a large computational requirement, the Root MUSIC

method has been proposed in order to refine the DOA estimation and to alleviate the

algorithm complexity [6]. Root MUSIC with the modified phase difference function can

be expressed as follows

θ = sin−1

(
−angle (z)

λωλ
2πωjd

)
, (3.4)

where angle (·) is the phase angle operator in radians. z is the roots of the poly-

nomial function f (z, ωj). The polynomial function f (z, ωj) can be represented as

f (z, ωj) =
∑M−1
m=−M+1 z

mCm (ωj), where Cm (ωj) =
∑
a−b=m Va,b (ωj) and V (ωj) =

E (ωj)E (ωj)
H
. Among a roots in f (z, ωj), the closer a root is to the unit circle,

the more likely it corresponds to DOA. The remaining roots that are farther from the

unit circle are noises. Note that the unit circle can be considered as the unit complex

numbers.
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Raw DOA dataset:
Clustered DOA dataset:

Probability
Density

Function

DOA Angle (Degree)

DOA 1

DOA 2 DOA 3DOA 4

Fig. 3.1 Overviews of wideband DOA estimation by using GMM where the raw

DOA datasets are obtained by estimating narrowband DOAs all frequency bins.

While the Root MUSIC method generates a large set of DOAs at each frequency

and angle, unsupervised machine learning has been suggested as a potential solution

to solves classification problem [9]. In this research work, Gaussian mixture model

(GMM) with a maximum likelihood estimation algorithm is utilized to cluster local

maxima of angle observations into P clusters or sources, where each observation belongs

to a cluster with the parametric probability density function (PDF) represented as a

weighted sum of Gaussian component densities [9]. The reason we chose GMM as

unsupervised learning is due to its remarkable of flexible in terms of cluster covariance,

can accommodates mixed membership and simple calculation. The PDF can be written

as a linear superposition of Gaussian in the form

p (θ) =
P∑
p=1

πpN (µp,Σp), (3.5)

where θ is the set of DOAs obtained by the Root MUSIC method Eq.(3.4) without a fre-

quency space, πp, p = 1, 2, ..., P are the mixture weights, N (µp,Σp) is the multivariate

normal distribution or multivariate Gaussian distribution, Σp, p = 1, 2, ..., P are DOA

covariance matrices and µp, p = 1, 2, ..., P are the estimated DOA. The idea of estimat-

ing wideband DOAs via GMM is illustrated in Remark that the estimated number of

sources P is defined by the maximum of the likelihood function of the observation in

GMM algorithm, which is obtained by changing the P free parameters in Eq.(3.5).
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GMM Parametric PDF output (right axis)
Root MUSIC estimation output (left axis)
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Fig. 3.2 Estimation results of the proposed method by (a) Root MUSIC and

GMM fusion and (b) MUSIC where three uncorrelated sources are employed.

3.3 Signal Synthesis

Once the DOAs of the P incident signals have been estimated, s (τk, ωj) can be

estimated for synthesis of the signal sources by using Eq.(3.1) as follows:

s (τk, ωj) = (W (θDOA, ωj))
−1

(x (τk, ωj)− n (τk, ωj)) (3.6)

where θDOA is the DOA of sources, which is obtained from µp in Eq.(3.5). The sources

in the time domain can be estimated by the inverse STFT of s (τk, ωj).

3.4 Numerical Simulation

The proposed system was tested by computer simulation considering a 16-sensor

ULA. The statistical performance was evaluated by performing 100 Monte Carlo runs for

each scenario. Three far-field uncorrelated sources with the same power were placed at

0◦, 10◦ and 20◦. Source frequencies were 1, 1.75 and 2.5 kHz, respectively. The output

of each microphone was decomposed into 192000 snapshots. The sampling frequency

was thus 192 kHz, the spacing of microphone elements was 5 cm and speed of sound

was assumed to be 340 m/s.
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Three other methods were tested for comparison: the generalized cross-correlation

phase transform (GCC-PHAT) [2], the conventional CSS method [7] and a modification

of the total least-squares CSS method (CSS-MTLS) [8]. For the proposed method, 218

frequency bins were utilized in the range from ωλ

4 to ωλ, where ωλ was 3.4 kHz. The

conventional CSS method and CSS-MTLS used 435 frequency bins in the range from

f0 − BW
2 to f0 +

BW
2 , where the central frequency f0 was 3.4 kHz, bandwidth BW was

5.1 kHz and the preliminary approximate DOA was 10◦. Both the CSS method and

CSS-MTLS were recursively processed five times to update the focusing DOA and the

preliminary approximate DOA. For GCC-PHAT, only two microphones were selected

with a maximum spacing of microphone elements of 75 cm.

Figures 3.2(a) and 3.2(b) show examples of the proposed method output for a

16-sensor ULA model with three human voice sources at angles of 0◦, 10◦ and 20◦.

The example indicates that there are three sources because one can see three peaks at

the correct DOAs. Note that the magnitude of the parametric PDF is not necessarily

proportional to the power of the signal sources.

Figure 6.3 compares the performance of the four methods in terms of the root-

mean-square error (RMSE) of the sources at 0◦, 10◦ and 20◦, over the signal-to-noise

ratio (SNR) range from -10 to 40 dB. The results indicate that the performance of CSS-

MTLS is not significantly dominated by the SNR, whereas the other three methods

are significantly dominated by the SNR. As the SNR decreases to less than -3 dB,

CSS-MTLS exhibits better performance than the proposed method and the other two

methods. The proposed method could not resolve the issue caused by higher variance

in the GMM. When the SNR is as high as -3 dB, the proposed method begins to exhibit

a smaller RMSE than CSS-MTLS and the other two methods. The results indicate

that the proposed method exhibits high performance in the whole range of SNRs in

terms of RMSE while CSS-MTLS exhibits high performance at high SNRs. The RMSE
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Fig. 3.3 RMSE performance evaluation; (a) 0◦, (b) 10◦, (c) 20◦.

performances for the conventional CSS method and GCC-PHAT are similar.

3.5 Conclusions

This chapter presented an alternative DOA estimation method for wide-band

sources by using a GMM with a maximum likelihood estimation algorithm for multiple

frequencies and source angle estimation. The problem of estimating direction-of-arrival

of wideband signals have been addressed and resolved by focusing the entire observation
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Fig. 3.4 Example of signal synthesis with error magnitude where three uncor-

related human speeches and 16 microphones are used; (a) first source, (b) second

source, and (c) third source.

subspace in each frequency bin along with employing a multi-narrowband signal model

as was previously proposed in Chapter 3. The performance is evaluated in terms of

the root-mean-squared error over a range of the signal-to-noise ratio, and the results

suggested that the proposed method may be a particularly effective method of DOA

estimation. Furthermore, the proposed method enables the synthesis of signal sources

and provides an alternative to intelligent source localization systems.
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Chapter 4

An Efficient Wideband

Direction-of-Arrival

Estimation by using

Orthogonal Procrustes

Analysis

This chapter presents an efficient wideband two-dimensional direction-of-arrival

(DOA) estimation for an L-shaped microphone array. We propose a way to construct a

wideband sample cross-correlation matrix without any process of DOA preliminary esti-

mation, such as beamforming technique, by exploiting sample cross-correlation matrices

of two different frequencies for all frequency bins along with the Orthogonal Procrustes

analysis. Subsequently, wideband DOAs can be estimated by using this wideband matrix

along with a scheme of estimating DOA in a narrowband subspace method. Therefore,

a contribution of our study is providing an alternative framework for recent narrowband

subspace methods to estimating the DOA of wideband sources directly. It means that

this framework enables cutting-edge techniques in the existing narrowband subspace

methods to implement the wideband direction estimation for reducing the computa-
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tional complexity and facilitating the estimation algorithm. Theoretical analysis and

effectiveness of the proposed method are substantiated through numerical simulations,

which are performed in reverberating environments. The results show that performance

of the proposed method performs better than others over a range of signal-to-noise ra-

tio with just a few microphones. All these advantages make the proposed method a

powerful tool for navigation systems based on acoustic signal processing.

4.1 Robustness Issue in Recent Wideband DOA Es-

timation

Direction-of-arrival (DOA) estimation in particular is an important part of naviga-

tion systems for the exploration of sources [7,43], and has wide applications including in

wireless communications, sonar and radar, as mentioned in Section 5.1 and Chapter 3. In

addition, DOA estimation methods have been applied for human computer interaction

in acoustic signal processing, as shown in the literature [2,16,20,23,26,32]. Several ap-

proaches have been proposed as potential solution for DOA estimates. One of the most

popular method is time-difference-of-arrival based DOA estimation [1,10]; this method is

generally known as generalized cross-correlation with a weighting function, such as, gen-

eralized cross-correlation with phase transform (GCC-PHAT) [10]. DOA is estimated

using time shifting related to the location of the largest peak in time-domain represen-

tation of a normalized cross-correlation. Although a notable feature of GCC-PHAT is

low computational requirement, but a major drawback of GCC-PHAT is its low robust-

ness in noisy and multipath environments. In an alternative approach to narrowband

DOA estimates, subspace method has been proposed in an effort to reduce computa-

tional complexity, and improve estimation performance in multipath environment. The

most prominent methods are multiple signal classification (MUSIC) [24], estimation of
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signal parameters via rotational invariance techniques (ESPRIT) [22], and propagator

method (PM) [14, 15], which have been used frequently for one-dimensional DOA esti-

mation along with uniform linear array (ULA) of sensors. In case of a two-dimensional

(2D) DOA estimation, a new geometrical structure of sensor array is required. The

first systematic study on effectiveness of the geometrical structures was conducted since

1991 [9]. According to their research, they demonstrate that an octagonal 2D array,

which is close to a circular array in structure, offers the most minimal Cramer Rao

bound (CRB) of DOA; CRB indicates a lower bound on the variance of unbiased esti-

mators, and the low CRB is said to be potential high accuracy of DOA estimation. In

addition, the authors underline that CRB of DOA for the octagonal 2D array is slightly

lower than an L-shaped array; CRB of DOA for the L-shaped array, which consists of

two ULAs connected orthogonally at one end of each ULA, can be considerably lower

than for other geometrical structure as well as the octagonal 2D array. (For details,

see [9].) The authors further suggest that the L-shaped array seems to be innovative

and interesting, because it possesses independent properties from distinct coordinate

axes; in other words, it allows for simple implementation. Due to these advantages,

the L-shaped array is widely applied to 2D DOA estimation method [19, 35]. Further

geometric structures based on the L-shaped array are currently studied as shown the

literature [42,44].

Although subspace method for narrowband 2D DOA estimates with L-shaped array

may unable to applies wideband signals directly [3,5,12,13,17,21,31,36]; however, there

is one possible solution to overcome this problem by employing the narrowband DOA

estimation method intensively each temporal frequency, which can be found in the

previous research works [29, 38]. It should be considered that intensive computational

costs, encountered in the previous works [29, 38], may restrict to be implemented in

practical application.
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Several approaches were proposed to deal with wideband sources, for example,

the incoherent signal subspace (ISS) is one of the classical wideband DOA estimation

method [25]. ISS firstly constructs a noise subspace model each temporal frequency.

Then, the wideband DOA result is obtained by interpolating the narrowband DOA

results, which are processed by narrowband subspace method individually. In particu-

lar, MUSIC algorithm is modified, and the modified MUSIC is employed by ISS as a

narrowband subspace method [24]; this integration is known as the incoherent MUSIC

(IMUSIC) [25]. Accuracy performance of IMUSIC was demonstrated to be effective

method for wideband DOA estimation in high signal-to-noise ratio (SNR) region. How-

ever, there is one serious problem at an interpolating process in IMUSIC; a single small

distorting narrowband DOA result could affect the wideband DOA result. In order to

overcome such undesirable effect, the coherent signal subspace (CSS) method was pro-

posed [37]. CSS constructively focuses multiple cross-correlation matrices of received

signals for all frequency bins into a single correlation matrix with a single reference fre-

quency via liner transformation process. Then, the wideband DOA result is estimated

by using this matrix. In the transformation process of CSS, in particular, requires an

DOA preliminary estimation [33,34,37]; hence, a common shortcoming is clearly recog-

nized as a requirement of DOA preliminary estimation, which means that any inferior

initiation can lead to biased estimates.

Various approaches were proposed to overcome a requirement of DOA preliminary

estimation in CSS, such as, the test of orthogonality of projected subspace (TOPS) [40].

TOPS estimates the wideband DOA by transforming a signal subspace of a one reference

frequency, and then measuring orthogonality between the previous signal subspace and

noise subspace each temporal frequency. This method provides much higher accuracy

than CSS as stated in [40]; however, the undesirable false peaks in spatial spectrum

still remain as well as CSS. Many attempts were made recently to reduce the false
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peaks in spatial spectrum [8, 18]. Obviously, the computational complexity increases

dramatically compared to the original method.

Therefore the purpose of this research work is to investigate a new way for es-

timating a wideband 2D DOA in a more efficient way. Firstly, the recent methods

for wideband DOA estimation, such as IMUSIC, CSS, TOPS, and the test of orthog-

onality of frequency subspaces (TOFS) [41], have only investigated in ULA model

[8, 18, 25, 33, 37, 40, 41]; therefore, the proposed method presents an alternative solu-

tion for estimating the wideband 2D DOA with L-shaped array placed in the X and

Z coordinate axes. Secondly, the proposed method is inspired by CSS with further

improvement of linear transformation scheme; we propose a way to construct a wide-

band sample cross-correlation matrix without any process of DOA preliminary estima-

tion. Additionally, the proposed method employ transformation matrices, which are

constructed by performing the singular value decomposition (SVD) of a new unique

cross-correlation matrix, where elements in the row and column positions are sample

cross-correlation matrices of two different frequencies from the same coordinate axis.

This new unique cross-correlation matrix seem to play a role as the universal correla-

tion matrix in CSS [33, 34, 37], but the process of initial DOA estimation is not longer

required; therefore, a contribution of our proposed method is providing an alternative

framework for the recent narrowband subspace methods with L-shaped array, as shown

in [3,5,12,13,17,21,31,36], to estimating the 2D DOA of wideband sources directly. It

implies that the new framework enable cutting-edge techniques in the existing narrow-

band subspace methods to implement the wideband 2D DOA estimation for reducing the

computational complexity and facilitating the estimation algorithm. Inspired by useful

techniques in recent narrowband subspace methods [3, 17, 28, 31], in this work, the az-

imuth and elevation are estimated simultaneously using the Eigenvalue decomposition

(EVD) of left and right singular vector form the results of SVD of the proposed unique
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cross-correlation matrix. The theoretical analysis and effectiveness of proposed method

are substantiated through numerical simulations. The results show that performance

of the proposed method performs better than others over a range of signal-to-noise ra-

tio with just a few microphones. Furthermore, the results show that the performance

of proposed method is especially effective for wideband 2D DOA estimation in real

reverberating environments.

4.2 Preliminaries

4.2.1 Data Model

An L-shaped array is considered as illustrated in Fig. 2.1, where {X,Y, Z} is a set

of Cartesian coordinate axes for a three-dimensional space, a reference point is pinned

at z1, sk represents a wideband plane wave of source k to the reference point. ψk

represents the angle between the X and Y axes; it is named as azimuth. ϕk is named as

x subarray angle, which denotes the angle between the X and the source axes. Similarly,

θk is named as z subarray angle or zenith, which denotes the angle between the Z and

the source axes. By Euler’s rotation theorem, we have the following relation;

cosϕk = sin θk cosψk, (4.1)

where ψk = ϕ̄k in Fig. 2.1. The method proposed considers an acoustic source as we

mentioned in the previous section. Each point on the axis stands for an acoustic sen-

sor, such as a microphone. Unlike other wideband subspace methods that decompose

the sensor outputs into multiple narrowband signals using a filter bank and the dis-

crete Fourier transform (DFT), the received signals are transformed into time-frequency

representation via short-time Fourier transform (STFT). Additionally, we employ the

previous signal model as described in Chapter 2. To make this chapter read easily, we
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recall some necessary definitions here:

x (t, f) = Ax (ϕ, f) s (t, f) +wx (t, f) ,

z (t, f) = Az (θ, f) s (t, f) +wz (t, f) ,
(4.2)

where

Ax (ϕ, f) =
[
ax (ϕ1, f) ax (ϕ2, f) . . . ax (ϕK , f)

]
,

Az (θ, f) =
[
az (θ1, f) az (θ2, f) . . . az (θK , f)

]
,

ax (ϕk, f) =
[
eαx(ϕk,f)j e2αx(ϕk,f)j . . . eMαx(ϕk,f)j

]T
,

az (θk, f) =
[
1 eαz(θk,f)j . . . e(M−1)αz(θk,f)j

]T
,

αx (ϕk, f) =

(
f

fo

)
·
(
2πd cosϕk

λ

)
,

αz (θk, f) =

(
f

fo

)
·
(
2πd cos θk

λ

)
.

(4.3)

From above, x (t, f) ∈ CM and z (t, f) ∈ CM are the summation of the received signal

vectors for all sources corresponding to the x and z subarrays, Ax (ϕ, f) ∈ CM×K and

Az (θ, f) ∈ CM×K are array manifold matrices in the x and z subarrays, s (t, f) ∈ CK

is a signal source vector, and wx (t, f) ∈ CM and wz (t, f) ∈ CM are additive noise

vectors for all microphone elements corresponding to the x and z subarrays. Note that

the variable f is a source frequency, fo is a reference frequency, λ is a wavelength, d

is the spacing of the microphone elements any subarray, t is time, M is the number of

microphone elements each subarray, K is the number of incident sources, and λ = c
fo

where c denotes speed of sound in a current environment.

4.2.2 Basic Assumptions

Based on the recent literature reviews, the following basic assumptions on the data

model are required:

Assumption 1: Number of incident sources K is required and can be predicted by

the following techniques [30,39]. Note that K < M [7, 30,39,43].
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Assumption 2: Spacing between the adjacent elements d of each subarray and

elements spacing between x1 and z1 should be set to λ
2 for avoid confusion caused by

the side lobes in array structure radiation [7, 9, 27,43].

Assumption 3: Source frequency f has to satisfy the constraint that f ≤ fo for

maintain a power beam-width of the grating lobe in array structure radiation [27].

Assumption 4: The source s (t, f) is assumed to be Gaussian complex random

variable with zero mean, which is suggested by the literature [14, 15, 22, 24, 28, 36].

However, we consider the source as human speech; therefore, s (t, f) can be Super-

Gaussian complex random variable, and it is not a stationary signal for the most general

case when giving an appropriate period of time capture. According to the acoustic

theory of speech production [4], frequency dependence of the source are existed; a cross-

covariance between the signal source and itself with distinct frequencies is given as

cov (sk (t, f) , sk (t, f
′)) = csk{f,f ′}, (4.4)

where csk{f,f ′} ∈ C. Assume that the sources are uncorrelated each other, which implies

that sk (t, f) and sk′ (t, f
′) are statistically independent; cov (sk (t, f) , sk′ (t, f

′)) = 0

where k ̸= k′. On the contrary, the source with different frequencies at same element

are partially dependent. Therefore, a sample cross-covariance matrix over two distinct

frequencies can be expressed as

S{f,f ′} = diag
(
cs1{f,f ′}, cs2{f,f ′}, . . . , csk{f,f ′}

)
. (4.5)

If f ′ = f , then csk{f,f} = σ2
sk{f} where σ2

sk{f} ∈ R≥0 is a variance at frequency f of the

source.

Assumption 5: The additive noise vectors wx (t, f) and wz (t, f) are Gaussian

complex random variables as suggested by the previous studies [14, 15, 22, 24, 28, 36].
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Noise cross-covariance matrices over two distinct frequencies are expressed as follows:

W xx{f,f ′} = cwx{f,f ′}IM ,

W zz{f,f ′} = cwz{f,f ′}IM ,

W xz{f,f ′} = OM×M ,

W zx{f,f ′} = OM×M .

(4.6)

where cwx{f,f ′}, cwz{f,f ′} ∈ C. Note that cwx{f,f} = σ2
wx{f}, and cwz{f,f} = σ2

wz{f},

where σ2
wx{f}, σ

2
wz{f} ∈ R≥0 are variance at frequency f of the signal noises. If the

noise with different frequencies at same element are independent, we have cwx{f,f ′} = 0,

and cwz{f,f ′} = 0.

4.2.3 Problem Formulation

Under Assumption 1 to 5 and Eq. (6.1), a sample cross-correlation matrices are

defined as follows:

Rxx{f,f ′} = E
{
x (t, f)xH (t, f ′)

}
= Ax (ϕ, f)E

{
s (t, f) sH (t, f ′)

}
AH
x (ϕ, f ′)

+ E
{
wx (t, f)w

H
x (t, f ′)

}
= Ax (ϕ, f)S{f,f ′}A

H
x (ϕ, f ′) +W xx{f,f ′},

Rzz{f,f ′} = E
{
z (t, f) zH (t, f ′)

}
= Az (θ, f)E

{
s (t, f) sH (t, f ′)

}
AH
z (θ, f ′)

+ E
{
wz (t, f)w

H
z (t, f ′)

}
= Az (θ, f)S{f,f ′}A

H
z (θ, f ′) +W zz{f,f ′},

(4.7)

where Rxx{f,f ′},Rzz{f,f ′} ∈ CM×M . Additionally, the sample cross-correlation matrix

can be formulated between the distinct subarrays [28]; the effort made those noise

matrices vanish to zeros as below

Rxz{f,f ′} = E
{
x (t, f) zH (t, f ′)

}
= Ax (ϕ, f)E

{
s (t, f) sH (t, f ′)

}
AH
z (θ, f ′)

+ E
{
wx (t, f)w

H
z (t, f ′)

}
= Ax (ϕ, f)S{f,f ′}A

H
z (θ, f ′) ,

(4.8)
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where Rxz{f,f ′} ∈ CM×M . As mentioned in CSS [33,34,37], transformation matrices are

employed in order to transform sample cross-correlation matrices into a single wideband

cross-correlation matrix, which is called as a universal cross-correlation matrix. Based

on the L-shaped structure, the universal cross-correlation matrix is defined by

Rxz =

∫ fo

fmin

T x{f}Rxz{f,f}T
H
z{f}df

=

∫ fo

fmin

T x{f}Ax (ϕ, f)S{f,f}A
H
z (θ, f)TH

z{f}df

= Ax (ϕ, fo)

(∫ fo

fmin

S{f,f}df

)
AH
z (θ, fo) ,

(4.9)

where

Ax (ϕ, fo) = T x{f}Ax (ϕ, f) ,

Az (θ, fo) = T z{f}Az (θ, f) ,
(4.10)

fmin denotes the minimum frequency, and T x{f},T z{f} ∈ CM×M denote the transfor-

mation matrices in the x and z subarrays, respectively. Note that T x{f} and T z{f} are

unitary on any given f ;

TH
x{f}T x{f} = IM ,

TH
z{f}T z{f} = IM .

(4.11)

T x{f}, T z{f} are originally designed by minimizing the Frobenius norm for the array

manifold errors [37]. Alternatively, the transformation matrices can be designed along

with Rxx{f,f} −W xx{f,f} and Rzz{f,f} −W zz{f,f}. (For the details, see [34].) As

stated in the introduction, the construction of T x{f},T z{f} requires an DOA prelim-

inary estimation; it means that any inferior initiation can lead to biased estimates.

To overcome this difficulty, the new concept and scheme without any process of DOA

preliminary estimation are presented in next section.
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4.3 Proposed Method

Overview of the proposed method, consisting of the transformation matrix esti-

mation, universal cross-correlation matrix calculation, and angle estimation scheme, is

presented in this section.

4.3.1 New Optimization Problems and its Solutions

In this section, a new optimization problem for the transformation matrix estima-

tion and its solution are presented. First we begin by introducing a lemma that will be

useful for solving the proposed optimization problems.

Lemma 1. Given four sets of distinct frequencies in Eq. (6.2) by {f, f}, {fo, fo},

{f, fo}, and {fo, f} respectively where f is less than or equal fo, since the incident

sources have to carry the signal with a minimum frequency of at least fmin and more than

or equal the reference frequency fo, then the rank of sample cross-correlation matrices

Rxz{f,f}, Rxz{fo,fo}, Rxz{f,fo}, and Rxz{fo,f} are always K.

Proof. We start by considering two sets of pair frequencies {f, f} and {fo, fo}. From

Eq. (4.5), the sample covariance matrices are redefined as follows:

S{f,f} = diag
(
σ2
s1{f}, σ

2
s2{f}, . . . , σ

2
sK{f}

)
,

S{fo,fo} = diag
(
σ2
s1{fo}, σ

2
s2{fo}, . . . , σ

2
sK{fo}

)
.

(4.12)

In case without loss of generality, the incident sources have to carry the signal in fre-

quency ranges between fmin and fo or more. Therefore, it is readily seen that:

σ2
sk{f} > 0;∀f ∈ R≥fmin

,

σ2
sk{fo} > 0; fo ≥ fmin.

(4.13)

As a matter of fact that rank of a square matrix is equal to number of non-zero diagonal

entries, rank of S{f,f} and S{fo,fo} are clearly equal to K. Since the array manifold
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matrices Ax (ϕ, f), Ax (ϕ, fo), Az (θ, f), Az (θ, fo) always have full rank of K from the

basic assumptions, thus, a rank of Rxz{f,f} and Rxz{fo,fo} are K.

In case of S{f,fo},S{fo,f}, and according to the basic assumption that those signal

sources with different frequencies on the same element can be partially dependent,

therefore:

E {sk (t, f) s∗k (t, fo)} ̸= 0,

E {sk (t, fo) s∗k (t, f)} ̸= 0,
(4.14)

where ∀f ∈ R≥fmin
, fo ≥ fmin. Substituting the above equations in Eq. (4.5), rank of

Rxz{f,fo} and Rxz{fo,f} are K. ■

After Lemma 1 is defined, We continue to introduce a new optimization problem

for the transformation matrix estimation, T x{f},T z{f} are solved simultaneously as the

solutions to
minimize

T x{f}

∥∥Rxz{fo,fo} − T x{f}Rxz{f,fo}
∥∥2
F

subject to
TH
x{f}T x{f} = IM

fmin ≤ f ≤ fo,

(4.15)

minimize
T z{f}

∥∥∥Rxz{fo,fo} −Rxz{fo,f}T
H
z{f}

∥∥∥2
F

subject to
TH
z{f}T z{f} = IM

fmin ≤ f ≤ fo.

(4.16)

As the matter of fact that above objective functions is unable to reach a zero-norms,

because
∥∥S{fo,fo} − S{f,fo}

∥∥2
F
, and

∥∥S{fo,fo} − S{fo,f}
∥∥2
F
are not equal to zero-norms.

According to the orthogonal Procrustes problem [6], there are several possible solutions

to solve these problems without loss of generality. We can obtain the solutions as follows.

Theorem 1. Given a frequency f in Eqs. (4.15) and (4.16), the dual optimization

problems are rewritten as

maximize
T x{f}

tr
(
ℜ
(
T x{f}Ψx{f}

))
subject to

TH
x{f}T x{f} = IM

fmin ≤ f ≤ fo,

(4.17)
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maximize
T z{f}

tr
(
ℜ
(
T z{f}Ψ z{f}

))
subject to

TH
z{f}T z{f} = IM

fmin ≤ f ≤ fo,

(4.18)

where

Ψx{f} = Rxz{f,fo}R
H
xz{fo,fo}, (4.19)

and

Ψ z{f} = RH
xz{fo,f}Rxz{fo,fo}. (4.20)

Consider Ψx{f} and Ψ z{f} can be factorized into singular value decomposi-

tion (SVD) forms; Ψx{f} = Uxs{f}Σxs{f}V
H
xs{f} + Uxw{f}Σxw{f}V

H
xw{f} and

Ψ z{f} = Uzs{f}Σzs{f}V
H
zs{f} + Uzw{f}Σzw{f}V

H
zw{f}. The possible solution in

Eqs. (4.17) and (4.18) are given as

T x{f} = V xs{f}U
H
xs{f}, (4.21)

and

T z{f} = V zs{f}U
H
zs{f}. (4.22)

where

Uxs{f} = Ax (ϕ, f)P x{f},

V xs{f} = Ax (ϕ, fo)Qx{f},

Uzs{f} = Az (θ, f)P z{f},

V zs{f} = Az (θ, fo)Qz{f},

(4.23)

P x{f},P z{f},Qx{f},Qz{f} ∈ CK×K are invertible matrices. Uxs{f},Uzs{f} ∈ CM×K ,

V xs{f},V zs{f} ∈ CM×K , Σxs{f},Σzs{f} ∈ CK×K are the matrices of left and right

singular vectors and diagonal matrices of singular values in the signal subspace,

respectively. Likewise, Uxw{f},Uzw{f} ∈ CM×M−K V xw{f},V zw{f} ∈ CM×M−K ,

Σxw{f},Σzw{f} ∈ CM−K×M−K are the singular matrices in the noise subspace.
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Proof. We begin by introducing Orthogonal Procrustes problems from [6]. The objective

function in Eq. (4.15) can be rederived by∥∥Rxz{fo,fo} − T x{f}Rxz{f,fo}
∥∥2
F

= tr
((

Rxz{fo,fo} − T x{f}Rxz{f,fo}
) (

Rxz{fo,fo} − T x{f}Rxz{f,fo}
)H)

= tr
(
Rxz{fo,fo}R

H
xz{fo,fo}

)
+ tr

(
T x{f}Rxz{f,fo}R

H
xz{f,fo}T

H
x{f}

)
− tr

(
T x{f}Rxz{f,fo}R

H
xz{fo,fo} +Rxz{fo,fo}R

H
xz{f,fo}T

H
x{f}

)
.

(4.24)

From Eq. (4.11) and basic properties of trace operator, we have

tr
(
T x{f}Rxz{f,fo}R

H
xz{f,fo}T

H
x{f}

)
= tr

(
Rxz{f,fo}T

H
x{f}T x{f}R

H
xz{f,fo}

)
= tr

(
Rxz{f,fo}R

H
xz{f,fo}

)
,

(4.25)

Since the matrices Rxz{fo,fo}, Rxz{f,fo} consistently possess the Hermitian property, we

can have

tr
(
T x{f}Rxz{f,fo}R

H
xz{fo,fo} +Rxz{fo,fo}R

H
xz{f,fo}T

H
x{f}

)
= tr

(
T x{f}Rxz{f,fo}R

H
xz{fo,fo} +

(
T x{f}Rxz{f,fo}R

H
xz{fo,fo}

)H)
= tr

(
2 · ℜ

(
T x{f}Rxz{f,fo}R

H
xz{fo,fo}

))
= 2 · tr

(
ℜ
(
T x{f}Rxz{f,fo}R

H
xz{fo,fo}

))
.

(4.26)

Substituting Eqs. (4.25) and (4.26) into Eq. (4.24), then

tr
(
Rxz{fo,fo}R

H
xz{fo,fo}

)
+ tr

(
T x{f}Rxz{f,fo}R

H
xz{f,fo}T

H
x{f}

)
− tr

(
T x{f}Rxz{f,fo}R

H
xz{fo,fo} +

(
T x{f}Rxz{f,fo}R

H
xz{fo,fo}

)H)
= tr

(
Rxz{fo,fo}R

H
xz{fo,fo}

)
+ tr

(
Rxz{f,fo}R

H
xz{f,fo}

)
− 2 · tr

(
ℜ
(
T x{f}Rxz{f,fo}R

H
xz{fo,fo}

))
.

(4.27)

When f and fo are given, the statements of tr
(
Rxz{fo,fo}R

H
xz{fo,fo}

)
and

tr
(
Rxz{f,fo}R

H
xz{f,fo}

)
are constants or coefficients. Therefore, the optimization
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problem on Eq. (4.15) can be rewritten as

minimize
T x{f}

−tr
(
ℜ
(
T x{f}Rxz{f,fo}R

H
xz{fo,fo}

))
subject to

TH
x{f}T x{f} = IM

fmin ≤ f ≤ fo.

(4.28)

Obviously, the above minimization problem is equivalent to maximization problem as

shown in Eq. (4.17). Although the proof of particular solution of Eq. (4.17) can be

based on the CSS theorems whose proof can be found in [33, 34], however, there is

no theory supporting that statement of T x{f}Rxz{f,fo} is in some sense matched to

the matrix Rxz{fo,fo} where f ̸= fo; S{fo,fo} ̸= S{f,fo}. In order to find the feasible

solution of Eq. (4.17) along with T x{f}Rxz{f,fo} andRxz{fo,fo}, we start by representing

the matrices Rxz{fo,fo} and Rxz{f,fo} into SVD forms only on the signal subspace, as

follows:

Rxz{fo,fo} = Uxz{fo,fo}Σxz{fo,fo}V
H
xz{fo,fo},

Rxz{f,fo} = Uxz{f,fo}Σxz{f,fo}V
H
xz{f,fo},

(4.29)

where

Uxz{fo,fo} = Ax (ϕ, fo)F
-1
xz{fo,fo},

Σxz{fo,fo} = F xz{fo,fo}S{fo,fo}G
H
xz{fo,fo},

V xz{fo,fo} = Az (θ, fo)G
-1
xz{fo,fo},

Uxz{f,fo} = Ax (ϕ, f)F
-1
xz{f,fo},

Σxz{f,fo} = F xz{f,fo}S{f,fo}G
H
xz{f,fo},

V xz{f,fo} = Az (θ, fo)G
-1
xz{f,fo}.

(4.30)

F xz{fo,fo},F xz{f,fo},Gxz{fo,fo},Gxz{f,fo} ∈ CK×K are invertible matrices, Uxz{fo,fo}

Uxz{f,fo} ∈ CM×K , are the matrices of left singular vectors, V xz{fo,fo},V xz{f,fo} ∈

CM×K are the matrices of right singular vectors, and Σxz{fo,fo},Σxz{f,fo} ∈ RK×K
≥0

are the diagonal matrices of singular values. From Lemma 1, rank of Σxz{fo,fo} and

Σxz{f,fo} can be considered as equal to K. Substituting Eqs. (4.29) and (4.30) into

– 58 –



4.3 Proposed Method

Eq. (4.17), a statement in the previous objective function can be replaced as

T x{f}Rxz{f,fo}R
H
xz{fo,fo}

= T x{f}

(
Uxz{f,fo}Σxz{f,fo}V

H
xz{f,fo}

)
·
(
Uxz{fo,fo}Σxz{fo,fo}V

H
xz{fo,fo}

)H
= T x{f}

(
Uxz{f,fo}Σxz{f,fo}V

H
xz{f,fo}

)
·
(
V xz{fo,fo}Σ

H
xz{fo,fo}U

H
xz{fo,fo}

)
.

(4.31)

Note that Uxz{fo,fo}, Uxz{fo,fo}, V xz{fo,fo}, V xz{f,fo} have column of unitary property.

Since the matrices V xz{fo,fo} and V xz{f,fo} possess the property of the array manifold

matrix Az (θ, fo), it is possible to shows V xz{fo,fo} and V xz{f,fo} satisfy a property of

V H
xz{fo,fo}V xz{f,fo} ≈ IK ; but it strongly depends on an approximation algorithm of

SVD. For instance, SVD approximation procedure based on MatlabR⃝ R2017a appears

suitable for exhibiting such that property.

From the earlier property, the objective function in Eq. (4.17) can be given by

tr
(
ℜ
(
T x{f}Rxz{f,fo}R

H
xz{fo,fo}

))
= tr

(
ℜ
(
T x{f}

(
Uxz{f,fo}Σxz{f,fo}Σ

H
xz{fo,fo}U

H
xz{fo,fo}

)))
,

= tr
(
ℜ
(
Σxz{f,fo}Σ

H
xz{fo,fo}U

H
xz{fo,fo}T x{f}Uxz{f,fo}

))
.

(4.32)

In order to reach the maximum point on Eq. (4.28), a possible solution of T x{f} is

Uxz{fo,fo}U
H
xz{f,fo};

tr
(
ℜ
(
Σxz{f,fo}Σ

H
xz{fo,fo}U

H
xz{fo,fo}T x{f}Uxz{f,fo}

))
= tr

(
Σxz{fo,fo}Σxz{f,fo}

)
.

(4.33)

Overall, the error of transformation matrix T x{f} is given by

εx{f} = tr
(
Rxz{fo,fo}R

H
xz{fo,fo}

)
+ tr

(
Rxz{f,fo}R

H
xz{f,fo}

)
− 2 · tr

(
Σxz{fo,fo}Σxz{f,fo}

)
.

(4.34)

It is possible to reduce complexity of two SVD operations by performing a single

SVD operation on the matrix Ψx{f} at Eq. (4.19), which is resulted in Eq. (4.21). We can
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conclude that Σxs{f} ≈ Σxz{fo,fo}Σxz{f,fo} by the earlier property, and V xs{f}U
H
xs{f}

is remarkably similar to Uxz{fo,fo}U
H
xz{f,fo}.

Using such similar technique as in the proof of above, the solution of Eqs. (4.17)

and (4.22) can be compeleted easily. The objective function in Eq. (4.16) is initially

redefined as∥∥Rxz{fo,fo} −Rxz{fo,f}T z{f}
∥∥2
F

= tr
((

Rxz{fo,fo} −Rxz{fo,f}T z{f}
) (

Rxz{fo,fo} −Rxz{fo,f}T z{f}
)H)

= tr
(
Rxz{fo,fo}R

H
xz{fo,fo}

)
+ tr

(
Rxz{fo,f}R

H
xz{fo,f}

)
− tr

(
T z{f}R

H
xz{fo,f}Rxz{fo,fo} +RH

xz{fo,fo}Rxz{fo,f}T
H
z{f}

)
= tr

(
Rxz{fo,fo}R

H
xz{fo,fo}

)
+ tr

(
Rxz{fo,f}R

H
xz{fo,f}

)
− tr

(
T z{f}R

H
xz{fo,f}Rxz{fo,fo} +

(
T z{f}R

H
xz{fo,f}Rxz{fo,fo}

)H)
= tr

(
Rxz{fo,fo}R

H
xz{fo,fo}

)
+ tr

(
Rxz{fo,f}R

H
xz{fo,f}

)
− 2 · tr

(
ℜ
(
T z{f}R

H
xz{fo,f}Rxz{fo,fo}

))
.

(4.35)

The optimization problem on Eq. (4.16) can be rewritten as

minimize
T z{f}

−tr
(
ℜ
(
T z{f}R

H
xz{fo,f}Rxz{fo,fo}

))
subject to

TH
z{f}T z{f} = IM

fmin ≤ f ≤ fo.

(4.36)

Similar to Eq. (4.28), the above minimization problem is equivalent to the maximization

problem as shown in Eq. (4.18). To find the solution of Eq. (4.18), we transform

Rxz{fo,f} into SVD forms, as follows

Rxz{fo,f} = Uxz{fo,f}Σxz{fo,f}V
H
xz{fo,f}, (4.37)

where

Uxz{fo,f} = Ax (ϕ, fo)F
-1
xz{fo,f},

Σxz{fo,f} = F xz{fo,f}S{fo,f}G
H
xz{fo,f},

V xz{fo,f} = Az (θ, f)G
-1
xz{fo,f}.

(4.38)

– 60 –



4.3 Proposed Method

From above, F xz{fo,f},Gxz{fo,f} ∈ CK×K are invertible matrices, Uxz{fo,f} ∈ CM×K ,

is the matrices of left singular vectors, V xz{fo,f} ∈ CM×K is the matrices of right

singular vectors, and Σxz{fo,f} ∈ RK×K
≥0 is the diagonal matrices of singular values. In

case of SVD of Rxz{fo,fo}, we borrow the notations from Eqs. (4.29) and (4.30). Note

that a rank of Σxz{fo,f} is equal to K by employing Lemma 1. Substituting Eqs. (4.29),

(4.30), (4.37) and (4.38) into Eq. (4.18), the statement in the objective function can be

given as

T z{f}R
H
xz{fo,f}Rxz{fo,fo}

= T z{f}

(
Uxz{fo,f}Σxz{fo,f}V

H
xz{fo,f}

)H
·
(
Uxz{fo,fo}Σxz{fo,fo}V

H
xz{fo,fo}

)
= T x{f}

(
V xz{fo,f}Σ

H
xz{fo,f}U

H
xz{fo,f}

)
·
(
Uxz{fo,fo}Σxz{fo,fo}V

H
xz{fo,fo}

)
.

(4.39)

Based on the definition on Eqs. (4.29), (4.30), (4.37) and (4.38), the matrices Uxz{fo,fo}

and Uxz{fo,f} possess the property of array manifold matrix Ax (ϕ, fo). It suffices to

show that Uxz{fo,fo} and Uxz{fo,f} satisfy a property of UH
xz{fo,f}Uxz{fo,fo} ≈ IK .

Hence, the objective function in Eq. (4.18) can be expressed as

tr
(
ℜ
(
T z{f}R

H
xz{fo,f}Rxz{fo,fo}

))
= tr

(
ℜ
(
T z{f}

(
V xz{fo,f}Σ

H
xz{fo,f}Σxz{fo,fo}V

H
xz{fo,fo}

)))
,

= tr
(
ℜ
(
ΣH
xz{fo,f}Σxz{fo,fo}V

H
xz{fo,fo}T z{f}V xz{fo,f}

))
.

(4.40)

A possible solution to reach the maximum point of Eq. (4.36) is V xz{fo,fo}V
H
xz{fo,f}.

We have

tr
(
ℜ
(
ΣH
xz{fo,f}Σxz{fo,fo}V

H
xz{fo,fo}T z{f}V xz{fo,f}

))
= tr

(
Σxz{fo,fo}Σxz{fo,f}

)
,

(4.41)

where the error of matrix transformation T z{f} is given by

εx{f} = tr
(
Rxz{fo,fo}R

H
xz{fo,fo}

)
+ tr

(
Rxz{fo,f}R

H
xz{fo,f}

)
− 2 · tr

(
Σxz{fo,fo}Σxz{fo,f}

)
.

(4.42)
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It is possible to show that Σzs{f} ≈ Σxz{fo,fo}Σxz{fo,f} by the previously property

as applied to Eq. (4.40). Thus, V zs{f}U
H
zs{f} is notably similar to V xz{fo,fo}V

H
xz{fo,f}.

All things considered, the remains in Eqs. (4.21) to (4.23) are summarized as follows:

Σxs{f} = F xz{f,fo}S{f,fo}G
H
xz{f,fo}

Gxz{fo,fo}S
H
{fo,fo}F

H
xz{fo,fo},

P x{f} = F -1
xz{f,fo},

Qx{f} = F -1
xz{fo,fo},

(4.43)

and

Σzs{f} = Gxz{fo,f}S
H
{fo,f}F

H
xz{fo,f}

F xz{fo,fo}S{fo,fo}G
H
xz{fo,fo},

P z{f} = G-1
xz{fo,f},

Qz{f} = G-1
xz{fo,fo}.

(4.44)

The proof is completed. ■

Theorem 1 shows that T x{f}, T z{f} are constructed by performing SVD of Ψx{f}

and Ψ z{f}. It can be seen that the process of initial DOA estimation, such as beam-

forming technique, is not longer required. Although exploiting the singular vectors of

Ψx{f}, Ψ z{f} from distinct subarrays result in a better performance than the identical

subarray [33, 34]; this is explained by the existence of W xx{f,f ′}, W zz{f,f ′} as shown

in Eqs. (4.7), (5.5) and (6.2). The error of transformations may remain consistent with

following equations:

εx{f} = tr
(
Rxz{fo,fo}R

H
xz{fo,fo}

)
+ tr

(
Rxz{f,fo}R

H
xz{f,fo}

)
− 2 · tr

(
Σxs{f}

)
,

εz{f} = tr
(
Rxz{fo,fo}R

H
xz{fo,fo}

)
+ tr

(
Rxz{fo,f}R

H
xz{fo,f}

)
− 2 · tr

(
Σzs{f}

)
.

(4.45)

We relax the error constraints in the hope of arriving at a reduction in computation

[33, 34, 37], but this is sufficient for estimating T x{f}, T z{f} without loss of generality.

For the full statement, see 4.3.1.
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To successfully apply this class of transformation matrices into Eq. (4.9), the propo-

sitions of

Qx{f}P
H
x{f}A

H
x (ϕ, f)Ax (ϕ, f) = IK ,

AH
z (θ, f)Az (θ, f)P z{f}Q

H
z{f} = IK ,

(4.46)

are generally required by Eqs. (4.21) to (4.23) and (6.4). However, it is possible to show

that those propositions are not necessary, which the next section will address further.

4.3.2 Extension Properties on SVD of the Correlation Matrix

In this section, we continue to present a special property on SVD of Rxz{f,f},

Rxz{f,fo}, Rxz{fo,f} and Rxz{fo,fo}, in other to show that previous propositions are not

necessary to satisfy. Considering SVD to Rxz{f,f ′}, a generalization form of the matrix

Rxz{f,f ′} on signal subspace is given as

Rxz{f,f ′} = Uxz{f,f ′}Σxz{f,f ′}V
H
xz{f,f ′}, (4.47)

where Uxz{f,f ′},V xz{f,f ′} ∈ CM×K , and Σxz{f,f ′} ∈ RK×K
≥0 are the matrices of left and

right singular vectors, and the diagonal matrices of singular values, respectively. Ac-

cording to the past studies [12–15,17,28], it is possible to define the matrices Uxz{f,f ′},

V xz{f,f ′} and Σxz{f,f ′} as following equations:

Σxz{f,f ′} = F xz{f,f ′}S{f,f ′}G
H
xz{f,f ′},

Uxz{f,f ′} = Ax (ϕ, f)F
-1
xz{f,f ′},

V xz{f,f ′} = Az (θ, f
′)G-1

xz{f,f ′}.

(4.48)

From above, F xz{f,f ′},Gxz{f,f ′} ∈ CK×K is invertible and possess the unitary property

via SVD theorem. From the above definition, we hypothesize that F xz{f,f ′} possess a

property of array manifold matrix Ax (ϕ, f), and similarly, Gxz{f,f ′} possess a property

of array manifold matrix Az (θ, f
′). To support such hypothesis, we start by redefining

the left matrix of generalization form of Rxz{f,f};

Uxz{f,f} = Ax (ϕ, f)F
-1
xz{f,f}. (4.49)
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It is possible to show that

Uxz{f,f ′}U
H
xz{f,f} = IK , (4.50)

Uxz{f,f ′}U
†
xz{f,f} = IK , (4.51)

by employing a provably good approximation algorithm of SVD. For example, SVD

approximation procedure based on MatlabR⃝ R2017a appears suitable for exhibiting the

property on Eqs. (4.50) and (4.51). Therefore, we can assert that unitary property

is valid by utilizing the suitable approximation algorithm. Additionally, the following

statement is revealed that matrix F xz{f,f ′} can possess the property of array manifold

matrix Ax (ϕ, f) by Eq. (4.50);

AH
x (ϕ, f)Ax (ϕ, f) = FH

xz{f,f}F xz{f,f ′}. (4.52)

From Eqs. (4.51) and (4.52), we additionally found that

F xz{f,f} = F xz{f,f ′}. (4.53)

Using similar technique from the above on the right matrix of generalization form of

Rxz{f ′,f ′}, we have

AH
z (θ, f)Az (θ, f) = GH

xz{f ′,f ′}Gxz{f ′,f}. (4.54)

and

Gxz{f ′,f ′} = Gxz{f,f ′}. (4.55)

Since the relation between F xz{f,f} and F xz{f,f ′}, and the relation between Gxz{f ′,f ′}

and Gxz{f,f ′} have been found, those propositions are no longer necessary.

After Theorem 1 is defined, we can proceed to describe a concept to construct

a wideband cross-correlation matrix on Eq. (4.9) with the proposed transformation
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matrices;

T x{f}Rxz{f,f}T
H
z{f}

= T x{f}Ax (ϕ, f)S{f,f}A
H
z (θ, f)TH

z{f}

= Ax (ϕ, fo)F
-1
xz{fo,fo}F xz{f,f}S{f,f}G

H
xz{f,f}

G−H
xz{fo,fo}A

H
z (θ, fo)

= Uxz{fo,fo}Σxz{f,f}V
H
xz{fo,fo}.

(4.56)

The proof is obtained easily by performing straightforward calculation. It is apparently

seen from Eq. (4.56) that matrices of singular vectors Uxz{fo,fo} and V xz{fo,fo} no

longer depend on any frequency f , but only depend on the reference frequency fo,

moreover, the diagonal matrix of singular values Σxz{f,f} completely depends on the

temporal frequency f ; this advantage of independent isolation between fo and f allows

T x{f} and T z{f} to transform the sample cross-correlation matrix from any frequency f

into the reference frequency fo without loss of generality, which will be clearly revealed

in the next section.

4.3.3 DOA Estimation Scheme

In this section, we give a scheme of wideband DOA estimation. We start by con-

structing cross-correlation matrices form Eq. (4.56) and performing integration, as fol-

lows

Rxz =

∫ fo

fmin

T x{f}Rxz{f,f}T
H
z{f}df

=

∫ fo

fmin

Uxz{fo,fo}Σxz{f,f}V
H
xz{fo,fo}df

= Uxz{fo,fo}ΩV H
xz{fo,fo},

(4.57)

where

Ω =

∫ fo

fmin

Σxz{f,f}df. (4.58)

From above, Ω ∈ RK×K
≥0 represents the summation matrix of singular values for all

frequency range between fmin and fo. To show that matrix Ω can be considered as
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indicator of
∫ fo
fmin

S{f,f}df , we introduce the following useful lemma;

Lemma 2. Given Lemma 1 and Assumption 4 along with frequency range between fmin

and fo, the matrix Ω is nonsingular if and only if there exists some nonsingular matrix

S{f,f} at some point in frequency f .

Proof. In this appendix, we provide a mathematical reason to support Lemma 2. We

start by recalling the following matrix [37]: S =
∫ fo
fmin

S{f,f}df . It is well known that S

may be singular for all frequency bins within range between fmin and fo if and only if the

sources are correlated somehow each other [37]. Indeed, if any S{f,f} are nonsingular,

then S is directly nonsingular. Therefore, S can be considered as nonsingular matrix

for the most practical situations.

Suppose that the sample matrix Rxz{f,f} ∈ CM×M on Eq. (4.47) has a rank of K

by employing Lemma 1 and SVD theorem, then the matrix of singular values Σxz{f,f} ∈

CK×K has a positive determinant. As the facts that a square matrix is singular if and

only if its determinant is zero; therefore, the singular values Σxz{f,f} have to satisfy

the condition of

Σxz{f,f} > OK×K . (4.59)

For making more practical implementation, we can have

Σxz{f,f} ≥ ηIK > OK×K , (4.60)

where η ∈ R>0 is a threshold limit value. Note that the threshold value vary and depend

on the maximum peak-to-peak amplitude of signal sources; to adjust the threshold value,

a pre-processing technique on the received signals may be required such as normalization

or pre-amplification. Summing Σxz{f,f} for all f , the inequality in Eq. (4.60) indicates

Ω can be nonsingular if there exist some nonsingular matrix Σxz{f,f} at some temporal

frequency f . ■
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The matrix Rxz is now able to perform SVD without degrading the left and right

matrices singular vectors Uxz{fo,fo} and V xz{fo,fo} by employing Lemma 2. Further-

more, Rxz is compatible with recent narrowband subspace methods [3, 5, 12, 13, 17, 21,

31, 36]. According to useful techniques [3, 17, 28, 31], we form new matrices Γ x and Γ z

by Eq. (4.57) as follows:

Γ x = U †
xz1{fo,fo}Uxz2{fo,fo}

= F xz{fo,fo}ΦxF
-1
xz{fo,fo},

Γ z = V †
xz1{fo,fo}V xz2{fo,fo}

= Gxz{fo,fo}ΦzG
-1
xz{fo,fo},

(4.61)

where

Φx = diag (αx (ϕ1, fo) , αx (ϕ2, fo) , . . . , αx (ϕK , fo)) ,

Φz = diag (αz (θ1, fo) , αz (θ2, fo) , . . . , αz (θK , fo)) ,
(4.62)

Uxz1{fo,fo},Uxz2{fo,fo},V xz1{fo,fo},V xz2{fo,fo} ∈ CM−1×K are the first and the last

M − 1 rows of singular matrices Uxz{fo,fo} and V xz{fo,fo}, respectively, Applying

Eigenvalue decomposition (EVD), the x and z subarray angles are estimated by the

eigenvalues matrices Λx, Λz of Γ x, Γ x;

ϕk = cos−1

(
angle (λxk

)
λ

2πd

)
,

θk = cos−1

(
angle (λzk)

λ

2πd

)
,

(4.63)

where λxk
, λzk ∈ C are the kth eigenvalue in Λx, Λz.

All thing considered, the following steps summarize the wideband 2D DOA esti-

mation using the proposed method:

1. Construct sample matrix Rxz{fo,fo} on Eq. (6.2).

2. Given f between fmin and fo, construct sample matrices Rxz{f,fo}, Rxz{fo,f},

Rxz{f,f} on Eq. (6.2).

3. Construct Ψx{f}, Ψ z{f} in Eqs. (4.19) and (4.20) using previous matrices, perform

SVD of Ψx{f}, Ψ z{f} for formulating T x{f}, T z{f} on Eqs. (4.21) and (4.22).
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4. Cumulate T x{f}, T z{f}, Rxz{f,f} and construct new cross-correlation matrix Rxz

via Eq. (4.57).

5. Estimate Uxz{fo,fo}, V xz{fo,fo} by performing SVD of Rxz in Eq. (4.57), and con-

struct Γ x, Γ z using Eq. (6.7).

6. Perfrom EVD of Γ x, Γ z, estimate angles by Eq. (6.9).

7. Calculate azimuth angle using Eq. (4.1).

4.4 Computational Complexity

Computational complexity of the proposed method is discussed on a worst-case

scenario; the number of computations for an n ×m matrix addition is O (nm), n ×m

and m× p matrix multiplication is O (nmp), an n× n matrix inversion is O
(
n3
)
, EVD

of an n × n matrix is O
(
n3
)
, EVD of an n × n matrix with eigenvectors is O

(
2n3
)

where m ≥ n, SVD of an m × n matrix is O
(
mn2

)
, SVD of an m × n matrix with

singular vectors is O
(
4m2n+ 22n3

)
, and an m×n matrix pseudo inversion via SVD is

O
(
4m2n+ 22n3 +m2n+mn2 + n

)
where m ≥ n.

We provided computational complexity of the proposed method in comparison with

following methods: IMUSIC [25]; CSS [37]; CSS based on a modification to the total

least-square (CSS-MTLS) [33]; TOPS [40]; squared test of TOPS (Squared-TOPS) [18];

weighted squared TOPS (WS-TOPS) [8]; TOFS [41]; and CSS based on the property

of Gramian matrix of the array manifold matrix (CSS-PGAM) [28]. Fig. 4.1 show the

comparison of the computational complexities which consist of four investigations; (a)

changing the number of snapshots where F = 300,M = 12,K = 3, (b) frequency

bins caused by STFT where M = 12, N = 48000,K = 3, (c) microphone elements

each subarray where F = 300, N = 48000,K = 3, and (d) number of sources where

F = 300,M = 12, N = 48000. For all selected methods excepting CSS-PGAM and the
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Fig. 4.1 Computational complexities; (a) changing the number of snapshots

N , (b) changing the number of frequency bins F , (c) changing the number of

microphone elements each subarray M , and (d) changing the number of incident

sources K.

proposed method, the number of steering angle is 1800. The number of iterations in CSS

and CSS-MTLS are 10. The number of selecting frequency on WS-TOPS is assumed

to be 1 for intuitive comparison. Note that a computational burden of peak searching

algorithm are not concerned in this study. It is apparently seen in Fig. 4.1 (a) to (d) that

the proposed method exhibits remarkably less computational times than other methods,

which are presented more high growth rates than the proposed method, such as CSS,
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CSS-MTLS, TOPS, Squared-TOPS, and WS-TOPS for the case (d). To the best of

our knowledge, an explanation for the high growth rates is that SVD of large-scale

matrices are intensively employed in TOPS, Squared-TOPS, and WS-TOPS [8, 18, 40].

Additionally, the computational complexities of CSS and CSS-MTLS are significantly

dominated by the number of iterations, which is directly effecting on the DOA estimation

performance [33,37].

Despite the fact that IMUSIC and TOFS exhibit low computational burden than

the proposed method, considering the wideband 2D DOA estimation performance which

will be revealed in the next section, we can see that the increase of few computational

time can provide significantly improvement of the DOA estimation.

4.5 Numerical Simulations

In this section, the performance of proposed method is demonstrated via computer

simulations. The tested methods were as previously described, excepting CSS and CSS-

MTLS; this is because unintended biases, causing by the initial DOA estimation step

as shown in [33, 37], should be taken into consideration to other candidate methods.

Computer simulations were carried out using MatlabR⃝ R2017a. Simulation parameters

were chosen as follows: the number of Monte Carlo trials each scenario was 100 runs,

the sampling frequency was 48 kHz, the output of each microphone was captured 1

second or 48000 snapshots number, the speed of sound c was 340 m/s, the spacing of

microphone elements d was 5 cm, the minimum and reference frequency fmin, fo were

0.5 and 3.4 kHz. Note that the sources were voices containing the frequency range from

0.1 to 16 kHz.

The following basic application scenarios are considered in this study: (1) a per-

formance of selected methods and the proposed method with respect to the number of
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Table 4.1 Performance evaluations of Scenario 1 via a computer simulation; K = 2, 3
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Table 4.2 Performance evaluations of Scenario 1 via a computer simulation; K = 4
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Table 4.3 Performance evaluations of Scenario 1 via a computer simulation; K = 5
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Fig. 4.2 Performance evaluations of Scenario 2 via computer simulation; (a),

(c), (e) RMSE versus SNR, (b), (d), (f) SD versus SNR, where the number of

microphone elements each subarray on (a), (b) M = 6, (c), (d) M = 10, and (e),

(f) M = 14.
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Fig. 4.3 Performance evaluations of Scenario 3 via computer simulation; (a)

RMSE versus SNR, and (b) SD versus SNR under the reverberation time envi-

ronment.
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sources, (2) the performance with respect to the number of microphone elements each

subarray, and (3) the performance under reverberation environment.

Tables 4.1 to 4.3 shows performance comparison of the existing methods and the

proposed method in term of mean absolute error (MAE) over a range of source number

at 40 dB SNR. The boldfaced results highlight the optimal minimum MAE in each

problem. Note that pair matching is employed. As highlighted in Tables 4.1 to 4.3,

the performance at two sources of IMUSIC, TOFS and WS-TOPS exhibit the lowest

MAE. When the three source is performed, the performance of selected methods are

slightly dominated, but those overall performances are still satisfactory compared to the

previous case. When the incident sources is increasing to four and five, it is interesting to

see that the performance of IMUSIC, TOFS, TOPS, Squared-TOPS and WS-TOPS are

significantly dominated by the number of sources. In addition, above simulation results

are consistent with the other related-researches that the incoherent-based methods, such

as IMUSIC and TOFS, require the number of microphone elements to much more higher

than the number of sources [8,18,25,28,33,37,40,41]. Therefore, the simulation results

in Tables 4.1 to 4.3 are able to provide evidence that the proposed method performs

a better estimation performance than other methods with respect to the number of

sources. Although the performance of proposed method is also dominated by the number

of sources, but the overall performance of proposed method is still more effective than

the other methods.

Fig. 4.2 illustrate performance comparison of the existing methods and the proposed

method in terms of a standard deviation (SD) and root-mean-squared error (RMSE)

over a range of SNR. Three uncorrelated source angles (ψDOA
k , ϕDOA

k ) were placed at

(60◦, 30◦), (45◦, 45◦), and (30◦, 60◦), where ψDOA
k and ϕDOA

k are true DOA azimuth

and zenith angles, respectively. Firstly, it is interesting to take a close look at the

case of fourteen microphones in Fig. 4.2 (e), (f) that RMSE and SD of the proposed
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method worse than IMUSIC and TOFS in SNR range from 6 to 18 dB; this can be

explained by effect of relaxation of the error constraints in Eq. (4.45). It should be

mentioned again in the incoherent-based method that criteria of selecting number of

microphone elements is based on the number of sources for providing the maximum

performance [8, 18,25,28,33,37,40,41]; in other words, the low number of microphones

elements should be considered for providing more practical applications. In the case of

ten microphones each subarray, the performances of selected methods are dominated

by the number of microphone elements as illustrated in Fig. 4.2 (c), (d). Furthermore,

the performances of selected methods are dramatically degraded when employing six

microphones as illustrated in Fig. 4.2 (a), (b). On the contrary, RMSE performance

of proposed method is weakly dominated by the number of microphone elements. The

proposed method gives noticeably better RMSE performance than the other methods

with respect to the number of microphone elements. This substantial ability is more

meaningful for many practical applications.

Fig. 4.3 represent performance comparison of the existing methods and the pro-

posed method in terms of overall SD and RMSE over a range of SNR under reverberation

environment. The reverberations were simulated by the following procedure [11]. Di-

mensions of enclosure room is 13 × 13 × 5 meter.The number of microphone elements

each subarray is twelve, and three uncorrelated source angles were placed as same as

previously used. Simulation results in Fig. 4.3 indicated that reverberation has stronger

effect to RMSE and SD performances in both of the existing methods and the proposed

method; RMSE increases more significantly as well as SNR and the reverberation time.

For practical applications, RMSE and SD are desired to be minimized simultaneously

over the entire SNR range. Consider at the high reverberation time with decreasing

SNR, IMUSIC and TOFS exhibit extremely lower RMSE than TOPS and TOPS-based

methods. Additionally, IMUSIC and TOFS are able to provide slightly better estimates
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than CSS-PGAM and the proposed method. Since the reverberation time is decreas-

ing, the proposed method and CSS-PGAM begin to demonstrate low RMSE which is

much less than other methods. It is apparently seen from Fig. 4.3 (a) that RMSE

of the proposed method remarkably outperforms than the other methods when SNR

levels ranging from 10 to 40 dB along with reverberation time decreases to less than

0.6 second. All things considered, trade-off between SNR and the reverberation should

be pondered deeply in actual applications. For example, applying a noise cancellation

technique to the received signal can provide the best SNR, which can be resulted in the

higher performance of proposed method than the other methods.

Ultimately, all simulation results show that the performance of proposed method is

especially effective for wideband 2D DOA estimation in real reverberating environments.

This makes it suitable for many practical applications.

4.6 Conclusion

An efficient 2D DOA estimation with L-shaped microphone array for wideband

sources was presented. We proposed a way to construct a wideband sample cross-

correlation matrix and addressed a problem of estimating transformation matrices on

CSS without any process of DOA preliminary estimation. The proposed transforma-

tion matrices were constructed by performing SVD of a new unique cross-correlation

matrix, where elements in the row and column positions are sample cross-correlation

matrices of two different frequencies. Wideband DOAs can be estimated by using this

wideband sample cross-correlation matrix along with a scheme of estimating DOA in a

narrowband subspace method. Therefore, a contribution of our study is providing an

alternative framework for recent narrowband subspace methods to estimating the DOA

of wideband sources directly, which implied that the new framework enable cutting-edge
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techniques in the existing narrowband subspace methods to implement the wideband

2D DOA estimation for reducing the computational complexity and facilitating the es-

timation algorithm. Theoretical analysis and effectiveness of the proposed method are

substantiated through numerical simulations, Furthermore, the results show that the

proposed method exhibited effective performance than other wideband methods over

a range of SNR with just a few microphones in reverberating environments. All these

advantages make the proposed method a powerful tool for navigation systems based on

acoustic signal processing.
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Chapter 5

Extension Theory of

Orthogonal Procrustes

Analysis for Wideband

Direction-of-Arrival

Estimation and its

Experimentation

This chapter presents an efficient framework for estimating direction-of-arrival

(DOA) of wideband sound sources. The proposed framework provides an efficient

way to construct a wideband cross-correlation matrix from multiple narrowband cross-

correlation matrices for all frequency bins via extension theory of Orthogonal Procrustes

analysis. In addition, the proposed framework is inspired by the coherent signal sub-

space technique with further improvement of linear transformation procedure, and the

new procedure no longer require any process of DOA preliminary estimation by ex-

ploiting unique cross-correlation matrices between received signal and itself on distinct

frequencies, along with the higher-order generalized singular value decomposition of the
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array of this unique matrix. Wideband DOAs are estimated by employing any subspace-

based technique for estimating narrowband DOAs, but using the proposed wideband

correlation instead of the narrowband correlation matrix. It implies that the proposed

framework enables cutting-edge researches in the recent narrowband subspace methods

to estimate DOA of the wideband sources directly, which result in the reducing compu-

tational complexity and facilitating the estimation algorithm. Practical examples are

presented to showcase its applicability and effectiveness, and the results show that the

performance of fusion methods perform better than others over a range of signal-to-noise

ratio with just a few sensors, which make it suitable for practical use.

5.1 Foreword: New Possible DOA Approach via

High-Order Signal Subspace

As mentioned in Section 5.1 and Chapter 3, several approaches have been proposed

as a potential way to estimate DOA. For instance, the time-difference-of-arrival based

DOA estimation is one of the most frequently used approaches, which is widely known

as the generalized cross-correlation with phase transform (GCC-PHAT) [13]. DOA is

estimated using time shifting related to location of the largest peak of the generalized

cross-correlation between two observed signals. In addition to this approach, low com-

putational requirement makes it attractive for the practical applications; however, the

major drawback is its low robustness in noisy and multipath environments. Another

relevant approach is adopted from the independent component analysis (ICA) in blind

source separation [28, 45]. ICA searches independent components by measuring devi-

ations from Gaussian distributions, such as, maximization of negentropy or kurtosis.

DOAs are estimated easily by using the separated components for all frequency bins,

but it should be noticed that the estimation accuracy of such method is highly sensitive
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to the non-Gaussianity measures.

In an alternative approach to estimate narrowband DOAs, the subspace method

has been proposed in an effort to improve estimation performance. The most prominent

methods observe the signal and noise subspace for achieving more robust results, such

as, multiple signal classification (MUSIC) [29], estimation of signal parameters via rota-

tional invariance techniques (ESPRIT) [27], and propagator method [16,17], which have

been used frequently for one-dimensional (1D) DOA estimation along with the uniform

linear array (ULA) of sensors. In case of a two-dimensional (2D) DOA estimation, a new

geometrical structure of a sensor array is required, and it was previously found that the

structure of L-shaped array is considerably effective for estimating 2D DOAs [11]. Addi-

tionally, the L-shaped array allows for simple implementation, because it consists of two

ULAs connected orthogonally at one end of each ULA. For these reasons, the L-shaped

array is widely applied to 2D DOA estimation method [3, 4, 10, 15, 21, 26, 34, 40, 42, 43],

and its practical applications can be found in the past researches [23, 39]. Although

the narrowband subspace method may unable to directly use for estimating wideband

DOAs, one possible way to solve this problem is to employ the narrowband subspace

method in each temporal frequency intensively, and then the wideband DOA results can

be estimated by interpolating the narrowband DOA results all frequency bins [31, 33].

But it should be noted again that intensive computational costs encountered in the

above solution may be limited by practical considerations.

Several approaches were proposed to solve the problem of estimating wideband

DOAs, for example, the incoherent MUSIC (IMUSIC) is one of the simplest method

for estimating wideband DOA [30]. There are two steps in IMUSIC: Firstly, noise

subspace model each temporal frequency is constructed. Then, wideband DOAs are

obtained by minimizing the norm of orthogonal relation between a steering vector and

the noise subspace of all frequency bins. Although accuracy performance of IMUSIC was
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demonstrated to be effective method for estimating DOAs of multiple wideband signals

in high signal-to-noise ratio (SNR) region, a single small distortion of the noise subspace

at any frequency can affect the whole DOA results. Many attempts were made recently

to overcome this problem. For instance, the test of orthogonality of frequency subspaces

(TOFS) was proposed to overcome this difficulty [47], but performance degradation

caused by the small distortion still remain challenging. Another relevant approach is

called as the test of orthogonality of projected subspaces (TOPS) [46]. TOPS estimate

DOA by constructing signal subspace of one reference frequency, and then measuring

orthogonality of the previous signal subspace and noise subspace for all frequency bins.

The simulations showed that TOPS is able to achieve higher accuracy than IMUSIC

in mid SNR range, however, the undesirable false peaks still remain. The revised and

greatly improved version of TOPSs were proposed recently to reduce this false peaks

[7, 22]. Obviously, computational complexities increased dramatically compared to the

classical TOPS.

Another notable approach of wideband DOA estimation is the coherent signal sub-

space method (CSS) [12, 41]. CSS specifically focuses a correlation matrix of received

signals each temporal frequency into a single matrix, which is called a universal cor-

relation, associated with one focusing frequency via linear transformation procedure.

Wideband DOAs are estimated by applying a single scheme of any narrowband sub-

space method on the universal correlation matrix. In addition to the transformation

procedure of CSS [32, 35, 36], a process of DOA preliminary estimation is required be-

fore the wideband DOAs can be estimated. Therefore, a common shortcoming is clearly

recognized as a requirement of DOA preliminary estimation, which means that any infe-

rior initiation can lead to biased estimates. Some attempts have been made recently to

overcome this difficulty [32,35,36]. According to the literature [1,30,46,47], CSS demon-

strates deficient performance than others such as TOPS, this is because the solutions
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of transformation procedure in CSS are solely focused on subspace between a tempo-

ral frequency and focusing frequency; to the best knowledge of the authors, it means

that a fundamental component of the transformation matrix across all frequency bins

may exhibit the different core component, which is clearly apparent when a narrowband

DOA result at some frequency is not close enough to the true DOA. A single component

distortion can definitely affect the whole DOA results. Therefore, the solutions have

to exhibit the exact component even though power present in a received signal at that

frequency is very weak; in other words, the solution of transformation matrix have to

be focused across all frequency bins instead of the pair of different frequencies.

Therefore the purpose of this research work is to investigate an alternative for es-

timating wideband 2D DOAs in a more efficient way. We consider wideband sources

as sound sources, such as human speeches and musical sounds. In order to estimate

the wideband DOAs, we address the issue of transforming multiple narrowband cross-

correlation matrices for all frequency bins into a wideband cross-correlation matrix.

Additionally, Our study is inspired by a computational model of CSS with further im-

provement of linear transformation procedure [12,32,35,36,41]. Since the transformation

procedure of CSS are only focused on subspace between current and reference frequency

as previously mentioned, we propose a new transformation procedure which focus all

frequency bins simultaneously and efficiently. The higher-order generalized singular

value decomposition (HOGSVD) is firstly used to achieve this important issue [24]. By

employing HOGSVD of array of the new unique cross-correlation matrix, where ele-

ments in the row and column positions are a sample cross-correlation matrix between

received signal and itself on two distinct frequencies, the new transformation procedure

no longer require any process of DOA preliminary estimation. Finally, the wideband

cross-correlation matrix is constructed via the proposed transformation procedure, and

finally, the wideband DOAs can be estimated by employing any subspace-based tech-
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nique for estimating narrowband DOAs, but using this wideband correlation matrix

instead of the narrowband correlation matrix. Therefore, the proposed framework en-

ables cutting-edge researches in the recent narrowband subspace methods to estimate

DOA of the wideband sources directly, which result in the reducing computational

complexity and facilitating the estimation algorithm. Practical examples, such as 2D-

MUSIC and ESPRIT with L-shaped array, are presented to showcase its applicability

and effectiveness.

5.2 Preliminaries

5.2.1 Data Model

The proposed method presented in this chapter considers far-field sound sources.

Received signals are a composition of the multiple sources, each one consisting of angle

in a spherical coordinate system. The received signals are transformed into a time-

frequency representation via the short-time Fourier transform (STFT), and are given

by

r (t, f) = A (ϕ,θ, f) s (t, f) +w (t, f) , (5.1)

where r (t, f) ∈ CM is the summation of a received signal, s (t, f) ∈ CK is a source

signal, w (t, f) ∈ CM is an additive noise, the constant M is the number of microphone

elements, and K is the number of incident sources. The matrix A (ϕ,θ, f) ∈ CM×K

stands for the array manifold where ϕ and θ are phase angle components of the source

on x and z axes in the spherical coordinate system. Note that the elements inA (ϕ,θ, f)

depend on an array geometry.

Consider the L-shaped array structure consisting of two ULAs as illustrated in

Fig. 2.1, we recall some necessary definitions here to make this chapter read easily, as
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follows: [
x (t, f)

z (t, f)

]
=

[
Ax (ϕ, f)

Az (θ, f)

]
s (t, f) +

[
wx (t, f)

wz (t, f)

]
, (5.2)

where

Ax (ϕ, f) =
[
ax (ϕ1, f) ax (ϕ2, f) . . . ax (ϕK , f)

]
,

Az (θ, f) =
[
az (θ1, f) az (θ2, f) . . . az (θK , f)

]
,

ax (ϕk, f) =
[
eαx(ϕk,f)j e2αx(ϕk,f)j . . . eNαx(ϕk,f)j

]T
,

az (θk, f) =
[
1 eαz(θk,f)j . . . e(N−1)αz(θk,f)j

]T
,

αx (ϕk, f) =

(
f

fo

)
·
(
2πd cosϕk

λ

)
,

αz (θk, f) =

(
f

fo

)
·
(
2πd cos θk

λ

)
.

(5.3)

From the above definitions, x (t, f) ,wx (t, f) ∈ CN ,Ax (ϕ, f) ∈ CN×K and a subscript

x are belonged to x subarray, and likewise, z (t, f) ,wz (t, f) ∈ CN ,Az (θ, f) ∈ CN×K

and a subscript z are belonged to z subarray where N is the number of microphone

elements each subarray with M = 2N . The variable t is time, f is a source frequency, d

is the spacing of microphone elements, λ is a wavelength with respect to λ = c
fo

where

c is the speed of sound in current medium, and fo is a reference frequency.

5.2.2 Redefinition of Model Assumptions

Unlike the previous chapter, the following assumptions are required on the proposed

framework:

Assumption 1: The number of sources is known or predicted in advance [19,44].

Assumption 2: The spacing between adjacent elements of each subarray and spacing

between x1 and z1 should be set to d = λ
2 for avoiding the angle ambiguity in array

structure radiation [6, 11,48].

Assumption 3: The source s (t, f) is assumed to be Gaussian complex random

variable as suggested by the literature [11, 29, 30]. However, we consider wideband
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sources as sound sources such as human speech; therefore, s (t, f) can also be Super-

Gaussian complex random variable, and it is not stationary signals for the most general

case when giving an appropriate period of time.

Assumption 4: According to acoustic theory of speech, frequency dependence

of the sound source, especially a human speech, is existed [2]; it means that a

cross-covariance between the source and itself with distinct frequencies is not zero;

cov (sk (t, f) , sk (t, f
′)) = csk{f,f ′}, where csk{f,f ′} ∈ C. Next, suppose that s (t, f) are

uncorrelated, which implies that sk (t, f) and sk′ (t, f
′) are statistically independent

of each other when k ̸= k′; cov (sk (t, f) , sk′ (t, f
′)) = 0. When k = k′, the sources

can take to be partially dependent by the following literature [2]; therefore, a sample

cross-covariance matrix of the incident sources over two different frequencies is given

by

S{f,f ′} = E
{
s (t, f) sH (t, f ′)

}
= diag

(
cs1{f,f ′}, cs2{f,f ′}, . . . , csk{f,f ′}

)
.

(5.4)

Remark that csk{f,f} is equal to σ2
sk{f}, and σ

2
sk{f} ∈ R≥0 is a variance at frequency f

of the source.

Assumption 5: An additive white Gaussian noise is considered in this work, which

is modeled as Gaussian random variable as well as the past studies. A noise cross-

covariance matrix over two different frequencies is given by

W {f,f ′} = E
{
w (t, f)wH (t, f ′)

}
= cw{f,f ′}IM ,

(5.5)

where cw{f,f ′} ∈ C, and Ii is a i-by-i identity matrix. Note again that cw{f,f} = σ2
w{f}

where σ2
w{f} ∈ R≥0 is a variance of the noise at frequency f . In case of the L-shaped

array structure in Eq. (5.2), we have[
W xx{f,f ′} W xz{f,f ′}

W zx{f,f ′} W zz{f,f ′}

]
=

[
cw{f,f ′}IN ON×N

ON×N cw{f,f ′}IN

]
, (5.6)

where Oi×j is a i-by-j null matrix.
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5.2.3 Transformation Problem

Under the data model and assumptions in Section 5.2.1 and Section 5.2.2, a cross-

correlation matrix of the received signals is defined as

R{f,f ′} = E
{
r (t, f) rH (t, f ′)

}
= A (ϕ,θ, f)E

{
s (t, f) sH (t, f ′)

}
AH (ϕ,θ, f ′) + E

{
w (t, f)wH (t, f ′)

}
= A (ϕ,θ, f)S{f,f ′}A

H (ϕ,θ, f ′) +W {f,f ′},

(5.7)

where R{f,f ′} ∈ CM×M . In order to transform R{f,f} over the available frequency

range into a single smoothed matrix, which is named as a wideband cross-correlation,

a transformation procedure is required as mentioned previously [41], which is expressed

as

R =
1

P

P∑
i=1

T {fi}R{fi,fi}T
H
{fi}

=
1

P

P∑
i=1

T {fi}A (ϕ,θ, fi)S{fi,fi}A
H (ϕ,θ, f)TH

{fi} +
1

P

P∑
i=1

T {fi}W {fi,fi}T
H
{fi}

= A (ϕ,θ, fo)

(
1

P

P∑
i=1

S{fi,fi}

)
AH (ϕ,θ, fo) +

1

P

P∑
i=1

T {fi}W {fi,fi}T
H
{fi},

(5.8)

where

A (ϕ,θ, fo) = T {fi}A (ϕ,θ, fi) , (5.9)

R ∈ CM×M is the wideband cross-correlation matrix, and P is the number of STFT fre-

quency bins. T {fi} ∈ CM×M is a transformation matrix, which was originally designed

by using the ordinary beamforming technique [41], or by minimizing the Frobenius norm

of array manifold matrices [12]. The objective of T {f} is to transform any given f of the

array manifold A (ϕ,θ, f) into A (ϕ,θ, fo). All previous solutions of T {f} are solely

based on subspace between pair of distinct frequencies {f, fo}, as emphasized in the

introduction [12,32,35,36,41]. When power of the source at some frequency is weak or
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less than noise power, the matrix T {f} may not share any common angle of ϕ,θ because

its non-zero eigenvalues are not full rank, which is resulted in a performance degrada-

tion for estimating both T {f} and wideband DOAs. If the transformation matrix can

be focused by all frequency bins instead of the pair of frequencies, a good estimate of

DOAs on Eq. (5.8) might be expected. Based on this hypothesis, a new concept and

scheme are presented in next section.

5.3 Proposed Method

This section introduces a new procedure for estimating a transformation matrix, its

alternative solution by using the higher-order generalized singular value decomposition

(HOGSVD), and practical examples of wideband DOA estimation scheme.

5.3.1 Problem for Estimating the Transformation Matrix and

its Solution

We start by introducing the following lemma that will be useful for obtaining a

solution of transformation matrix.

Lemma 3. Given a set of two distinct frequencies by {f, fo} into Eq. (5.7), and given

a transformation matrix T {f} which satisfy the property in Eq. (6.4). Assume that K <

M , the cross-correlation R{f,fo} can be factorized into the singular value decomposition

(SVD) form;

R{f,fo} = U{f,fo}s
Σ{f,fo}s

V H
{f,fo}s

+U{f,fo}n
Σ{f,fo}n

V H
{f,fo}n

, (5.10)

where U{f,fo}s
,V {f,fo}s

∈ CM×K , Σ{f,fo}s
∈ RK×K are the matrix of left and right

singular vectors and diagonal matrix of singular values in signal subspace, and likewise,

U{f,fo}n
,V {f,fo}n

∈ CM×M−K , Σ{f,fo}n
∈ CM−K×M−K are with noise subspace. If

the K largest singular values of T {f}R{f,fo} and R{f,fo} are equal, then T {f}U{f,fo}s
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is a matrix with orthonormal columns.

Proof. Since the transformation procedure of R{f,fo} is expressed by T {f}R{f,fo} and

the array manifold A (ϕ,θ, f) and A (ϕ,θ, fo) are full rank matrices [41], Lemma 3 is

valid if and only if the K largest singular values of T {f}R{f,fo} and R{f,fo} are equal;

therefore, UH
{f,fo}s

TH
{f}T {f}U{f,fo}s

= IK . Considering the M −K smallest singular

values of R{f,fo} are close to zeros by assuming a noise-free signal and using solely the

signal subspace U{f,fo}s
Σ{f,fo}s

V H
{f,fo}s

, we have(
T {f}

(
R{f,fo} −W {f,fo}

))H (
T {f}

(
R{f,fo} −W {f,fo}

))
= V {f,fo}s

ΣH
{f,fo}s

(
UH

{f,fo}s
TH

{f}T {f}U{f,fo}s

)
Σ{f,fo}s

V H
{f,fo}s

= V {f,fo}s
Σ{f,fo}s

Σ{f,fo}s
V H

{f,fo}s
.

(5.11)

Since U{f,fo}s
have orthonormal columns [37], we have(

R{f,fo} −W {f,fo}
)H (

R{f,fo} −W {f,fo}
)

= V {f,fo}s
Σ{f,fo}s

Σ{f,fo}s
V H

{f,fo}s
.

(5.12)

Performing the Eigenvalue decomposition (EVD) to Eqs. (5.11) and (5.12), the square

roots of the non-zero eigenvalues of both matrices are identical [8, 37]. This completes

the proof of the lemma. ■

Lemma 3 shows that R{f,fo} and T {f}R{f,fo} share the common components on

the singular values and right singular vectors, whereas the both left singular vectors may

be different. Since A (ϕθ, f) and A (ϕ,θ, fo) are full rank, its remaining components

are given by [20]:

A (ϕ,θ, f) = U{f,fo}s
F {f,fo},

T {f}A (ϕ,θ, f) =
(
T {f}U{f,fo}s

)
F {f,fo},

A (ϕ,θ, fo) = V {f,fo}s
G{f,fo},

(5.13)

where

Σ{f,fo}s
= F {f,fo}S{f,fo}G

H
{f,fo}, (5.14)
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F {f,fo},G{f,fo} ∈ CK×K are full rank matrices and have invertibility. From Eqs. (5.13)

and (6.4), we have

T {f}U{f,fo}s
= V {f,fo}s

G{f,fo}F
-1
{f,fo}, (5.15)

which is assured that the right singular vectors of R{f,fo} and the left singular vectors

of T {f}R{f,fo} share the common subspace when G{f,fo}F
-1
{f,fo} has unitary property.

Since the left singular vectors of T {f}R{f,fo} is existed, we continue to introduce

a new transformation procedure. The matrix T {f} can be found as solution to

minimize
T {f}

∥∥R{fo,fo} − T {f}R{f,fo}
∥∥2
F

subject to
K∑
k=1

σ2
k

(
T {f}R{f,fo}

)
=

K∑
k=1

σ2
k

(
R{f,fo}

)
,

(5.16)

where ∥·∥F is the Frobenius norm, and
∑K
k=1 σ

2
k (A) is the sum-of-squares K largest

singular values of A. If the constraint on Eq. (5.16) is not imposed, then one of the

possible choices is obtained by the least squares problem [9,18]; the solution is derived by

observing the point where derivative of cost function with respect to T {f} is zero, then

we can have T {f}LS
= R{fo,fo}R

H
{f,fo}(R{f,fo}R

H
{f,fo})

-1, and Σ{fo,fo}s
Σ-1

{f,fo}s
= IK ,

which is not possible in practice. To solve the problem much more practicable, an

alternative solution is introduced, which is based on the constraint on Eq. (5.16) and

Lemma 3:

Theorem 2. Let Uψ{f},V ψ{f} ∈ CM×K are the matrices in signal subspace contain-

ing the left and right singular vectors of R{f,fo}R
H
{fo,fo}. Imposing the constraint on

Eq. (5.16) and Lemma 3, along with the modification of orthogonal Procrustes problem

(MOP), an alternative solution to Eq. (5.16) is given by

T {f}MOP
= V ψ{f}U

†
ψ{f}. (5.17)

Defining the square matrix Ω{f} ∈ CK×K as the matrix containing error corrections,
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the error of transformation remains consistent with the following equation;

ε{f}MOP

=

∣∣∣∣2 · ℜ (tr (Σψ{f}
(
Ω{f} − IK

)))
+ tr

(
Σ2

{f,fo}n

(
U †
ψ{f}U ε{f}

)H
U †
ψ{f}U ε{f}

)∣∣∣∣
(5.18)

where Σψ{f} ∈ RK×K and U ε{f} ∈ CM×M−K are the diagonal matrix of the K largest

singular values, and the noise subspace left singular vectors of R{f,fo}R
H
{fo,fo}, respec-

tively.

Proof. This appendix provides a detailed derivation of Theorem 2. We begin by consid-

ering the cross-correlation matrices in Eq. (5.7). R{fo,fo} can be constructed into the

EVD form, which is given by

R{fo,fo} = Q{fo}s
Λ{fo}s

QH
{fo}s

+Q{fo}n
Λ{fo}n

QH
{fo}n

, (5.19)

where Q{fo}s
∈ CM×K , Λ{fo}s

∈ RK×K are the matrix of eigenvectors and diagonal

matrix of eigenvalues in signal subspace, and likewise, Q{fo}n
∈ CM×M−K , Λ{fo}n

∈

RM−K×M−K are with noise subspace. In case ofR{f,fo}, it can be derived by performing

SVD, which directly follows from Eq. (5.10). Since A (ϕθ, f) and A (ϕ,θ, fo) are full

rank matrices [41], its remaining components are expressed as follows [20]:

U{f,fo}s
= A (ϕ,θ, f)F -1

{f,fo},

V {f,fo}s
= A (ϕ,θ, fo)G

-1
{f,fo},

Q{fo}s
= A (ϕ,θ, fo)H

-1
{fo},

(5.20)

where

Σ{f,fo}s
= F {f,fo}S{f,fo}G

H
{f,fo}, Λ{fo}s

= H{fo}S{fo,fo}H
H
{fo}, (5.21)

F {f,fo},G{f,fo},H{fo} ∈ CK×K are also full rank and invertible. Note again that

U{f,fo}s
,V {f,fo}s

,Q{fo}s
have orthonormal columns [37], hence, it is obvious to see

that

Q{fo}s
= V {f,fo}s

G{f,fo}H
-1
{fo}, (5.22)
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HH
{fo}H{fo} = AH (ϕ,θ, fo)A (ϕ,θ, fo)

= GH
{f,fo}G{f,fo}.

(5.23)

From Eq. (5.22), we may expect that G{f,fo},H{fo} have unitary property, but it is

incorrect when considering Eq. (5.23). Therefore, a proposition of G{f,fo}H
-1
{f,fo} have

to be identity;

G{f,fo}H
-1
{fo} = V H

{f,fo}s
Q{fo}s

= IK .
(5.24)

When considering only the signal subspace, it can be seen from Eqs. (5.22) to (5.24)

that the right singular vectors of R{f,fo} and the eigenvectors of R{fo,fo} are identical.

Next, we continue to generalize the objective function in Eq. (5.16) by utilizing

Orthogonal Procrustes (OP) [5], but with some modification (MOP). The objective

function in Eq. (5.16) is rederived by∥∥R{fo,fo} − T {f}R{f,fo}
∥∥2
F

= tr
(
R{fo,fo}R

H
{fo,fo}

)
+ tr

(
T {f}R{f,fo}R

H
{f,fo}T

H
{f}

)
− tr

(
T {f}R{f,fo}R

H
{fo,fo} +R{fo,fo}R

H
{f,fo}T

H
{f}

)
= tr

(
R{fo,fo}R

H
{fo,fo}

)
+ tr

(
T {f}R{f,fo}R

H
{f,fo}T

H
{f}

)
− tr

(
T {f}R{f,fo}R

H
{fo,fo} +

(
T {f}R{f,fo}R

H
{fo,fo}

)H)
= tr

(
R{fo,fo}R

H
{fo,fo}

)
+ tr

(
T {f}R{f,fo}R

H
{f,fo}T

H
{f}

)
− 2 · ℜ

(
tr
(
T {f}R{f,fo}R

H
{fo,fo}

))
,

(5.25)

where ℜ (a) returns the real part of the variable a, tr (A) trace of the square matrix A.

Considering each expression in Eq. (5.25), the trace of a product of two square matrices

is independent of the orders;

tr
(
R{fo,fo}R

H
{fo,fo}

)
= tr

(
Q{fo}s

Λ{fo}s
Λ{fo}s

QH
{fo}s

)
+ tr

(
Q{fo}n

Λ{fo}n
Λ{fo}n

QH
{fo}n

)
= tr

(
Λ{fo}s

Λ{fo}s
QH

{fo}s
Q{fo}s

)
+ tr

(
Λ{fo}n

Λ{fo}n
QH

{fo}n
Q{fo}n

)
= tr

(
Λ{fo}s

Λ{fo}s

)
+ tr

(
Λ{fo}n

Λ{fo}n

)
.

(5.26)
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Employing Lemma 3, next, we have

tr
(
T {f}R{f,fo}R

H
{f,fo}T

H
{f}

)
= tr

(
T {f}U{f,fo}s

Σ{f,fo}s
Σ{f,fo}s

(
T {f}U{f,fo}s

)H)
+ tr

(
T {f}U{f,fo}n

Σ{f,fo}n
Σ{f,fo}n

UH
{f,fo}n

TH
{f}

)
= tr

(
Σ{f,fo}s

Σ{f,fo}s

(
T {f}U{f,fo}s

)H
T {f}U{f,fo}s

)
+ tr

(
Σ{f,fo}n

Σ{f,fo}n
UH

{f,fo}n
TH

{f}T {f}U{f,fo}n

)
= tr

(
Σ{f,fo}s

Σ{f,fo}s

)
+ tr

(
Σ{f,fo}n

Σ{f,fo}n
UH

{f,fo}n
TH

{f}T {f}U{f,fo}n

)
, (5.27)

From Eq. (5.24), we finally have

tr
(
T {f}R{f,fo}R

H
{fo,fo}

)
= tr

(
T {f}U{f,fo}s

Σ{f,fo}s
Λ{fo}s

QH
{fo}s

)
+ tr

(
T {f}U{f,fo}n

Σ{f,fo}n
Λ{fo}n

QH
{fo}n

)
.

= tr
(
Σ{f,fo}s

Λ{fo}s
QH

{fo}s
T {f}U{f,fo}s

)
+ tr

(
Σ{f,fo}n

Λ{fo}n
QH

{fo}n
T {f}U{f,fo}n

)
(5.28)

Substituting Eqs. (5.26) to (5.28) into Eq. (5.25), the objective function is simplified as∥∥R{fo,fo} − T {f}R{f,fo}
∥∥2
F

= tr
(
Λ{fo}s

Λ{fo}s

)
+ tr

(
Λ{fo}n

Λ{fo}n

)
+ tr

(
Σ{f,fo}s

Σ{f,fo}s

)
+ tr

(
Σ{f,fo}n

Σ{f,fo}n
UH

{f,fo}n
TH

{f}T {f}U{f,fo}n

)
− 2 · ℜ

(
tr
(
Σ{f,fo}s

Λ{fo}s
QH

{fo}s
T {f}U{f,fo}s

))
− 2 · ℜ

(
tr
(
Σ{f,fo}n

Λ{fo}n
QH

{fo}n
T {f}U{f,fo}n

))
.

(5.29)

Three expressions of tr
(
Λ{fo}s

Λ{fo}s

)
, tr

(
Λ{fo}n

Λ{fo}n

)
, tr

(
Σ{f,fo}s

Σ{f,fo}s

)
are

completely isolated from T {f}. Therefore, the optimization problem is redefined as

minimize
T {f}

tr
(
Σ{f,fo}n

Σ{f,fo}n
UH

{f,fo}n
TH

{f}T {f}U{f,fo}n

)
− 2 · ℜ

(
tr
(
Σ{f,fo}s

Λ{fo}s
QH

{fo}s
T {f}U{f,fo}s

))
− 2 · ℜ

(
tr
(
Σ{f,fo}n

Λ{fo}n
QH

{fo}n
T {f}U{f,fo}n

))
subject to

K∑
k=1

σ2
k

(
T {f}R{f,fo}

)
=

K∑
k=1

σ2
k

(
R{f,fo}

)
.

(5.30)
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Now there are two possible cases which we need to consider. The first case is when the

M −K smallest singular values of R{f,fo} are close to zeros; the other is when some of

the M −K smallest singular values of R{f,fo} are morn than zeros.

Case 1: Assume that all the M −K smallest singular values of R{f,fo} are close

to zeros, we have

maximize
T {f}

2 · ℜ
(
tr
(
Σ{f,fo}s

Λ{fo}s
QH

{fo}s
T {f}U{f,fo}s

))
subject to

K∑
k=1

σ2
k

(
T {f}R{f,fo}

)
=

K∑
k=1

σ2
k

(
R{f,fo}

)
,

M∑
m=K+1

σ2
m

(
R{f,fo}

)
= 0.

(5.31)

Using the proposition of Eq. (5.24) and employing Lemma 3, two possible solutions to

reach the maximum point of Eq. (5.31) can be found. The first solution is given by

T {f}MOP
= Q{fo}s

Ω{f}MOP
U †

{f,fo}s
, (5.32)

where orthonormal columns has not yet been defined on U{f,fo}s
, and the second solu-

tion is given by

T {f}OP
= Q{fo}s

Ω{f}OP
UH

{f,fo}s
, (5.33)

where U{f,fo}s
has orthonormal columns. Note that the subscript † denotes the pseudo-

inverse. When the constraints on Eq. (5.31) are imposed into Eqs. (5.32) and (5.33),

we can have that Ω{f}MOP
= IK , Ω{f}OP

= IK , and the maximum is achieved;

ϱ{f}case 1
= 2 · tr

(
Σ{f,fo}s

Λ{fo}s

)
. (5.34)

Case 2: Assume that some of the M − K smallest singular values of R{f,fo} are

more than zeros, the best solution of Eq. (5.30) can be given the same as Eq. (5.33),

and its minimum is equal to Eq. (5.34);

ϱ{f}case 2:OP

= tr
(
Σ{f,fo}n

Σ{f,fo}n
UH

{f,fo}n
TH

{f}T {f}U{f,fo}n

)
− 2 · ℜ

(
tr
(
Σ{f,fo}s

Λ{fo}s
QH

{fo}s
T {f}U{f,fo}s

))
− 2 · ℜ

(
tr
(
Σ{f,fo}n

Λ{fo}n
QH

{fo}n
T {f}U{f,fo}n

))
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= tr
(
Σ{f,fo}n

Σ{f,fo}n
UH

{f,fo}n
U{f,fo}s

ΩH
{f}OP

Ω{f}OP
UH

{f,fo}s
U{f,fo}n

)
− 2 · ℜ

(
tr
(
Σ{f,fo}s

Λ{fo}s
QH

{fo}s
Q{fo}s

Ω{f}OP
UH

{f,fo}s
U{f,fo}s

))
− 2 · ℜ

(
tr
(
Σ{f,fo}n

Λ{fo}n
QH

{fo}n
Q{fo}s

Ω{f}OP
UH

{f,fo}s
U{f,fo}n

))
= −2 · tr

(
Σ{f,fo}s

Λ{fo}s

)
. (5.35)

On the contrary, when using Eq. (5.32) on Eq. (5.30), the minimum of cost function is

remained by

ϱ{f}case 2:MOP

= tr

(
Σ{f,fo}n

Σ{f,fo}n
UH

{f,fo}n

(
U †

{f,fo}s

)H
ΩH

{f}MOP
Ω{f}MOP

U †
{f,fo}s

U{f,fo}n

)
− 2 · ℜ

(
tr
(
Σ{f,fo}s

Λ{fo}s
QH

{fo}s
Q{fo}s

Ω{f}MOP
U †

{f,fo}s
U{f,fo}s

))
− 2 · ℜ

(
tr
(
Σ{f,fo}n

Λ{fo}n
QH

{fo}n
Q{fo}s

Ω{f}MOP
U †

{f,fo}s
U{f,fo}n

))
= tr

(
Σ{f,fo}n

Σ{f,fo}n

(
U †

{f,fo}s
U{f,fo}n

)H
U †

{f,fo}s
U{f,fo}n

)
− 2 · tr

(
Σ{f,fo}s

Λ{fo}s

)
.

(5.36)

Using the solution of Eq. (5.32) rather than Eq. (5.33) allows us to relax the error

constraint in the hope of arriving at a reduction in the computation of HOGSVD (For

details, see Section 5.3.2), but this is still sufficient for estimating T {f} without loss

of generality; the squares of M − K smallest singular values of R{f,fo} are very close

to zeros, so we can assume that Σ2
{f,fo}n

≈ OM−K×M−K . Remark that error of the

transformation remains consistent with the following equation;

ε{f}MOP
=
∣∣2 · ℜ (tr (Σ{f,fo}s

Λ{fo}s

(
Ω{f} − IK

)))
+tr

(
Σ2

{f,fo}n

(
U †

{f,fo}s
U{f,fo}n

)H
U †

{f,fo}s
U{f,fo}n

)∣∣∣∣ . (5.37)

To further reduce a computational burden caused by performing SVD of R{f,fo}

and EVD of R{fo,fo}, we reinitialize the cross-correlation matrix as

R{f,fo}R
H
{fo,fo}

=
(
U{f,fo}s

Σ{f,fo}s
V H

{f,fo}s
+U{f,fo}n

Σ{f,fo}n
V H

{f,fo}n

)
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(
Q{fo}s

Λ{fo}s
QH

{fo}s
+Q{fo}n

Λ{fo}n
QH

{fo}n

)H
=
(
U{f,fo}s

Σ{f,fo}s
V H

{f,fo}s
Q{fo}s

Λ{fo}s
QH

{fo}s

)
+
(
U{f,fo}n

Σ{f,fo}n
V H

{f,fo}n
Q{fo}n

Λ{fo}n
QH

{fo}n

)
= U{f,fo}s

Σ{f,fo}s
Λ{fo}s

QH
{fo}s

+U{f,fo}n
Σ{f,fo}n

Λ{fo}n
QH

{fo}n
, (5.38)

which is possible to reduce the computation by performing single SVD operation on

R{f,fo}R
H
{fo,fo}. The proof is completed. ■

Theorem 2 provides an efficient way to construct T {f} without any process of DOA

preliminary estimation, but the solution are still solely based on subspace between pair

of distinct frequencies. In order to observe the solution across all frequency bins, we will

present an alternative for constructing T {f} by using HOGSVD along with Theorem 2,

which the next section will address further.

5.3.2 Estimation of the Transformation Matrices by HOGSVD

Suppose we have a set of P complex matrices E{fi} ∈ CM×M and all of them have

a full rank;

E{f1} = R{f1,fo}R
H
{fo,fo},

E{f2} = R{f2,fo}R
H
{fo,fo},

...

E{fP } = R{fP ,fo}R
H
{fo,fo},

(5.39)

where {f1, f2, · · · , fP } is a set of frequency intervals, and the cross-correlation matrices

R{fi,fo} and R{fo,fo} are obtained form Eq. (5.7). The definition of HOGSVD of these

P matrices are given by the generalized singular value decomposition (GSVD) of P ≥ 2
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datasets and its right singular vectors are identical in all decomposition [25], as follows:
E{f1}

E{f2}
...

E{fP }

 =


U e{f1}s

Σe{f1}s

U e{f2}s
Σe{f2}s

...

U e{fP }s
Σe{fP }s

V H
es +


U e{f1}n

Σe{f1}n

U e{f2}n
Σe{f2}n

...

U e{fP }n
Σe{fP }n

V H
en , (5.40)

where U e{fi}s
∈ CM×K , U e{fi}n

∈ CM×M−K are the matrix of left singular vectors,

V es ∈ CM×K , V en ∈ CM×M−K are the matrix of right singular vectors, and Σe{fi}s
∈

RK×K , Σe{fi}n
∈ RM−K×M−K are the diagonal matrix of singular values. Remark

that subscripts s and n denote subspace of signal and noise, respectively. Unlike the left

singular vectors U{f,fo}s
and U{f,fo}n

that have orthonormal columns by performing

SVD, U e{fi}s
and U e{fi}n

now have unit 2-norm columns instead.

To show that V es is equal to V ψ{f}s
for all frequency bins, let us start from brief

description of HOGSVD benchmark. The matrix V es is obtained by performing EVD

the following matrix;

S =
1

P (P − 1)

P∑
i=1

P∑
j=i+1

((
EH

{fi}E{fi}

)(
EH

{fj}E{fj}

)-1
+
(
EH

{fj}E{fj}

)(
EH

{fi}E{fi}

)-1)
.

(5.41)

Let us redefine

E{fi} = R{fi,fo}R
H
{fo,fo}

= Uo{fi}Σo{fi}V
H
o{fi},

(5.42)

where

Uo{fi} =
[
Uψ{fi} U ε{fi}

]
,

V o{fi} =
[
V ψ{fi} V ε{fi}

]
,

V o{fi} =
[
Q{fo}s

Q{fo}n

]
,

Σo{fi} =

[
Σψ{fi} OK×M−K

OM−K×K Σε{fi}

]
,

(5.43)
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Σε{fi} ∈ RM−K×M−K is the matrix of the M − K smallest singular values of

R{fi,fo}R
H
{fo,fo}, and V ψ{fi} = Q{fo}s

, V ε{fi} = Q{fo}n
by employing Theorem 2 (For

details, see Section 5.3.1). Substituting Eqs. (5.42) and (5.43) into Eq. (5.41), we have:(
EH

{fi}E{fi}

)
=
(
Uo{fi}Σo{fi}V o{fi}

)H
Uo{fi}Σo{fi}V

H
o{fi}

= V o{fi}Σo{fi}U
H
o{fi}Uo{fi}Σo{fi}V

H
o{fi}

= V o{fi}Σo{fi}Σo{fi}V
H
o{fi},

(5.44)

(
EH

{fj}E{fj}

)-1
=
(
V o{fj}Σo{fj}Σo{fj}V

H
o{fj}

)-1
=
(
V H
o{fj}

)-1
Σ-1
o{fj}Σ

-1
o{fj}V

-1
o{fj}

= V −H
o{fj}Σ

-1
o{fj}Σ

-1
o{fj}V

-1
o{fj},

(5.45)

and then,(
EH

{fi}E{fi}

)(
EH

{fj}E{fj}

)-1
= V o{fi}Σo{fi}Σo{fi}V

H
o{fi}V

−H
o{fj}Σ

-1
o{fj}Σ

-1
o{fj}V

-1
o{fj}

= V o{fi}Σo{fi}Σo{fi}Σ
-1
o{fj}Σ

-1
o{fj}V

-1
o{fj},(

EH
{fj}E{fj}

)(
EH

{fi}E{fi}

)-1
= V o{fj}Σo{fj}Σo{fj}Σ

-1
o{fi}Σ

-1
o{fi}V

-1
o{fi}.

(5.46)

Since V ψ{fi} = Q{fo}s
= V ψ{fj}, V ε{fi} = Q{fo}n

= V ε{fi} for all frequency bins,

therefore

V -1
e SV e

=
1

P (P − 1)

P∑
i=1

P∑
j=i+1

(
Σo{fi}Σo{fi}Σ

-1
o{fj}Σ

-1
o{fj} +Σo{fj}Σo{fj}Σ

-1
o{fi}Σ

-1
o{fi}

)
.

(5.47)

where

V e =
[
Q{fo}s

Q{fo}n

]
. (5.48)

Preforming EVD on Eq. (5.47), we can obtain V es , which reveal that V es is equal to

V ψ{f} for all frequency bins. In addition, it can be seen that the matrix V es or V ψ{f}

is estimated by focusing all frequency bins simultaneously; when power of the source at

some frequency is weak or less than noise power, the matrices V ψ{f} still share common

angle of ϕ,θ across all frequency bands effectively and identically.

– 104 –



5.3 Proposed Method

After obtaining the right singulars vectors of E{fi}, we then moved forward to

find its left singulars vectors. We start by considering the following equations based on

Eqs. (5.40) and (5.48);
E{f1}

E{f2}
...

E{fP }

V e =


U e{f1}s

Σe{f1}s

U e{f2}s
Σe{f2}s

...

U e{fP }s
Σe{fP }s

V H
esV e +


U e{f1}n

Σe{f1}n

U e{f2}n
Σe{f2}n

...

U e{fP }n
Σe{fP }n

V H
enV e

=


U e{f1}s

Σe{f1}s

U e{f2}s
Σe{f2}s

...

U e{fP }s
Σe{fP }s


[
IK OK×M−K

]

+


U e{f1}n

Σe{f1}n

U e{f2}n
Σe{f2}n

...

U e{fP }n
Σe{fP }n


[
OM−K×K IM−K

]
.

(5.49)

We remark again that U e{fi}s
, U e{fi}n

have unit 2-norm columns instead of orthonor-

mal columns [25];

[
UH
e{fi}s

UH
e{fi}n

] [
U e{fi}s

U e{fi}n

]
=


1 ξ12 · · · ξ1M

ξ21 1 · · · ξ2M
...

...
. . .

...

ξM1 ξM2 · · · 1

 , (5.50)

where ξjk ∈ C, ∀j ∈ M, ∀k ∈ M : j ̸= k. Then, the singular values are obtained as

follows:

Σe{fi}s
= diag (∥e1∥2 , ∥e2∥2 , · · · , ∥eK∥2) ,

Σe{fi}n
= diag (∥eK+1∥2 , ∥eK+2∥2 , · · · , ∥eM∥2) ,

(5.51)

where ∥·∥2 is the Euclidean norm, and ej ∈ CM is a jth column of E{fi}V e. Finally,

the matrices U e{fi}s
, U e{fi}n

are obtained by solving Eq. (5.49) with Eq. (5.51), which

also satisfy the condition in Eq. (5.50).
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After performing HOGSVD of Eq. (5.39) to obtain the left and right singular vectors

of R{fi,fo}R
H
{fo,fo}, the transformation matrices T {fi}MOP

can be assembled as follows:
T {f1}MOP

T {f2}MOP

...

T {fP }MOP

 = V es


U †
e{f1}s

U †
e{f2}s

...

U †
e{fP }s

 . (5.52)

Note that since orthonormal columns has not yet been assumed on the matrix Uψ{f} in

Theorem 2, hence, the transformation procedure via HOGSVD is still compatible with

Theorem 2 without requiring any modifications (For details, see Eqs. (5.31) and (5.32)

in Section 5.3.1).

We now consider a computational complexity of HOGSVD. It is not surprised

that HOGSVD has a heavy computational burden; that is because matrix inversions

are intensively used on Eq. (5.41). To avoid the computational burden caused by the

matrix inversions, Eq. (5.41) is reformulated by the following technique [38]. It begins

by performing the economy-sized QR decomposition of Eq. (5.40);
E{f1}

E{f2}
...

E{fP }

 =


Qς1

Qς2
...

QςP

Rς , (5.53)

where Rςi ∈ CM×M is the upper triangular matrix, and Qςi ∈ CM×M is a one portion

of the (M × P )-by-M matrix resulting from the QR decomposition of Eq. (5.40). Next,

S is simplified as

Sς =
1

P (P − 1)
(Dς − PIM ) , (5.54)

where

Dς =

P∑
i=1

(
QH
ςiQςi

)-1
. (5.55)

Performing EVD of Eq. (5.55), then we have Dς = ZςΛςZ
H
ς , where Zς ∈ CM×M and

Λς ∈ RM×M are the matrix of eigenvectors and matrix of eigenvalues, respectively.
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Finally, the alternative computation of V e is expressed as RH
ς Zς , where the K smallest

eigenvalues ofDς are belonged to signal subspace. Comparing Eq. (5.41) and Eq. (5.55),

it is clearly seen that the technique on Eqs. (5.54) to (5.55) simplifies the mathematical

model, reduces the matrix operations and improves the speed of V e computation.

5.3.3 DOA Estimation Scheme

After the transformation matrices are formed by using HOGSVD, we now proceed

to describe a framework for estimating the wideband DOAs. We start by simplifying

the wideband cross-correlation matrix on Eq. (5.8) with EVD form and substituting

with T {fi}MOP
, as follows:

1

P

P∑
i=1

T {fi}MOP
R{fi,fi}T

H
{fi}MOP

=
1

P

P∑
i=1

T {fi}MOP

(
Q{fi}s

Λ{fi}s
QH

{fi}s
+Q{fi}n

Λ{fi}n
QH

{fi}n

)
TH

{fi}MOP

=
1

P

P∑
i=1

T {fi}MOP
Q{fi}s

Λ{fi}s
QH

{fi}s
TH

{fi}MOP

+
1

P

P∑
i=1

T {fi}MOP
Q{fi}n

Λ{fi}n
QH

{fi}n
TH

{fi}MOP

=
1

P

P∑
i=1

V es

(
U †
e{fi}s

Q{fi}s

)
Λ{fi}s

(
U †
e{fi}s

Q{fi}s

)H
V H
es

+
1

P

P∑
i=1

V es

(
U †
e{fi}s

Q{fi}n

)
Λ{fi}n

(
U †
e{fi}s

Q{fi}n

)H
V H
es

= V es

(
1

P

P∑
i=1

(
U †
e{fi}s

Q{fi}s

)
Λ{fi}s

(
U †
e{fi}s

Q{fi}s

)H)
V H
es

+ V es

(
1

P

P∑
i=1

(
U †
e{fi}s

Q{fi}n

)
Λ{fi}n

(
U †
e{fi}s

Q{fi}n

)H)
V H
es

= QΛQH +Π,

(5.56)
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where

Λ = LH

(
1

P

P∑
i=1

(
U †
e{fi}s

Q{fi}s

)
Λ{fi}s

(
U †
e{fi}s

Q{fi}s

)H)
L,

Π = V es

(
1

P

P∑
i=1

(
U †
e{fi}s

Q{fi}n

)
Λ{fi}n

(
U †
e{fi}s

Q{fi}n

)H)
V H
es ,

Q = V esL.

(5.57)

Here, Λ ∈ CK×K and Q ∈ CM×K are the diagonal matrix of eigenvalues and ma-

trix of eigenvectors of Eq. (5.56) in signal subspace, and L ∈ CK×K possess unitary

property by the fact that Q,V es are the matrices with orthonormal columns [8, 37].

Remark that R{fi,fi} is also derived by performing EVD; the matrices Q{fi}s
∈ CM×K ,

Λ{fi}s
∈ RK×K are the eigenvectors and diagonal matrix of eigenvalues in signal sub-

space, and likewise, Q{fi}n
∈ CM×M−K , Λ{fi}n

∈ RM−K×M−K are with noise sub-

space. Furthermore, considering only the signal subspace by focusing on the K largest

singular values Λ, we can expect that Eq. (5.56) is equivalent to Eq. (5.8);

QΛQH ≡
(
V {f,fo}s

L
)
LH

(
1

P

P∑
i=1

(
G{f,fo}H

-1
{fi}

)
Λ{fi}s

(
G{f,fo}H

-1
{fi}

)H)
L

(
V {f,fo}s

L
)H

≡ A (ϕ,θ, fo)

(
1

P

P∑
i=1

S{fi,fi}

)
AH (ϕ,θ, fo) ,

(5.58)

which can be proofed by employing Lemma 3, Eqs. (5.13) to (5.15), and Eqs. (5.22)

to (5.24) on Section 5.3.1 (We omit the proof since the result is easily obtained by

performing straightforward substitution). In this state, T {f}MOP
provides an efficient

way to transform any given f into fo by observing the solution across frequency bands

without loss of generality; it means that the transformation is no longer biased by the

pair of distinct frequencies {f, fo}. Furthermore, it is clearly seen that the wideband

cross-correlation matrix on Eq. (5.56) is the combination of narrowband sample cross-

correlation matrices across all frequency bins, but its array manifold are focused on
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the single reference frequency by using T {f}MOP
, which is now feasible to estimate

the wideband DOAs by employing any recent subspace-based technique for estimating

narrowband DOAs [3,4,10,15,34,40,42,43], but using this wideband correlation matrix

instead of the narrowband correlation matrix. Practical examples, such as MUSIC and

ESPRIT, will be presented to showcase its applicability and effectiveness in the next

section.

In case of the L-shaped array structure in Eq. (5.2), we can repeat the proposed

transformation procedure to find the solution for x subarray in Eqs. (5.2) and (5.3);

starting from Eq. (5.7) by replacing r (t, f) with x (t, f), the solution for the x subarray

can be given by:

T x{fi}MOP
= V x,esU

†
x,e{fi}s

, (5.59)

1

P

P∑
i=1

T x{fi}MOP
Rx{fi,fi}T

H
x{fi}MOP

= QxΛxQ
H
x +Πx, (5.60)

QxΛxQ
H
x ≡ Ax (ϕ, fo)

(
1

P

P∑
i=1

S{fi,fi}

)
AH
x (ϕ, fo) . (5.61)

By performing the same procedure, the solution for z subarray is likewise given by replac-

ing x (t, f) ,Ax (ϕ, fo) with z (t, f) ,Az (θ, fo) and the subscript x with z on Eqs. (5.59)

to (5.61);

T z{fi}MOP
= V z,esU

†
z,e{fi}s

, (5.62)

1

P

P∑
i=1

T z{fi}MOP
Rz{fi,fi}T

H
z{fi}MOP

= QzΛzQ
H
z +Πz, (5.63)

QzΛzQ
H
z ≡ Az (θ, fo)

(
1

P

P∑
i=1

S{fi,fi}

)
AH
z (θ, fo) . (5.64)

DOA Estimation Scheme via MUSIC

MUSIC estimates DOA of the sources by locating the peaks of MUSIC spectrum

along with exploiting the orthogonality of the signal and noise subspaces [20, 29]. Let
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us define the complementary orthogonal space
(
IM −QQH

)
which is orthogonal to

A (ϕ,θ, fo);

aH (ϕk, θk, fo)
(
IM −QQH

)
a (ϕk, θk, fo) = 0, (5.65)

for all k ∈ {1, 2, · · · ,K}, where a (ϕk, θk, fo) ∈ CM is a kth column of A (ϕ,θ, fo) as

shown in Eq. (5.3). Additionally, the following complementary orthogonal space is also

valid;

aH (ϕk, θk, fo)
(
IM − V esV

H
es

)
a (ϕk, θk, fo) = 0, (5.66)

by the fact thatQQH = V es

(
LLH

)
V H
es = V esV

H
es , which implies that it is possible to

reduce a computational complexity of Eq. (5.56) by using only V es instead of calculating

Q. The computationally efficient two-dimensional MUSIC (2D-MUSIC) spectrum is

expressed as

p2D-MUSIC (ϕ, θ) =
1

aH (ϕ, θ, fo)
(
IM − V esV

H
es

)
a (ϕ, θ, fo)

. (5.67)

When the denominator in Eq. (5.67) closes to zero for the true angles of the signals, 2D-

MUSIC spectrum will have peak spikes indicating this angles. In case of the L-shaped

array structure, the x and z subarray angles are estimated separately by locating the

spectral peaks of the following equations:

pxMUSIC
(ϕ) =

1

aHx (ϕ, fo)
(
IN − V x,esV

H
x,es

)
ax (ϕ, fo)

,

pzMUSIC
(θ) =

1

aHz (θ, fo)
(
IN − V z,esV

H
z,es

)
az (θ, fo)

,

(5.68)

where ax (ϕ, fo) ,az (θ, fo) ∈ CN are ith column of Ax (ϕ, fo) ,Az (θ, fo), respectively.
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DOA Estimation Scheme via ESPRIT

We start by recalling the array manifold Ax (ϕ, fo) and Az (θ, fo) on Eq. (5.3).

ESPRIT takes advantage of the rotational invariance property of ULA [27], as follows:

Ax2 (ϕ, fo) = Ax1 (ϕ, fo)Φx,

Az2 (θ, fo) = Az1 (θ, fo)Θz,
(5.69)

where

Φx = diag
(
eαx(ϕ1,fo)j , eαx(ϕ2,fo)j , · · · , eαx(ϕK ,fo)j

)
,

Θz = diag
(
eαz(θ1,fo)j , eαz(θ2,fo)j , · · · , eαz(θK ,fo)j

)
,

(5.70)

Ax1 (ϕ, fo) ,Az1 (θ, fo) ∈ CN−1×K andAx2 (ϕ, fo) ,Az2 (θ, fo) ∈ CN−1×K stand for the

first and last (N − 1) rows of Ax (ϕ, fo) ,Az (θ, fo), respectively. Similar to [4, 34, 42],

the matrices Qx,Qz can be simplified with Eqs. (5.3), (5.59) to (5.61) and (5.69), as

follows:

Qx1
= Ax1

(ϕ, fo)C
-1
x ,

Qx2
= Ax2

(ϕ, fo)C
-1
x ,

Qz1 = Az1 (θ, fo)C
-1
z ,

Qz2 = Az2 (θ, fo)C
-1
z ,

(5.71)

where Cx,Cz ∈ CK×K are invertible matrices, Qx1
,Qz1 ∈ CN−1×K and Qx2

,Qz2 ∈

CN−1×K stand for the first and last (N − 1) rows of Qx,Qz, respectively. Considering

Eq. (5.71), we can construct new matrices Γx,Γz as follows:

Γx = Q†
x1
Qx2

= Cx

(
A†
x1

(ϕ, fo)Ax2 (ϕ, fo)
)
C-1
x

= CxΦxC
-1
x ,

Γz = Q†
z1Qz2

= Cz

(
A†
z1 (θ, fo)Az2 (θ, fo)

)
C-1
z

= CzΘzC
-1
z .

(5.72)
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The angles ϕk, θk can thus be estimated by the eigenvalues of Γx,Γz, as follows:

ϕk = cos-1
(
angle (λxk

)
λ

2πd

)
,

θk = cos-1
(
angle (λzk)

λ

2πd

)
,

(5.73)

where λxk
, λzk ∈ C is the kth eigenvalue of Γx,Γz, respectively. Furthermore, it is

possible to reduce the computational complexity by using only V es as well as MUSIC;

V †
x1,esV x2,es = LxΓxL

-1
x

= (LxCx)Φx (LxCx)
-1
,

V †
z1,esV z2,es = LzΓzL

-1
z

= (LzCz)Θz (LzCz)
-1
,

(5.74)

where

V x1,es = Ax1 (ϕ, fo) (LxCx)
-1
,

V x2,es = Ax2 (ϕ, fo) (LxCx)
-1
,

V z1,es = Az1 (θ, fo) (LzCz)
-1
,

V z2,es = Az2 (θ, fo) (LzCz)
-1
,

(5.75)

V x1,es ,V z1,es ∈ CN−1×K and V x2,es ,V z2,es ∈ CN−1×K stand for the first and last

(N − 1) rows of V x,es ,V z,es , respectively.

5.4 Numerical Simulations

In this section, performances of fusion methods by using the proposed framework

are demonstrated in four types of the following scenarios: (1) a performance of selected

methods and the proposed methods with respect to source types, (2) the performance

with respect to the number of microphone elements, (3) the performance with consid-

ering automatic pairing of the x and z subarray angles, and (4) the performance under

reverberation environment. Scenario 1, 2 and 4 have to find DOA of x and z subarray

angles separately by using the data model on Eq. (5.2). Whereas Scenario 3 has to find
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Fig. 5.1 RMSE estimation performance versus SNR on Scenario 1; (a) three

different human speeches, and (b) three uncorrelated musical sounds where six

microphones is employed each subarray.
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Fig. 5.2 SD estimation performance versus SNR on Scenario 1; (a) three dif-

ferent human speeches, and (b) three uncorrelated musical sounds where six

microphones is employed each subarray.

– 113 –



5.4 Numerical Simulations

-10 0 10 20 30
SNR, dB

(a)

10-1

100

101

102

R
M

SE
, D

eg
re

e

-10 0 10 20 30
SNR, dB

(b)

10-1

100

101

102

R
M

SE
, D

eg
re

e
-10 0 10 20 30

SNR, dB
(c)

10-1

100

101

102

R
M

SE
, D

eg
re

e

2

Proposed Method with MUSIC
Proposed Method with ESPRIT

IMUSIC
TOFS

TOPS
Squared TOPS

WS-TOPS

2 2

Fig. 5.3 RMSE estimation performance versus SNR on Scenario 2; three human

speeches are employed and the number of microphone elements each subarray on

(a) N = 4, (b) N = 8, and (c) N = 12.
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Fig. 5.4 SD estimation performance versus SNR on Scenario 2; three human

speeches are employed and the number of microphone elements each subarray on

(a) N = 4, (b) N = 8, and (c) N = 12.

DOA of x and z subarray angles simultaneously with considering automatic pairing, by

using the data model on Eq. (6.1). We provided the simulation tests of the proposed

methods in comparison with following methods: IMUSIC [30], TOFS [47], TOPS [46],

Squared-TOPS [22], WS-TOPS [7]. Remark that the CSS-based methods are excluded

in these tests; this is because unintended biases, causing by a process of DOA pre-

liminary estimation, should be taken into consideration to other candidate methods as
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formance versus SNR on Sce-

nario 3 where M = 8.
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Fig. 5.6 SD estimation perfor-

mance versus SNR on Scenario

3 where M = 8.

discussed in the literature [1, 30,46,47].

To measure the overall performance of estimating the x and z subarray angles for

each scenario, root-mean-square-error (RMSE) and standard division (SD) are defined

as the following equations;

RMSE =

√√√√ 1

2JK

J∑
j=1

K∑
k=1

((
ϕ̂
(j)
k − ϕk

)2
+
(
θ̂
(j)
k − θk

)2)
, (5.76)

SD =

√√√√ 1

2JK

J∑
j=1

K∑
k=1

((
ϕ̂k − ϕ̄

(j)
k

)2
+
(
θ̂
(j)
k − θ̄k

)2)
, (5.77)

whereK is the source number, J is the number of trials, ϕ̂
(j)
k , θ̂

(j)
k represent the estimated

x and z subarray angles each trial, ϕ̄k, θ̄k represent an average of the estimated x and

z subarray angles, and ϕk, θk represent true x and z subarray angles.

Computer simulations were carried out in Matlab R⃝ R2017a, using PC with Debian

GNU/Linux 9.4 x86 64, Intel R⃝ Core
TM

i5-4590 CPU 3.30 GHz, 16G RAM, Intel R⃝

Math Kernel Library 11.3.1 on BLAS and LAPACK 3.5.0. Each scenario is repeated

100 times, and simulation parameters are chosen as follows: sampling frequency is 48
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kHz, an output of each microphone is captured 1 second, speed of sound c is 343 m/s,

the spacing of microphone elements d is 5 cm, STFT focusing frequency range is from

0.1 to 16 kHz, the reference frequency fo is 3.43 kHz. Note that we used perturbations

of the true angles by adding Gaussian random noise.

5.4.1 Scenario 1: Performance with Respect to Source Types

Figs. 5.1 and 5.2 showed performance comparisons of the selected methods and

the proposed methods in term of RMSE and SD over a range of SNR. The proposed

methods are the modified MUSIC on Eq. (5.68) and ESPRIT on Eqs. (5.73) to (5.75).

The number of microphone elements each subarray is six, and the three uncorrelated

source angles (ϕk, θk) are placed at (41.41◦, 60◦), (60◦, 45◦) and (75.52◦, 30◦). In Fig. 5.1

(a) and Fig. 5.2 (a), sources are human speeches. Whereas sources in Fig. 5.1 (b) and

Fig. 5.2 (b) are musical sounds or instrument tones containing frequency range up to

48 kHz. Remark that all sources are not stationary signals. The results in Figs. 5.1

and 5.2 showed that the proposed method with ESPRIT can efficiently handle the both

source types than other candidate methods with acceptable SNR range. Subsequently,

it is interesting to take a close look at 40 dB SNR in Figs. 5.1 and 5.2 that IMUSIC,

TOFS, the proposed method with MUSIC and ESPRIT showed very low RMSE, which

could attest to good DOA estimation. When decreasing the SNR to 25 dB, IMUSIC

and TOFS begin to demonstrate worse RMSE quality which is much higher than the

proposed methods, and it is clearly seen when decreasing the SNR to 10 dB that all

tested methods are significantly dominated, but the proposed method with ESPRIT is

still associated with more satisfactory results than using other methods. It should be

mentioned furthermore that IMUSIC and TOFS require the number of sensor elements

to much more higher than the number of sources to achieve fairly good results [1,30,46,

47]. Hence, the simulation results in Figs. 5.1 and 5.2 are able to provide evidence that
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the proposed methods perform the better estimation performance than other candidate

methods when the incident sources are wideband and non-stationary signals. Although

the performances of proposed method with MUSIC is also dominated by the noises, but

the overall performances is still more effective than other methods.

5.4.2 Scenario 2: Performance with Respect to the Number of

Microphone Elements

Figs. 5.3 and 5.4 illustrated performance comparisons of the selected methods and

the proposed methods in term of RMSE and SD over a range of SNR. The three uncor-

related source angles are human speeches, and are placed as same as previously used.

Firstly, let us start by looking at the case of twelve microphones in Fig. 5.3 (c) and

Fig. 5.4 (c). IMUSIC, TOFS and WS-TOPS exhibited remarkably low level of RMSE

in SNR range from 15 to 30 dB; this is because there performances dramatically depend

on the number of sensor elements to higher than the number of sources [1, 30, 46, 47].

Likewise, the proposed method with MUSIC and ESPRIT also demonstrated very low

RMSE, which may imply that the performance of proposed methods, IMUSIC, TOFS

and WS-TOPS are especially effective for a wideband DOA estimation. However, the

low number of microphones elements should be considered for providing more practical

applications. In the case of eight microphones each subarray, the performances of the

selected methods are dominated by the number of microphone elements as illustrated

in Fig. 5.3 (b) and Fig. 5.4 (b). Furthermore, the performances of selected methods are

dramatically degraded when employing four microphones as illustrated in Fig. 5.3 (a)

and Fig. 5.4 (a). The relevant reason is that an undesirable false peaks in the spatial

spectrum of the selected methods are occurred, caused by the perturbation of noise sub-

space; when power of the noise at some frequency is high or grater than source power,

the orthogonality between the noise subspace and search space at that frequency may
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be not sufficient to prevent the false-alarm peaks [1]. On the contrary, RMSE perfor-

mance of proposed methods are also dominated, but less than the other methods, by

exhibiting the subspace for all frequency bins simultaneously as shown in Section 5.3.

Therefore, the proposed methods provide substantially better RMSE performance than

the other methods, which implies that dependency between the number of microphone

elements and sources can be relaxed. This substantial ability is more meaningful for

many practical applications.

5.4.3 Scenario 3: Performance with Considering Automatic

Pairing

This scenario estimated the DOA of x and z subarray angles simultaneously with

considering automatic pairing and following the data model on Eq. (6.1). As the L-

shaped array structure consisting of two ULAs as illustrated in Fig. 2.1, some research

works estimate the DOA of x and z subarray angles separately by implementing 1D

DOA estimation for each ULA [3, 4, 10, 15, 21, 26, 34, 40, 42, 43]. When utilizing more

than one source, these algorithms require an additional angle pair matching procedure

to mapping relationship between the two independent subarray angles, which may re-

sults in a performance degradation caused by pair matching error. In order to achieve

the automatic pairing without the pair matching procedure, we selected the modified

2D-MUSIC on Eq. (5.67) as the proposed method in this scenario. Furthermore, TOPS,

Squared-TOPS, WS-TOPS are excluded in these tests by the fact that there methods

have only supported for ULA model. Note that 2D peak finding algorithm was em-

ployed on 2D-IMUSIC, 2D-TOFS and the proposed method. Figs. 5.3 and 5.4 showed

performance comparisons of 2D-IMUSIC, 2D-TOFS and the proposed method in term

of RMSE and SD over a range of SNR, where the number of microphone elements in-

cluding all subarray is eight, the three uncorrelated source angles are human speeches,
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Fig. 5.7 Performance evaluations of Scenario 4; (a) RMSE estimation perfor-

mance versus SNR, and (b) SD estimation performance versus SNR, where three

uncorrelated human speeches are employed along with a reverberant environ-

ment, where dimensions of enclosure room is 15× 15× 5 meter, a measurement

protocol of reverberation time is RT60, and wall absorption coefficients are fol-

lowed on Table 5.1.
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Table 5.1 Wall absorption coefficients at various reverberation time in Scenario 4

Reverberation Time

based on RT60

(Millisecond)

Axial Wall Plane

Positive Direction Negative Direction

x− z x− z x− y x− z x− z x− y

200 0.7236 0.2021 0.6844 0.0792 0.2436 0.5586

300 0.7142 0.1687 0.7666 0.2650 0.2387 0.7043

400 0.7306 0.0555 0.7731 0.4091 0.8493 0.8587

500 0.5064 0.4974 0.8248 0.4189 0.8069 0.7572

600 0.6074 0.6299 0.8028 0.7599 0.6373 0.8209

700 0.7442 0.7624 0.8734 0.6922 0.6480 0.7893

800 0.6779 0.6827 0.7865 0.8045 0.8386 0.8430

900 0.6992 0.7111 0.7741 0.8752 0.8233 0.9081

1000 0.7622 0.7707 0.9394 0.8248 0.8192 0.8398

and are placed as same as previously used. Fig. 5.3 indicated that the proposed method

with 2D-MUSIC exhibits extremely similar overall performances to 2D-IMUSIC and

2D-TOFS when the SNR increases to more than 10 dB; however, computational burden

of the proposed method can be significantly lower than those of the other methods,

which Section 5.4.5 will reveal further insight.

5.4.4 Scenario 4: Performance under Reverberation Environ-

ment

In this scenario, we compared RMSE and SD performances of proposed methods

to other methods with respect to reverberation time. This scenario estimated DOA

of x and z subarray angles separately by using the data model on Eq. (5.2) without
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considering automatic pairing. The proposed methods in this scenario are the modified

MUSIC on Eq. (5.68) and ESPRIT on Eqs. (5.73) to (5.75). The reverberations were

simulated by the following procedure [14], and its simulated wall absorption coefficients

are shown in Table 5.1, where the dimensions of enclosure room is 15× 15× 5 meter, a

measurement protocol of reverberation time is RT60, and the reverberation time is from

200 to 1000 ms. The three uncorrelated source angles are employed in the same way

as previously used, and the number of microphone elements each subarray is twelve.

Fig. 5.7 illustrated performance comparisons of the selected methods and the proposed

methods, where a color of the graph on Fig. 5.7 (a) denotes RMSE, whereas a color of

the graph on Fig. 5.7 (b) denotes SD estimation performance. The vertical axis is rep-

resented as the reverberation time and horizontal axis is represented as a range of SNR.

Simulation results in Fig. 5.7 indicated that reverberation has strong effect to RMSE

and SD performances in both of the selected methods and the proposed methods, and

the performances decreased more significantly at the high noise levels and the long re-

verberation times. Since the reverberation time is decreasing, all selected methods begin

to demonstrate low RMSE. It means that trade-off between the robustness of reverbera-

tion and SNR should be considered deeply in actual applications, for instance, applying

a reverberation cancellation technique or a noise cancellation technique to provide much

more reliable estimation performances of both RMSE and SD. The proposed methods,

however, largely outperform the other methods with respect to the reverberation time

index and SNR levels range between 10 and 40 dB without considering the trade-off.

This can support that the performance of proposed methods can be especially effective

for a wideband DOA estimation under reverberant environment.
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Fig. 5.8 Computational complexities; (a) changing the number of microphone

elements each subarray N , and (b) the number of microphone elements including

all subarray M where the number of incident sources K = 3.

5.4.5 Computational Complexity

A computational complexity of the proposed methods were evaluated using exe-

cution time measurement under a stable environment. We provided a computational

complexity in comparison with following cases: (1) calculating DOAs of x and z sub-

array angles separately as shown in Fig. 5.8 (a), and (2) calculating the DOAs of both

subarray angles simultaneously as shown in Fig. 5.8 (b). Note that computational bur-

den of a peak searching algorithm are concerned in this study, where the number of

searching angle each subarray is 180. It is apparently seen in Fig. 5.8 that computation

time of the other methods presented more high growth rates than the proposed meth-

ods. This is because the peak searching algorithm execution time is potentially high,

and almost all selected methods require intensive computations by testing the orthog-

onality of subspace and search space of narrowband sample cross-correlation matrices
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for all frequency bins, which results in high computation costs. On the contrary, the

proposed methods transform all narrowband sample cross-correlation matrices across

all frequency bins into the single matrix as shown in Eqs. (5.56) to (5.58), and this ma-

trix contains useful information of source cross-correlation matrices across all frequency

bins as 1
P

∑P
i=1 S{fi,fi}; in other words, the orthogonality testing of subspace and search

space can be done by using the wideband cross-correlation matrix on Eqs. (5.56) to (5.58)

instead of narrowband sample cross-correlation matrices for all frequency bins. There-

fore, the computational complexity of proposed methods remarkably less than the other

methods, which is confirmed by the test results on Fig. 5.8.

5.5 Experimental Results

In this section, experiments were carried to examine the performance of proposed

methods. Experiment parameters were chosen as the previously simulations, except

as follows: We used human speakers as sources of the original speech with random

sentences. Their speeches were recorded 20 runs continuously, and each record signal,

approximating 1 minute long, was cut into 3 second epochs. Structure of microphone

was followed by Fig. 2.1, and the specifications of microphone and its recording device

were followed on Table 5.2. The experiment was performed in an indoor meetings room,

and its dimensions are shown in Fig. 5.10, where sound pressure level in the meeting

room on a normal situation is 46.6 dBA, and the estimated reverberation time based

on RT60 is 219 millisecond.

Two scenarios are considered: (1) estimating DOA of x and z subarray angles

separately, and (2) estimating DOA of x and z subarray angles simultaneously with

considering automatic pairing. In case of Experiment 1, the proposed methods are the

modified MUSIC on Eq. (5.68) and ESPRIT on Eqs. (5.73) to (5.75), comparing with
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Table 5.2 System specification

Hardware Type / Parameter Specification / Value

Audio Interface RolandR⃝ Octa-capture (UA-1010)

Sampling Frequency 48,000 Hz

Microphone Name BehringerR⃝ C-2 studio condenser microphone

Number of Microphones 8

Pickup Patterns Cardioid (8.9 mV/Pa; 20 - 20,000 Hz)

Diaphragm Diameter 16 mm

Equivalent Noise Level 19.0 dBA (IEC 651)

SNR Ratio 75 dB

Microphone Structure L-shaped Array

Spacing of Microphone 9 cm

the following methods: IMUSIC [30], TOFS [47], TOPS [46], Squared-TOPS [22], WS-

TOPS [7]. In case of Experiment 2, the proposed method is the modified 2D-MUSIC

on Eq. (5.67), comparing with 2D-IMUSIC [30], and 2D-TOFS [47].

Tables 5.3 to 5.6 showed performance comparisons of the selected methods and the

proposed method in term of RMSE over the range of source number, where Tables 5.3

and 5.4 is for Experiment 1, and Tables 5.5 and 5.6 is for Experiment 2. The bold-

faced results highlight the optimal minimum RMSE in each problem. As highlighted

in Tables 5.3 and 5.4, the performance of IMUSIC exhibited the lowest RMSE when a

single source was used, but the performance of other methods including the proposed

methods also exhibited similarly low RMSE in acceptable error range. When the two

sources are performed, the performance of TOPS, Squared-TOPS and WS-TOPS are

directly dominated, whereas IMUSIC, TOFS and the proposed methods are slightly

dominated, but it still maintained sufficiently good performance. When the incident
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Table 5.3 Performance evaluation on Experiment 1; K = 1, 2
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Table 5.4 Performance evaluation on Experiment 1; K = 3
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Fig. 5.9 Photograph of the microphone array system.

sources are increasing to three, we clearly see that the performance of IMUSIC, TOFS,

TOPS, Squared-TOPS and WS-TOPS are significantly dominated by the number of in-

cident sources, because those methods requires the number of sensor elements to much

more higher than the number of sources to achieve reasonably good results, which can

be verified by referring to the simulation results on Section 5.4 and Figs. 5.3 and 5.4.

The proposed methods, however, are able estimate the DOA of three sources effectively

and better than the selected methods. The reason is that the proposed methods fo-

cus on the subspace across all frequency bins simultaneously instead of focusing each

frequency band individually, which is stated in Section 5.3.2. In case of Experiment

2 in Tables 5.5 and 5.6, the experiment results indicates that the proposed method

with 2D-MUSIC exhibits extremely similar overall performances to 2D-IMUSIC and

2D-TOFS. As already stated in Section 5.4.5, the computational complexity of the pro-

posed method is definitely lower than 2D-IMUSIC and 2D-TOFS by the fact that those

methods check the orthogonality of subspace and search space of narrowband sample

cross-correlation matrices for all frequency bins, resulting in very high computation re-

quirement. Whereas the proposed method test the orthogonality of subspace and search
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Table 5.5 Performance evaluation on Experiment 2; K = 1, 2, 3

Incident Sources RMSE of DOAs (Degree)

Number Position
Angle

(Degree)
2D-IMUSIC 2D-TOFS

Proposed Method

with 2D-MUSIC

1
ϕ1 96 0.9000 0.9000 0.9000

θ1 86 0.4000 1.0500 0.7500

Total 0.6500 0.9750 0.8250

2

ϕ1 57 0.9500 1.1500 1.1000

θ1 91 1.0500 1.8000 1.7000

ϕ2 139 4.9500 5.2000 5.4500

θ2 96 3.1500 3.3000 2.0500

Total 2.5250 2.8625 2.5750

3

ϕ1 48 0.9500 1.5500 1.9500

θ1 86 1.4500 0.8000 2.4500

ϕ2 98 0.9000 1.8000 1.1500

θ2 95 1.4500 2.1500 2.6000

ϕ3 152 2.7000 2.4000 5.9000

θ3 95 4.5000 3.9000 1.4500

Total 1.9917 2.1000 2.5833

space by using the wideband sample cross-correlation matrix on Eq. (5.56) instead of

using the subspace of narrowband sample cross-correlation matrices for all frequency

bins, but it is sufficient to exhibit significant effects as well as using the subspace of

narrowband sample cross-correlation matrices for all frequency bins. In the end, the ex-

periment results from Tables 5.3 to 5.6 are able to provide the evidence that proposed
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Table 5.6 Performance evaluation on Experiment 2; K = 4

Incident Sources RMSE of DOAs (Degree)

Number Position
Angle

(Degree)
2D-IMUSIC 2D-TOFS

Proposed Method

with 2D-MUSIC

4

ϕ1 100 5.8095 6.5238 3.2857

θ1 94 2.4286 2.6190 1.6667

ϕ2 51 1.2381 1.0952 2.5714

θ2 95 0.5714 0.6667 1.3333

ϕ3 134 1.9524 1.8571 3.9524

θ3 103 10.0952 10.2857 9.2857

ϕ4 153 7.4762 7.8095 7.8571

θ4 89 4.7143 4.7143 5.3810

Total 4.2857 4.4464 4.4167

methods have better estimating performance than other methods with respect to the

number of incident sources.

Since the sound source direction are static in Tables 5.3 to 5.6, it is necessary to

consider moving sound sources for more practical use. In future work, we will extend

the proposed method for moving sound sources, and further develop the prototype to

support more realistic tasks.

5.6 Conclusions

An efficient framework for estimating DOA of wideband sound sources was pre-

sented. The issue of transforming multiple narrowband cross-correlation matrices for

all frequency bins into a wideband cross-correlation matrix has been addressed suc-
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Fig. 5.10 Photograph of the experimental environment, floor plan and the room dimensions.

cessfully by focusing on signal subspace for all frequency bins simultaneously instead

of pairing of temporal and reference frequency as done by the CSS-based methods.

A new solution to this problem has been given by employing the extension theory of

Orthogonal Procrustes analysis along with performing HOGSVD of array of the novel

cross-correlation matrices, where elements in the row and column positions are a sample

cross-correlation matrix between received signal and itself on two distinct frequencies.
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It was shown in the theoretical analysis that the proposed transformation procedure

provided the best solution under appropriate constraints, and no longer require any

process of DOA preliminary estimation. Subsequently, we provided an alternative to

construct the wideband cross-correlation matrix via the proposed transformation proce-

dure, and wideband DOAs were estimated easily using this wideband matrix along with

a single scheme of estimating DOAs in any narrowband subspace methods. A major

contribution of this research work is that the proposed framework enables cutting-edge

researches in the recent narrowband subspace methods to estimate DOA of the wideband

sources directly, which result in the reducing computational complexity and facilitating

the estimation algorithm. We also have performed several examples of using the pro-

posed framework, such as, 2D-MUSIC, MUSIC, and ESPRIT method integration with

the L-shaped microphone arrays. Furthermore, the simulation and experimental results

showed that the fusion methods by using the proposed framework exhibited especially

effective performance than other wideband DOA estimation methods over a range of

SNR with much fewer sensors, high noise and reverberation conditions. We believe

that the proposed method represents an efficient way of a wideband DOA estimation

and would be able to improve wideband DOA estimates not only for acoustic signal

processing but also other possible related fields.
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Chapter 6

Complex-Valued Tensor

Factorization for Estimating

Direction of Wideband

Sources and its

Variance-of-Frequencies

This chapter presents an alternative way to estimate a variance each temporal fre-

quency, azimuth and elevation of wideband sources for an L-shaped microphone array.

Signal model is renovated into a tensor representation of three features, x-subarray an-

gle, variance-of-frequency, and z-subarray manifold angle. Azimuth and elevation are

estimated simultaneously by employing a tensor factorization on the proposed signal

model. In addition, complex-valued parallel factor analysis is utilized as the tensor

factorization. The performance is evaluated in terms of overall root-mean-squared er-

ror over a range of signal-to-noise ratio. The proposed method provides a promising

alternative for intelligent source localization.
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6.1 Problem of Pair Matching Method on Variance-

of-Frequency

In the recent past, DOA estimation methods have been applied for human computer

interaction in acoustic signal processing as mentioned in Chapters 4 and 5. A geometri-

cal structure of L-shaped sensor array is widely applied to two-dimensional (2-D) DOA

estimation method because it allows for simple implementation with low uncertainty

estimation as well as circular array [3]. Several approaches have been proposed as po-

tential solution for wideband DOA estimation, for example, incoherent signal subspace

(ISS) [4], coherent signal subspace (CSS) [5], test of orthogonality of frequency sub-

space (TOFS) [6], and test of orthogonality of projected subspace (TOPS) [7]. These

methods hold great promise in high efficient 2-D DOA estimation due to its superior

robustness, accuracy, and efficiency in comparison to other conventional approaches.

On the contrary, it was previously found in the recent works that frequency informa-

tion, known as a variance of the source each frequency bins, are computed separately

for each temporal frequency [4–10]. It implies that the pair matching method between

the temporal frequencies is definitely required for practical applications, for example,

to determine the incident source frequencies correctly. From the above statement, a

common shortcoming is clearly recognized as the requirement of pair matching method

on variance-of-frequency.

Therefore the purpose of this chapter is to investigate a new wideband 2-D DOA

estimation in a highly efficient way for acoustic sources and make frequency information

more usable. The proposed method constructs the sample cross-correlation of incidents

sources for all frequency bins via third-order tensor representation. Each lateral slice of

the proposed tensor represents a sample cross-correlation matrix of temporal frequency,

where transformation matrices are employed in order to fit the sample cross-correlation
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Fig. 6.1 The tensor representation of sample cross-correlation.

matrix into the proposed tensor correctly. Additionally, the transformation matrices

are constructed by following a reported procedure [10]; performing a singular values

decomposition (SVD) of a unique cross-correlation matrix, where elements in the row

and column positions are sample cross-correlation matrices of two distinct frequencies

from an identical coordinate axis. Complex-valued parallel factor analysis (COMFAC) is

utilized as the tensor factorization [11,12], for estimating the following three features; x-

subarray angle, self paired variance-of-frequency for all sources, and z-subarray manifold

angle. Effectiveness of proposed method is substantiated through numerical simulations.

In conclusion, the proposed method provides a promising alternative for intelligent

source localization.

6.2 Proposed Method

Considers an acoustic source in the environment and an L-shaped array consisting

of x and z axis as illustrated in Fig. 2.1, the received signal of each microphone is

transformed into time-frequency representation via short-time Fourier transform [9,10].
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The received signal vectors from the sources is given as follows:

x (t, f) = Ax (ϕ, f) s (t, f) +wx (t, f) ,

z (t, f) = Az (θ, f) s (t, f) +wz (t, f) ,
(6.1)

where all variables are followed on Chapter 5: x (t, f) ∈ CM and z (t, f) ∈ CM are the

summation of the received signal vectors for all sources corresponding to the x and z

subarrays, Ax (ϕ, f) ∈ CM×K and Az (θ, f) ∈ CM×K are the array manifold matrices

in the x and z subarrays, s (t, f) ∈ CK is a signal source vector, and wx (t, f) ∈ CM and

wz (t, f) ∈ CM are additive noise vectors for all the microphone elements corresponding

to the x and z subarrays. Note thatM,K represent the number of microphone elements

each subarray, and the number of incident sources. ϕk, θk are x and z subarray angle.

The parameters f, fo denote source and reference frequencies, λ denotes a wavelength of

sources, d denotes the spacing of the microphone elements any subarray, and t denotes

captured time. Note that we followed the basic assumption guidelines as revealed in

Chapter 5.

From the previous declaration, the sample cross-correlation matrix Rxz{f,f ′} ∈

CM×M is formulated between the x and z subarrays, as below

Rxz{f,f ′} = E
{
x (t, f) zH (t, f ′)

}
= Ax (ϕ, f)E

{
s (t, f) sH (t, f ′)

}
AH
z (θ, f ′)

+ E
{
wx (t, f)w

H
z (t, f ′)

}
= Ax (ϕ, f)S{f,f ′}A

H
z (θ, f ′) ,

(6.2)

where S{f,f ′} ∈ CK×K is a sample cross-covariance matrix over two distinct frequencies.

When f ′ = f , the diagonal elements of S{f,f} are variance of the signal sources.

As mentioned in the introduction, transformation matrices are employed in order

to fit the sample cross-correlation matrix into the proposed tensor appropriately. For

the ideal case of transposition, the transformation matrices shape the sample cross-

correlation matrix from any temporal frequency f to reference frequency fo without
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changing the sample cross-covariance matrix. A transformed sample cross-correlation

matrix Dxz{f} with the L-shaped structure is defined as

Dxz{f} = T x{f}Rxz{f,f}T
H
z{f}

= Ax (ϕ, fo)S{f,f}A
H
z (θ, fo) ,

(6.3)

where

Ax (ϕ, fo) = T x{f}Ax (ϕ, f) ,

Az (θ, fo) = T z{f}Az (θ, f) ,
(6.4)

T x{f},T z{f} ∈ CM×M represent the transformation matrices in the x and z subarrays.

The dual matrices T x{f}, T z{f} are originally designed by minimizing a Frobenius norm

for the array manifold errors [5], and it can be alternatively designed along with the

noise-free sample correlation matrices Rxx{f,f} −W xx{f,f} and Rzz{f,f} −W zz{f,f}

where W xx{f,f},W zz{f,f} are noise covariance matrices. In our previous work, the

alternative technique for transformation matrix estimation was proposed, and this al-

ternative technique may hold promise to replace and improve an accuracy performance

of the transformation matrix estimation as shown in Chapters 4 and 5.

After calculating the matrices T x{f},T z{f} by the previously procedure, the sam-

ple matrix Dxz{f} is obtained each temporal frequency. We continue to introduce

a new sample cross-correlation via tensor representation. Given an 3rd-order tensor

Q ∈ CM×F×M and the inner positive index K where F represents the number of fre-

quency bins, the three-component matrices of the tensor Q are expressed as

Q =
[[
Ax (ϕ, fo) ,P , Āz (θ, fo)

]]
, (6.5)

where Āz (θ, fo) ∈ CM×K denotes the complex conjugate of the elements of Az (θ, fo).

P ∈ RF×K
≥0 denotes the sample variance matrix for frequency range form fmin to fo; we

named as the variance-of-frequency. In particular, the variance-of-frequency matrix can

– 141 –



6.2 Proposed Method

be described as

P =



σ2
s1{fmin} σ2

s2{fmin} · · · σ2
sK{fmin}

...
...

. . .
...

σ2
s1{f} σ2

s2{f} · · · σ2
sK{f}

...
...

. . .
...

σ2
s1{fo} σ2

s2{fo} · · · σ2
sK{fo}


, (6.6)

where σ2
sk{f} is a variance of the signal source sk (t, f). Note that the matrices Dxz{f}

are rearranged by lateral slices of the tensor Q as illustrated in Fig. 6.1.

In fact, the method of calculating the transformation matrices T x{f},T z{f} from

the following procedure [10], are based on SVD; therefore, the tensor Q can be factor-

ized into SVD form as Q =
[[
U ,Σ, V̄

]]
where U ,V ∈ CM×K are the matrices of left

and right singular vectors of Rxz{fo,fo} in the signal subspace. Σ ∈ RF×K
≥0 is the singu-

lar matrix, each column vectors of Σ are the singular values of Rxz{f,f} in the signal

subspace under frequency range from fmin to fo. Although the singular value matrix Σ

is not the variance-of-frequency matrix P . When normalization processing is employed

on Σ, P , the normalized matrix Σ can be considered as indicator of P . Therefore, it is

possible to factorize the tensor Q as three-component matrices of U , Σ and V , respec-

tively. Since the sample cross-correlation tensor Q is now ready for extraction, parallel

factor analysis structure is applied to isolate the variance-of-frequency component P or

Σ in Q. In this research work, we follow the procedure described by R. Bro and N.D.

Sidiropoulos as shown in [11,12], which is well-known as COMFAC structure.

Applying COMFAC to the tensor Q, we are now able to obtain the matrices U ,

V and the variance-of-frequency Σ. According to useful technique [10], we form new

matrices Γ x and Γ z to obtain the x and z subarray angles, as follows:

Γ x = U †
1U2

= FΦxF
-1,

Γ z = V †
1V 2

= GΦxG
-1,

(6.7)
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where

Φx = diag (αx (ϕ1, fo) , αx (ϕ2, fo) , . . . , αx (ϕK , fo)) ,

Φz = diag (αz (θ1, fo) , αz (θ2, fo) , . . . , αz (θK , fo)) ,
(6.8)

U1,U2,V 1,V 2 ∈ CM−1×K are the first and the last M − 1 rows of singular matrices

U and V , respectively, F ,G ∈ CK×K denote the invertible matrices corresponding

to Ax (ϕ, fo), Az (θ, fo), and Φx,Φz ∈ CK×K are the diagonal matrices, which are

structured by the conjugate symmetry property of array manifold matrices Ax (ϕ, fo),

Az (θ, fo). Applying Eigendecomposition to Γ x, Γ z, the x and z subarray angles can

estimated by the eigenvalues matrices Λx and Λz of Γ x and Γ x, respectively;

ϕk = cos−1

(
angle (λxk

)
λ

2πd

)
,

θk = cos−1

(
angle (λzk)

λ

2πd

)
,

(6.9)

where λxk
, λzk ∈ C are the kth eigenvalue inΛx andΛz. In the end, relation between the

azimuth, elevation, x subarray, and z subarray angles can be explained and calculated

by Euler’s rotation theorem.

6.3 Numerical Simulations

The performance of proposed method is demonstrated via a computer simulation.

Three uncorrelated source angles
(
θDOA
k , ϕDOA

k

)
were placed at (41.41◦, 60◦), (60◦, 45◦),

and (75.53◦, 30◦), where θDOA
k and ϕDOA

k are true DOA x and z subarray angles. The

parameters were chosen as follows: the sampling frequency was 48 kHz, the microphone

captured time was 2 second, the speed of sound c was assumed as 340 m/s, the spacing

of microphone elements d was 5 cm, the minimum frequency fmin was 100 Hz, the

reference frequency fo was 3.4 kHz.

Two scenarios are considered. In the first scenario, accuracy performance on

variance-of-frequency estimation is considered. The three sources were the following
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Fig. 6.2 Numerical simulation on variance-of-frequency estimation; (a), (b), (c)

singular values or estimated variance-of-frequency, (d), (e), (f) actual variance-

of-frequency, (g), (h), (i) actual magnitude of DFT, where (a), (d), (g) are the

first source, (b), (e), (h) are the second source, (c), (f), (i) are the third source.

piano notes; G5 containing 783.99 kHz, C5 or Tenor C containing 523.25 kHz, A4 or

A440 containing 440 kHz of main frequency, respectively. Fig. 6.2 shows numerical

simulation on variance-of-frequency estimation; estimated variance-of-frequency, actual

variance-of-frequency, and actual magnitude of discrete Fourier transform (DFT). When

normalization processing is employed, it can be seen that the frequency at maximum

peak of estimated variance-of-frequency exhibits extremely similar to actual variance-of-
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frequency. Specifically, some weak false-peaks still remain at other frequency-dependent

sources. This phenomenon can be explained by two factors; the estimation of trans-

formation matrices, and the tensor modeling. Overall, it is possible to show that the

estimated variance-of-frequency can be considered as indicator of the actual magnitude

of DFT.

In the second scenario, we provided the performance evaluation of the proposed

method in comparison with following methods: IMUSIC [4]; TOPS [7]; weighted squared

TOPS (WS-TOPS) [8]; TOFS [6]; and CSS based on the dual optimization problems

(CSS-DOP) [9]. The sources were human voices containing the frequency range from

0.1 to 16 kHz, and the number of Monte Carlo trials each scenario was 100 runs. The

performance is evaluated in term of overall root-mean-squared error (RMSE) and stan-

dard division (SD) respect to the number of microphone elements each subarray M

over a range of the signal-to-noise ratio (SNR) as shown in Fig. 6.3. Simulation results

indicated that the proposed method exhibits extremely similar RMSE performance to

CSS-DOP for all SNR range. Since SNR decrease from 20 dB, the proposed method

and CSS-DOP exhibit better RMSE performance than other methods with respect to

the number of microphone elements. This substantial ability is more meaningful for

many practical applications.

6.4 Conclusion

A novel 2D wideband DOA estimation and variance-of-frequency methods for an

L-shaped microphone array model were presented. We addressed a problem of estimat-

ing both x and z subarray angles and self paired variance-of-frequency by renovating

the signal model into a tensor representation. COMFAC is utilized as the tensor factor-

ization to find the solution of proposed signal model. Effectiveness of proposed method
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Fig. 6.3 Performance evaluations via simulation; (a), (c), (e) RMSE versus

SNR and (b), (d), (f) SD versus SNR where the number of microphone elements

each subarray on (a), (b) M = 6, (c), (d) M = 8, and (e), (f) M = 10.
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were substantiated through numerical simulations, and the simulation results showed

that the proposed method exhibited especially effective performance than other meth-

ods. Furthermore, the self paired variance-of-frequency for all sources can be estimated

without a requirement of pair matching method.
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Chapter 7

Conclusion

An extension of techniques, new framework and suitable theory for estimating

acoustic direction-of-arrivals (DOAs) have been presented. This dissertation aimed

to bridge a research gap of acoustic source compatibility on the recent narrowband

and wideband subspace methods to estimate DOA of the acoustic sources directly and

effectively, which is a major contribution of this dissertation.

Chapter 2 presented an alternative signal modeling for wideband sources with L-

shaped microphone array configuration. The problem of estimating multi-narrowband

DOAs was resolved by using the proposed signal model along with remodeling the

array manifold matrices. Extension of most classical subspace-based methods for multi-

narrowband DOA estimation were given. Simulation results indicated that the new

array manifold matrices by using the proposed signal model along with the classical

subspace-based methods have achieved the multi-narrowband DOA estimation with

acceptable signal-to-noise ratio (SNR) levels.

Chapter 3 presented an alternative DOA estimation method for wideband sources

by using a Gaussian mixture model with a maximum likelihood estimation algorithm

for multiple frequencies and source angle estimation. The problem of estimating DOA

of wideband signals have been addressed by focusing the entire observation subspace

in each frequency bin along with employing a multi-narrowband signal model. The

performance is evaluated in terms of the root-mean-squared error (RMSE) over a range

of SNR, and the results suggested that the proposed method is a particularly effective
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method of DOA estimation. Furthermore, the proposed method enables the synthesis

of signal sources and provides an alternative to intelligent source localization systems.

Chapter 4 presented an improved version of the previous method for estimating

wideband two-dimensional (2D) DOA much more efficiently than the previously. We

proposed a way to construct a wideband sample cross-correlation matrix and addressed

a problem of estimating transformation matrices without any process of DOA prelimi-

nary estimation. The proposed transformation matrices were constructed by performing

singular value decomposition (SVD) of a new unique cross-correlation matrix, where el-

ements in the row and column positions are sample cross-correlation matrices of two

different frequencies. Wideband DOAs can be estimated by using this wideband sam-

ple cross-correlation matrix along with a scheme of estimating DOA in a narrowband

subspace method. Theoretical analysis and effectiveness of the proposed method are

substantiated through numerical simulations, Furthermore, the results show that the

proposed method exhibited effective performance than other wideband methods over a

range of SNR with just a few microphones in reverberating environments.

In Chapter 5, an efficient framework for estimating DOA of wideband sound sources

was presented by integrating our previous findings in Chapter 4. The issue of trans-

forming multiple narrowband cross-correlation matrices for all frequency bins into a

wideband cross-correlation matrix has been addressed successfully by employing the

extension theory of Orthogonal Procrustes analysis along with performing high order

singular value decomposition (HOGSVD) of array of the novel cross-correlation ma-

trices, where elements in the row and column positions are a sample cross-correlation

matrix between received signal and itself on two distinct frequencies. It was shown in

the theoretical analysis that the proposed transformation procedure provided the best

solution under appropriate constraints, and no longer require any process of DOA pre-

liminary estimation. A major contribution of this research work is that the proposed
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framework enables cutting-edge researches in the recent narrowband subspace methods

to estimate DOA of the wideband sources directly, which result in the reducing compu-

tational complexity and facilitating the estimation algorithm. We also have performed

several examples of using the proposed framework, such as, 2D-MUSIC, MUSIC, and

ESPRIT method integration with the L-shaped microphone arrays. Furthermore, the

simulation and experimental results showed that the fusion methods by using the pro-

posed framework exhibited especially effective performance than other wideband DOA

estimation methods over a range of SNR with much fewer sensors, high noise and re-

verberation conditions.

Finally, a novel 2D wideband DOA and variance-of-frequency estimation methods

for an L-shaped microphone array model were presented in Chapter 6. We addressed a

problem of estimating both x and z subarray angles and self paired variance-of-frequency

by renovating the signal model into a tensor representation. Effectiveness of proposed

method were substantiated through numerical simulations, and the simulation results

showed that the proposed method exhibited especially effective performance than other

methods. Furthermore, the self paired variance-of-frequency for all sources can be esti-

mated without a requirement of pair matching method.

We believe that our researches presented in this dissertation will appeal to re-

searchers who wish to develop a sound source based navigation system and improve

its robust estimation. We also hope that this new framework and theory can be a

good alternative for estimating DOA of acoustic sources, especially human speeches

and musical sounds.
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