
 

 

 

Optical Multi-User MIMO for Multi-Mode Fiber Passive 

Optical Networks using Sub-Carrier Multiplexing 

 

by 

 

Bishal Poudel 
Student ID Number: 1208006 

 

 

 

A dissertation submitted to the 

Photonic and Systems, Department of Engineering, 

Graduate School of Engineering, 

Kochi University of Technology, 

Kochi, Japan 

 

 

For the degree of 

Doctor of Engineering 

 

Assessment Committee: 

Supervisor: Dr. Katsushi Iwashita 

Co-Supervisor: Dr. Hirokazu Kobayashi 

Co-Supervisor: Dr. Masanori Hamamura 

Dr. Shuji Taue 

Dr. Masahiro Fukumoto 

 

September 2019  



I 

 

Abstract 

Optical Multi-User MIMO for Multi-Mode Fiber Passive Optical Networks using 

Sub-Carrier Multiplexing 

The exponential growth of global Internet Protocol (IP) traffic has triggered the demand for 

spectrally efficient high speed and high capacity optical network. After the maximum use of Time 

Division Multiplexing (TDM), Wavelength Division Multiplexing (WDM), Polarization Division 

Multiplexing (PDM) and multilevel modulation formats, a single strand of optical fiber have 

reached its transmission capacity limit. The only physical dimension of an optical fiber which is 

not fully utilized is the space. Mode division multiplexing (MDM) in a Multi-Mode Fiber (MMF) 

is a popular approach to exploit the space dimension of the fiber. 

In an MMF there exist a non-linear multi-mode propagation due to random mode coupling. In a 

long-haul transmission, these fibers possess a challenge to compensate coupling between signals 

in different modes and to minimize the differential mode group delays. The crosstalk between the 

modes of MMFs limits the performance of the overall system, so Multiple-Input-Multiple-Output 

(MIMO) processing must be done to separate the received signals. The non-linearity effect is 

compensated using Deep learning technique. Deep learning neural networks are highly non-linear 

and capable of forming arbitrarily non-linear decision boundaries. 

MIMO processing at the receiver-end is not suitable if all the end-users are located at a separate 

location. In this scenario, we need to design an optical transmission network that doesn’t use 

MIMO processing at the receiver end. In existing Passive Optical Network (PON) each optical 

network unit receives not only the data that belongs to its user but also the data of other users. This 

makes the network vulnerable to sniffing even though encryption has been done. To solve this 

problem, we have proposed and demonstrated a mode forming technique in an optical network of 

Multi-Mode Fiber (MMF) using fused fiber coupler so that optical channels from an optical line 

terminal are switched directly to different user locations in such a way that the optical network 

unit receives only the data that belongs to its user. The use of pre-MIMO in the transmitter 

eliminates the need of a MIMO processor in the receiver side. We have successfully implemented 

a 2 2   mode forming network by transmitting two 100Mbps channels over a 1 km long Graded-
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Index Multi-Mode Fiber (GI-MMF).This technique can be used to realize any N×N  channel 

optical mode forming network to deliver them only to their destination. 

Even if we assume MIMO processing is suitable to implement in the receiver side of MIMO-MDM 

system, none of the available MIMO detectors is an optimum detector. Optimum MIMO detector 

has always been a challenge in MIMO communication systems. We have designed a novel MIMO 

detector using a supervised Deep Learning Neural Network (DLNN) and has been implemented 

successfully in an MDM optical transmission system. A conventional GI-MMF is used to design 

an MDM optical transmission system. We have used a DLNN for MIMO detection in MDM 

optical transmission system and have compared its performance with Zero Forcing (ZF) detector 

and Semi-Definite Relaxation Row-by-Row (SDR-RBR). The results confirm that our DLNN 

outruns the performance of traditional MIMO detectors by compensating the non-linearity effect 

of multi-mode propagation. 

The performance of the mode forming network depends on the feedback network. The use of pre-

MIMO to eliminate the need of MIMO processor in the receiver raises questions about how 

accurately the channel matrix coefficients are transmitted back to the transmitter side. We have 

proposed and demonstrated a technique of signal extraction in the remote user location without the 

use of any kind of MIMO in the transmitter or receiver. We have successfully demonstrated the 

use of DLNN in MIMO-MDM optical transmission system for extracting the desired signal using 

only one composite signal. Two 1Gbps channels with sub-carrier multiplexing (SCM) has been 

successfully transmitted over a 1km long conventional GI-MMF and the desired signals are 

extracted in each remote user location using only one composite signal.  

This work underlines the potential of Deep Learning technique for MIMO optical communication 

systems. It will inform future planned work to use Deep learning in order to enhance the BER 

performance of MIMO-MDM transmission system through joint system optimization. 
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Chapter 1. Introduction 

1.1 Background and problem statement 

The exponential growth of global Internet Protocol (IP) traffic has triggered the demand for 

spectrally efficient high speed and high capacity optical transmission systems [1]. After the 

maximum use of Time Division Multiplexing (TDM), Wavelength Division Multiplexing (WDM), 

Polarization Division Multiplexing (PDM) and multilevel modulation formats, a single strand of 

optical fiber have reached its transmission capacity limit [2]. The space dimension of an optical 

fiber is the only physical dimension which is not fully utilized [3]. Researchers have concentrated 

on Space Division Multiplexing (SDM) to further increase the optical fiber capacity and spectral 

efficiency. One approach of implementing SDM is by using Multi-Core Fiber (MCF) [4-6]. And 

another approach to implementing SDM is Mode Division Multiplexing (MDM) [7-9].  

In MCF technique, multiple single-mode cores are used [10]. Although it is easy to migrate from 

single mode fiber systems to uncoupled single-mode MCF systems, the performance of the MCF 

optical transmission system is affected by the maximum achievable cladding diameters and inter-

core crosstalk. This crosstalk depends on fiber perturbations and is stochastic [11-13]. Crosstalk 

limits how closely cores can be placed. In papers [14-15], various techniques to suppress inter-

core crosstalk have been studied. MCFs with low crosstalk and/or large effective area have also 

been demonstrated [15-16]. In 2011, the first transmission exceeding 100Tbps was demonstrated 

using the first homogeneous, trench-assisted 7- core fiber [17]. In 2015, the capacity reaches 

2.15Pbps using 22-core homogeneous single mode MCF and wideband optical comb [18].  

Whereas in MDM technique, different modes of Few-Mode Fiber (FMF) or Multi-Mode Fiber 

(MMF) are used as unique data channels at the same wavelength to aid the fiber capacity [19]. 

FMF is a special class of MMF. They differ in the number of modes and available data channel. 

FMF supports up to a few tens of guided modes. In contrast, an MMF supports a few hundred 

modes. FMF was first developed by two NTT laboratories independently [20]. Some of the 

challenges of FMF system are; channel crosstalk due to mode coupling, pulse distortion due to 

large Differential-mode Group Delay (DMGD), and a MIMO processor to compensate the effect 

of crosstalk and DMGD. 283Tbps data transmission has been experimentally demonstrated over a 

30Km span of FMF and the capacity of each mode of FMF has also been reported to be within 
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90% of the record data-rate reported for single-mode fibers [21]. By simultaneously using all the 

modes of FMF/MMF to transmit data, we can achieve the maximum capacity of the MDM system.  

A combination of MCF and MDM approach is also investigated [22-23]. In a Few-Mode Multi-

Core Fiber (FM-MCF) technology, the number of spatial multiplicities can be increased over 100 

which helps to increase the transmission capacity per fiber [24]. Single Mode Fiber (SMF), 

Graded-Index Multi-Mode Fiber (GI-MMF) and MCF fiber structure is shown in Fig. 1.1. A record 

high transmission capacity of 10.16Pbps with an aggregate spectral efficiency of 1099.9b/s/Hz has 

been achieved using an FM-MCF with 6 modes in each of 19 cores [23]. 

 

Fig 1.1: Different types of fibers, (a) SMF, (b) GI-MMF, and (c) MCF 

One of the advantages of using FMF for MDM is that the fiber capacity can be increased without 

exponentially increasing Signal to Noise Ratio (SNR) [25-28]. FMF has better mode selectivity 

and easy mode impairments management compared to conventional MMF. However, all the 

existing optical networks use conventional MMFs and replacing all the existing networks with 

FMFs is not economically efficient. A conventional MMF supports many modes. There exists a 

non-linear multimode propagation in an MMF. In a long-haul transmission, these fibers possess a 

challenge to compensate coupling between signals in different modes and to minimize the DMGDs. 

The crosstalk between the modes of MMFs limits the performance of the overall system. So, 

Multiple-Input-Multiple-Output (MIMO) processing must be done to separate the received signals. 

Cores

(c)

Core

Cladding

Index Profile

(a)

(b)
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A conventional GI-MMF supports many modes, so if we use it to develop the MDM optical 

network, MIMO processing must be done to improve the performance. Common suboptimal 

MIMO detectors are Zero Forcing (ZF) detector [29] and Minimum Mean Square Error (MMSE) 

detector [30]. They are known for their low computational complexity because they use linear 

detection operation. ZF detector suffers from noise enhancement and has poor Bit Error Rate 

(BER) [29]. MMSE does not eliminate noise, but it minimizes. At high Signal to Noise Ratio 

(SNR), the MMSE detector converges to the ZF detector [29]. On the other hand, Maximum 

Likelihood (ML) uses a non-linear detection technique and provides an optimum MIMO detection 

only if all the transmitted symbol vectors are of equal probability. Also, the complexity of the ML 

detector increases exponentially with the size of MIMO and modulation order [31]. Some 

advanced detectors are Approximate Message Passing (AMP) [32], and Semi-Definite Relaxation 

(SDR) [33]. AMP is simpler and cheaper to implement in practice but requires proper knowledge 

of noise variance. An improper value of noise variance would severely degrade the performance. 

Furthermore, AMP detector may not converge when the MIMO channels are spatially correlated 

[34]. SDR is an alternative to ML detection because the complexity is polynomial rather than 

exponential. At high SNR, its performance is similar to the ML detector. Although SDR is more 

robust, it maintains a polynomial-time complexity with respect to the MIMO dimension [35]. 

This raises three questions: 

1. If end-users are located at a separate location, then MIMO processing at the receiver-end in not 

suitable. To solve this problem, we need to design an optical transmission network that doesn’t 

use MIMO processing at the receiver end. 

2. In the existing optical transmission system, each Optical Network Unit (ONU) receives not only 

the data that belongs to its user but also the data of other users. So even if data is encrypted, the 

network still remains vulnerable to sniffing. It raises security questions. To solve this problem, we 

need to develop a new optical transmission system where each user receives only the designated 

optical channel. 

3. Even if all the end-users are located at the same location, none of the available MIMO detectors 

is an optimum detector.  Therefore, we need to develop a novel optimal MIMO detector using a 

supervised deep learning neural network (DLNN). 
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1.2 Research contribution 

In today’s Passive Optical Network (PON), each optical network unit receives not only the data 

that belongs to its user but also the data of other users. This makes the network vulnerable to 

sniffing even though encryption has been done. To solve this problem, we have successfully 

proposed and implemented a mode-forming technique in an optical network. In this approach, 

optical channels from an optical line terminal are switched directly to different user locations in 

such a way that the optical network unit receives only the data that belongs to its user. A mode 

forming technique is implemented in an optical network of MMF using a commercially viable 

fiber coupler to optically route only the desired channel to the desired destination. We have 

successfully implemented a 2 2  mode forming network and the total channel coefficients related 

to each user is estimated at their locations. The feasibility of the proposed technique has been 

confirmed using a conventional graded index Multimode fiber. The total channel matrix 

coefficients of this network are obtained by processing the transmitted training sequence in their 

user locations. Pre-Multiple Input Multiple Output (pre-MIMO) equalizer is implemented at the 

transmitter. The channels are successfully transmitted to their destinations clarifying wavelength 

independence while maintaining data security to some extent. Furthermore, the exchange of 

channel in the output port is also supported by this network. 

Optimum MIMO detector has always been a challenge in MIMO communication systems. We 

have designed a novel MIMO detector using a supervised Deep Learning Neural Network (DLNN) 

and we have implemented it successfully in a MDM optical transmission system. A conventional 

GI-MMF is used to design an MDM optical transmission system. We have used a DLNN for 

MIMO detection in MDM optical transmission system and have compared its performance with 

Zero Forcing (ZF) detector and Semi-Definite Relaxation Row-by-Row (SDR-RBR). The results 

confirm that our DLNN outruns the performance of traditional MIMO detectors. A supervised 

Deep Learning neural network which is designed, trained and evaluated using a Keras library and 

TensorFlow is used for optimum MIMO detection. 

A Mode-forming technique in an optical network of multi-mode fiber transmits only the data to 

the optical network unit that belongs to its user making the network resilient to sniffing. 

Implementing Deep Learning neural network for MIMO detection provides a new approach to 

optimum detection in a modern optical transmission system. When the end-users are located at a 
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different location, computationally intensive MIMO processing is not suitable. Therefore, we have 

purposed and successfully implemented a Deep Learning neural network for signal detection using 

only one received signal. We have successfully implemented this approach in a 2×2 MIMO MDM 

optical transmission system. The feasibility of the proposed optical transmission system has been 

confirmed using a conventional graded-index multi-mode fiber. A supervised Deep Learning 

neural network which is designed, trained and evaluated using a Keras library and TensorFlow is 

used for signal detection in each receiver location. 

1.3 Outline of the dissertation 

This dissertation is organized into six chapters. 

Chapter 1. This chapter presents the research background and problem statement. The 

contributions of the research are also discussed here. 

Chapter 2. This chapter includes a detailed review on describing the non-linear multimode 

propagation in multi-mode fiber using coupled Manakov equation, the design of a fused fiber 

coupler for mode division multiplexing/demultiplexing, and the application of deep learning in 

optical communication. 

Chapter 3. In this chapter, a new optical mode forming network, which implements a feedback 

system, has been proposed and successfully implemented by using a mode division multiplexing 

in a conventional GI-MMF network using a commercially available mode dependent fused fiber 

coupler. Detailed information on the design of this network, its implementation technique, and its 

results are included. 

Chapter 4. This chapter presents a new technique for designing a digital MIMO processor. A 

MIMO processor is designed using a deep learning technique and is implemented for MIMO 

detection in a mode division multiplexed optical transmission system. Detailed information on the 

design of a deep learning neural network and its characteristics are presented here. The 

performance of the newly designed neural network is also compared with the existing MIMO 

detector. 

Chapter 5. This chapter presents a new technique for extracting the desired signal from one 

composite signal. This method is significant where MIMO processing is not suitable at the receiver 
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end. Here, a deep learning neural network is designed and implemented at the remote user location 

for the desired signal detection. 

Chapter 6. Finally, a summary is presented in this chapter and some directions for future work 

are considered. 
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Chapter 2. Literature Review 

2.1 MIMO-MDM 

Mode division multiplexing (MDM) is a technique of using spatial modes of FMF/MMF as a 

unique channel to carry independent data stream. Using MDM, the transmission capacity of an 

optical fiber increases by an amount proportional to the number of modes used [1]. An MDM 

transmission system consists of a mode multiplexer, an FMF/MMF, a mode de-multiplexer, 

multiple coherent receivers, and a MIMO processor [2-3]. The basic MDM transmission system is 

shown in Fig 2.1. The MMF supports several modes, so it is used as the transmission media of 

MDM system.  

 

Fig. 2.1: Schematic diagram of an MDM transmission system 

Using the concept of MIMO introduced by Foschini et al. [4], Stuart [5] tested the feasibility of 

MIMO over MMF in a 2×2 channel experiment. Many MDM transmission systems using FMFs 

have already been proposed [6-9]. Inside a FMF or MMF multiple modes exists as shown in Fig. 

2.2. 

 

Fig. 2.2: Multiple modes of FMF or MMF 

A guided mode is a solution of Maxwell’s equation describing the distribution of electro-magnetic 

field along the fiber. Normalized frequency determines the number of guided modes in an optical 

fiber [10]. When the value of normalized frequency of a fiber is small then such fiber can only 
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guide fundamental mode LP01 as in SMF. As the value of normalized frequency exceeds 2.405, 

the fiber can support LP11 mode group. Guided modes are orthogonal, it means, if the normalized 

mode profile for LP01 is represented by 
01 and that of LP11 by 

11  then 

 
01 11 0drd    (1) 

Equation 1 is the basis of mode-division multiplexing. Different modes in a MMF have different 

group velocities resulting in mode dependent group delays. The group velocity is defined as  

  
1

g d d  


  (2) 

Where   denotes the propagation constant and   denotes the frequency. Mode dependent group 

delay results in modal dispersion. Mode multiplexing (MUX) and De-multiplexing (DEMUX) is 

a critical operation in MDM transmission system. MUX transforms signals from multiple SMFs 

to MDM signals. Generally, a MUX performs two operations: mode conversion and combination. 

First, signals from SMFs are converted to the desired modes and then combined before coupling 

to MMF. Mode conversion can be achieved using various technique such as directional coupler 

[11], spatial phase modulator [12], phase plate [13], or fiber Bragg grating [14]. Low loss 

techniques for MUX/DEMUX are also available [15-16]. 

To compensate the crosstalk between the propagating modes of a fiber a MIMO Digital Signal 

Processor (DSP) is required at the receiver side. Optimum MIMO detector does not exist. Only 

near optimum MIMO detectors are available. In order to achieve a near-optimal detection, a dual 

data path architecture has been proposed in paper [17]. It uses a signal-vector based list detection 

method. 

Some of the MIMO-less optical transmission system also exist [18-19]. In paper [18], two spatial 

modes carrying carrier-less amplitude/phase (CAP) modulation signals are transmitted over 1.1km 

Elliptical-Core Few Mode Fiber (EC-FMF). EC-FMF fibers provides better performance even 

under extreme bending conditions. Three spatial modes of EC-FMF can transmit 10Gbps data 

using MIMO-less transmission systems [20].  Even in FMF when the number of spatial modes is 

increased, modal crosstalk increases, then they need a MIMO processor. By using mode selective 

couplers for multiplexing/de-multiplexing two spatial modes are transmitted over 10-km long 

FMF without using a MIMO processor [21-22]. However, when the number of modes increases, 

the design of mode selective coupler becomes complex. Furthermore, as the name suggests, FMF 
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supports only few tens of modes as compared to MMF. For MIMO-less transmission, a special 

fiber must be designed, but the scalability of optical fiber design remains a challenging problem 

[23]. 

Recently, MIMO MDM in MMF has been gaining huge interest among researchers [24-27]. It is 

seen as a technique to increase data capacity [24-31]. The capacity can be increased by exploiting 

the usable modes of GI-MMF, but the crosstalk between high number of modes limits its capacity. 

Successful transmission of 6 spatial modes over a 17 km long GIMMF has been reported [32]. The 

results verify that the GI-MMF support scalable MDM. It also indicates that GI-MMF can support 

MDM transmission over 300 km. In papers [33-36], the first MIMO MDM experiments over 

standard MMFs were performed. Some of the challenges possessed by MDM are mode coupling 

and mixing, Differential Group-Delay (DGD) spread between the modes of the fiber, and 

differential attenuation of higher order modes nearer to the cladding index. Mode coupling and 

mixing occurs in optical components and MMFs. Various techniques are purposed to lower the 

DMGDs of GIMMFs for MIMO MDM [26-27]. Rescaling and optimizing the diameter of a 

GIMMMF can lower the DMGDs for 6 to 36 spatial modes for MIMO MDM transmissions [35]. 

Optimization of a trench-assisted 50μm diameter GIMMF for MIMO MDM transmission at 

1550nm has also been done [36]. It helps to selectively excite and detect the 20 lowest-order LP 

modes for optimum MIMO MDM transmission. It also increases the effective areas of fiber and 

lowers the DMGDs, fiber bend losses, attenuations of those LP modes. 

2.2 Non-linear propagation in multi-mode fibers 

In a fiber propagation, optical non-linearity and its effect on data transmission are of great concern. 

Strong random coupling occurs between modes that have similar wavenumbers. Whereas, weak 

coupling occurs between modes that have significantly different wavenumbers. Non-linearity in 

fiber is due to random mode coupling [37]. The non-linear multi-mode propagation is described in 

terms of coupled generalized multi-component Manakov Equations (ME) [38] as 
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Where a and b represents the group of modes. 
aE  and 

bE represents the vectors that describe the 

modes in the group a and b respectively. The group velocity dispersion is represented by 
"

,a b . The 

group velocity is represented by 
'

,a b . And the non-linear coupling coefficients by 
uv [24]. The 

value of  
uv is given as 

 

* *

2 2
,

.
h k m j

uv jhkm

k m j u h v
u v

E E E E
C

E E




 

    (4) 

where jhkmC  is the dimensionless constant.    represents statistical averaging. Depending on 

which of the coefficients is evaluated ‘v’ and ‘u’ takes the value ‘b’ and ‘a’. If we set ‘v=b’ and 

‘u=a’, then the indices ‘h’ and ‘j’ in the summation takes all the corresponding values in group 

‘b’and ‘a’ respectively. Other indices ‘m’ and ‘k’ run through all the modes. 

2.3 Design of a fused fiber coupler for mode multiplexing/demultiplexing 

The implementation technique of the mode-dependent fused fiber couplers for two channel is 

shown in Fig. 2.3. In the fused fiber coupler 1, Signal 1 with power 1
in

P   and Signal 2 with power 

2
in

P  are coupled to the input ports. The blue arrow represents optical Signal 1 and the red arrow 

represents optical Signal 2. The fused fiber coupler consists of two closely placed parallel optical 

fiber that is stretched and fused together so that their cores are very close to each other. The length 

of the Coupling region, the separation of the cores, the wavelength of operation and other fiber 

parameters determine the coupling coefficients. The coupling coefficients quantify how efficiently 

power couple from one mode to another.  

The two optical signals, signal 1 and signal2, are of the same wavelength, but they are propagating 

with different modes and different propagation constant. When these signals enter the coupling 

region of the fused fiber coupler, coupling begins. The strength of mode coupling between these 

two propagating modes is determined by the dimensionless ratio of the coupling coefficient (per 

unit length) to the difference between the propagation constant of these propagating modes. Then 

the output port of fused fiber coupler 1 is connected to the GI-MMF.  The power of Signal 1 

concentrate inside the dotted blue circle, whereas the power of Signal 2 concentrate inside the 

dotted red circle. The modes in the overlapping region of these circles carry both the signals. Only 
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by using the overlapping modes, the signals cannot be detected because the channel matrix 

becomes 
1 1

1 1

 
 
 

 and its determinant becomes zero.  

 

Fig. 2.3: Mode-dependent fused fiber coupler for multiplexing 

During the detection process, we need a non-zero value of the determinant of the channel matrix. 

In the non-overlapped region of two dotted circles, multiple modes exist. Signal 1 and Signal 2 are 

propagated with multiple different modes. 

2.4 Deep learning in optical communication 

In recent years, the use of machine learning in communication systems is getting a lot of attention 

[39-40]. In an optical communication, machine learning has been used to monitor the performance, 

to mitigate fiber non-linearity, to recover the carrier, to recognize the modulation format [41-43]. 

In optical communication system, the major factors for limiting the data rate are chromatic 

dispersion and nonlinear Kerr effects [44]. So researchers are attracted to use an artificial neural 

network for channel equalization [45-49]. In paper [50], a Deep learning technique [51] has been 

used to design an artificial neural network to mitigate Nonlinear Interference by digital 

backpropagation [52]. An artificial neural network has also been used in PAM8 intensity 

modulation with a direct-detection (IMDD) system for the purpose of equalization [53]. Deep 

learning neural networks are also being used in the detection block of IMDD system for the 

mitigation of linear and non-linear impairments [54]. 
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Existing communication systems are designed based on splitting the entire signal processing into 

a chain of multiple independent blocks. In such a system, each block performs a pre-defined 

function. These functions, such as source coding, channel coding, modulation, channel estimation, 

and equalization, are completed isolated from each other. This technique of individual block 

optimization does not provide the best end-end performance [55]. However, DLNN can do so even 

in complex communications scenarios that is difficult to represent using tractable mathematical 

models. The use of (Deep Learning) DL in MIMO communication systems jointly optimize the 

system [56]. In adaptive channel equalization, a training sequence is transmitted and the errors in 

the receiver side are calculated. Using these errors an optimum value for the relevant parameters 

of the equalizer are searched. However, most of the linear adaptive equalizer cannot efficiently 

equalize a non-linear channel and do not perform well on channels with deep spectral nulls. Non-

linearity in fiber is due to intra- and intermodal nonlinear coupling. GI-MMF supports many modes, 

so there exist non-linear multimode propagation. Non-linear multi-mode propagation can be 

described in terms of coupled generalized multi-component Manakov equation [38]. This non-

linearity can be addressed using Deep learning. Deep learning neural networks are highly non-

linear and capable of forming arbitrarily non-linear decision boundaries. 

2.5 Sub-carrier multiplexing in MDM transmission system 

In optical SCM, multiple signals are multiplexed in the radiofrequency domain and they are 

transmitted using a light of single wavelength. The advantages of using SCM are that the subcarrier 

has an extremely longer wavelength than optical carrier; therefore, the effect of phase change in 

sub-carrier system is small compared to the optical carrier system. This makes sub carrier system 

more stable. The technique of implementing SCM in MDM transmission system is shown in Fig. 

2.4. Here, in each transmitter, n independent high speed channels are mixed by n different radio 

frequencies fi. After combining, these signals are modulated onto an optical carrier λ1. The optical 

carrier in each transmitter uses the same wavelength. This results in N modes multiplexed MDM 

signal at the output of mode multiplexer (MUX). This N mode signal propagate through a MMF. 

The objective of using SCM is to generate a single sideband modulated signal with an optical 

carrier, as shown in fig. 2.5 so that self-heterodyne is possible by using the square-law detection 

technique. Figure 2.5 shows the modulation technique with 2 mode transmission. By using a radio 

frequency ωm, two channels are first electrical modulated and then they are intensity modulated. 
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The spectrum after intensity modulation is shown in Fig. 2.5 (a), but after controlling the 

modulation current of Intensity modulator we get the spectrum which consists of only one sideband 

and an optical carrier as in Fig. 2.5 (b).  This is the spectrum we have used in our research. This 

spectrum can self-heterodyne. 

 

Fig. 2.4: SCM in MDM transmission system 

Two data channels generates two SCM channels. Their optical spectrum consists of an optical 

carrier and the upper sideband of the modulated signal. The optical spectrum shown in Fig. 2.5 (b) 

is coupled into a GI-MMF.  Figure 2.5 (b) is the optical spectrum of channel 1 signal. Similarly, 

channel 2 signal also has a similar spectrum. The two optical channels are coupled to two different 

modes of GI-MMF as in Fig. 2.5 (c).  At the receiver, these signals are detected using photodiodes. 

The electrical spectrum of these two signals is shown in Fig. 2.5 (d). 

In direct detection technique, the optical phase of the transmitted signal is lost after square-law 

photo-detection. However, if the SCM technique is performed, both the amplitude and phase 

information of the subcarrier, Fig 2.5 (d), can be recovered after direct detection from the beating 
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between optical carrier and subcarrier signal. Due to this, the phase information is preserved 

[57,58]. 

 

Fig. 2.5: Illustration of SCM when 2 modes are used 

The interference between signal-signal beat products and the desired signal-carrier beat terms is 

also called as ripple. When the spread spectrum technique is used along with SCM, noise 

enhancement can be compensated [57].  
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Chapter 3. Passive Optical Delivering Network using Conventional 

Graded-Index Multi-Mode Fiber with MDM and SCM  

3.1 Mode forming network 

The main objective of our proposed mode forming network is to deliver the desired signal only 

to the desired destination, making the delivering process independent of wavelength, data rate, 

and modulation format. 

In wireless communications, beamforming technique is used to focus the beam to the desired area 

by controlling the transmitted signals. We have proposed to apply the same beamforming concept 

to MMF systems using sub-carrier signals instead of the optical carrier. This mode forming 

network consists of transmitters, MMF or few-mode fiber, mode dependent fiber couplers and 

receivers. Multiplexing and de-multiplexing are achieved through the use of fused fiber couplers. 

The transmitter ( )nTx transmits a superimposed data. These signals propagate through a fiber 

experiencing a different delay with the different mode. By controlling the amplitude and the phase 

of the transmitted signal, only the desired signal is received by the receiver ( )nRx whereas other 

undesired signals get canceled being out of phase. The proposed N channel mode forming network 

with a feedback system is shown in Fig. 3.1. Here, H is the channel matrix of the MMF and 

OV
H = HW  is the total channel matrix including the weighting network. This system uses SCM. 

The advantages of using SCM are that the subcarrier has an extremely longer wavelength than 

optical carrier; therefore, the effect of phase change in sub-carrier system is small compared to the 

optical carrier system. This makes sub carrier system more stable. These channels 1 2, Nd d d are 

superimposed to generate N transmitter signals 
1 2, Nx x x and are transmitted through an MMF. 

By using another fused fiber coupler, these transmitter signals are divided and are taken to N

destinations that are separately placed. As these optical signals are at different locations, MIMO 

processing at the remote user cannot be implemented either to get the channel matrix or to separate 

the channels. Therefore, a new approach has been used to calculate channel matrix. 

In this approach, signal processing is done independently on all receivers at a remote location to 

calculate their respective total channel matrix coefficients. These total channel coefficients are 

feedback to the transmitter in the uplink using a multiple access technique such as Time Division 
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Multiple Access (TDMA). Weight controller computes the channel matrix and controls the 

weighting network. The coefficients of the channel matrix are calculated as follows. 

 

Fig. 3.1: Proposed mode forming network 

The frame is shown in Fig. 3.2. It consists of training sequence and data. The training sequence is 

used to acquire the total channel matrix coefficients for each terminal. During the training sequence 

transmission, when 1d = ‘1’, all other channels have ‘0’, then 1d  is available on all output ports. 

By using these received signals, total channel matrix coefficients associated with the channel 
1d  

are calculated. Similarly, total channel matrix coefficients associated with the channel 2d are 

calculated when, 
2d = ‘1’ and all other channels have ‘0’. This process is repeated to calculate all 

the total channel matrix coefficients. To implement this principle a training sequence is used.  

The characteristics of the mode forming network are described as follows.  

If (t)iy represents the signal received by the ith  receiver, the total received signal 
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where, H is the channel matrix, 
OVH  is the total channel matrix, (t)d is the input signal matrix 

and W is the weighting network matrix.  

 

Fig. 3.2: Frame structure 

The weighting network matrix is defined as  
1 2 N

W w w w where

 1 2

T

k k Nkw w wkw . 

The total channel matrix is defined as: 
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The training sequence of length M is used to obtain the coefficients of the weighting network. Let 

Training sequence Data

1 0 0 0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 1
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us take the first N bits of the training sequence to compute the coefficients of the total channel 

matrix. 

When only 
1d (T) is transmitted, where T is the bit period, the input signal matrix is 

1

2

1

0

0N

d (T)

d (T)
(T)

d (T)

   
   
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   
   

  

d . Then the received signal is: 
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1y Hw , (3) 

When only 
2d (2T)  is transmitted, the input signal matrix is

1

2

0

1

0N

d (2T)

d (2T)
(2T)
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received signal is: 
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In general, when only id (iT)  is transmitted the received signal is 

 1 2

T

N(iT) y (iT) y (iT) y (iT)y . 

Similarly, all other remaining equations are obtained and the total channel matrix of the overall 

network, 
OVH , is computed by using the Eq. (1). These total channel matrix coefficients are 

uplinked to the weight controller.  The weight controller calculates the channel matrix as: 

 
1= 

OVH H W , (5) 

If we want to send (t)id  only to (t)iy , for 1 i N   then all other branch signals must be set to 

zero, so we obtain next relation from Fig. 3.3 as:   
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When channel matrix coefficients are obtained by using Eq. (5), we can determine the weighting 

network value. 

 

Fig. 3.3: Signal receiving method 

However, the Eq. (6) is an indeterminate equation, so we assume the fixed value of wkk and change 

the other value. This can be written using matrix form as 
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calculation. Solving this, the new weight vector is obtained: 

  
1

new

k k k kk= - w


w H h , (8) 

In this way, all the coefficients of the weighting network matrix 
new

W  are calculated at the weight 

controller and feed to the weighting network to control the transmitter’s signal. The process from 

Eq. (1) to Eq. (8) is repeated continuously to update the weighting network. The received signals 

can be expressed as: 
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We’ll consider the case for 2N  . When the transmitter sends  1 0
T

(T) d , receiver 1 gets 
1y (T) 

and receiver 2 gets 
2y (T) . Similarly, when the transmitter sends  0 1

T
(2T) d , receiver 1 and 

receiver 2 gets 
1y (2T) and 

2y (2T)  respectively. These four values are the four coefficients of the 

total channel matrix. This process is repeated for the entire length of the training sequence and the 

average value of the coefficients is taken. The four coefficients of the total channel matrix are 11ovh , 

12ovh , 21ovh  and  22ovh . 

These values are then uplinked to the weight controller. The weight controller calculates the 

channel matrix coefficients from Eq. (5) as 
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where, 11 22 12 21w w w w w   . The weighting network matrix coefficients can be obtained by 

assuming k= 1 and 2 in Eq. (7) as:  
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Then from Eq. (8) we get, 

 

21 22 22 2121
21 11 11
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h w h wh
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The received signals from Eq. (9) and Eq. (11) are: 

 11 22

22 11

( ) ( ), and ( ) ( )t w t t w t
h h

 
 1 1 2 2y d y d  (12) 

where, 11 22 12 21h h h h   . By renewing weighting network matrix coefficients according to these 

values ( )t1y  signal contains only ( )t1d  and ( )t2y  signal contains only ( )t2d . Furthermore, the 

output port can be exchanged by controlling the weighting network. The ( )t2d  channel is made 

available to ( )t1y  and ( )t1d  channel to ( )t2y  by taking the weighting network matrix coefficients 

as: 

 11 22
21 11 12 22

12 21

and  new newh h
w w w w

h h
    , (13) 

When someone tries to sniff another port signal, it is not easy by this configuration. For example, 

if receiver 2 tries to sniff receiver 1’s signal, receiver 1 can control the coefficients of
12w and

22w . 

On the other hand, receiver 2 can control 21w and 
11w . Therefore, 12w and 22w are determined by 

receiver 1 signal. 
21w and 

11w are controlled without a cancellation and can receive channel 1 signal 

as: 

 11 11 12 21( ) ( ) ( )t h w h w t 1 1y d , (14) 

 21 12 22 22( ) ( ) ( )t h w h w t 2 2y d , (15) 

This signal affects the sniffing signal and is not easy to sniff other signals. In our system, first, we 

use SCM, and then, sub-carrier signal amplitudes and phases are adjusted according to the 

weighting network matrix before optical amplitude modulations. A pre-MIMO equalization using 

one tap is used at the transmitter. If we use an optical carrier instead of a subcarrier, the weighting 

controller should be constructed by optical amplitude and phase controller such as optical vector 
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modulator. 

3.2 Experimental setup 

The experimental setup to confirm efficient operation of the mode forming network using 

conventional GI-MMF is shown in Fig. 3.4. The pulse pattern generator generates the signal at 

100Mbps and this signal has training sequence appended to the data. While generating the signal, 

the data has the voltage level of +5V and -5V, whereas, the training sequence has the voltage level 

of +5V and 0V. 
1d  and 

2d are the two channels. The 
2d  signal is a 3-bit delay over

1d .  

 

Fig. 3.4: 2×2 mode forming network 

SCM is done using 1GHz microwave carrier and it is optically modulated using a Mach-Zehnder 

Modulator. The kind and method of implementation of SCM are as described in the paper [23]. 

The difference between the wavelengths of these optical carriers is kept 5GHz in order to avoid 

appearing of the product term of two signals, during square-law detection, in the same band with 

the desired signal.  Two optical signals, each propagating through a single mode fiber, are coupled 

to ‘1km’ conventional GI-MMF, OM2 with 50 µm core diameter, by using a mode dependent fiber 

coupler. The coupling ratio of a multimode fiber coupler depends on the excited modes of MMF 

because each mode has a different propagation constant. If all the modes are excited uniformly, 

the coupling ratio of the fiber coupler will be constant. If this happens, there will be difficulty in 

MIMO transmission. To achieve non-uniform mode excitation, we have used an SMF just before 

MOD: Modulator

DEM: 

Demodulator

LD: Laser 

Diode(1550nm)

SMF

GI-MMF
1
 G

H
z

      
   

1
0

0
 

M
b
p
s

  

3
-

L
ev

el P
P

G

3
b

it d
elay

   

   

MOD1

MOD2

LD1

LD2

Fused 

fiber 

coupler

Fused 

fiber 

coupler

DEM1

DEM2

Find      

and      

     

Find 

     and 

     

     

  

  

  

 

Weight 

Controller 

     
   



32 

 

the fiber coupler so that we can excite only a few modes. Therefore, the fiber coupler used here is 

called a mode dependent. This fiber supports about 40 modes. At the other end of GI-MMF, 

another fiber coupler is used to optically divide the signal into two branches and each branch is 

transmitted to two different locations by using GI-MMF. Fiber coupler is used to perform 

multiplexing and de-multiplexing. In each location, the signals are first detected using 

photodetectors and are demodulated.  

RF signal carrying 
1d and a fraction of RF signal carrying

2d  are superimposed and then fed to the 

modulator MOD1. Similarly, RF signal carrying
2d  and a fraction of RF signal carrying 

1d are 

superimposed and then fed to the modulator MOD2. Although we have used different modes of 

GI-MMF, their types are not exactly identified. The channel coefficients are estimated in two 

different locations independently by using a training sequence, which is shown in Fig. 3.5. The 

transmitting signal is a combination of two modulation formats; BPSK and OOK. Signal generated 

by the pulse pattern generator has three levels; 1, -1 and 0. Data is represented by 1 and -1 while, 

the training sequence is represented by 0 and 1. Therefore, training sequence uses OOK.  

 

Fig. 3.5: Data format 

During the transmission of the training sequence, when the upper branch transmits bit ‘1’ lower 

branch transmits level ‘0’ and vice versa. It resembles as when the upper branch transmits bit ‘1’ 

(i.e. ON) of the training sequence, the lower branch is OFF and when the lower branch transmits 

bit ‘1’ (i.e. ON) of the training sequence, the upper branch is OFF.  A frame of 152-bit is used and 

it contains 25 bits of the training sequence starting at (010…1) from 1 to 25 positions.  We can 

increase this frame length to a value less than the interval after which the fiber characteristic 

changes. From Eq. (3) & (4), the receiver 1 in the remote location receives 1y (T)  and 1y (2T) . 

Whereas, receiver 2 receives 2y (T)  and 2y (T) . The coefficients are calculated for the entire length 

of the training sequence and the average value is taken. In the received signal ( )t1y , the average 

3 Bit Delay Channel estimation
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value of even bits from 4 to 25 position during the training sequence transmission gives 
11ovh and 

the average value of odd bits from 4 to 25 position during the training sequence transmission gives 

12ovh . The first three bits are neglected because we are using a 3-bit delay in the second branch. 

These two total channel coefficients are sent to the weight controller using uplink.  Similarly, at 

receiver 2, remaining total channel coefficients 
21ovh  and 

22ovh  are calculated. These coefficients 

are also uplinked to the weight controller. In this experiment, we have used an Ethernet for uplink. 

The weight controller process these four coefficients 
11ovh , 

12ovh , 
21ovh  and  

22ovh  in order to 

calculate the channel coefficients
11h , 

12h , 
21h  and

22h . The weight controller then uses these 

channel coefficients to generate control signals in order to update the weighting network  to
new

W . 

The weighting network consists of magnitude and phase controller in each branch. Only one 

channel is present in one destination when all the weighting values are updated. 

3.3 Results 

The cross-correlation between receiving signals and the reference signal is shown in Fig. 3.6. The 

cross-correlation between 
1y  and the reference signal reveal that both channel 

1d  and 
2d  are 

present in 
1y  before implementing feedback, which is shown in Fig. 3.6(a). Similarly, the cross-

correlation between 
2y  and the reference signal also shows that 

2y  contains both channels before 

implementing feedback, as shown in Fig. 3.6(d). However, after implementing continuous 

feedback only one channel is present in each location. 
1y contains only 

1d  and 
2y  contains only 

2d  as shown in Fig. 3.6(b) and Fig. 3.6(e) respectively. Due to the implementation of weighting 

network, each receiver receives two copies of each transmitted signal. The signals which are 

intended for that user are in phase, so they get added. Whereas, the signals which are not intended 

for that user are 180 degrees out of phase, so they get canceled. In this system, perfect cancellation 

is not suitable because if perfect cancellation occurs, channel matrix coefficients cannot be 

calculated. Therefore, we can see in the above figures that a very weak portion of an unwanted 

signal is present in both locations due to crosstalk. If we increase the length of the training sequence, 

SNR increases and the crosstalk can be reduced. 
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Fig. 3.6: y1 channel; (a) correlation before feedback, (b) correlation with continuous feedback, 

(c) eye diagram. y2 channel; (d) correlation before feedback, (e) correlation with continuous 

feedback, (f) eye diagram. 

The eye diagram of 
1y  and 

2y  after feedback is shown in Fig. 3.6(c) and Fig. 3.6(f) respectively. 

These eye diagrams have three levels. The middle level is due to the training sequence, so it can 

be removed before the decision threshold. The output port can be exchanged by controlling the 

weight controller. After continuous feedback, channels have been successfully exchanged making 

2d  available to 
1y  and 

1d  to 
2y  as shown Fig. 3.7.   

In Fig. 3.6, at the port 
1y , the cross-correlation value of 

1d  is larger compared to the cross-

correlation value of 2d . Similarly, at the port 2y , the cross-correlation value of 2d  is larger 

compared to that of 1d . The weighting matrix coefficients when continuous feedback is 

implemented are shown in Table. 3.1. The magnitude and phase of these weighting matrix 

coefficients are shown in Fig. 3.8 and it can be seen that the change in magnitude of these 

coefficients is less than 2dB.  
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Fig. 3.7: Output port exchange. y1 channel; (a) correlation before feedback, (b) correlation with 

continuous feedback, (c) eye diagram. y2 channel; (d) correlation before feedback, (e) correlation 

with continuous feedback, (f) eye diagram. 

3.4 Protection against sniffing 

Receiver 1 controls the coefficients 12w  and 22w  while receiver 2 controls the coefficients 21w  and 

11w . If receiver 2 tries to sniff the signal of receiver 1 without attacking the value of channel 

coefficients, then it is difficult to detect. Similarly, if receiver 1 tries to sniff the signal of receiver 

2 it is difficult to detect. This can be clearly seen in Fig. 3.9. By increasing the SNR level of the 

transmitting signal, the level of crosstalk can be further reduced. However, if the attacker attacks 

the value of the channel coefficients and alters their values, then both the signal might be detected 

at each location. Nevertheless, the occurrence of an attack can be known because the SNR level in 

another receiver decreases.  

Therefore, this network clearly reveals security against sniffing by making us aware of sniffing. 

The input signals are successfully delivered to their desired destination. In this way, a 2 2  optical 

mode forming network has been successfully realized. 
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3.5 Discussion 

The proposed passive optical mode forming network using conventional GI-MMF with mode 

division multiplexing and sub-carrier multiplexing has been successfully implemented.  

 

Fig. 3.8: Weighting matrix. (a) magnitude. (b) phase 

Table 3.1: weighting matrix coefficients 

S.N 12w  21w  

1 0.6250-0.4957i 0.6353-0.0469i 

2 0.5837-0.5108i 0.5619-0.2582i 

3 0.6411-0.4738i 0.5821-0.2032i 

4 0.6441-0.4793i 0.6123-0.1751i 

5 0.6184-0.0593i 0.6184-0.0593i 

6 0.6801-0.4363i 0.6314-0.0403i 

 

We have chosen a symbol rate of 100Mbps because the purpose of our experiment is to test the 

feasibility of our proposed technique. The GI-MMF fiber that we have used in our experiment has 

a bandwidth-distance product of 500MHzkm. If the data rate is increased, ISI increases error. 

However, for commercial use, the fiber length should be less than 10km with data rate above 

10Gbps. This higher data rate can be achieved by increasing the number of sub-carriers and 

combining SCM. We must use OOK format for the training sequence; however, we can use more 
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complicated format for data, such as QAM, to increase the data rate. The vibration in fiber and 

changes in temperature changes the channel matrix. Therefore, in order to update the weighting 

matrix, the measured channel matrix should be fed back to the transmitter. 

 

Fig. 3.9: Eye pattern when sniffing is done. 

The spectral and temporal properties of the acoustic noise induced in the fiber by temperature and 

vibration are more than 10ms [24]. So the fiber characteristic changes in a time period not less 

than 10ms. But, the round trip time for a 10km long fiber is about 100µs. It does not cause a 

considerable problem, until the feedback time from each receiver is less than 10ms, even if the 

receivers located at different remote location feedback the total channel matrix coefficients at a 

different delay. Therefore, the process of measuring the transfer matrix and sending it back to the 

transmitter to update the weighting matrix should be faster than the temporal change of the channel 

matrix. 

3.6 Conclusion 

This technique can be used to realize any N N  channel optical mode delivering network. N data 

channels on the transmitter side can be modulated by a sub-carrier and superimposed, the 

proportion of superimposition is determined by the fiber characteristics, to generate N different 

signals. These signals are optically modulated and then transmitted as N different modes. However, 
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for the N N  system, the length of the training sequence becomes (N-1) times longer than that of 

the 2 2  system and the undesired signal might not be completely canceled out. 
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Chapter 4. MIMO Detection using a Deep Learning Neural Network 

in a MDM Optical Transmission System. 

4.1 DLNN in MDM optical transmission system 

The objective of our MDM optical transmission system is to implement Deep Learning Neural 

Network for MIMO detection.  We have used an MDM on GI-MMF systems using sub-carrier 

signals instead of an optical carrier. The advantages of using sub-carrier signals are that they have 

an extremely longer wavelength than the optical carrier. Because of this, the effect of phase change 

in sub-carrier signal is small compared to that in the optical carrier signal, so sub-carrier systems 

are more stable than an optical system. Moreover, optical sub-carrier signals can be converted 

directly to electrical signals without using complicated coherent detection.  

The MDM optical transmission system with N number of input channels and N number of output 

channels is shown in Fig. 4.1. It consists of transmitters, GI-MMF, mode-dependent fused fiber 

coupler, receivers, and a DLNN. Mode dependent fused fiber couplers are used for achieving mode 

multiplexing and de-multiplexing operation.  

Data 
1d , 

2d , 
3d , ….. 

Nd are the random data stream. These data stream should be random in order 

to avoid the DLNN learning this data pattern.  Data are sub-carrier multiplexed and then feed into 

the Mach-Zehnder Modulator (MZM). In MZM, an intensity of the optical carrier is modulated. 

After optical modulation, these optical signals are mode division multiplexed with the help of a 

mode-dependent fused fiber coupler.  

In our experiment, we have used a commercially available mode-dependent fused fiber coupler. 

The fused fiber coupler consists of two closely placed parallel optical fiber that are stretched and 

fused together so that their cores are very close to each other. The length of the Coupling region, 

the separation of the cores, the wavelength of operation and other fiber parameters determine the 

coupling coefficients. The coupling coefficients quantify how efficiently power couple from one 

mode to another. The strength of mode coupling between the two propagating modes is determined 

by the dimensionless ratio of the coupling coefficient (per unit length) to the difference between 

the propagation constant of these propagating modes. Then the output port of fused fiber coupler 

is connected to the GI-MMF.  
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Bends, stress and index perturbations (whether random or intentional) can induce mode coupling 

in an GI-MMF. Strong coupling occurs when the propagation constants of two modes are nearly 

equal, otherwise limited coupling appears. To classify mode coupling as strong or weak, a 

correlation length is defined. A correlation length is defined as the length along a fiber over which 

the local eigenvectors [19] remains constant.  When the length of fiber is shorter than the 

correlation length, weak coupling occurs. In this case, there might be a remarkable level of 

coupling between modes that have approximately equal propagation constant, but the coupling 

between modes that have an unequal propagation constant is limited. As a result, in different spatial 

mode group, GI-MMF shows weak mode coupling [20]. When the length of fiber is longer than 

the correlation length, coupling becomes stronger. In this case, remarkable coupling occurs 

between all the possible modes.   

 

Fig.4.1: MDM optical transmission system that uses DLNN for MIMO detection. 

In the regime of strong mode coupling, let P denote a propagation operator which includes both 

modal losses and gains. Mode dependent loss and gain (MDL) can be described by taking the log 

of the eigenvalues of H
PP . In [21], under the strong coupling, two fundamental propositions were 

verified. The statistics of MDL is described by the eigenvalue distribution of a zero-trace Gaussian 

unitary ensemble. The standard deviation of the overall MDL is given as 
2

1
12

mdl


   , where 

 represents the standard deviation of accumulated MDL. If K is the number of MDL sources each 
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with MDL variance 
2

g , then 
gK   . At another end of GI-MMF fiber, another mode-

dependent fused fiber coupler divides the signal into two ports. Both the signals are present in each 

output port of the fused fiber coupler and these signals have different coefficients. 

At the receiver side, in Fig. 4.1, the optical signal is divided into N branches using another mode-

dependent fused fiber coupler, converted to electrical signal using photodiode, sub-carrier 

synchronized, and demodulated. The received signals are fed to the DLNN to perform MIMO 

detection. This DLNN, which is a supervised neural network, should be first trained with the input 

variables and output variables. Then, by using a suitable algorithm, it learns the mapping from the 

input to the output. The accuracy of DLNN depends on the number of data used to train it.  In 

order to deploy DLNN at the diverse environmental condition, it must be trained by data at various 

channel conditions. A well trained DLNN generates the response 1
H , where H represents the 

channel matrix of the system. 

4.2 Design of DLNN 

A N mode MDM optical transmission system can be represented as a N N  MIMO system. For 

a N N  MIMO system with input 1 2 3 4[ , , , ,..... ]T N

N(t) d (t) d (t) d (t) d (t) d (t) d , the output 

N(t)d is  

 
1(t) (t)d H Hd . (1) 

where  denotes the set of binary numbers; N NH  denotes a channel matrix, where denotes 

the set of complex numbers; and 1
H  denotes the response of DLNN. The entire signal processing 

technique for an ith channel of Fig. 4.1 from input to just before DLNN is shown in Fig. 4.2. In 

the SCM block, there is a bank of N Quadrature Phase Shift Keying (QPSK) modulators with sub-

carrier frequency 
cf . The 

iTX  block consists of MZM (Mach-Zehnder Modulator) and an optical 

carrier. The nth input bit on the ith data channel is denoted as ,i nd , where n= 0, 1, 2, …,  . The 

output of an ith electrical QPSK modulator is 

 
2 cj f t

i ia (t) q e


 . (2) 
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where 
cf  represents the sub-carrier frequency and  ,2 ,2 1i i n i nq d jd    represents a QPSK 

symbol. This QPSK modulated signal drives an MZM optical intensity modulator. All the optical 

carriers used here has the same wavelength. The output of the optical modulator is 

 Rei bias i ir(t) P P [a (t)]  . (3) 

where 
biasP  represents the optical power due to a bias voltage, 

iP represents the amplitude of the 

optical carrier, and Re i[a (t)]  represents the real part of 
ia (t) . The bias voltage adjusts the MZM 

operating point to maintain the linear relations between the applied electrical signal and modulated 

optical power. These modulated optical lights are coupled to different modes of GI-MMF using a 

mode-dependent fused fiber coupler. This fused fiber coupler provides mode division 

multiplexing. After mode division multiplexing, all N optical signals are propagated through a GI-

MMF. During propagation, there is a partial coupling between different modes.  

 
Fig. 4.2: Signal processing technique on the ith channel. 

At the receiver side, the optical signal is divided optically into N branches by using another mode-

dependent fused fiber coupler. The signal on the ith output port of the fused fiber coupler is  

 
1

N

i j ij

j

z (t) r (t)h (t)


 . (4) 

where ijh (t)  represents the (i,j)th element of H and is complex. Absolute of ijh (t)  are power 

coupling and phases of ijh (t)  denote time differences of subcarrier. Equation 4 not only contains 

the signal transmitted by the iTX  but also the signal from all other transmitters. This is because of 

mode coupling during transmission. The current generated by the ith photodetector is 

 
1

N

i i j ij

j

I (t) z (t) r (t)h (t)


  . (5) 

fc: Sub-carrier frequency; LD: Laser Diode; PD: Photo Diode; MZM: 

Mach-Zehnder Modulator; LPF: Low Pass Filter, QPSK: Quadrature Phase 
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This current produces a voltage signal ig (t), which is given as 

 
1

N

i j ij j

j

g (t)= P h (t)[a (t)]


 . (6) 

The term biasP  in Eq. (3) is a dc value, so it vanishes after passing through a band-pass filter, so it 

is not present in the Eq. (6). This signal is multiplied by a sub-carrier frequency cf  to generate

ik (t)as 

 
2 2

1

c c

N
j f t j f t

i i j ij j

j

k (t)= g (t)e P h (t)[a (t)] e
  



 
  
 
 . (7) 

After low pass filtering, the signal on the ith port is  

 
1

N

xi j ij j

j

r (t) P h (t)q


 . (8) 

The received signal xir (t) is the summation of all the N transmitted signals. The output from N ports 

is 1 2 3 4[ , , , ,..... ]T N

x x x x x xN(t) r (t) r (t) r (t) r (t) r (t) R . In order to build a training dataset and test 

dataset, a continuous synchronous transmission of d  is done and xR  is received. 

Figure 4.3 shows the structure of our DLNN. An input vector to the DLNN is 

 0 1 1 2 2[Re( Im( Re( Im( Re( Im( ]x x x x xN xNr (t)), r (t)), r (t)), r (t)),......, r (t)), r (t))x . (9) 

A neuron in an artificial neural network is a mathematical approximation of a biological neuron. 

It takes a vector of inputs, performs a transformation on them, and output a single scalar value. 

The length of 0x is D=2N. If  denote the set of real numbers, a deep feedforward neural network 

with M layers describes a mapping operation 0

0( ; ) : MD D
f x   of an input vector 0

0

D
x to 

an output vector MD

M x  through M iteration as  

 1( ; ),      1,...m m m mf m M x x  (10) 

where 1

1( ; ) : m mD D

m m mf  

x  is the mapping operation performed by the mth layer. This 

operation relies on a set of parameters m  and output vector 1mx  from the preceding layer. This 

mapping can be a stochastic process. In order to represent the set of all parameters of the neural 

network,  1,..... M  is used. All the layers of our network are fully connected. An mth layer 

becomes a fully connected layer if it has the form 



46 

 

 1 1( ; ) ( )m m m m m mf    x W x b . (11) 

where 1m mD D

m


W , mD

m b and ( )  is an activation function [22].  Each element of the input 

vector is passed through the activation function just as [ ( )] ( )i iu u . The parameters for this 

mth layer is  ,m m m  W b . Whenever any layer is called, a new random mapping is generated. 

The activation function is very important for the expressive power of the neural network because 

it introduces nonlinearity. This nonlinearity provides an advantage of using multiple hidden layers.  

 
Fig. 4.3: Our deep learning neural network structure. 

For training DLNN, a dataset  ( ) ( ),i i
x y , 1,...,i S , where 

( )i
y is the desired output for 

( )i
x input 

and S is the number of training examples, is first developed and used. A continuous synchronous 

transmission of d  is done and xR  is received at different channel condition number. Channel CN 

is a measure that indicates channel correlation property and signifies the difficulties of recovering 

MIMO signals. The CN of channel matrix H is defined as 
1

1020log ( . ) 0dB H H , where .  

is the norm. The closer the CN approaches 0dB, the better the quality of the MIMO channel. The 

matrix H represents the characteristics of two fused fiber coupler and GI-MMF. The characteristics 

of GI-MMF gives information about modal dispersion (MD), MDL, other mode-dependent effects, 

and crosstalk due to mode coupling in the fiber. For the real-time implementation of DLNN for 

MIMO detection, it must be trained by data at different CNs. Training minimizes the cost 
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     ( ) ( )

1

1
; ,

S
i i

i

J L f
S 

  x y  . (12) 

with respect to  , where  ,L u v  represents the per-example cost function and  ( ) ;if x 

represents the actual output of the neural network at the input
( )i

x . A cost function helps us to know 

how accurate our DLNN model is at making predictions for a given set of parameters. Mean Square 

Error (MSE) is a convex function so it has only one global minimum value. If MSE is used as a 

cost function, then Eq. (12) becomes 

    
2

( ) ( )

2
1

1
;

S
i i

i

J f -
S 

  x y  . (13) 

Various types of optimization algorithm exist for the training of neural networks [22]. First-order 

optimization algorithms use only the gradient of a cost function, whereas the second-order uses a 

matrix of second derivatives of a cost function called a Hessian matrix. Even though second-order 

optimization algorithms are able to provide faster convergence than first-order optimization 

algorithms, we have used a first-order optimization algorithm in our experiment because of the 

high cost of computing the second-order information [22].  

First order optimization algorithms are simple, cheap, and its complexity is nearly independent of 

dimension. Gradient descent is a relatively efficient optimization method if the objective function 

is differentiable with respect to its parameters because the computational complexity for 

calculating first-order partial derivatives with respect to all the parameters is the same as just 

evaluating the function. Usually, objective functions are stochastic. Stochastic gradient descent 

(SGD) is a popular algorithm for optimization. However, it uses a common learning rate for all 

parameters. For functions with a huge number of parameters, this might be problematic and this 

problem is even more pronounced in a higher dimension. SGD is noisier, it oscillates around the 

minimum giving some variation in accuracy, and it is very difficult to tune the learning rate. Other 

than data subsampling noise, objective functions may have noise sources such as dropout 

regularization [23]. Using adaptive learning rate along different axes can solve these issue [24].    

The Adam [24], is the most popular adaptive learning rate optimization algorithm to update the 

parameters  . By using the estimates of first and second moments of the gradient, it calculates 

individual adaptive learning rates for all the parameters. It optimizes the first-order gradient of 

stochastic objective functions based on adaptive estimates of low-order moments. It is easy in 
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terms of implementation, and efficient in terms of computation. Furthermore, it requires little 

memory, it does not vary to a diagonal rescaling of the gradients, it is suitable for problems that 

involve larger data and/or parameters. In this method, hyper-parameters require little tuning and 

have intuitive interpretations. Our cost function  J   is the noisy objective function, and it is 

differentiable with respect to  . Our objective is to minimize the expected value of this function 

with respect to  . At first, a random value is initialized for the parameter   as 0  . The first 

and second-moment variables are initialized to  0s  and  0  respectively. Other variables such 

as exponential decay rates for first and second-moment estimates, 1  and 2   in [0,1), are also 

initialized to their default values 0.9 and 0.999 respectively. Step-size and small constant are set 

to their default values 0.001  and 
810   respectively. The selection of these hyperparameters 

value has a large influence on the quality of solutions. Time step t is initialized to t=0.  We sampled 

a mini-batch of   examples from the training set  (1) (2) ( ), ,.... 
x x x  with  corresponding desired 

outputs  (1) (2) ( ), ,.... 
y y y . Then, the gradient of the cost function with respect to   is computed 

at time-step t as  

   ( ) ( )1
; ,i i

i

L f


  g x y  . (14) 

Now the time step is updated as, 1t t  . The updated value for the biased first-moment estimate 

is 

 1 1(1 )new    s s g . (15) 

Similarly, the updated value for the biased second-moment estimate is 

 2 2(1 )new     g g  . (16) 

where represents the elementwise product. The correct bias in the first-moment is given as 

 
1

ˆ
1

new

t

s
s = . (17) 

where 1

t  is the exponential decay rate of the first-moment at time-step t. Similarly, the correct 

bias in the second-moment is given as  

 
2

ˆ
1

new

t
=


 . (18) 
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where 2

t  is the exponential decay rate of the second-moment at time-step t.  Now the parameter 

update is computed, with an element-wise operation, as 

 
ˆ

ˆ







s
  


. (19) 

Therefore, the new parameter becomes 

 
new      . (20) 

The processes from Eq. (14) to Eq. (20) are repeated continuously until the parameter   

converges. The converged DLNN is then implemented in the MDM optical transmission system 

for MIMO detection as in Fig. 4.1.  

The computation complexity of our feedforward neural network during forward-propagation, 

assuming there are A numbers of neuron in each layer, is 
3( )O MA . The complexity for 

backpropagation, assuming the gradient descent runs for I iterations, is
4( )O MIA , so it is essential 

to split the computation up into a training and inference phase. Although higher baud rate increases 

the speed of data availability at the input of the DLNN, this baud speed cannot outrun the 

processing speed of multiple Central Processing Units (CPUs) during the inference phase. Because 

of splitting the training and inference phase, there is no significant impact of higher baud rate on 

the performance and complexity of DLNN. For MIMO processing, we split the received signal 

into the real and imaginary parts. For N N MIMO system, there are 2N input neurons and the 

output layer also has 2N output neurons. This shows that the complexity of DLNN increases with 

polynomial time complexity with MIMO dimension. 

4.3 Training of DLNN 

Nowadays, a variety of tools and algorithms are available to build and train large neural networks. 

Numerous tools ranging from a high-level language to a massive parallel Graphics Processing 

Units (GPU) architectures are the widely used for the training purpose. Out of many existing Deep 

Learning (DL) libraries [25-28], we have used TensorFlow [27] for designing and training our 

neural network. TensorFlow supports automatic differentiation of training cost function through 

arbitrarily large networks. It also allows us to distribute computation across different computers, 

multiple Central Processing Units (CPUs) and GPUs within a single machine.  
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In our DLNN, the output of each neuron should be permitted to assume both positive and negative 

values in the interval [−1,1]. A hyperbolic tangent (tanh) function squashes real-valued number to 

the range between -1 and +1, i.e., tanh( ) ( 1,1)x    [22,29]. Here, the negative and positive inputs 

are mapped strongly negative and positive respectively, and the zero inputs near zero in the tanh 

graph. The function is monotonic while its derivative is not monotonic. Therefore, we have used 

a hyperbolic tangent as an activation function in our DLNN. 

4.4 Experimental setup 

The experimental setup to confirm efficient operation of MDM optical transmission system which 

uses DLNN for MIMO detection is shown in Fig. 4.4.  

 

Fig. 4.4: A 2 2  MDM optical transmission system that uses DLNN for MIMO detection 

MATLAB is used to generates random data. Using a serial to parallel converter, we divide this 

data into two channels: 1d and 2d . Both the channels operate at 125MBaud with Quadrature Phase 

Shift Keying (QPSK). SCM is done on both the channels using a 250MHz sub-carrier frequency, 

and then they are optically modulated using a Mach-Zehnder Modulator (MZM). Two Distributed 

Feedback Laser Diode (DFB-LD) operating at 1.55µm, are used. The center frequency of these 

DFB-LDs is stabilized by controlling their temperature. A Single Mode Fiber (SMF) is used just 

before the mode-dependent fused fiber coupler, in the transmitter, to achieve non-uniform mode 

excitation. Two optical signals are coupled to a 1km long conventional GI-MMF OM2 with 50µm 

core diameter by using a mode dependent fused fiber coupler. At the other end, another mode-

dependent fused fiber coupler optically divides the signal into two branches. These couplers are 

commercially available fused fiber couplers. 
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Then, signals are detected using photodetectors and sampled at the rate of 2Gsamples/s using 

analog to digital converter. The digital signals are Hilbert converted and sub-carrier is extracted. 

After then the signals are demodulated. Each demodulated signal includes two channel signals. 

In order to confirm both the excited modes are received at the receivers, we did some pre-testing 

experiment. Only for this purpose, we modify the Fig. 4.4 so that the random sequence 2d  is the 

3-bit shifted version of 1d . We performed a cross-correlation between the received signal and the 

reference signal on both the ports: 1xr  and 2xr . Figure 4.5 confirms that both the modes that are 

excited are received. 

 

Fig. 4.5: Confirms both the modes that are excited are received. 

Before designing a DLNN, we developed two datasets. The datasets are built from a continuous 

synchronous transmission of d  and reception of xR  . Continuous generation of d  helped to 

develop y  vector, while xR  helped to develop x  vector. This results in a dataset  ,x y , where 

y is the desired output of our DLNN for x input. Two datasets are built, one for training and 

another for testing purpose. 
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Fig. 4.6: Performance of DLNN at a different number of hidden layers and neurons. 

 

Fig. 4.7: Convergence behavior of DLNN: (a) accuracy versus epoch number, (b) mean square 

error versus epoch number. 

In order to find the optimum number of hidden layers and neurons required for our DLNN, we 

developed numerous neural networks with a different number of hidden layers and neurons, and 

trained them. The performance of different neural networks designed with a different number of 

hidden layers and neurons is shown in Fig. 4.6. The BER is improved with increasing hidden 

neurons because the behavior of multimode fiber is highly non-linear. To represent this non-

linearity, we need to increase the number of hidden neurons. The capacity to learn the underlying 

pattern increases with the increase in hidden neurons. We can see the performance of a neural 

network that has 6 hidden layers with 20 neurons in each hidden layer is acceptable. We can also 

see that the performance starts to degrade when we increase the number of hidden layers beyond 
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6. The overall performance of DLNN for MIMO detection is acceptable when it has six hidden 

layers with 20 neurons in each hidden layer.  

Before training, data is received at ten different channel condition numbers (CN): 3.5dB, 5.1dB, 

8dB, 10.9dB, 13dB, 14.9dB, 16.3dB, 17.5dB, 18.6dB, 19.5dB. The received vector xR is 

categorized into 10 different group based on these channel CNs. While assigning the group, the 

nearest CN value out of these ten values is selected. 2 million symbols, 200,000 symbols from 

each group of channel CNs, is used to develop a training dataset  ,x y  to learn the mapping 

function from the input to the output. In our experiment, we changed the channel CNs by moving 

and bending the fiber. We have used ZF technique to calculate channel matrixes.  

During training, we have information about the transmitted symbols; therefore, we know to which 

value each received symbols should be mapped. This mapping information is stored in a codebook. 

In this experiment we have used a 2 2  MDM optical transmission system; as a result, there are 

four input variables and four output variables. For example, if a symbol transmitted from QPSK 

Modulator 1 is 1 1 1q j    and from QPSK Modulator 2 is 2 1 1q j   , the codebook maps the 

received symbols 1xr (t) a jb   and 2xr (t) c jd   to the expected value +1-1-1+1. This expected 

value, called a code word, is the desired output of our DLNN. 

The convergence behavior of our DLNN having 6 hidden layers with 20 neurons in each hidden 

layer is also analyzed. Figure 4.7 shows its learning characteristics. When our DLNN is trained 

using a mini-batch size of 50, it converges around epoch number 15. The converged model is saved 

to perform MIMO detection. By training the DLNN at various channel CNs, its effectiveness for 

MIMO detection can be improved further. The computational complexity of our DLNN during 

forward-propagation and backpropagation are  2 3.( 2)O n m m l   and  3 4.( .( 2))O I n m m l   

respectively, where n is the length of the input vector, m is the number of neurons in each hidden 

layer, l is the number of layers in DLNN and I is the number of gradient iterations. 

The converged network is then tested by implementing it in the MDM optical transmission system 

as shown in Fig. 4.4.  The received vector xR  with a received optical power above -3.0dBm is used 

for testing. Testing is done at CN=13dB because it is approximately the middle value in the CN 

vector that we have taken. 
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4.5 Results 

The converged DLNN model is implemented in the MDM optical transmission system to perform 

MIMO detection at various channel CNs. We have used different datasets for training and testing 

purpose. These datasets are built from a continuous synchronous transmission and reception. The 

continuous black line in Fig. 4.8 shows the Bit Error Rate (BER) versus channel CN for DLNN.  

 

Fig. 4.8: Bit error rate versus channel condition number for our DLNN, ZF, and SDR-RBR. 

The performance of our 2 2 MDM optical transmission system is also evaluated at different 

channel CN using a traditional ZF detector and an advanced SDR. Specifically, we have used Row-

by-Row (RBR) method, called as SDR-RBR with 10 iterations. To make a performance 

comparison between the ZF, SDR-RBR and our DLNN, we have used the same input vector d  

and received vector xR  that we have used for building test dataset for testing the performance of 

our DLNN. Performance comparison is also done in terms of Quality factor (Q-factor) in dB as: 

 120log 2 2*Q erfc BER 
 

, where 
1erfc
is the inverse complementary error function. The 

relationship between Q-factor and Error Vector Magnitude (EVM) for QPSK is 
1Q EVM   . 

The dotted blue line in Fig. 4.8 shows the BER versus channel CN for ZF detector. At CN=3.5dB, 

the minimum Quality factor (Q-factor) of this system is 14.3dB. At CN=19.5dB, the maximum Q-

factor is 9.7dB using DLNN. Similarly, the continuous red line in Fig. 4.8 shows the BER versus 
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channel CN for SDR-RBR detector. The performance of SDR-RBR cannot catch up with the 

performance of DLNN. 

 

Fig. 4.9: The excursion of the channel condition number 

At CN=10.9dB, the minimum Q-factor achieved with SDR-RBR detector is 14.4dB; however, the 

use of DLNN virtually increases the Q-factor of the MDM optical transmission system to greater 

than 15dB. This virtual increment in the Q-factor is the unique advantage of using DLNN. This 

result shows that DLNN based MIMO detection has better performance over the ZF detector and 

SDR-RBR.  

4.6 Excursion of channel condition number  

Furthermore, the performance of our DLNN model is also tested against the time-varying MIMO 

channel, where the channel CNs varies randomly with time. The excursion of the channel condition 

number is shown in Fig. 4.9. This figure shows that the CNs of MIMO channel lies within the 

range of (2.5dB, 8dB).  To test the performance of MIMO system above channel condition number 

8dB, the fiber is moved randomly. The result in Fig. 4.10 shows that our DLNN model has 

satisfactory performance over time-varying MIMO channel.  

These results confirm that our DLNN for MIMO detection outruns the performance of traditional 

ZF detector and an advanced SDR-RBR. These are the powerful results which hold enormous 

promise for use in future optical communication systems. This technique provides a novel MIMO 

detection scheme and significantly improve the BER performance as compared to current day 

MIMO detectors. The training time of our DLNN was around 4 minutes using Intel(R) Core (TM) 

i7-4790CPU @3.6GHz.   
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Fig. 4.10: Performance of DLNN at different channel condition. 

4.7 Conclusion 

The results shown here provides a new approach to novel MIMO detection for MDM optical 

transmission systems. This experiment proves that we can use the Deep Learning Neural Network 

for MIMO detection in the real environment. 

Our results can be a remarkable achievement towards the use of a neural network for MIMO optical 

communication systems. The above results clearly show that the performance of DLNN can be 

very competitive with existing MIMO processing techniques. This model can be extended to 

realize higher order MDM optical transmission system. The use of DLNN for MIMO detection 

jointly optimizes the MDM optical transmission systems and provides better results compared to 

the existing systems. 
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Chapter 5. Mode Division Multiplexing MIMO Optical 

Transmission System that uses Deep Learning Neural Network for 

Signal Detection using only one Composite Signal 

5.1 Proposed MDM optical network 

The main objective of our proposed MDM optical network is to extract the desired data from one 

composite signal without using MIMO processing at the receiver end. Once a DLNN is trained to 

extract the desired data, other channel data cannot be extracted, so this type of system also provides 

security against sniffing.  

The proposed network consists of a Sub-Carrier Multiplexers, Optical transmitters, fused fiber 

couplers to perform multiplexing operation, MMF or FMF, optical receivers and DLNNs. The 

proposed N channel MDM optical network is shown in Fig. 5.1. 1 2, Nd d d are N different 

channels each with random data pattern. In each channel, subcarrier multiplexing is done and the 

multiplexed signal is feed to the Intensity Modulator. The N modulated optical signals are mode 

division multiplexed using a mode dependent fused fiber coupler and propagated through an MMF.  

 

Fig. 5.1: Proposed MDM optical network 

At the other end, another fused fiber coupler is used to divide the signal and take them to N different 

remote user locations. Each user is at a different location, so MIMO processing is not suitable to 
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separate the channels. Therefore, a new technique has been used to extract the desired channel 

from one composite signal. 

In this technique, signal processing is done in each remote user location to extract the desired 

channel. In each remote user location, there is a receiver which consists of a DLNN. That particular 

DLNN is responsible for extracting the desired channel from one composite signal. 

5.2 Design of a deep learning neural network 

A N mode MDM optical transmission system with input 

1 2 3 4[ , , , ,..... ]T N

N(t) d (t) d (t) d (t) d (t) d (t) d  produces the output 
N(t)d where the output on 

the ith channel is 

 1

id (t) (t)WH Hd   (1) 

where  represents binary numbers set; N NH  represents a channel matrix, where 

represents the complex numbers set; 1
WH  represents the response of DLNN, and 

1 2 3[ , , ,...., ]Nw w w wW , where 
1  

0
k

for k = i
w

otherwise


 


 . 

Figure 5.2 shows the signal processing technique on the ith channel of Fig. 5.1 from transmitter to 

the input of DLNN. Inside the SCM block of Fig. 5.1, there is a bank of N Binary Phase Shift 

Keying (BPSK) modulators with a sub-carrier frequency generator. 
cf  is the sub-carrier 

frequency. The 
iTX  block consists of an optical carrier and MZM (Mach-Zehnder Modulator). On 

the ith data channel, the nth input bit is denoted as ,i nd , where n= 0, 1, 2, …,  . The electrical 

BPSK modulated signal on the ith channel is 

 
2 cj f t

i ia (t) q e


  (2) 

where  ,i i nq d  denotes a BPSK symbol. This BPSK signal modulates the Intensity of an optical 

carrier. As we are using MDM, all the optical carriers operate at the same wavelength. The 

Intensity modulator on the ith channel produces an output 

 Rei bias i ir(t) P P [a (t)]   (3) 

where biasP  denotes the optical power due to a dc bias voltage applied on the Intensity Modulator, 

iP denotes the amplitude of the optical carrier, and Re i[a (t)]  denotes the real part of ia (t) . The 
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bias voltage determines the operating point of Intensity Modulator. A mode dependent fused fiber 

coupler is used to couple the Intensity modulated signal to different modes of GI-MMF. Here, 

mode division multiplexing operation is performed by the fused fiber coupler. Partial mode 

coupling occurs between different modes during propagation through the GI-MMF.  

 

Fig. 5.2: Signal processing on ith channel 

At the receiver side, after using another mode dependent fused fiber coupler, the signal received 

by the ith receiver is 

 
1

N

i j ij

j

z (t) r (t)h (t)


  (4) 

where ijh (t)  is a complex value and it denotes the (i,j)th element of total channel matrix H. 

Absolute value of ijh (t)  represents the power coupling and phases of ijh (t)  represents the time 

differences of subcarrier. Equation 4 is a composite signal which contains signal from all the 

transmitters due to mode coupling during transmission. The photodetector on the ith channel 

generates a current  

 
1

N

i i j ij

j

I (t) z (t) r (t)h (t)


   (5) 

The voltage 
ig (t)produced by the current iI (t)  is 

 
1

N

i j ij j

j

g (t)= P h (t)[a (t)]


  (6) 

The dc value biasP in (3) disappears after passing through a band pass filter. The signal ik (t)  is 

obtained after multiplying (6) by sub-carrier signal as 

fc: Sub-carrier frequency; LD: Laser Diode; PD: Photo Diode; MZM: 

Mach-Zehnder Modulator; LPF: Low Pass Filter, BPSK: Binary Phase 

Shift Keying
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2 2

1

c c

N
j f t j f t

i i j ij j

j

k (t)= g (t)e P h (t)[a (t)] e
  



 
  
 
  (7) 

The signal on the ith port after passing through a low pass filter is 

 
1

N

xi j ij j

j

r (t) P h (t)q


  (8) 

This received signal is a composite signal and is a complex value. Training dataset and test datasets 

are built, after synchronous transmission of id and reception of 
xir . 

The structure of our DLNN with M layers is shown in Fig. 5.3. The input vector to our DLNN is 

given as 

 
0 [Re( Im( ]xi xir (t)), r (t))x  (9) 

The length of 
0x is D=2. The mapping operation of this feedforward neural network is the same 

as described in our previous paper [16]. The difference is in the number of neurons in the input 

and output layers. In this paper, we have used BPSK modulation, so only two types of symbols are 

possible; +1 and -1. Since we are extracting only the desired signal in each receiver, one output 

neuron is sufficient to represent BPSK symbols. So, our feedforward neural network has two 

neurons in the input layer and only one neuron in the output layer. The output layer uses ReLU 

[18] as an activation function [19-25]. Whereas, in all other layers tanh [18] is used as an activation 

function For training DLNN on the ith receiver, a dataset  ,k k

i ix y , 1,...,k S , where 
k

iy is the 

desired output for 
k

ix input and S is the number of training examples, is first developed and used. 

Channel condition number (CN) indicates channel correlation property and gives information 

about the difficulties of recovering MIMO signals. The CN of a channel with channel matrix H is 

1

1020log ( . ) 0dB H H , where .  is the norm. The quality of the MIMO channel increases 

when CN approaches 0dB. The matrix H is the total channel matrix and it includes the 

characteristics of GI-MMF as well as two fused fiber couplers. During propagation through the 

fiber, modal dispersion (MD), Mode Dependent loss (MDL), crosstalk due to mode coupling, and 

other mode-dependent effects exist.  
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Fig. 5.3: Our deep learning neural network structure 

For the detection of the desired signal from one composite signal in real-time, DLNN must be 

trained at various CNs. The cost of our DLNN is 

     
1

1
; ,

S
k k

i i

k

J L f
S 

  x y   (10) 

where  ,L u v  denotes the per-example cost function and  ;k

if x  denotes the actual output of 

the neural network at the input
k

ix . The accuracy of our model is determined by the cost function. 

Training helps to minimize the cost  J  with respect to  . Mean Square Error (MSE) has only 

one global minimum value, so if we use it as a cost function, then (10) becomes 

    
2

2
1

1
;

S
k k

i i

k

J f -
S 

  x y   (11) 

Various type of optimization algorithm exists [18], but the most popular one is Adam [20]. 

Implementation of Adam and how the parameter   is updated in well explained in our previous 

work [16]. 

Similarly, all other DLNN in each receiver unit is trained until they converge. All the converged 

DLNNs are implemented for signal detection as in Fig. 5.1.  

The computation complexity of our DLNN is 3( )O MA  during forward propagation and 4( )O MIA

during backpropagation; where M represents the number of layers, A represents the number of 

hidden layers
Re: real part; Im: imaginary part;    :neuron

Im(rxi(t))

Re(rxi (t))

x0

x1 x2 x3 xM-1

xM

f1 f2 f3 fM-1

fM

id (t)
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neurons in each hidden layer, and I represents the iteration number of gradient descent. 

5.3 Experimental setup 

The experimental setup to separate the desired signal from one composite signal in MDM optical 

transmission system is shown in Fig. 5.4.  

 

Fig. 5.4: MDM optical transmission system for the desired signal extraction from one composite 

signal 

Random data is generated using MATLAB. Both the channels d1 and d2 operate at 1GBaud with 

Binary Phase Shift Keying (BPSK). 2GHz sub-carrier is used for SCM on both the channels and 

optical modulation is done using Mach-Zehnder Modulator (MZM). We have used a Distributed 

Feedback Laser Diode (DFB-LD) to generate an optical carrier of 1.55µm. Frequency stabilization 

of DFB-LDs is done by controlling their temperature. The use of a Single Mode Fiber (SMF) in 

between the MZM and the mode dependent fused fiber coupler provides a non-uniform mode 

excitation. The two optical channels are coupled to two different modes of a conventional OM2 

GI-MMF. Another mode dependent fused fiber on the other end of GI-MMF divides the 

transmitted optical signals into two signals: z1 and z2. Receiver 1 receives the z1 signal, whereas, 

Receiver 2 receives the z2. Receiver 1 and 2 are located at two different remote locations. After 

photo-detection, sampling is done at 20Gsamples/s and then Hilbert conversion is done. Sub-

carrier extraction is also done in each receiver. After demodulation, we get a composite signal 

MOD: Modulator, LD: Laser Diode (1550nm),           :SMF,            :GI-MMF,   DLNN: Deep Learning Neural 

Network, S/P: Serial to Parallel converter, PD: Photo Diode, ADC: Analog to Digital Converter, d1 and d2 data 

rate=1Gbps, Hc: Hilbert Converter, LPF: Low Pass Filter
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which contains both the data d1 and d2.  The composite signal in Receiver 1 is rx1, and in Receiver 

2 is rx2. 

We did some initial experiment to confirm that both the excited modes are properly received at all 

remote user locations. The input data d1 and d2 in Fig. 5.4 is slightly modified only for this purpose. 

We made d2 from d1 by using a 3-bit delay circuit. Cross-correlation between the reference signal 

and the received signal are performed on both the receiver. Figure 5.5 confirms that both the 

excited modes are received. 

 

Fig. 5.5: Both the excited modes are received 

The two DLNNs in the receiver should be trained separately. Training dataset and testing dataset 

for DLNN1 are built from a continuous synchronous transmission of d1 and reception of rx1. 

Similarly, the other two datasets are built for DLNN2 from d2 and rx2. Continuous generation of di 

helped to develop iy  vector, while rxi helped to develop ix  vector. This results in a dataset 

 ,i ix y , where iy is the desired output of the DLNN on the ith receiver for ix input. 

The BER performance of the neural network varies with the number of hidden layers and neurons 

[16]. We have selected 3 hidden layers with 10 neurons in each hidden layer to design our DLNN 

for acceptable performance.  

For training purpose, we received data at ten different channel condition numbers (CN): 3.5dB, 

5.1dB, 8dB, 10.9dB, 13dB, 14.9dB, 16.3dB, 17.5dB, 18.6dB, 19.5dB. From each group, 100,000 

symbols are taken to develop a training dataset  ,i ix y .  
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While training the DLNN, each symbol of the received composite signal is mapped to the symbol 

of the desired signal that was transmitted.  A codebook stores this information. There are two input 

variables and one output variable in each DLNN. If a symbol transmitted from BPSK Modulator 

1 is   +1 the codebook in the Receiver 1 maps the received symbol 
1xr (t) a jb     to the expected 

value 1. Similarly, if a symbol transmitted from BPSK Modulator 1 is -1, the codebook in the 

Receiver 1 maps the received symbol to 0. The same process is applied in Receiver 2. 

The convergence behavior of our DLNN with 3 hidden layers and 10 neurons in each hidden layer 

is also analyzed. Figure 5.6 shows its learning characteristics. We have used a mini-batch size of 

50. The converged model is saved and implemented for signal detection in the remote user location. 

Training the DLNN at various channel CNs improves the ability of DLNN to separate the desired 

signal from the composite signal. Its computational complexity during forward-propagation is 

 2 3.( 2)O n m m l  , and during backpropagation is  3 4.( .( 2))O I n m m l  , where n denotes the 

length of the input vector, m denotes the number of neurons in each hidden layer, l denotes the 

number of layers in DLNN and I denotes the number of gradient iterations. 

The converged network is implementing as shown in Fig. 5.4 for real-time signal detection. The 

optical power of the received signal is above -3.0dBm. The performance of our DLNN is tested at 

CN=13dB. This CN value is approximately the middle value in our CN vector, so we have selected 

this. 

5.4 Results  

The designed DLNN is implemented in each remote user location to separate the desired signal 

separation from a composite signal. For the purpose of training and testing, we have used different 

datasets in each location. The continuous black line in Fig. 5.7 shows the BER versus channel 

condition for DLNN. Whereas, the continuous blue line shows the performance of the ZF detector 

assuming both the users are located at the same place and MIMO detection is possible. 
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Fig. 5.6: Convergence behavior of DLNN: (a) accuracy versus epoch number, (b) mean square 

error versus epoch number. 

 

 

Fig. 5.7: Bit error rate versus channel condition number for our DLNN, and ZF 

This clearly shows that we can separate the desired signal from a composite signal using a deep 

learning technique.  
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5.5 Conclusion 

This result confirms that deep learning neural network can be used to separate the desired signal 

from a composite signal. This shows the enormous importance of deep learning in optical 

communication systems. 
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Chapter 6. Summary and Future Research Direction 

6.1 Summary 

In the context of using MDM for designing a spectrally efficient high speed and high capacity 

optical transmission system, we have studied the under-addressed MIMO-MDM system by adding 

Deep learning neural network with it.  

MIMO processing at the receiver-end is not suitable if all the end-users are located at a separate 

location. Furthermore, in the existing optical network, each Optical Network Unit (ONU) receives 

not only the data that belongs to its user but also the data of other users. So even if data is encrypted, 

the network still remains vulnerable to sniffing. It raises security questions.  In this scenario, we 

need to design an optical transmission network that not only doesn’t use MIMO processing at the 

receiver end but also is resilient to sniffing. In Chapter 3, an MDM optical transmission network 

is designed using SCM and pre-MIMO processor to address these two issues. The results of 

Chapter 3 show that by continuously controlling the amplitude and phase of the transmitter signal, 

mode forming technique can be implemented in optical transmission system so that a MIMO 

processing is not required in the receiver side. The results also prove that our optical network 

supports the exchange of signal in the output port. One of the important outcomes of chapter 3 is 

that our mode forming network is resilient to sniffing. 

Remembering the fact that none of the available MIMO detectors is an optimum detector, in 

Chapter 4 we develop a novel optimal MIMO detector using a Deep Learning technique. A novel 

optical MIMO detector is designed using a supervised DLNN and implemented in an MDM optical 

transmission system. We have trained our DLNN with data received at channel CNs<20dB. Once 

the network converges, it is implemented for MIMO processing. In our time-varying MIMO 

channel, the channel condition number was generally below 10dB. Hence, we did not update the 

weights until the channel condition number exceeds 10dB. Its weights should be updated much 

less than the symbol rate. DLNN uses a parallel architecture. The training time of our DLNN was 

around 4 minutes using Intel(R) Core (TM) i7-4790CPU @3.6GHz. Weights are continuously 

updated during the whole training process.  The results of Chapter 4 provide a new approach to 

novel MIMO detection for MDM optical transmission systems. It confirms that our DLNN for 

MIMO detection outruns the performance of traditional ZF detector and an advanced SDR-RBR. 



74 

 

This experiment proves that we can use the Deep Learning Neural Network for MIMO detection 

in the real environment. The results can be a remarkable achievement towards the use of a neural 

network for MIMO optical communication systems. This model can be extended to realize higher 

order MDM optical transmission system. The use of DLNN for MIMO detection jointly optimizes 

the MDM optical transmission systems and provides better results compared to the existing 

systems. 

We have also designed a DLNN that is capable of extracting the desired signal using only one 

composite signal in Chapter 5.  This DLNN has been successfully implemented in an MDM optical 

transmission system with two channels operating at 1Gbps. The results of Chapter 5 clearly show 

that the performance of DLNN can be very competitive with existing MIMO processing techniques. 

These are the powerful results which hold enormous promise for use of DLNN in future optical 

communication systems. 

6.2 Further works 

When remote users are located at a different location, we cannot do MIMO processing because 

only one composite signal is available. We are designing a deep learning neural network to extract 

the desired signal by using only one composite signal and trying to improve the performance 

compared to the system demonstrated in Chapter 4.. 

 


