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ABSTRACT 

 

3D shape and orientation representation in the human cortical areas 
 

Zhen LI 

Doctoral Program of Engineering Course, Department of Engineering, 

Graduate School of Engineering 

 

The ability of human to perceive three-dimensional (3D) shape and orientation of the real world is 

vital in daily life. There are a variety of depth cues that can be used to extract 3D perception by 

human brain: binocular disparity, perspective, motion parallax, texture and so on. Although there are 

a lot of studies about how brain extract information from these cues to perceive 3D shape and 

orientation, the underlying neural mechanisms have not been fully investigated. To this end, we 

adopted functional magnetic resonance imaging (fMRI) method which can measure blood 

oxygenation level-dependent (BOLD) signal of the brain. Multi-voxel pattern analysis (MVPA) 

method was used to judge whether the activity pattern of neurons reflects a particular feature of 

stimuli.  Furthermore, by transfer classification in which we trained a classifier on one type of stimuli 

and test the classifier on another type of stimuli, we investigated whether common representation of 

different type of stimuli is involved in regions of interest (ROIs). ROIs including early visual areas 

which were defined by standard retinotopic mapping procedure and higher visual areas which were 

defined by standard localizers. We focused on two kinds of depth cues: binocular disparity and 

perspective. Two topics were investigated: 

In the first topic, binocular disparity cue was investigated. We investigated convex–concave shape 

representation and horizontal–vertical orientation representation of stereoscopic surface. Stimuli 

were curved convex–concave surfaces in horizontal or vertical orientation. Surfaces were simulated 

in two depth positions. Participants viewed the stimuli while BOLD signal was measured. A series of 

classification was performed. (1) to investigate convex–concave shape representation among ROIs, 

in general, two types of convex–concave shape classification were performed: same-type stimuli 

convex–concave classification which was used to verify whether neurons are selective to convex–

concave stereoscopic surface shapes in ROIs, and transfer convex–concave classification on surfaces 

in different orientation and depth position to verify whether generalized representation of shapes is 

involved in ROIs. Results showed that neurons in most of the ROIs are selective to convex–concave 
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stereoscopic surface shapes, and more important, V3A showed more generalized representation of 

shapes irrespective orientation and depth position of surfaces. (2) similarly, to investigate horizontal–

vertical orientation representation of stereoscopic surface, two types of horizontal–vertical 

classification were performed: same type stimuli horizontal–vertical classification which was used to 

verify whether neurons are selective to horizontal–vertical orientation of stereoscopic surface in 

ROIs, and transfer horizontal–vertical classification on surfaces of different shape at same depth 

position which was used to verify whether generalized representation of orientations is involved in 

ROIs. Results indicated that neurons in all ROIs are selective to orientation of stereoscopic surface 

and higher dorsal areas V3A and V7, ventral areas LOC and intraparietal sulcus areas VIPS and 

POIPS are involved in more generalized representation of orientation irrespective of shape of 

surfaces. 

In the second topic, binocular disparity cue and perspective cue were investigated. The main purpose 

of this topic is to investigate whether ROIs are involved in representation of convex–concave 3D 

shapes from binocular disparity or perspective and investigate whether common representation of 

shapes from these two different cues is involved in ROIs. Stimuli were convex–concave shape 

consisted of two slanted planes which were defined by binocular disparity or perspective respectively. 

In detail, three types of stimuli were used: shapes defined by RDS, shapes defined by black–white 

dotted lines with perspective and shapes defined by black–white dotted lines with disparity. Two 

different disparity stimuli types (RDS and black-white dotted lines with disparity) were adopted to 

verify whether shapes from disparity but different elements share common representation. Two main 

types of classification were performed: (I) Same cue type stimuli convex–concave classification. In 

this type of classification, the SVM was trained and tested using data of the same cue type. 

Corresponding to the three types of stimuli, this type of classification includes three subtypes of 

classification: same cue type stimuli convex–concave classification using data of RDS, same cue 

type stimuli convex–concave classification using data of lines with perspective, and same cue type 

stimuli convex–concave classification using data of lines with disparity. The purpose of this type of 

classification was to verify whether neurons in ROIs are selective to convex–concave shape defined 

by one of these three types of stimuli. (II) Transfer convex–concave classification using stimuli of 

different cues. In this type of classification, convex–concave classifications were performed between 

combinations of different types of stimuli. Corresponding to these three types of stimuli, this type of 

classification also includes three sub classification: transfer convex–concave classification between 

data of RDS and lines with perspective, transfer convex–concave classification between data of lines 

with perspective and lines with disparity, and transfer convex–concave classification between data of 

RDS and lines with disparity. The purpose of this type of classification is to investigate whether a 
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common neural activity pattern is involved for each ROI in the processing of shape from the two 

different types of stimuli. Results showed that early and middle visual areas had a tendency to be 

high classification accuracy in the “same cue type stimuli convex–concave classification,” and for 

some higher visual areas, in particular the area dorsal intraparietal sulcus (DIPS), classification 

accuracy had a tendency to be high in both “same cue type stimuli convex–concave classification” 

and “transfer convex–concave classification using stimuli of different cues. 

In summary, our research investigated generalized representation of convex–concave shape and 

horizontal–vertical orientation of curved surfaces defined by binocular disparity, and we also 

investigated common representation convex–concave representation of shapes which consisted of 

slanted planes defined by binocular disparity or perspective, respectively. This dissertation provides a 

better understanding of the neural representation of shape and orientation of 3D object among human 

cortical areas. 
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CHAPTER 1 

INTRODUCTION 

Brain’s ability to perceive three-dimensional (3D) world is vital for the human survival. Figure 1.1 

shows the front view from a car running on the road. The driver need to judge the width of the road, 

the distance to the other cars and the position of obstacles. These tasks highly depend on 3D 

perception.  

 

 
 

Figure 1.1 The front view from a car running on the road. This picture was taken on the great seto bridge in Japan. 

The images projected onto the retina of our eyes are two dimensional (2D), how can the human brain 

actual achieve 3D is an intriguing question. The main purpose of my research is to investigate the 

neural mechanism for how our brain perceives 3D in cortical areas. This chapter is about general 

knowledge related to human 3D perception. In section 1.1, we will first introduce the visual system 

from the eyes to the visual cortex which is the foundation of human vision. Then, we will introduce 

3D depth cues which can be used to infer 3D information by the eyes. Section 1.2 is about literature 
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review and motivation of our study. Finally, in section 1.3, we will describe the overview of this 

dissertation.  

1.1 Human 3D vision  

1.1.1 Visual system 

When the light of outside world goes into the eyes, it will initiate a series of neural activities in the 

visual system, and after that, we will perceive the image of the world. A series of optical and neural 

transformation are required to form visual perception. The cornea and lens transformed the light 

which arriving at the eyes, and a retinal image was created. After that, the photoreceptors, which is 

the light-sensitive elements of the eyes, transform the retinal image into neural responses. These 

neural responses are then transformed into neural representations in the optic serve, and finally 

transformed into representations among cortical areas. In general, the visual system is composed of 

three main parts: the eye, the visual pathway and the visual cortex.  

(1)  The eye  

Figure 1.2 shows a cross-section of the human eye. By receiving photons and guide them onto 

photoreceptors, the eye starts the process of vision. It is a light-tight and roughly spherical chamber. 

In the inside of surface, it has a sheet of photoreceptors. There is an opening in the chamber which 

covered by a transparent membrane, and this opening allows light to pass through. The transparent 

membrane is termed the cornea. After passing through the cornea, the incoming light pass through an 

aperture termed as the pupil. The pupil is formed by a muscular diaphragm known as the iris. The 

light pass through the lens and arrive at the retina which is located behind the pupil. 
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Figure 1.2  Schematic diagram of the cross-section through a human eye. Image from Fritzsche et al. (2010). 

The retina, which is located near the optic nerve, is a thin tissue layer on the back of the eye on the 

inside. The main function of the retina is to accept the light that the lens has focused, convert it into 

neural signals, and after that these signals were sent to visual cortex of the brain serving for visual 

perception. The retina is a layered network and there are five types of cells which are contained in it. 

The nuclei of the cells are grouped into three layers: in the outer layer, there are photoreceptor cells, 

which can transform the light signal into neural signals; in the ganglion cell layer, the ganglion cell 

fibres carry neural signals out of the eyes and along the visual pathway to the brain; in the nuclear 

layer, the complex retinal circuitry connects the photoreceptors to ganglion cells. 

 

 

Figure 1.3 The density of cone and rod photoreceptors in the human retina. (A) Illustration of visual angle relative to the foveal 

position of the left eye; also the position of blind spot is shown. (B) The cone receptors are dense in foveal and the density decrease 

shapely toward the peripheral region. The density of rod photoreceptors is low in the fovea, it increases toward the peripheral region, 

and reach the highest density between 10 and 20 degree peripheral to the fovea. There are no photoreceptors in the blind spot. Image 
from Wandell (1995). 

There are more than 100 million photoreceptor cells on the retina of each eye. The photoreceptor is a 

thin and long tube. The outer segment of it contains light-sensitive pigment and the inner segment in 

effect forms the cell body. According to their shapes, the photoreceptors are separated into two types: 

termed the rods and cones in the human eye. In general, the outer segments of the rods are rod-

shaped, and the outer segments of cones are cone-shaped. For each eye, there are about 100 million 

rods and 5 million cones. The rods and cones contained pigments with different sensibility to light: 

the pigment of rods is very sensitive to light at low levels, whereas the pigment of cones is very 
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sensitive to light at high level. The rods and cones are not distributed on the retina evenly. The region 

of highest visual acuity is in a central area of retina known as fovea (Figure 1.2). Figure 1.3 shows 

the distribution of rods and cones photoreceptors. The cones are mainly located in the fovea and 

there are about 50,000 cones in the central human fovea. There are no rods found in the fovea. The 

ganglion cell axons exit the retina at the optic disk. There are no photoreceptors in this spot, and this 

is a blind spot in the retina.  

(2) The visual pathway 

The optic nerve is formed by the fibres of the retinal ganglion cells. At the blind spot, these fibres 

leave the eye and start their trips to the cortex, and finally reach to six locations within the brain. 

Most of the projection is destined to lateral geniculate nuclei (LGN), and about 90% of ganglion cell 

fibres are received by LGN. The remaining 10% is shared among the other sub-cortical nuclei, 

though most goes to the superior colliculi (Perry et al. 1984). It should not be underestimated the 

importance of the minor projections. The 10% of optic nerve fibres still exceeds the total central 

projections from taste, smell, and hearing. 

 

Figure 1.4 The visual pathway from the retina to the visual cortex 

Figure 1.4 shows the main visual pathway from the retina to the visual cortex. The optic nerves 

which start from the two eyes meet at a place termed optic chiasm. In this place, a partial decussation 

happens which means that a proportion of these fibres cross over the other side of the brain while the 
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other fibres do not. The axons from ganglion cells on the nasal side of each retina cross to the other 

side, and those on the temporal size do not cross to the other size. As a result, at this stage, the nerve 

fibres on the left side contain information of the right visual field, that is the right part of the world; 

and the nerve fibres on the right side contain information of the left visual field, that is the left part of 

the world. Therefore, although the left LGN and the cortex to which it projects receive information 

from both of the eyes, they contain information only about the right half of the visual field. Similarly, 

although the right LGN and the cortex to which it projects receive information from both of the eyes, 

they contain information only about the left half of the visual field.  

(3) Visual Cortex 

The human cortex is a sheet of neurons with a thick about 2 mm and a surface area about 1400 cm2. 

Unlike the retina lines the eye, the visual cortex does not line the skull, it is like a crumpled sheet 

stuffed into the skull. A gyrus is a ridge which formed by the folded cortex and can be seen from the 

exterior, while a sulcus is a shallow furrow that separates a pair of gyri. The human brain is divided 

into four lobes which are marked by the most visible sulci. These lobes include: frontal lobe, parietal 

lobe, temporal lobe, and occipital lobe. Figure 1.5 shows the positions of these lobes. For each lobe, 

these are many distinct brain areas, that is there are many groups of continuous cortical neurons that 

may work in an interrelated way. 

 

Figure 1.5 Cortical regions of human.  

The majority of visual information from the retina and the LGN gets to an area in the occipital lobe 

named area V1 (also known as the primary visual cortex). All the other visual areas (also known as 
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extrastriate cortex) are highly dependent on the output of V1, directly or indirectly. The V1 is a large 

cortical area containing about 1.5 × 10 8 neurons, which is much larger than the number of neurons in 

the LGN, which is about 106. The V1 area can be divided into 6 layers, which number from 1 to 6 

from the layer nearest to the surface and the layer deepest. Furthermore, layer 4 can be divided into 

separate sub-layers name 4A, 4B, 4Cα, and 4Cβ. The functions of these layers are different: some 

layers directly receive information the LGN, whereas other layers do not. Some layers act as the 

direct or indirect input of higher visual areas, and in fact, the layer 6 act as a source of the input of 

LGN which accept information back to LGN.  

Beside early visual area V1, there are many visual cortical areas have been identified. These areas are 

identified by different methods, including topographic organization, anatomical connections, and 

response properties of neurons. Brain-imaging method has also been used to identify visual areas 

(Tootell et al., 1998). It is still not fully understanding the functional importance of the diversity of 

areas. In order to reveal how visual processing advances from one area to another, researchers have 

tried to organize these visual areas in a hierarchical way based on the anatomical connections 

between them (Felleman et al., 1991). However, as there are about 300 projections between different 

visual areas and the possible combination of connections between areas is large, it is very different to 

get a final conclusion about the hierarchy between visual areas.  

1.1.2 Depth cues for 3D vision 

The images casted onto the retina of human eyes are 2D, but our brain can perceive the world in a 3D 

way.  Depth perception is the ability to see the world in a 3D way and to judge distance of objects. 

Our visual system need to recover the 3D information from the 2D images. The clues that can be 

used for recovering the 3D information are termed depth cues. The are many visual cues on the 

retinal images which can be used to infer the depth of the objects in the view. In addition, the non-

visual cues from oculomotor muscles controlling eye position and the accommodative state can be 

used by human brain to infer depth position. The depth cues can be classified into two types: 

binocular cues are cues depend on information taken by two eyes, whereas, monocular cues are cues 

that depend on information taken by one eye. Binocular cues include binocular disparity, vergence 

and so on; monocular cues include perspective, texture gradients, motion parallax, retinal image size, 

interposition and so on. 

 

1.1.2.1 Binocular cues 
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(1) Binocular disparity 

In human, the eyes are typically 5.0 - 7.5 cm apart in horizontal orientation. Therefore, the retinal 

image of each eye are slightly different. This slightly differences provide one of the most powerful 

depth cues. The depth position of an object can be calculated with a high accuracy by using the 

different images. For the stereo disparity systems in the brain, there are two types of disparities: 

absolute disparity and relative disparity. Imagining that a person is observing a point P in the space 

(Figure 1.6), then the image of P falls on the foveal of each eye. For another point Q in a different 

depth position, the image of Q is located on the different positions of the left and right retinae 

relative to the foveae. In order to observe Q directly, the two eyes need to rotate with different angles. 

The difference between these two angles is termed as absolute disparity of Q. Relative disparity is 

another way to measure the relationship between point P and Q. The relative disparity is not related 

to where the eyes are fixating on. Suppose the angular separation of P and Q seen by the left eye is α, 

and the separation seen by the right eye is β, α is larger than β, then the difference between angular 

separations (α - β) is called the relative disparity between point P and Q. Two simultaneously visible 

targets are required to defined relative disparity. The relative disparity is a sensitive way to measure 

spatial relationship between two visual targets in the three-dimensional space. 

 

Figure 1.6 The geometrical basis of binocular disparity.  

 

(2) Vergence 

When two eyes fixate on the same point in space, their visual axes need to converge so that the 
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image of the point can be projected onto the fovea in each eye. The vergence angle, which is formed 

by the intersection of visual axes, is dependent on the distance of the point in space. Vergence angel 

is controlled by the extra-ocular muscles, it offers a cue about the absolute distance of the fixated 

point. Figure 1.7 shows the relationship between the distance and vergence angle. From the figure, 

we can see that the further the object is, the smaller the vergence angle is; and the nearer the object is 

the larger the vergence angle is. 

 

Figure 1.7 The relationship between distance and vergence angle. 

 

1.1.2.2 Monocular cues 

(1) Linear perspective 

Linear perspective is a depth cue that is related to both relative size and texture gradient. In linear 

perspective cue, as parallel lines extend far away, these liens seem to get more and more closer and 

converge in the distance. The more the lines converge, the further away they appear. The feature 

allows the brain to perceive the view in a 3D way. Consider an example that we are looking at 

parallel railways which extend to the distance (Figure 1.8), they appear to diminish towards a single 

point far ahead of you. 
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Figure 1.8 Linear perspective depth cue. (1) Example of depth from linear perspective (the photo was taken near tosayamada 

station in Japan). (2) The geometrical basis of linear perspective. 

 (2) Texture 

Texture is a monocular cue provided by surface with texture.  The size, shape, and density of texture 

elements variate depending on the distance and shape of object. This provide an important 

information for human brain to perceive 3D. Figure 1.9 shows examples of shape depicted by texture. 

 

Figure 1.9 3D shapes from texture. Image from Todd (2010). 

  

(3) Motion Parallax 
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Figure 1.10 Illustration of relationship between angle and distance object moves. 

 

In previous part, the depth cues discussed are all static cues, whereas motion parallax is a cue when 

the objects are moving or the observer is moving relative to the objects. In this kind of cue, objects 

that are closer to observer appear to move faster than objects that are farther. It is a kind of 

monocular cue which can be perceived through one eye. The reason for this phenomenon is related to 

the angle the object moves compared to the distance the object moves. Figure 1.10 shows an object 

move 10 meters in two different distances of 100 meters and 50 meters from the eyes. The 

corresponding angle α ≈ 0.1 degree and β ≈ 0.2 degree. Obviously, the angle in the near distance is 

larger than the that of in far distance.  

 

1.2 Literature review and motivation 

The interactions with the outside world often require 3D spatial shape and orientation information. 

The visual images projected onto the retina of two eyes were 2D, our brain need to reconstruct the 

3D information of the world from the 2D images. A variety of depth cues can be used by human for 

reconstructing the 3D image, including binocular disparity, perspective, texture, and so on. In order 

to understand how our brain processing the visual information and how to construct the 3D, many 

studies were conducted. Here we briefly summarize the related studies. 

One of the most important theory in the visual information processing is “two-stream” theory, which 

was originally proposed by Mishkin and Ungerleider (1982) based on lesion studies of non-human 

primates. In this theory, visual information is processed progressively with each area processing 

information based on the output of previous areas, and after visual information processed in V1, the 
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visual processing stream is spitted into two anatomical and functional different streams, with the 

dorsal from dorsal area V1 to parietal cortex areas, and ventral stream from V1 to temporal areas. 

The dorsal stream mainly processes information about an object’s location and spatial relationships 

and has been termed as the “where” stream, and the ventral stream mainly processes information 

about an object’s shape and identity and has been termed as the “what” stream. Later, this theory was 

revised by Goodale and Milner (1992), instead, they argued that the ventral stream serves for 

conscious vision (known as the “perception” stream) and the dorsal stream serves for the 

unconscious control of action, such as the movement of the body guided by visual input (known as 

the “action” stream). There are lots of studies support the “dorsal action” and “ventral perception” 

separation of two streams, including single-unit recording (Sakata et al., 1995; Fogassi et al., 2001), 

neuropsychological studies (Goodale et al., 1991; James et al., 2003), behavioral psychophysics 

(Ganel et al., 2003), and functional imaging (Culham et al., 2003; Monaco et al., 2014), and among 

others. However, there is no complete agreement on how visual information is processed on the 

streams.   

As to the 3D information processing, areas that are selective to 3D shape are widely distributed 

among visual cortex, including early visual areas (V1-V3) where basic features such as binocular 

disparity, texture, luminance are detected locally, middle ventral visual areas such as V4, and areas 

further along ventral stream such as lateral occipital cortex (LOC) and ventral temporal cortex (Grill-

Spector and Weiner, 2014; Janssen P et al., 2000; Moore and Engel, 2001). Dorsal cortex is likely to 

be related to high order properties about 3D object structure, such as slant and curvature (Erlikhman 

et al., 2018). As the 3D information from different cues processed along the visual pathways, these 

depth cues concurrently contribute to construct 3D object. It is possible in some area, depth 

information from different cues is fused and a final depth estimator about each point of the object is 

generated. Therefore, a generalized representation of 3D object may be existing, and this 

representation is not relying on depth cue type directly. Meanwhile, this representation should not 

rely on local features of stimuli. That is, a common neural activity pattern related 3D objects may 

exist in some area irrespective cue type or local feature of stimuli. In order to investigate the whether 

some area contain common neural activity pattern which related to 3D object, we adopted multi-

voxel pattern analysis (MVPA), specifically, transfer classification which trained classifier on fMRI 

data with stimuli of one type and tested classifier on fMRI data with stimuli of another type was used.  

This method can be used to verify whether a common activity pattern of neurons is involved during 

processing different types of stimuli. In detail, two topics were investigated. In the first topic, 

binocular disparity cue was investigated. Stimuli defined by disparity with same shape but different 
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orientation were used. In the second topic, depth cues binocular disparity and perspective were 

investigated. We investigated whether a common activity pattern exist during the processing of 

shapes from different cues.  

 

1.3 Overview of our research 

Topic 1: 

 Investigate selectivity to shape of surface defined by disparity on each ROI. Whether the 

selectivity is dependent on disparity directly or dependent on generalized representation of 

shape? 

 Investigate selectivity to orientation of surface defined by disparity on each ROI. Whether the 

selectivity is dependent on disparity directly or dependent on generalized orientation 

representation?  

 

Topic 2: 

 Whether activity patterns evoked by shape defined by one type of stimuli (disparity or 

perspective) can afford classification of patterns evoked by shape defined by another type of 

stimuli (perspective or disparity respectively)? 
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CHAPTER 2  

TOPIC 1: Shape and orientation representation of 

stereopsis 

2.1 Abstract 

The brain’s ability to extract 3D shape and orientation information from viewed objects is vital in 

daily life. Stereoscopic 3D surface perception relies on binocular disparity. Neurons selective to 

binocular disparity are widely distributed among visual areas, but the manner in these areas are 

involved in stereoscopic 3D surface representation is unclear. To address this, participants were 

instructed to observe RDS depicting convex and concave curved surfaces and the BOLD signal of 

visual cortices was recorded. Two surface types were: (i) horizontally positioned surfaces defined by 

shear disparity and (ii) vertically positioned surfaces defined by compression disparity. The surfaces 

were presented at different depth positions per trial. Functional magnetic resonance imaging data 

were classified from early visual areas to higher visual areas. We determined whether cortical areas 

were selective to shape and orientation by assessing same-type stimuli classification accuracies based 

on multi-voxel BOLD signal patterns per area. To identify whether some areas were related to a 

more generalized shape or orientation representation, transfer classification was used by training 

classifiers on one dataset type and testing classifiers on another type. Same-type stimuli classification 

results showed that most selected visual areas were selective to shape and all of them were selective 

to the orientation of disparity-defined 3D surfaces. Transfer classification results showed that in the 

dorsal visual area V3A, classification accuracies for the discriminate convex–concave shapes were 

higher than baseline of statistical significance for all types of classifications, demonstrating that V3A 

is related to generalized shape representation. Classification accuracies for discriminating horizontal–

vertical surfaces in higher dorsal areas V3A and V7 and ventral area lateral occipital complex (LOC) 

as well as in some areas of intraparietal sulcus were higher than baseline of statistical significance, 

indicating their relation to the generalized representation of 3D surface orientation. 
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2.2 Introduction 

The ability to interact with objects in the real world is closely related to 3D perception. This skill 

depends on at least two abilities as follows: (i) the ability to perceive the shape of a 3D object and (ii) 

the ability to judge the orientation of the object. For example, when someone attempts to pick up a 

pencil on a desk or insert a key into a lock, the procedure depends on the above-mentioned abilities. 

Although these activities are common and essential in human daily life, their underlying visual 

mechanisms have yet not been completely investigated. Binocular disparity, which is generated by 

the horizontal separation of the two eyes, is one of the most important cues for 3D perception. It is an 

extremely informative cue that is sufficient for depicting any 3D percept imaginable—the depth of 

the points of the object as well as the surface shape and orientation, which are considered higher-

order surface properties. 

To extract useful information from images registered by the two eyes, a sequence of processing 

stages is required (Marr & Poggio, 1976). Different brain regions may play different roles in 3D 

shape/orientation processing, with some areas responsible for low-level disparity and other areas 

responsible for middle or higher stage 3D representations that do not depend on low-level disparity. 

Previous studies of 3D perception from disparity have focused on the neurons’ selectivity to disparity 

depicting 3D objects. Zero-order depth indicates the depth position of an object. First-order depth 

corresponds to a linear gradient of depth, such as a plane slanted in depth. Second-order depth refers 

to curvature in depth, e.g., disparity curvature in stereoscopic processing (Orban et al., 2006b). In 

monkey and human brains, the neurons selective to binocular disparity exist at multiple levels of the 

visual hierarchy, starting from the early visual areas to the object-selective and motion-selective 

areas and parietal areas (Chandrasekaran et al., 2007; Cumming & DeAngelis, 2001; Neri, 2005; 

Parker, 2007). There is evidence that neurons tuned for 3D shape are widely distributed across the 

visual areas of the cortex. Janssen et al. (1999) verified that a portion of the inferotemporal (IT) 

neurons in macaques is selective for 3D shape depicted by binocular disparity. Janssen et al. (2001) 

conducted a single-cell method on animals and found that neurons of the lower bank of the superior 

temporal sulcus (TEs) can be selective for horizontal 3D shapes. Georgieva et al. (2009) tested the 

interaction between stereo and order of disparity, concluding that the V3A complex and certain 

intraparietal sulcus (IPS) regions can extract and process 3D shape from stereo. Recently, Alizadeh 

et al. (2018) studied a patch of the macaque posterior inferotemporal area TEO that is activated more 

by a curved surface than a flat surface. Using the single-cell method, they observed that this patch 

did not contain a large number of higher-order disparity-selective neurons. However, the sign of the 
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disparity gradient of the stimuli could reliably be classified using a linear SVM. Orientation 

discrimination research has primarily focused on two types of orientation as follows: (i) tilt, which 

refers to rotation in a 2D image plane, similar to a clock hand changing its orientation over time, and 

(ii) slant, which refers to rotation toward/away from the frontoparallel direction. In relation to 

selectivity to orientation, Nguyenkim and DeAngelis (2003) found that several middle temporal area 

(MT) neurons in rhesus monkeys are tuned to 3D surface orientation defined by binocular disparity, 

and that tilt and slant typically exhibit independent effects on MT responses. Rosenberg et al. (2013) 

reported that in the caudal intraparietal area (CIP) of macaques, an explicit representation of slant 

exists, indicating that this area plays an important role in encoding surface orientation information. In 

functional imaging studies of humans, Shikata et al. (2001) found that both posterior (CIP) and 

anterior (AIP) areas within the intraparietal sulcus responded to planes oriented in depth using 

texture gradients as monocular cues. In addition, Naganuma et al. (2005) found that orientation 

information defined by disparity is processed in the parietal area. Ban and Welchman (2015) 

revealed a dorsal hierarchy that extracts 3D surface orientation from binocular disparity, 

demonstrating that responses in the V3A judgments of slant in humans. 

Previous studies for shape/orientation representation of 3D object focused mainly on these types of 

questions: (1) selectivity of neurons to specific depth cues (e.g., binocular disparity) using single-cell 

studies; (2) BOLD signal changes to specific stimuli (e.g., 3D shape) vs. control condition using 

fMRI studies; (3) distinguishing BOLD signal patterns caused by different shapes/orientations; and 

(4) integration of different cues that concurrently describe a 3D object. Our present study belongs to 

the third type. However, to the best of our knowledge, previous studies have not investigated whether 

the shape/orientation presentation of stereopsis is directly dependent on disparity or to a more 

generalized processing. We investigated whether a generalized representation is involved by transfer 

classification of BOLD signal patterns. In detail, we investigated the convex–concave shape 

representation and horizontal–vertical orientation representation of the surface across cortical visual 

areas. In the present study, we investigated the convex–concave shape representation and horizontal–

vertical orientation representation of the surface across cortical visual areas. The main purpose of our 

study was to identify the areas containing a reliable representation of the shape and orientation of the 

3D surface and to determine the extent of generalization of the representation. Depending on the 

degree of reliability of the representation, the term “generalized representation of the shape” can be 

defined as follows: the lowest level is representation based on the local disparity pattern of stimuli 

(i.e., not generalized); the subsequent is representation based on a more global shape information, 

irrespective of the orientation of surfaces; and the next higher level is representation based on the 
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global information of the shape, irrespective of both the orientation of surfaces and depth position. 

Similarly, the term “generalized representation of the orientation of 3D surface” can be defined as 

follows: the lowest level is representation based on the local disparity pattern of stimuli; the next 

level is representation based on more global information, irrespective of the shape; the subsequent 

level is representation based on global information that irrespective the shape and depth position. In 

our experiment, RDS was used to depict horizontally or vertically positioned convex and concave 

stereoscopic surfaces; the shape and orientation of these stimuli cannot be judged by monocular cues, 

but can be judged by binocular cues. The BOLD signal, as measured by functional magnetic 

resonance imaging (fMRI), can be used to indirectly reflect the underlying neural activity of cortices 

(Logothetis et al., 2001). We tested the global patterns of each area by classification using MVPA. 

The overall plan of the study was the following. First, the selectivity of neurons to shape and 

orientation of surface depicted by binocular disparity in each area was assessed. Second, by using 

stimuli of the same shape (convex or concave) or orientation (horizontal or vertical) defined by 

different disparities, it was compared whether the patterns invoked by stimuli with different 

disparities and the same shape/orientation are similar. Correspondingly, in the experiment, we 

initially sought to identify the areas involved in representing the shape and horizontal–vertical 

orientation of stereoscopic surfaces defined by disparity. Accordingly, we investigated the 

retinotopic visual cortices (V1, V2, V3d, V3v, V3A, and V7), the higher ventral cortex LOC, the 

higher dorsal area [human middle temporal complex (hMT+)], the kinetic occipital area (KO), and 

the IPS areas [the ventral intraparietal sulcus (VIPS), the parieto-occipital intraparietal sulcus 

(POIPS), and the dorsal intraparietal sulcus (DIPS)]. Because neurons selective to binocular disparity 

exist at the multiple levels of the visual hierarchy, it is possible that most regions of interest (ROIs) 

would be selective to the convex–concave shape and horizontal–vertical orientation. Same-type 

stimuli classification was used to test this. Furthermore, we wanted to test whether the selectivity 

relates to disparity information per se or more generalized processing independent of low-level 

retinotopic disparity information. The dorsal areas V3A and KO may be two of the candidates that be 

involved in a more generalized representation of the shape. This could be attributed to the belief that 

coarse stereopsis is processed in the dorsal stream and fine stereopsis is processed in the ventral 

stream (Neri et al., 2004; Uka & DeAngelis, 2006; Roe et al., 2007; Schiller et al., 1990). Coarse 

stereopsis can be used to guide the vergence movements of the eyes. During this process, it is 

possible that some abstract information regarding the shape is required. Traditionally, shape 

information is considered to be processed in ventral stream (Zeki, 1978; Mishkin et al., 1982). 

Therefore, the exchange of information between the ventral and dorsal streams and is required. 

Moreover, a more generalized representation of objects that can be shared between the dorsal and 



19 

 

 

 

 

ventral streams may be involved. Furthermore, 3D information has been shown to be exchanged 

between the two streams. Van Dromme et al. (2016) provided causal evidence for the flow of visual 

3D information between the dorsal stream and the ventral streams. V3A and KO are considered to be 

parts of the anatomical pathway where the functionally different ventral and dorsal streams exchange 

information (Takemura et al., 2016). In addition, Dövencioğlu et al. (2013) demonstrated that KO 

plays an important role in integrating disparity and shading cues of 3D structure perception, 

suggesting a more generalized representation of depth structure in the dorsal stream. Therefore, V3A 

and KO are two of the candidate areas for generalized shape representation. For orientation 

representation, IPS areas are expected to be involved in the more generalized representations of 

horizontal–vertical orientation because previous studies have shown that the neurons in the posterior 

IPS areas in monkeys and humans are selective to orientation via monocular cues, such as texture 

gradients and perspective, as well as via binocular cues, such as binocular disparity (Naganuma et al., 

2005; Rosenberg et al., 2013; Shikata et al., 2001; Tsutsui et al., 2001). 

2.3 Methodology 

2.3.1 Participants 

A total of 11 participants were recruited for the fMRI experiments. Of these, three participants were 

excluded due to poor performance on judging convex and concave stereoscopic surfaces. 

“Acceptable performance” was defined as an accuracy of ≥75% for each stimulus type. Of the 

remaining eight participants, seven were male and one was female. One of the males was left-

handed, whereas the other seven participants were right-handed. All participants had normal or 

corrected-to-normal vision. None had any history of mental illness or neurological disease. Their 

ages ranged from 22 to 33 (mean ± SD, 24.6 ± 3.7) years. Participants were remunerated for their 

participation. 

This study was performed in accordance with the recommendations of Human Research Ethics 

Committee of the Kochi University of Technology, and written informed consent was obtained from 

all participants. All subjects gave written informed consent in accordance with the Declaration of 

Helsinki. The protocol was approved by the Human Research Ethics Committee of the Kochi 

University of Technology. 
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2.3.2 Stimuli 

Stereoscopic stimuli were presented on a screen using a pair of JVC D-ILA video projectors. A linear 

polarized filter was placed in front of each projector. The images from the two projectors were 

superimposed into one image and projected onto a translucent screen inside the bore of the magnet. 

The participants wore polarized glasses and viewed stimuli through a slanted mirror (angled at 45°) 

above the head coil. The optical distance from the midpoints of the two eyes to the screen was 71 cm. 

The screen resolution was set at 1024 × 768 pixels and the refresh rate was 120 Hz.  

 

Figure 2.1 Schematic illustration of the stimuli. (A) Horizontal hemi-cylindrical convex (left) and concave (right) surfaces. (B) 

Vertical hemi-cylindrical convex (left) and concave (right) surfaces. (C) Experimental set up (the example is a convex near surface). 

 

The RDS stimuli comprised random black and white dots generated using Psychotoolbox 3 in 

MATLAB (The MathWorks). They depicted four surface types defined by disparity as follows: the 

horizontal convex and concave curved surfaces (Figure 2.1A) and vertical convex and concave 

curved surfaces (Figure 2.1B). Each surface covered a square of 14° × 14° and was presented on a 

mid-gray rectangular background (23° × 18°). The density of the stereogram was 4 1 dots/deg2; all the 

dots were of the same size and the diameter of the dots was 0.14°. The radius of the surface was 4.4 

cm. The horizontal disparity of dots was calculated based on the depth position and there was no 

vertical disparity between corresponding dots.  A fixation marker comprising a hollow square with a 

side length of 0.5° and horizontal and vertical nonius lines with a length of 0.375° was displayed at 

the center of the screen to help participants maintain eye vergence. 
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2.3.3 Experimental design 

Four stimulus types, namely horizontal convex, horizontal concave, vertical convex, and vertical 

concave hemi-cylindrical surfaces, were presented during the experiment at two different depth 

positions (“near” or “far”) behind the fixation marker. The distance from the nearest part of the 

surface and fixation marker was simulated as 0 cm (“near” condition, uncrossed, absolute disparity 

of nearest part: 0°) or 4.4 cm (“far” condition, uncrossed, absolute disparity of nearest part: 0.30°). 

Stimuli selected from a set of eight conditions (4 types × 2 positions) were presented using a bl ock 

design (Figure 2.2). To avoid adaptation and maintain neuronal activation, the stimulus in each block 

was flashed on and off repeatedly for 0.5 s. Each time a stimulus pattern was shown, the random dots 

were regenerated. Each stimulus block, which comprised one of the eight conditions and lasted 15 s, 

was repeated twice in a random order per run. After each stimulus block, the participant was required 

to make a judgment of the shape of the surface by pressing the corresponding button on a keypad. 

The judgment was followed by a 6 s fixation block. There was no fixation block following the final 

judgment block. Each run began with a 12 s fixation block. The total time taken for one run is 

calculated as follows: (1) the time of all stimulus blocks is 15 × 8  × 2 = 240 s; (2) the time of all 

blocks for judgment is 3 × 8 × 2 = 48 s; and (3) the time of fix ation blocks is 12 + 6 × (8 × 2 − 1) = 

102 s. Therefore, each run lasted a total of 240 + 48 + 102 = 390 s. Participants were required to 

observe the fixation marker and avoid any head movement during all runs. Any runs with excessive 

head movement were discarded. Excessive head movement was defined as head movement of >2 

mm or head rotation of >2° during each run. Overall, participants were able to maintain their head 

static and at least six usable echo-planar imaging (EPI) scans were obtained for each participant. 

 

Figure 2.2 Illusion of the fMRI block design. 
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2.3.4 Data acquisition 

Imaging was performed using a 3 Tesla Siemens Verio MRI scanner with a 24-channel multi-phase 

array head coil at the Brain Communication Research Centre of the Kochi University of Technology. 

Participants’ heads were fixed with foam padding to reduce movement. For each participant, a high 

resolution T1-weighted anatomical scan (1 × 1 × 1 mm) was obtained to construct the exact inflated 

and flattened cortical surface. For the experimental scans, BOLD signals were measured using an 

EPI sequence [echo time (TE): 30 ms; repetition time (TR): 3000 ms; number of volumes per run: 

130; slice thickness: 3 mm; slice acquisition order: interleaved] from 35 slices covering the visual 

cortex, posterior parietal cortex, and posterior temporal cortex. In addition, a T2-weighted structural 

image was obtained in a run of 2.5 min and it was recorded at the same position as the slices of the 

corresponding EPI data in one session. Structural data were used as reference slices for 3D motion 

correction of EPI data as well as co-registration between T1-weighted anatomical images and EPI 

images. Following co-registration between anatomical and functional data in native anatomical 

space, all data were converted to Talairach coordinates. 

 

We measured the ROIs (Figure 2.3) for each participant using standard procedures in separate 

sessions prior to the main experiment. Retinotopically organized visual areas, namely V1, V2, V3d, 

V3v, and V3A, were localized by rotating wedge stimuli and expanding concentric rings (Sereno et 

al., 1995; DeYoe et al., 1996; Warnking et al., 2002). Area V7 was defined as the region anterior and 

dorsal to V3A with a lower visual field quadrant representation (Tootell et al., 1998; Tyler et al., 

2005). Moreover, we identified some higher ventral areas including the LOC, the higher dorsal areas 

hMT+ and KO, and areas along the IPS including VIPS, POIPS, and DIPS using special independent 

localizers. LOC was identified as a set of continuous voxels in the lateral occipito-temporal cortex 

that showed significantly stronger activation (p < 10−4) to intact versus scrambled images of objects 

(Kourtzi et al., 2000; Kourtzi et al., 2001). hMT+ was defined as a set of continuous voxels in the 

lateral temporal cortex that demonstrated significantly stronger activation (p < 10−4) to a set of 

coherent outward and inward moving dots compared to static dots (Zeki et al., 1991). KO was 

identified as a set of voxels that responded significantly stronger activation (p < 10−4) to motion-

defined contours than the transparent motion of a field of black and white dots (Dupont et al., 1997; 

Zeki et al., 2003). Stimuli comprising nine randomly connected lines were used to locate the IPS 

areas (VIPS, POIPS, DIPS). These areas were identified by contrasting activity to 3D shapes, which 

was produced by rotating stimuli in depth, versus activity to 2D shapes, which was produced by 
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moving stimuli along a frontoparallel plane (Vanduffel et al., 2002). 

 

 
Figure 2.3 Illustration of a flattened cortical surface with ROIs superimposed. The retinotopic areas (V1, V2, V3d, V3v, V3A), 

higher ventral area (LOC), higher dorsal areas (KO, V7, hMT+), and intraparietal sulcus areas (DIPS, POIPS, VIPS). Sulci are 

indicated in dark gray whereas gyri are indicated in light gray. ROIs were defined by standard localizers in separate sessions (see the 

data acquisition section 2.3.4). 

 

 

2.3.5 Data analysis 

2.3.5.1 Pre-processing 

Data processing and analysis were performed using the Freesurfer software package (Fischl, 2012), 

BrainVoyager QX (Version 2.8.4.2645, 64-bit; BrainInnovation, Maastricht, The Netherlands), 

MATLAB R2014a (The Mathworks), and SPSS Statistics 23 (IBM Inc.). Freesurfer was used to 

remove the scalp of the T1-weighted 3D anatomical image per participant and segment the remaining 

parts into different regions, such as those of the outer skull and inner skull. The white matter (WM) 

was separated from the other components and later used as a mask to segment WM and gray matter 

(GM) in BrainVoyager QX. The brain was extracted from the skull and other tissues. Thereafter, we 

used BrainVoyager QX to transform the extracted brain into standard Talairach space. The flattened 

cortical surface of each participant was generated by segmenting the cortical surface along the 
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GM/WM boundary, inflating the segmented GM, cutting along the calcarine sulcus, and flattening. 

The flattened cortical surface was used for visualizing functional maps and delineating ROIs, which 

were later used in the MVPA procedure. For the EPI data, 3D motion correction was performed 

(Woods et al., 1998) referencing the T2-weighted image obtained at the beginning of each session. 

No spatial smoothing was performed. Finally, co-registration was performed to align the functional 

EPI data to the T1-weighted anatomical data, and the functional EPI data were transformed into 

Talairach space. 

2.3.5.2 ROI-based univariate analysis 

Univariate analysis was performed to assess whether the overall activity of the neurons in each 

selected ROI was higher for all stimuli compared with that at the fixation baseline. We calculated the 

“percent signal change” for the stimuli versus the fixation baseline. The fMRI time courses were 

shifted by two volumes (6 s) to account for the hemodynamic delay of the BOLD signal. The percent 

signal change values were averaged across all runs and all participants. 

SPSS Statistics 23 was used for statistical hypothesis testing. One-sample t-tests were used to assess 

whether percent signal change was significantly higher than chance level for each ROI. 

2.3.5.3 ROI-based MVPA 

MVPA method is widely used to identify the global patterns of the cortical areas of the human brain 

and is useful for discovering function of the cortical areas. It allows the detection of subtle 

differences between the conditions of interest but it may bear unexpected pitfalls (Alizadeh, S. et al., 

2017). We carefully performed a series of MVPA for the EPI data for each ROI in MATLAB. SVM 

was used as the classifier for MVPA. The implementation of SVM was provided by MATLAB. 

Typically, two types of classifications were performed. The first was a same-type stimuli 

classification wherein we trained and tested SVM on the same type of data. This was performed to 

investigate whether specific patterns were contained in the dataset. The second was a transfer 

classification wherein we trained and tested SVM on different types of data. This was performed to 

assess whether a pattern contained in one type of data was also contained in another type of data. 

This is a useful method for determining whether a specific pattern is shared by different datasets. 

Our MVPA procedure is as follows. Due to the hemodynamic delay of the BOLD signal, the fMRI 

time courses were shifted by two volumes (6 s). For each ROI in Talairach space, voxels were 

selected from both hemispheres and sorted from the largest to smallest according to their response (t-

statistic) to the stimulus conditions compared with the fixation baseline. Using the t-statistics from 

the “stimulus versus fixation baseline” contrast, the top 250 voxels were selected for all ROIs and all 
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participants. For ROIs of participants for whom 250 voxels were unavailable, the highest number of 

voxels available was used for the classification. 

To estimate the value for each voxel of the ROIs used as input for SVM for each stimulus block, the 

average value of the first three volumes after stimulus onset (avg1) and the average value of the last 

two volumes before stimulus onset (avg2) corresponding to the fixation baseline (after shifting by 

two volumes) were calculated. The avg1–avg2 difference was then calculated. Thereafter, the time 

series differences were transformed into z-scores and transmitted to SVM for training and testing. 

The leave-one-run-out cross-classification method was used to evaluate the performance of the 

MVPA classification, i.e., data were partitioned according to the run they belong to, and data from 

one run were used for testing, whereas data from other runs were used for training. This procedure 

was repeated with different partitions of the data. The classification accuracy for each ROI was 

calculated as the average classification accuracy of all cross-classifications. The classification 

accuracies of all participants were averaged for each ROI. 

To estimate the baseline for statistical significance, we performed classification analysis with 

randomly permutated fMRI patterns for all ROIs, i.e., we randomized the correspondences between 

fMRI data and labels and performed classification similar to that performed for normal non-

permutated data. This procedure was repeated 1000 times to create a distribution of classification 

accuracies. We used the 99.6th percentile (one-tailed, 12 ROIs) as the baseline for statistical 

significance. 

2.4 Result 

2.4.1 ROI-based univariate analysis 

The average percent signal changes across all runs and all participants per ROI are shown in Figure 

2.4. All ROIs showed a percent signal change >0 for the condition stimuli versus fixation baseline, 

indicating that the neurons from these ROIs were more active during the stimuli condition than in the 

fixation baseline condition. However, the percent signal change was not significantly greater than 0 

for the dorsal area hMT+ and parietal areas POIPS and DIPS. The reason for the absence of a 

significant change by these ROIs could be the trend in which signal changes increasingly became 

weaker from the early visual areas to higher visual areas, that the signal changes in these three areas 

were relatively weak, and that our criterion for significance was strict (*p ≤ 0.004). Regardless, they 

still showed an average signal change greater than 0. 



26 

 

 

 

 

 

Figure 2.4 Percent signal change of each ROI. Error bars represent standard error of the mean across participants (n = 8). Asterisks 

indicate that the percent signal change is significantly greater than 0, as assessed by a t-test of group data (*p ≤ 0.004). 

 

 

2.4.2 ROI-based MVPA 

2.4.2.1 Classification accuracy for the shape discrimination 

We performed three types of the shape classifications (Figure 2.5) as follows: (i) same-type stimuli 

shape classification (denoted by green arrows); (ii) transfer shape classification of surfaces at the 

same depth position (denoted by red arrows); and (iii) transfer shape classification of surfaces at 

different depth positions (denoted by blue arrows). 
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Figure 2.5 Illustration of the types of the shape classification performed. 1.a, 1.b, 1.c, and 1.d represent same-type stimuli shape 

classification. 2.a, 2.b, 2.c, and 2.d represent transfer shape classification of surfaces at the same depth position. 3.a, 3.b, 3.c, and 3.d 

represent transfer shape classification of surfaces at different depth positions. 

 

(1) Same-type stimuli shape classification 

 
Figure 2.6 The accuracy of classification for convex versus concave discrimination. (A) The accuracy of classification for the 

shape discrimination for same-type stimuli. (B) The transfer shape classification of surfaces at the same depth position. (C) The 
transfer shape classification of surfaces at different depth positions. The red horizontal dotted lines indicate the baselines of statistical 

significance for ROIs. The locations of these lines indicate the upper 99.6% percentile of the distribution of the accuracy of 

classification of the permutated data. The black horizontal line indicates the chance level for two-class classification (50%). The error 

bars depict the standard error of the mean across subjects (n = 8). 
 

To investigate whether ROIs are selective to the shape of convex and concave surfaces, “same-type 
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stimuli shape classification” was performed. Each stimulus exhibited the following three attributes: 

position (near or far), orientation (horizontal or vertical), and shape (convex or concave). Here, the 

“same-type stimuli shape classification” refers to trained and tested SVM using the same type of 

data, i.e., both the training and the testing data were of the same depth position (near or far) and 

orientation (horizontal or vertical). For example, SVM was trained on (horizontal, near) surfaces data 

and then tested using the same type of data (horizontal, near) surfaces. Similarly, we trained SVM on 

[(horizontal, far), (vertical, near), and (vertical, far)] surfaces separately, and then tested SVM on the 

corresponding types of data (see 1.a, 1.b, 1.c, 1.d of Figure 2.5). The average classification accuracy 

values across the four types of data of the eight participants are shown in Figure 2.6A. 

All areas showed an average classification accuracy higher than chance level for the two-class 

classification (50%). The V1; V2; dorsal areas V3d, V3A, V7, and KO; ventral area LOC; and 

parietal area VIPS exhibited a classification accuracy higher than baseline of statistical significance, 

suggesting that the activity patterns of neurons in these areas are selective to the shape of curved 

surfaces. 

 

(2) Transfer shape classification of surfaces at the same depth position 

The ability of SVM to classify the shape with an accuracy higher than baseline of statistical 

significance is attributable to two main reasons. One is that the activity patterns of the neurons reflect 

the local disparity of surfaces. The local disparity between surfaces with a different shape was 

different; it is possible that the activity patterns of neurons in ROIs reflect these differences and that 

SVM used the different activity patterns for classification. The second possibility is that the activity 

patterns of neurons reflect a more generalized shape representation and SVM classified surfaces 

based on these patterns.  

To assess whether each ROI is related to binocular disparity or more generalized processing of shape 

representation which is not related to the orientation of surface, the transfer shape classification of 

surfaces at the same depth position was performed. 

There are three points that should be mentioned as follows: (1) the shape classification was 

performed by classifying whether a convex or concave surface was shown during the stimulus 

blocks; (2) the training and testing data were selected from blocks when stimuli were shown at the 

same depth condition; and (3) ‘transfer’ indicates that the data used for training and testing had 

different attributes in terms of orientation (horizontal or vertical). For example, we trained SVM 

using data in which horizontal surfaces were shown and then tested SVM using data in which 
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vertical surfaces were shown at the same depth position and vice versa. The classification is 

illustrated in 2.a, 2.b, 2.c, and 2.d of Figure 2.5. The average accuracy values for the four 

classification types across the eight participants are shown in Figure 2.6B. In the higher dorsal areas 

V3A and KO, ventral area LOC, and parietal area VIPS, the fMRI responses evoked by one type of 

surfaces (horizontal or vertical) could allow the shape classification of responses evoked by the other 

type of surfaces (vertical or horizontal, respectively). Because the disparity patterns of the surfaces 

used for training and testing were different, this result was probably related to more generalized 

processing of the shape. 

To further investigate whether generalized representation is invariant of depth position, we 

performed the transfer shape classification of surfaces at different depth positions. 

 

(3) transfer shape classification at of surfaces different depth positions 

In this type of classification, SVM was trained to classify the shape of surfaces. “Transfer” indicates 

that the data used for training and testing have different attributes in terms of both depth position and 

orientation. For example, we trained SVM using data with horizontal surfaces in the far position and 

tested SVM using data with vertical surfaces in the near position. These classifications are illustrated 

by arrows 3.a, 3.b, 3.c, and 3.d of Figure 2.5. The average accuracies for the four types of 

classification across eight participants are shown in Figure 2.6C. 

As shown, only the classification accuracy for V3A was higher than baseline of statistical 

significance (classification accuracy: 54.05%; baseline of statistical significance: 53.92%). This 

indicates that V3A is related to a more generalized representation of shape and is invariant to depth-

position. 

Alternatively, the near–far information between the center and surrounding of the surfaces could 

support the all the three types of shape classification. Moreover, for “the same-type stimuli shape 

classification” and “transfer shape classification of surfaces at the same depth position”, the different 

depth positions of peaks of surfaces with a different shape could be used for classification. To 

exclude this possibility, we investigated the classification accuracy for near versus far surface 

discrimination. Figure 2.7 illustrates the near–far classification performed. We performed same-type 

stimuli near–far classification. SVM was trained to classify a near versus far position of the surfaces. 

“Same-type stimuli” indicates that the data used for training and testing exhibited the same shape 

(convex or concave) and same orientation (horizontal or vertical). For example, we trained and tested 

SVM using data with horizontal surfaces with minus curvature. The average classification accuracies 
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for the four types of data across all participants are shown in Figure 2.8. 

 

 
Figure 2.7 Illustration of the near–far classification. We trained and tested SVM using the same type of data. 

 

 

Figure 2.8 The accuracy of classification for near versus far discrimination using same-type stimuli. The red horizontal dotted lines 

indicate the baselines of statistical significance for ROIs. The locations of these lines indicate the upper 99.6% percentile of the 

distribution of the accuracy of classification of the permutated data.  The black horizontal line indicates the chance level for two-class 
classification. 

 

As shown, the average classification accuracy for V3A was approximately that of chance level for 

two-class classification, indicating that near–far surfaces cannot be classified by V3A, at least in our 

experimental setting. By combining our findings thus far, we can conclude that the higher-than-

baseline accuracy for the shape classification in V3A was not likely to be based on the activity 
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patterns of neurons that reflect near–far information between the center and side of the stimulus 

(because we cannot classify near–far surfaces by V3A in our experimental setting); rather, it is likely 

related to activity patterns of neurons that reflect the generalized shape representation. This result is 

consistent with our hypothesis that the dorsal area V3A is a candidate involved in generalized shape 

representation. 

The results showed high accuracy in the three types of the shape discrimination in V3A. The 

information used for the discrimination, however, may be different: (1) for the “same-type stimuli 

shape classification,” it may to be explained by local disparities (or zero-order disparity) because of 

the training data and testing data were of identical type. (2) for the “transfer shape classification of 

surfaces at the same depth position,” it is may be classified according to the different depth positions 

of the peaks of surfaces with the different shape or near–far information between the center and 

surroundings of the surfaces. However, we also checked “same-type stimuli near-far classification” 

for which disparities were different between near and far surfaces. The result showed that in our 

experimental condition, the accuracy of the classification was approximately that of chance level in 

V3A. Considering this finding, we can infer that it was unlikely be classified by these two reasons; 

and (3) for the “transfer shape classification of surfaces at different depth position”, the disparity of 

surfaces for training (e.g., horizontal surfaces in the near depth position) and disparity of surfaces for 

testing (e.g., vertical surfaces in the far depth position) were quite different. Hence, it is unlikely to 

be classified by local disparities. In addition, V3A is on the dorsal visual stream, and this visual 

stream is related to coarse stereopsis. It is likely that V3A was involved in the representation of the 

shape in a more abstract (coarse) manner, which did not depend on the orientation of the surface and 

depth position. Therefore, V3A showed high accuracy in this classification. Notably, the high 

accuracy demonstrated by V3A showed in our classification does not indicate that the ventral stream 

areas were not involved in the generalized representation of shape. There is an exchange of 

information between dorsal and ventral streams. We observed that V3A showed statistical 

significance in all the three types of shape classification. In conclusion, V3A is a crucial part of the 

process related to the more generalized shape representation and the results are consistent with those 

reported in previous studies. 

 

2.4.2.1 Classification accuracy for the shape discrimination 

In addition to the representation of the shape defined by disparity, we investigated the representation 

of orientation of stereoscopic surfaces among ROIs. Accordingly, ROI-based MVPA was performed. 
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The following three types of horizontal versus vertical surface classifications were conducted (Figure 

2.9): (i) the same-type stimuli horizontal–vertical surfaces classification; (ii) the transfer horizontal–

vertical classification of surfaces with different shapes at the same depth position; and (iii) the 

transfer horizontal–vertical classification of surfaces with different shapes at different depth 

positions. 

 

 

Figure 2.9 Illustration of the horizontal–vertical classification. 1.a, 1.b, 1.c, and 1.d indicate same-type stimuli horizontal–vertical 

surfaces classification. 2.a, 2.b, 2.c, and 2.d indicate transfer horizontal–vertical classification of surfaces with different shapes at the 

same depth position. 3.a, 3.b, 3.c, and 3.d indicate transfer horizontal–vertical classification of surfaces with different shapes at 

different depth positions. 

 

(1) Same-type stimuli horizontal–vertical surfaces classification 

We trained SVM to classify the orientation of surfaces, i.e., to judge whether surfaces were 

horizontal or vertical. “Same-type stimuli” indicate that both the training and the testing data were of 

the same shape (convex or concave) and depth position (near or far). For example, we trained and 

tested SVM using data with horizontal–vertical surfaces with convex shape in the near position. This 

classification is illustrated in 1.a, 1.b, 1.c, and 1.d of Figure 2.9. The average classification accuracies 

for all data types across the eight participants are shown in Figure 2.10A. 
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Figure 2.10 The accuracy of classification for horizontal versus vertical discrimination. (A) The accuracy of classification for 

horizontal versus vertical discrimination using same-type stimuli. (B) The accuracy of classification for transfer horizontal–vertical 

classification of different shape surfaces at the same depth position. (C) The accuracy of classification for transfer horizontal–vertical 

classification of different shape surfaces at different depth positions. The red horizontal dotted lines indicate the baselines of statistical 

significance for ROIs. The locations of these lines indicate the upper 99.6% percentile of the distribution of the accuracy of 
classification of the permutated data. The black horizontal line indicates the chance level for two-class classification. 

 

The accuracies of classification for distinguishing horizontal versus vertical orientation among all 

areas were higher than baseline of statistical significance, indicating that the activity patterns of the 

neurons in all ROIs contain robust orientation information. 
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(2) Transfer horizontal–vertical classification of surfaces with different shapes 

This classification included two types as follows: the “transfer horizontal–vertical classification of 

surfaces with different shapes at the same depth position” and the “transfer horizontal–vertical 

classification of surfaces with different shapes at different depth positions.” 

The reasons for SVM showing a horizontal–vertical classification accuracy higher than baseline of 

statistical significance for same-type stimuli horizontal–vertical surfaces may be the following. First, 

the disparity patterns of horizontal surfaces and vertical surfaces were different. The activity patterns 

of neurons could reflect this disparity, and SVM used of the different patterns of the neurons for the 

classification. Second, the activity patterns of neurons could reflect horizontal and vertical 

orientation representation processing, i.e., these activity patterns reflect the representation of 

horizontal–vertical orientations of surfaces and SVM classified the surfaces based on these patterns. 

To investigate whether the high accuracy for each ROI depended on disparity or more generalized 

horizontal–vertical orientation representation irrespective of shape, “transfer horizontal–vertical 

classification of surfaces with different shape at the same depth position” was performed. SVM was 

trained to classify whether a stimulus shown to a participant was horizontal or vertical. “Transfer” 

indicates that the stimuli used for training and testing exhibited different shapes but the same depth 

position. For example, data of surfaces with a convex shape shown in the near position were used to 

train SVM and data of surfaces with a concave shape shown in the near position were used to test 

SVM. The classification is illustrated in 2.a, 2.b, 2.c, and 2.d of Figure 2.9. The average accuracies of 

classification for the four types of classification across all participants are shown in Figure 2.10B. In 

the dorsal areas V3A and V7, higher ventral area LOC, and parietal areas VIPS and POIPS, the fMRI 

responses evoked by one type (minus or plus) of horizontal–vertical surface can allow the 

classification of the response evoked by another type (plus or minus, respectively) of horizontal–

vertical surface at the same depth position. This finding suggests that these areas are related to the 

generalized processing of orientation of stereoscopic surfaces irrespective of disparity types. 

For the “transfer horizontal–vertical classification of surfaces with different shapes at different depth 

positions,” SVM was trained to classify the horizontal–vertical orientation of the surface of a 

stimulus shown to participants. “Transfer” indicates means that the data used for training and testing 

had different attributes in shape (convex or concave) and depth (near or far). For example, SVM was 

trained using data with a surface with a convex shape in the near position and SVM was tested using 

data with a surface with a concave shape in the far position. These classifications are shown by 
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arrows 3.a, 3.b, 3.c, and 3.d in Figure 2.9. However, there is other information that could support this 

type of horizontal–vertical classification, namely there are some common disparity patterns between 

the surfaces of different shapes and the same orientation at different depth positions. For example, 

horizontal concave surfaces in the near position and horizontal convex surfaces in the far position 

share a similar pattern at the horizontal center line where the two surfaces may converge if shown 

simultaneously. Similarly, vertical concave surfaces in the near position and vertical convex surfaces 

in the far position share a similar pattern at the vertical center line where the two surfaces may touch 

if they are shown at the same time. Figure 2.11 shows a schematic illustration of these examples. 

SVM could use these patterns to classify the horizontal–vertical orientation of surfaces. Therefore, 

whether the representation is invariant of depth position cannot be verified in this case. The average 

accuracies of all classifications across the eight participants are shown in Figure 2.10C. As shown, in 

addition to the areas (except the LOC) with an accuracy of classification higher than baseline of 

statistical significance for “transfer horizontal–vertical classification of with different shape at the 

same depth position,” those of the dorsal areas KO and hMT+ and the parietal area DIPS are higher 

than baseline of statistical significance. For the LOC, accuracy is higher than the baseline of 

statistical significance in “transfer horizontal–vertical classification of surfaces with different shapes 

at the same depth position” but not for “transfer horizontal–vertical classification of surfaces with 

different shapes at different depth positions.” This is possible because the LOC is selective to depth 

position. Preston et al. (2008) showed that the LO, a sub-region of the LOC, contains information 

regarding the depth position of planes depicted by an RDS. 

 

Figure 2.11 A schematic illustration of two surfaces of different shapes of the same orientation at different depth positions that 

share some similar disparity patterns. (A) A horizontal concave surface in the near position and a horizontal convex surface in the far 

position are shown. These two surfaces share a similar disparity pattern around the position shown by the horizontal red dotted line. 
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(B) Vertical concave surface in the near position and vertical convex surface in the far position. These two surfaces share a similar 

disparity pattern around the vertical dotted red line. 

 

In summary, although we were unable to confirm that the orientation representation is invariant of 

depth position, we can conclude that the dorsal areas V3A and V7, the higher ventral area LOC, and 

the parietal areas VIPS and POIPS are somewhat related to the generalized representation of 

horizontal–vertical orientation of surfaces. In addition, because in the LOC, accuracy in “transfer 

horizontal–vertical classification of surfaces with different shapes at different depth positions” was 

lower than the baseline for statistical significance, we can confirm that the orientation representation 

in the LOC is not invariant with depth position. 

2.5 Discussion 

In the present study, we used the MVPA method and fMRI data to investigate the shape and 

orientation representations of 3D surfaces defined by binocular disparity. By comparing a series of 

the accuracies of classification across ROIs, we found that all types of shape classification—

including the “same-type stimuli shape classification,” “transfer shape classification of surfaces at 

same depth position,” and “transfer shape classification of surfaces at different depth positions”—

showed an accuracy of classification higher than baseline of statistical significance in the dorsal area 

V3A. For horizontal–vertical orientation classification, the accuracies of classification for both 

“same-type stimuli horizontal–vertical classification” and “transfer horizontal–vertical classification 

of surfaces with different shapes at same depth position” were significant in the dorsal areas V3A 

and V7, higher ventral area LOC, and parietal areas VIPS and POIPS. In summary, these results 

indicate that the dorsal area V3A is related to the generalized representation of the shape and that 

some dorsal and ventral areas as well as parts of IPS are related to the generalized horizontal–vertical 

orientation representation of surfaces defined by disparity. 

2.5.1 Comparison with earlier studies of shape representation 

In the “two-stream” theory of cortical areas, visual information is processed progressively from the 

early visual areas to higher areas and divided into two anatomically and functionally separate streams 

after V1. Each stream processes visual information in a hierarchical manner, with each area 

processing information based on the results of previous areas (Zeki, 1978). Mishkin and Ungerleider 

(1982) first conceptualized this theory based on lesion research of non-human primates. The ventral 

stream has been termed the “what” stream whereas the dorsal stream has been termed the “where” 
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stream, as the ventral stream is related to an object’s shape and identity whereas the dorsal stream is 

related to object’s location and spatial relationships. According to this perspective, 3D shape 

representation should exist on the ventral stream. More recently, a revised “two-stream” theory was 

offered by Goodale et al. (1992). Rather than viewing both streams as contributing to conscious 

visual awareness, they argue that only the ventral stream contributes to conscious vision (known as 

the “perception” stream). Information in the dorsal pathway is used for the unconscious control of 

action, such as the movement of the body guided by visual input (known as the “action” stream). 

This functional separation of the ventral and dorsal streams is supported by various research 

including single-unit recording (Sakata et al., 1995; Fogassi et al., 2001), neuropsychological studies 

(Goodale et al., 1991; James et al., 2003), behavioral psychophysics (Ganel et al., 2003), and 

functional imaging (Culham et al., 2003; Monaco et al., 2014), and among others. From this view, 

shape representation can exist on both the ventral and dorsal pathways with representation in the 

ventral stream serving as perception and in the dorsal stream as visually guided action. There is 

ample evidence that 3D shape information from monocular cues is processed both in the ventral and 

dorsal visual streams in humans (Orban et al., 1999; Paradis et al., 2000; Taira et al., 2001; 

Georgieva et al., 2008). In macaques, stereo information has been found in both the dorsal and 

ventral visual stream (Parker, 2007). Further, in an fMRI study of patients suffering from visual 

object agnosia due to a ventral cortex lesion (dorsal cortex is intact), Freud et al. (2017) found that 

the dorsal cortex can mediate object representations that are dissociable from object representations 

in the ventral stream. Together with other evidence, they claimed that representations in the dorsal 

stream mediate the processing of object-related structural information, but are insufficient for normal 

object perception. There is growing evidence that independent object-selective representations exist 

in the dorsal visual pathway, which was once regarded as a function existing solely in the ventral 

visual pathway (Freud et al., 2016). However, there is no complete agreement on the distinction 

between the two pathways and the role played by each area on the pathways. Ventral “perception” 

and dorsal “action” separation has been challenged by findings that dorsal areas are also involved in 

shape representation for tasks that do not involve visually guided action (Konen and Kastner, 2008; 

Lehky and Sereno, 2007; Sereno et al., 2002).  

For studies of single areas of the visual cortex, one challenge is to reveal what information is 

encoded in that area and to determine the manner in which its outputs responding to local simple 

elements are progressively transformed to encode the critical features of spatially extensive objects, 

such as shape and orientation, in other areas. Binocular disparity is a strong cue for 3D shape 

perception. Disparity-selective neurons are widely distributed throughout the visual cortical areas, 
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from as early as the striate cortex (V1 or primary visual cortex) to extra-striate and higher areas like 

the posterior parietal and inferior temporal cortices in both the dorsal stream and ventral visual 

streams (Neri et al., 2004). In the early visual area V1, neurons show selectivity for absolute 

disparity of RDS stimuli (Cumming & Parker, 1997). Neurons in V2 show selectivity for absolute 

and relative disparities (Thomas et al., 2002) and can transform absolute disparity to relative 

disparity during 3D vision, which is important for invariant object recognition (Grossberg et al., 

2011). Besides the V3A, the dorsal regions including V3B/KO and V7 are involved in processing 

disparity-defined depth (Preston et al., 2009). For functional connections, dorsal pathway activation 

is correlated with the anterior ventral pathway activation (Sim et al., 2015). The neurons’ selectivity 

for binocular disparity creates a foundation for ROIs showing accuracy for classifying stereoscopic 

shapes or orientations above baseline of statistical significance in our experiment, whereas the wide 

distribution of these neurons suggests that several areas, from the early visual areas to higher areas, 

offer a high-level accuracy of classification. 

In the present study, we first examined the same-type stimuli shape classification. The neurons 

selective to the shape were found in both the dorsal (V1, V2, V3d, V3A, V7, KO, VIPOS) and 

ventral (V1, V2, LOC) streams. This finding is consistent with the two-stream theory, in which shape 

representation in the ventral stream mediates shape perception while shape representation in the 

dorsal stream mediates visually guided actions. However, we cannot be certain whether the shape 

representations in the dorsal areas are involved in visually guided actions or not, although our results 

support that this representation can exist in the dorsal areas. Therefore, this question thus requires 

further research. 

Besides investigating the selectivity to the shape of surfaces defined by disparity, we investigated 

whether the shape representation was caused by a low-level binocular disparity or more generalized 

representation, which may relate to perception or visually guided actions. This was performed by the 

“transfer shape classification of surfaces at the same depth position” and “transfer shape 

classification of surfaces at different depth positions” analyses; the analyses revealed that all 

classification accuracies in the dorsal area V3A were higher than baseline of statistical significance, 

indicating that V3A is involved in the more generalized representation of shape curvature that does 

not depend on local disparity pattern (orientation and position in depth). 

To the best of our knowledge, there is no direct research on the generalized representation of the 

shape of surfaces solely defined by disparity. However, there is some related research. Dövencioğlu 

et al. (2013) adopted convex “bumps” and concave “dimples” defined by shading, binocular 

disparity, and their combination. By comparing pattern classifications in different visual cortical 
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areas, they found that fMRI BOLD signals in the dorsal visual area V3B/KO were more 

discriminable when disparity and shading concurrently signaled depth, indicating the integration of 

these two cues. In a cross-cue transfer test, they found that the fMRI BOLD signal evoked by one 

type of cue could support the classification of a signal evoked by another type of cue, which 

indicates the generalized representation of shapes in the dorsal visual cortex by combining 

qualitatively different information with 3D perception. However, the results of the present study 

differ from those of Dövencioğlu et al. There are several possible reasons for this difference. First, 

we focused on 3D shape from binocular disparity whereas Dövencioğlu and colleagues focused on 

3D shape from binocular disparity and shading. Our research revealed a common activity pattern of 

the neurons caused by the surface of same shape from different disparity patterns, whereas 

Dövencioğlu et al.’s research revealed a common activity pattern of the neurons caused by the same 

shape from different cues. Second, the convex–concave shapes used in our experiment and those in 

Dövencioğlu and colleagues’ experiment were different. We adopted horizontal-positioned and 

vertical-positioned hemi-cylindrical convex–concave surfaces, while they used convex “bumps” and 

concave “dimples” of hemispheric shapes. Nevertheless, our finding that V3A is involved in a more 

generalized shape representation among ROIs does not contradict that of previous research. In 

macaques, clusters of disparity-selective neurons have been found in V3A (Anzai et al., 2011; Hubel 

et al. 2015). Using a 7T fMRI scanner, Goncalves et al. (2015) showed that disparity-selective 

neurons in the visual cortical areas were clustered and that this organization persisted across imaging 

sessions, particularly in the V3A. 

2.5.2 Comparison with earlier studies of orientation representation 

The perception of orientation is essential for reconstructing the 3D structure of an object. Previous 

studies have demonstrated that the parietal lobe plays an important role in orientation representation. 

Cues that support the depth discrimination of orientation include linear perspective and texture, 

velocity, and disparity gradients (Johnston and Passmore, 1994). These cues can be divided into the 

two following categories: monocular cues and binocular cues. In study of alert monkeys, Shikata et 

al. (1996) found that neurons in the lateral bank of the caudal part of the intraparietal sulcus (CIP) 

were sensitive to the orientation of a surface defined by disparity. Neurons from this region were also 

shown to be selective to binocular disparity gradients in monkeys (Sakata et al., 1998; Taira et al. 

2000). Tuning to disparity-defined 3D surface orientation has also been found in TE regions (Janssen 

et al., 2000). 

In our study of orientation representation of 3D surfaces defined by disparity, we first investigated 



40 

 

 

 

 

the orientation-selectivity of the neurons in ROIs using the “same-type stimuli horizontal–vertical 

surfaces classification.” The accuracies of classification were higher than the baseline of statistical 

significance for all ROIs including the V1, V2, the ventral visual areas V3v and LOC, the dorsal 

visual areas V3d, V3A, KO, hMT+, and V7, and the IPS areas VIPS, POIPS, and DIPS. This finding 

is consistent with those of previous reports that disparity-selective neurons are widely distributed 

across visual cortical areas. To investigate the more generalized representation of horizontal–vertical 

orientation, we performed a “transfer horizontal–vertical classification of surfaces with different 

shapes at the same depth position.” The results showed that from higher dorsal areas to the parietal 

areas V3A, V7, VIPS, and POIPS and ventral area LOC, the accuracies of classification were higher 

than chance level, suggesting that these areas are involved in the more generalized representations of 

orientation. The neurons in the CIP were previously shown to be sensitive to monocular texture 

gradient cues as well as to disparity, suggesting that they integrate texture and disparity gradient 

signals to construct a generalized representation of 3D surface orientation (Tsutsui et al. 2002). Ban 

and Welchman (2015) inferred the computational hierarchy that supports the estimations of slant 

using fMRI measurements and a series of generative models, and found that V3A was involved in 

slanted surface information representation by pooling disparity across space; the representation was 

largely unaffected by low-level stimulus changes, and V3A response showed a degree of tolerance 

across different depth positions. They concluded that V3A, which anatomically precedes CIP in 

macaques, is an earlier locus for processing the disparity signals of slant. This finding is consistent 

with our finding that the accuracy of classification in V3A was higher than the baseline of statistical 

significance. In addition, we found that the neurons in V7, VIPS, and POIPS may be related to the 

generalized representation of orientation. This is consistent with previous animal research showing 

CIP involvement in orientation representation through monocular cues such as texture gradient and 

perspective as well as binocular cues of binocular disparity, suggesting that representation in this 

area may be more generalized (Tsutsui et al., 2001; Tsutsui et al., 2002).  Moreover, the relationship 

between human and monkey neuroanatomy is not exact; the human V7 and/or VIPS are considered 

to correspond to the macaque CIP (Orban et al., 2006a). Therefore, it is reasonable that the human 

areas V7 and VIPS were selective to orientation. 

2.5.3 Other MVPA Analysis 

Janssen et al. (2001) showed that neurons in the TEs represent differences in the second order 

disparities of 3D shapes. Moreover, they found that the neurons in TEs can code the orientation of 

curvature (i.e., vertical or horizontal). Therefore, one may believe that the representation of vertical 
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gradients (as in horizontally oriented cylinders) and that of horizontal gradients (as in vertically 

oriented cylinders) should be different. However, this may not necessarily be true. In the 

aforementioned study, the “selectivity for horizontal compared with vertical 3D shapes” was 

investigated, and the following combinations were verified: (1) the neurons selective for vertical but 

not for horizontal 3D shapes; (2) neurons selective for both directions of curvature; and (3) neurons 

selective for horizontal but not for vertical. A total of 104 neurons were tested, and the result showed 

that 16 of those neurons were selective for both vertical and horizontal 3D shape. In this regard, there 

may be neurons that are selective for both types of surfaces in some areas of the visual cortex. For a 

comprehensive investigation, we examined three additional types of classification in which 

horizontal surfaces and vertical surfaces were independently analyzed.  

Three additional types of classification were also performed in our analysis. The first two types were 

related to the shape classification (Figure 2.12), whereas third type was related to the classification of 

the surface position in terms of depth (Figure 2.13). First, to identify the areas containing reliable 

information regarding the shape, we trained and tested the SVM to distinguish the shape using data 

of surfaces in the same orientation at both depth positions (hereafter denoted by A1). This 

classification is illustrated in Figure 2.12 (1.a and 1.b). The average accuracy for the two types of 

classification across eight participants is shown in Figure 2.14 (A).  All the areas showed an average 

accuracy of classification that was higher than chance level for the two-class classification (50%). 

The V1; V2; dorsal areas V3d, V3A, V7, KO and hMT+; ventral areas V3v and LOC; and the 

parietal area VIPS exhibited an accuracy of classification that exceeded the baseline of statistical 

significance.  Second, to investigate whether ROIs were involved in the generalized representation of 

the shape irrespective of the depth position of the surface, additional transfer shape classification was 

performed (hereafter denoted by A2). This classification is illustrated in Figure 2.12 (2.a, 2.b, 2.c and 

2.d). We trained SVM using data of surfaces at the near position and tested using data of surfaces in 

the same orientation at the far position and vice versa. The average accuracy of the four types of 

classification across eight participants is shown in Figure 2.14 (B). The results showed that V1; V2; 

dorsal areas V3d, V3A and KO; and the parietal area VIPS exhibited an accuracy of classification 

that was statistically significant. Third, to identify the areas containing information regarding the 

depth position of the surface, an additional near–far classification was performed (hereafter denoted 

by A3). As illustrated in Figure 2.13 (1.a and 1.b), we trained and tested the SVM using data of 

surfaces for both the convex and concave shapes in the same orientation. The average accuracy of the 

two types of classification across eight participants are shown in Figure 2.14 (C). The results showed 

that accuracy of classification in all ROIs did not reach baseline of statistical significance.  
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Figure 2.12 Illustration of the additional types of the shape classification performed. 1.a and 1.b represent the shape classification 

that trained and tested the SVM using data of surfaces with the same orientation at both depth positions (denoted by A1). 2.a, 2.b, 2.c, 
and 2.d represent the transfer shape classification that trained the SVM using data of surfaces at the near position and tested the SVM 

using data of surfaces at the far positon, and vice versa (denoted by A2). 

 

 

Figure 2.13 Illustration of the additional near–far classification performed. We trained and tested the SVM using data of both 

convex and concave surfaces with the same orientation (denoted by A3). 
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Figure 2.14 Accuracy of the additional types of classification. (A) The accuracy of classification for the additional classification 

A1. (B) The accuracy of classification for the additional classification A2. (C) The accuracy of classification for the additional 

classification A3. The red horizontal dotted lines indicate the baselines of statistical significance for the ROIs. The locations of these 
lines indicate the upper 99.6% percentile of the distribution of the accuracy of classification of the permutated data. The black 

horizontal line indicates the chance level for two-class classification. 

 

Furthermore, the additional analysis showed the following.  

(1) For classification A1, the additional results were similar (except for the accuracy, which was 

slightly higher in general) to those of the “same-type stimuli shape classification” in section 2.4.2.1 

(hereafter, this type of classification is denoted by S1), in which both the training and testing data 
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were of the same depth position (i.e., near or far) and orientation (i.e., horizontal or vertical). Unlike 

in S1, in A1, V3v and hMT+ showed a classification accuracy that reached baseline of statistical 

significance. We reasoned that some additional information may render the shape classification 

easier in A1 versus S1. In classification type S1, all the convex and concave surfaces are in the same 

depth position. In classification type A1, the convex and concave surfaces in both the near and far 

depth positions are included. For convex and concave surfaces in the near depth position, if we add 

convex surface in the far depth position into the training and testing data, although the disparity 

difference between the convex surface in far depth position and concave surface in near depth 

position surrounding the foveal parts is smaller than the disparity difference between the convex 

surface in near depth position and concave surface in near depth position near the foveal part, the 

disparity in the peripheral part become larger. Therefore, it is possible that the accuracy of 

classification does not exhibit a considerable change or become slightly lower. Moreover, if we add 

concave surface in the far depth position into the training and testing data, the disparities between the 

convex surface in the near depth position and concave surface in far depth position is larger than 

disparities between convex surface in near depth position and concave surface in near position, 

particularly in the foveal part, and this larger disparity will probably increase the accuracy of 

classification. Therefore, the overall accuracy is increased.  

 (2) For classification A2, the results were similar to those reported for classification S1. However, 

the accuracy of classification in V7 and LOC was not significant. This observation can possibly be 

attributed to the representation of the shape V7 and LOC being more sensitive to the depth position. 

This can be inferred from the results of the “same-type stimuli near–far classification” (Figure 2.8). 

According to the results, V7, VIPS and POIPS showed high accuracies of classification, whereas 

other areas did not. Therefore, the V7 did not show a significant accuracy in this additional 

classification A2. For the LOC area, the accuracy of classification was not significant in near–far 

discrimination. However, Preston et al. (2008) showed LO (which is sub region of LOC) contained 

information regarding the depth position of planes depicted using a RDS. This may explain the lack 

of statistically significant accuracy for LOC area in this additional classification A2. The VIPS 

showed a significant accuracy in both classification A2 and near–far classification. This is probably 

because the VIPS contains a subgroup of neurons that are sensitive to the near–far depth position as 

well as neurons that are selective to the shape irrespective of the depth position.  

(3) For classification A3, the results were inconsistent with those previously reported. A study 

showed that numerous areas from the early visual cortex areas to higher areas contained near–far 

information regarding the stereoscopic plain. Preston et al. (2008) found that numerous areas, such as 
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the retinotopic areas V1, V2, V3v, V4; higher ventral area LO; higher dorsal area hMT+, and IPS 

areas VIPS, POIPS and DIPS showed a significant accuracy of classification. The discrepancy 

between the results of the present study which showed no significant accuracy in all ROIs and those 

reported by previous study may be attributed to the following reasons. First, the stimuli used in the 

studies were different. We adopted curved surfaces in different depth positions, whereas Preston et 

al. adopted fronto-parallel flat planes in two different depth positions. It may be more difficult for the 

SVM to perform a near–far classification on curved than plain surfaces as the local disparity 

information is different within the curved surface. Second, we trained and tested the SVM using data 

of surfaces with a different shape. These surfaces with a different shape exhibited differences in local 

disparity, even at identical depth positions. Based on these reasons, we did not identify an ROI with a 

significant accuracy of classification. 

 

2.5.4 Limitations 

In our experiment, we adopted curved surfaces with different shapes and orientations. These surfaces 

were simulated in two different depth positions behind the fixation marker. For the surfaces in the 

same depth position, the surfaces with the same shape (i.e., convex or concave) and different 

orientations (i.e., horizontal or vertical) shared a similar average absolute disparity. In contrast, 

surfaces with a different shape (irrespective of orientation) at the same depth position exhibited 

differences in the average absolute disparity. For the surfaces in the different depth positions, the 

surfaces (irrespective of the shape) exhibited differences in the average absolute disparity.  

 

For the shape classification, there were some limitations in our study: in the “transfer shape 

classification of surfaces at the same depth position,” we sought to investigate the generalized 

representation of the sign of surface curvature, irrespective of the orientation of surfaces. The 

differences in the average absolute disparity between surfaces with a different shape in the same 

depth position may have been used for this kind of shape classification. From this perspective, this 

may affect the conclusion of generalized representation of the shape of surfaces. However, most 

importantly, for the “transfer shape classification at different depth positions,” it was not possible to 

use the differences in average absolute disparity between surfaces with a different shape for 

classification. For this type of classification, the observed significantly high accuracy in the V3A 

cannot be interpreted as selectivity to average absolute disparity. However, it may only be interpreted 
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as a more generalized shape representation of surfaces. Therefore, it is reasonable to conclude that 

V3A was involved in the more generalized representation of the shape of surface, irrespective of its 

orientation and depth position.  

 

For the orientation classification, no issues were noted due to the mismatch in the absolute disparity 

between surfaces with a different shape. In our study, we mainly performed two types of horizontal–

vertical classification, namely the “same-type stimuli horizontal–vertical surfaces classification” and 

“transfer horizontal–vertical classification of surfaces with different shapes.”  The significantly high 

accuracy for these two types of classification could not have been caused by the mismatch in the 

absolute disparity between the convex and concave surfaces. However, we identified a few areas 

showing significant classification accuracy, indicating the involvement of a more generalized 

orientation representation. 

 

In this investigation, we only selected convex and concave surfaces in two different orientations. For 

the reasons for the selection of these surfaces are discussed below. 

First, the main focus of our study was to investigate the convex–concave shape and the horizontal–

vertical representation of the stereoscopic surface in ROIs and to assess the involvement of 

generalized representation in each ROI. For the investigation of generalized representation of the 

shape and orientation, we required stimuli that exhibit both a shape and orientation features. 

Moreover, the shape feature and orientation feature can be easily and independently manipulated. 

Therefore, the convex and concave surfaces with two different orientations were considered. Other 

stimuli, such as “convex ‘bumps’ vs. concave ‘dimples’” used by Dövencioğlu et al. (2013) only 

have the shape feature. Thus, they cannot be used to investigate the generalized shape representation 

or orientation representation.  

Second, the surfaces we selected can be regarded as the element of a more complex surface (e.g., 

sinusoidal surface). We intended to initially investigate a simple and basic surface in our study first. 

Therefore, we selected convex and concave surfaces in two different orientations as our stimuli. We 

did not investigate a more complex index of surface, such as the Koenderink shape index 

(Koenderink et al., 2015), because it is more complicated, and it may be hard to show surfaces with 

differences large enough (e.g., two surfaces with a large curvature difference), which is not suitable 

for the MVPA method.  
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Another concern in this study is that the number of participants is relatively small compared with 

some previous MVPA studies. In the study by Murphy et al. (2013), data from 12 participants were 

used for analysis. However, there are studies that have included fewer or the same number of 

participants than ours. In a study by Horikawa and Kamitani (2017), five participants were recruited, 

whereas in the study by Preston et al. (2008), eight participants were recruited in the experiment. In 

our study, we assured reliability by performing “permutation tests.” Permutation tests are widely 

used for significance testing in classification-based fMRI analyses (Ban and Welchman, 2015; Patten 

and Welchman, 2015). In our case, we randomized the correspondences between fMRI data and 

labels, and performed classification similar to that performed for normal, non-permutated data. This 

procedure was repeated 1,000 times to create a distribution of classification accuracies. We used the 

99.6th percentile (one-tailed, 12 ROIs) as the baseline for statistical significance. This indicates that 

if a classification is higher than the baseline for statistical significance, it is extremely rare that the 

accuracy was obtained by chance in the eight participants. Therefore, we believe that our results are 

valid and reliable. 
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CHAPTER 3 

TOPIC 2: Shape representation from different 

depth cues 

 

3.1 Abstract 

The images projected onto the eyes are two-dimensional (2D), but we perceive a 3D world. A variety 

of depth cues are used to construct a 3D perception from these 2D images, including binocular 

disparity, perspective, texture, and motion parallax, but the underlying neural mechanisms are still 

not fully understood. To identify cortical regions involved in the processing of specific depth cues, 

we measured BOLD signals as participants viewed and classified 3D images of convex and concave 

shapes consisted of slanted planes with different image elements and depth cues. Three types of 

stimuli were used: (1) RDS with binocular disparity, (2) black−white dotted lines with perspective, 

and (3) black−white dotted lines with binocular disparity. The BOLD images were then classified by 

MVPA according to the activity patterns of early and higher-order visual cortical areas. To identify 

cortical visual areas selective for shape, we assessed the convex vs. concave discrimination accuracy 

of MVPA classifiers trained and tested using activity patterns evoked by the same stimulus type 

(same visual elements and depth cue). To identify cortical regions with shared neural activity 

patterns regardless of image type, convex vs. concave discrimination accuracy was assessed by 

transfer classification in which classifiers trained and tested using activity patterns evoked by convex 

or concave images with different visual depth cues (including different elements). Convex vs. 

concave classification accuracy using the same stimulus type was high in early visual areas and 

subregions of the intraparietal sulcus (IPS), whereas transfer convex vs. concave classification 

accuracy was high in subregions of the IPS. These results indicate that early visual areas process 

specific features of stimuli (including depth cues), whereas IPS regions perform more generalized 

processing of 3D shape independent of specific depth cue type. 
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3.2 Introduction  

The ability to perceive the visual world in three dimensions is critical for survival. In humans, most 

activities of daily living depend on the ability to manipulate objects and self in 3D space. However, 

the images projected onto the retina are 2D and so must be reconstructed into an accurate 3D 

representation by the visual system. The information (cues) used for 3D reconstructions are termed 

depth cues. Depth cues can be classified into two types, binocular cues that depend on the difference 

in visual information acquired by the two retinas (binocular disparities) and monocular cues that can 

be acquired by only one eye such as perspective, texture, motion parallax, retinal image size, and 

interposition. 

This 3D reconstruction involves a series of processing steps from the retina to higher-order visual 

cortices. According to the “two-stream” theory, visual information is processed progressively 

through the retina, thalamus, and primary visual cortex (V1) in occipital cortex and then divided into 

two anatomically and functionally separate streams, a dorsal stream from V1 to the parietal cortex 

and a ventral stream from V1 to the temporal cortex. Each stream processes visual information in a 

hierarchical manner, with each cortical region processing information based on the results (output) of 

lower-order regions (Zeki et al., 1978). Mishkin and Ungerleider (1982) first conceptualized this 

theory based on lesion research in non-human primates. The ventral stream has been termed the 

“what” stream as it processes information related to an object’s identity (e.g., shape, size, color, and 

texture) whereas the dorsal stream has been termed the “where” stream as it processes visual 

information related to object location, movement, and spatial relationships. According to this 

perspective, 3D shape information should be processed by the ventral stream. 

A revised “two-stream” theory was formulated by Goodale and Milner (1992). Rather than viewing 

both streams as contributing to conscious visual awareness, they argued that only the ventral stream 

contributes to conscious vision (known as the “perception” stream) while information in the dorsal 

pathway is used for the unconscious control of action, such as the movement of the body guided by 

visual input (and so is known as the “action” stream). According to this view, 3D shape information 

can also be processed in the dorsal stream for visually guided action. In fact, there is evidence that 

3D shape information is processed both in the dorsal and ventral streams. In a macaque monkey 

study, Janssen et al. (1999) found that neurons in a subregion of inferior temporal (IT) cortex in the 

ventral stream are selective to 3D shape defined by disparity, while a human fMRI study by Taira et 

al. (2001) found that the intraparietal area in dorsal stream contributes to perception of 3D surface 

structure based on shading. Furthermore, an fMRI study by Freud et al. (2017) of patients with visual 
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object agnosia due to ventral cortex injury found that the intact dorsal cortex can produce 3D object 

representations without input from the ventral stream. 

 

There is still no consensus on how 3D shape information is processed according to specific depth 

cues or on the specific functions of individual visual cortical areas in processing of 3D shape. 

Therefore, the first aim of the current study is to investigate which visual areas are responsive to 3D 

shape. To this end, we measured the neural activity patterns in visual pathways by BOLD fMRI 

(Logothetis et al., 2001) while subjects viewed 3D images of two simple shapes (a convex or 

concave) composed of different visual elements and with distinct depth cues. Then, MVPA was 

performed to classify the shapes using the BOLD signal patterns in various ROIs, including 

retinotopic visual cortices (V1, V2, V3d, V3v, V3A, and V7), higher ventral cortex LOC, higher 

dorsal area hMT+, KO, and IPS areas VIPS, POIPS, and DIPS. The classifier was trained and tested 

using activity patterns in response to the images (convex or concave) with the same type of cue 

(perspective or binocular disparity), a condition termed “same cue type convex vs. concave 

classification.” If classification accuracy using the signal from a given ROI is higher than the 

statistical significance level, we can conclude that neural activity pattern in the ROI includes 

information which support classifying the 3D shape from a specific cue.  

 

A variety of depth cues contribute to 3D shape perception, and many models have been proposed to 

explain how different depth cues contribute to 3D shape processing at the neural level. Maloney and 

Landy (1989) proposed a simple statistical framework for combining depth estimates from consistent 

depth cues in which information from different cues is processed independently by different modules 

and then fused into a single depth estimate about each point of the scene. They also assumed that the 

assigned weights of different estimates are variable and that the combination is linear (additive). In 

contrast, Clark and Yuille (1990) distinguished between “strong fusion” and “weak fusion”. In strong 

fusion, information from different cues interacts and is processed cooperatively to yield a single 

depth estimate, whereas in weak fusion information from different cues is independent and the final 

estimate is obtained by combining the individual information. However, the functions of specific 

cortical structures in processing different depth cues and their potential interactions are unknown. 

There are two broad possibilities: (1) regional neural activity patterns differ depending on cue type(s) 

or (2) shape information from different depth cues is fused so that neural activity patterns are similar 

among some regions irrespective of cue type. Therefore, the second aim of this study is to investigate 
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whether the neural activity patterns differ during processing of a given 3D shape with distinct depth 

cues or if there are common patterns among some regions independent of cue type. We examined 

this question using MVPA to classify BOLD data for each ROI obtained during processing of images 

with cue types different from that of the training set, a condition termed “transfer convex vs. concave 

stimuli classification”. Classification accuracy higher than statistical significance level in a given 

ROI would suggest that there are common neural activity patterns for processing shapes using 

different depth cues (i.e., the activity pattern in a given ROI during processing of the same shape is 

independent of the depth cue type). 

We predicted that many early- and some mid- to higher-level visual areas would show high 

classification accuracy for the “same cue type convex vs. concave classification” condition (i.e., 

dependence on cue type) for several reasons. First, early visual areas are believed to process simple 

attributes; for example, neurons in V1 are selective to orientation, binocular disparity, and motion 

direction (Hubel and Wiesel, 1962). For the convex vs. concave classification task, these local 

features are very different. In addition, shape processing occurs in some mid- to higher-order dorsal 

and ventral stream regions (Todd, 2004). Conversely, we also expected that some higher dorsal 

visual areas, especially parietal areas, would show high classification accuracy for transfer convex 

vs. concave classification (i.e., different cue types for training and testing) because these regions 

process more complex attributes of objects basing on previous steps. Indeed, there is evidence that 

certain parietal areas are involved in processing 3D shapes defined by different cues. A fMRI study 

by Durand et al. (2009) found that the anterior IPS regions are involved in the processing of 3D 

shape defined by disparity, and Nelissen et al. (2009) found that processing of 3D shape based on 

texture involves both ventral and parietal regions, with strongest activation observed in the caudal 

intraparietal region (CIP) and decreasing strength toward the anterior IPS. In addition, dorsal visual 

stream is believed to be involved in the unconscious control of action. For instance, the intraparietal 

cortex is involved in the control of visually guided action, like reach-to-grasp, which requires on the 

rapid extraction of 3D shape information. It is possible that neurons in some parietal areas will show 

a common neural activity pattern when 3D shapes defined by different cues are presented. Therefore, 

we expected that higher areas especially parietal areas would show high accuracy for transfer convex 

vs. concave classification. 
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3.3 Methodology 

3.3.1 Participants 

Nine participants were recruited for the fMRI experiments, seven males and two females. One male 

was left-handed, whereas all other participants were right-handed. All participants had normal or 

corrected-to-normal vision. None had any history of mental illness or neurological disease. Their 

ages ranged from 20 to 34 years (mean ± SD, 23.9 ± 3.9 years). Participants were remunerated for 

their participation. 

The study protocol was approved by the Human Research Ethics Committee of the Kochi University 

of Technology. Written informed consent was obtained from all participants in accordance with the 

Declaration of Helsinki. 

 

3.3.2 Stimuli 

Stereoscopic stimuli were presented using a PROPixx projector with a 3D circular polarized filter 

placed in front. The stimuli were projected onto a translucent screen inside the bore of the fMRI 

magnet. The participants wore polarized glasses and viewed the images through a slanted mirror 

(angled at 45°) above the head coil. The optical distance from the midpoint of the two eyes to the 

screen was 71 cm. The screen resolution was set at 1920 × 1080 pixe ls and the refresh rate was 480 

Hz. 

The 3D stimuli were generated using Psychotoolbox 3 in MATLAB (MathWorks, Natick, MA, 

USA). The images depicted a shape that was either convex or concave consisted of two slanted 

planes using different visual components and depth cues: (1) RDS with disparity, (2) black–white 

dotted lines with disparity, or (3) black–white dotted lines with perspective (Figure 3.1). Different 

depth cues with similar elements (stimulus 2 and 3) were used to examine whether cues can induce 

cue-specific or common neural activity patterns. Similarly, images with different elements and same 

depth cues (stimulus 1 and 3) were used to assess activity related to visual elements. Images were 

presented on a mid-gray background rectangular area of 31.7° × 18.2°. A fixation marker comprised 

of a hollow square with a side length of 0.7° and horizontal and vertical nonius lines of 0.5° was 

shown at the center of the screen to help participants maintain eye vergence. 
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Figure 3.1 Sample visual stimuli used to generate 3D images of convex or concave shape consisted of planes (only those 

generating the convex shape are shown). (A) RDS. (B) Black−white dotted lines with perspective. (C) Black−white dotted lines with 

disparity. 

 

For the RDS, the stimulus for each eye covered an area of 14.6° × 14.6°. The density of the 

stereogram was 289 dots/deg2 and all dots were of the same size (0.2° in diameter). The relative 

disparity between the peak and sides of the convex shape was 0.4° and that of the concave shape was 

0.2°. The angle of the two slanted planes forming the convex shape was 113° and that of the planes 

forming the concave shape was 121°. Both convex and concave peaks were at the fixation marker 

plane. The concave shape was nearer than the fixation marker plane with crossed disparity, whereas 

the convex shape was farther than the fixation marker plane with uncrossed disparity. Figure 3.2 

presents a top view of the virtual 3D images. 

 

Figure 3.2 Top views of the virtual 3D images (using the RDS stimuli as the example). (A) The convex shape. (B) The concave 

shape. 
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For the stereo images composed of black–white dotted lines with disparity, each monocular 

component covered an area of 14.6° × 14.6°. Lines consisted of black and white sublines of random 

length. We used dotted lines because it is easier for participants to perceive convex and concave 

shapes compared to solid black or white lines with disparity. In the latter case, participants may not 

be able to correctly match the corresponding lines in the left and right eye. The angle of the two 

slanted planes forming these convex and concave images differed among participants. To determine 

the optimal angle for 3D perception, participants first performed a task to adjust the angle defined by 

dotted lines with disparity to that defined by RDS before the fMRI scan. In this procedure, the 

reference shape defined by RDS and the shape for adjusting dotted lines with disparity were shown 

in sequence, and the participants adjusted the angle of the latter image by pressing the corresponding 

buttons on a keypad. This task was repeated twice by each participant, and the average disparity was 

used for the main experiment. 

For the images composed of black–white dotted lines with perspective, we used the same types of 

lines as used for images with disparity. The participants also performed a similar angle adjustment 

task so that the angle of shape defined by perspective appeared the same as the angle of shape 

defined by RDS. The width of the stimuli was 14.6° and height differed depending on the angle 

adjustment by the participants. 

 

3.3.3 Experimental design 

Convex and concave shapes composed of different elements or cues were presented: (1) RDS, (2) 

black–white dotted lines with disparity, (3) black–white dotted lines with perspective. Thus, there 

were six different stimuli (3 types × 2 shapes), which were presented in a block design (Fig ure 3.3). 

In order to avoid adaptation and to maintain neuronal activation, the stimuli in each block were 

flashed on and off at 1 Hz (each on and off period lasting 0.5 s). The random dots or black–white 

dotted lines were regenerated on every presentation. In each block, one of the 6 stimulus conditions 

was shown for 15 s. After each block, the participant was required to judge whether the shape was 

convex or concave by pressing the corresponding button on a keyboard within 3 s. After each 

judgment, there was a 6 s fixation period (the last fixation block was 12 s). All six stimulus 

conditions were presented in random order (12 blocks). Each run of began with a 12 s fixation 

period. The total time taken for one run is calculated as follows: (1) the time of all stimulus blocks is 

15 × 12 = 180 s; (2) the time of all blocks for judgment is 3 × 12 = 36 s; and (3) the time of fixation 

blocks is 12 + 6 × ( 12 − 1) + 12 = 90 s. Therefore, each run lasted a total of 180 + 36 + 90 = 306 s. 
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Figure 3.3 The block design of our experiment. 

 

Participants were instructed to observe the fixation marker during the scan, and try their best to 

reduce head movement as much as possible over the entire session. If head movement was too large 

during one run (translational movement > 2 mm or rotation > 2°), the run was excluded from 

analysis. In general, all participants were able to maintain head stillness and at least 6 runs of EPI 

data were acquired for analysis from each participant. 

 

3.3.4 Data acquisition 

Functional MRI data acquisition was performed at the Brain Communication Research Centre of the 

Kochi University of Technology using a 3 Tesla Siemens MRI scanner with a 24-channel multi-

phase array head coil. A pair of foam pads was used to help participants keep their head still during 

the experiment. To construct a flattened cortical surface with preserved relative dimensions, a high 

resolution (1 × 1 × 1 mm) T1 -weighted anatomical image was obtained for each participant. During 

the functional scans, we measured BOLD signals using an EPI sequence from an area of 35 slices 

that covered the visual cortex, posterior parietal cortex, and posterior temporal cortex. The 

acquisition parameters of the EPI sequence were as follows: 102 volumes per run; echo time (TE) of 

30 ms; repetition time (TR) of 3000 ms; slice thickness of 3 mm; descending slice acquisition order. 

For each session, we also measured a T2-weighted structural image with the same number of slices 

and covering the same area as the corresponding EPI data. This structural image was used as the 

reference for 3D motion correction of EPI data and for co-registration between the T1-weighted 

anatomical image and EPI images. After co-registration, both the anatomical image and the EPI 

images were transformed into Talairach space. 

To define the ROIs, separate fMRI measurements were acquired from all participants before the 

main experiment using stimuli shown to active specific cortical regions in previous studies. A 

rotating wedge and expanding rings were used to define the retinotopically organized visual areas 

V1, V2, V3d, V3v, and V3A (Sereno et al., 1995; DeYoe et al., 1996; Warnking et al., 2002). The 

V7 was defined as the area dorsal and anterior to V3A with lower visual field quadrant 

representation (Tootel et al., 1998; Tyler et al., 2005). In addition, the higher dorsal areas hMT+ and 
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KO, the higher ventral area LOC, and areas along the IPS (VIPS, POIPS, and DIPS) were localized 

using standard procedures. Briefly, hMT+ was defined as an area of voxels in the lateral temporal 

cortex exhibiting significantly higher (p < 10−4) activation to dots that moved outward and inward 

coherently compared to static dots (Zeki et al., 1991), while KO was defined as an area of voxels 

showing significantly higher (p < 10−4) activation in response to contours defined by motion 

compared to transparent motion of black and white dots (Dupont et al., 1997; Zeki et al., 2003). LOC 

was defined as an area of voxels in the lateral occipito-temporal cortex demonstrating significantly 

higher (p < 10−4) activation in response to intact images of objects compared to the corresponding 

scrambled image (Kourtzi et al., 2000; Kourtzi et al., 2001). Finally, individual areas along IPS 

(VIPS, POIPS, and DIPS) were localized using nine connected lines as stimuli. These areas were 

identified by contrasting activity to 3D shapes produced by rotating the lines in depth compared to 

movement along a frontoparallel plane (Vanduffel et al., 2002). 

3.3.5 Data analysis 

3.3.5.1 Pre-processing 

Data processing and analysis were conducted using Freesurfer (Fischl, 2012), BrainVoyager QX 

(Version 2.8.4.2645, 64-bit; BrainInnovation, Maastricht, The Netherlands), MATLAB R2014a, and 

SPSS Statistics 23 (IBM Inc.). The scalp was removed from the T1-weighted 3D anatomical images 

of each participant and white matter (WM) separated from the other components using Freesurfer. 

The WM component was then used as the mask to segment WM from gray matter (GM) using Brain 

Voyager QX. The extracted brain was transformed into Talairach space using BrainVoyager QX. 

The flattened cortical surface was generated to visualize functional maps and delineate ROIs by the 

following series of operations: segmenting the brain along the GM/WM boundary, inflating the 

segmented GM, cutting the GM along the calcarine sulcus, and flattening. The ROIs were then used 

for MVPA. Slice scan time correction and 3D motion correction of EPI data were performed using a 

T2-weighted reference image obtained at the beginning of each session (Wood et al., 1998). 

Temporal filtering was then applied on these EPI data. Spatial smoothing was not performed. Co-

registration was conducted to align the functional EPI data to the anatomical T1-weighted data. 

Finally, functional EPI data were transformed into Talairach space. 

 

3.3.5.2 ROI-based MVPA 

The high sensitivity of MVPA allows for the detection of subtle differences between conditions of 
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interest and comparing neural patterns between cortical ROIs of human brain. In this study, we 

performed MVPA for the ROIs in MATLAB. The linear SVM implemented in MATLAB was used 

as the classifier for MVPA. Two main types of classification were performed. In this first 

classification type, SVM was trained and tested using activity patterns evoked by shapes with the 

same type of depth cue (e.g., using data from the shapes by RDS for both training and testing). This 

classification type was used to assess whether reliable neural activity patterns are induced by convex 

and concave shapes with specific cue types. The second classification type, transfer convex vs. 

concave classification, used activity patterns evoked by images with different cues for training and 

testing (e.g., using activity evoked by the shapes from RDS for training and the shapes from 

perspective for testing). The main purpose of this second type of classification was to assess whether 

certain areas within the visual cortex exhibit common neuronal activity patterns in response to 

convex or concave shapes irrespective of cue. Figure 3.4 illustrates these classifications. 

 

Figure 3.4 Illustration of the classifications performed. a-1, a-2, and a-3 indicate classification of convex vs. concave 3D images 

generated with the same depth cue; b-1, b-2, and b-3 indicate classification of convex vs. concave 3D images generated with different 

depth cues. 

 

The MVPA procedure was conducted as follows. All fMRI time series were shifted two volumes (6 

s) to account for the hemodynamic delay of the BOLD signal. For each ROI, voxels were selected 

from both the left and right hemispheres. These voxels were sorted from large to small response 

magnitude compared to the eye-fixation baseline condition according to the t-statistic. We selected 

the top 250 voxels from each ROI for classification. If the total number of voxels was less than 250 

for a given ROI, the largest available number of voxels was used for the classification. 

To estimate the response amplitude of each voxel of ROI within a stimulus block, we calculated the 

difference between the average BOLD signal of the first three volumes (after shifting by 2 volumes) 
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after stimulus onset (denoted avg1) and the average BOLD signal value of the last two volumes 

(after shifting by 2 volumes) before stimulus onset (denoted avg2) or avg1–avg2. Finally, all 

difference values were transformed into z-scores and these z-scores were used as the input for SVM 

training and testing. 

To evaluate the performance of MVPA classification, the leave-one-run out cross-classification 

method was used to partition the EPI data into training and testing datasets consisting of different 

combinations of data from individual subject runs. For each individual subject ROI, the accuracies of 

all cross-classifications were averaged. Finally, the averaged accuracy of each individual ROI was 

averaged across participants. 

To assess whether the classification accuracy was reliable, permutation testing was performed to 

estimate the baseline of statistical significance. Classification was performed using randomly 

permutated fMRI patterns for all ROIs (i.e., the correspondences between the fMRI data and the 

class labels were randomized) and classification was performed in the same way as for normal non-

permutated data. We repeated this procedure 1000 times to generate a distribution of classification 

accuracies. The 99.6th percentile (one-tailed, 12 ROIs) was used as the baseline for statistical 

significance. 

 

3.4 Result 

3.4.1 Classification of convex vs. concave 3D images with the same depth cue 

To investigate whether neurons in ROIs are selective to convex or concave 3D images generated 

from RDS, black−white lines with perspective, and black−white lines with disparity, we measured 

BOLD signals from visual cortex and then subjected the ROI data to MPVA using the same image 

type for training and testing (e.g., training using RDS data and testing using RDS data). 

3.3.1.1 Classification of convex vs. concave image composed of random dots 

This classification process is illustrated Figure 3.4 a-1 and the results for all ROIs are shown in 

Figure 3.5(A). Almost all ROIs showed classification accuracy (convex vs. concave) greater than 

chance for this binary classification (50%). Among these ROIs, V1, dorsal areas V3d, and V3A 

demonstrated classification accuracy higher than the baseline of statistical significance, and DIPS 

showed classification accuracy only slightly below the baseline of statistical significance. 
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Figure 3.5 Classification accuracies for convex vs. concave 3D images generated with the same depth cue. (A) RDS data. (B) Lines 

with perspective. (C) Lines with disparity. The red horizontal dotted lines indicate the baseline of statistical significance for each ROI. 
The locations of these lines indicate the upper 99.6% percentile of the classification accuracy distribution for permutated data. The 

black horizontal line indicates the chance level for the binary convex vs. concave classification (50%). The error bars depict the 

standard error of the mean across subjects (n = 9). 

 

3.4.1.2 Classification of convex vs. concave images composed of lines with perspective 

This classification process is illustrated in Figure 3.4 a-2 and the results for all ROIs are shown in 

Figure 3.5 (B). Again, many ROIs showed classification accuracy higher than chance (50%). Among 

these ROIs, V1 and dorsal areas V3A demonstrated classification accuracy higher than the baseline 

of statistical significance. 

 

3.4.1.3 Classification of convex vs.  concave images composed of lines with disparity 

This classification process is illustrated in Figure 3.4 a-3 and the results for all ROIs are shown in 

Figure 3.5(C). Many ROIs showed classification accuracy higher than chance (50%), and the ROIs 

for V1, V2, dorsal areas of V3d and V7, and intraparietal area DIPS demonstrated classification 
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accuracy higher than the baseline of statistical significance. 

 

3.4.2 Classification of convex vs. concave 3D images with different depth cues or different 

visual elements 

In the second type of classification, SVM was trained and tested using different depth cues 

(including different visual elements condition) to investigate whether certain ROIs exhibit a common 

neural activity pattern in response to a given image (concave or convex) independent of the specific 

depth cue (e.g., training using images generated from black−white lines with perspective and testing 

using images generated from black−white lines with disparity). 

 

3.4.2.1 RDS for training and lines with perspective for testing and vice versa 

In this classification task, we trained SVM using the 3D shapes generated by RDS and tested SVM 

using shapes generated by black−white dotted lines with perspective and vice versa. The 

classification process is illustrated in Figure 3.4 b-1 and results are shown in Figure 3.6(A). Only 

intraparietal area DIPS showed classification accuracy higher than the baseline of statistical 

significance. 

 

3.4.2.2 Lines with perspective for training and lines with disparity for testing and vice versa 

In this classification task, we trained SVM using 3D shapes generated by black−white dotted lines 

with perspective and tested SVM using shapes generated by black−white dotted lines with disparity 

(and vice versa). This classification is shown in Figure 3.4b-2 and the results are shown in Fig 3.6 

(B). Only intraparietal areas POIPS and DIPS showed classification accuracy higher than the 

baseline of statistical significance. 

 

3.4.2.3 RDS and lines with disparity RDS for training and lines with disparity for testing and vice 

versa 

We also examined classification accuracy for images generated using different visual elements but 

the same depth cue (RDS for training and lines with disparity for testing and vice versa). This type of 

classification is illustrated in Fig 3.4b-3 and results are shown in Fig 3.6(C). The dorsal areas V3A 

and, V7 as well as IPS area DIPS demonstrated classification accuracy higher than the baseline of 
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statistical significance. 

 

Figure 3.6 Classification accuracies for convex vs. concave 3D images generated with different depth cues (including different 

elements condition). (A) RDS and lines with perspective. (B) Lines with perspective and lines with disparity. (C) RDS and lines with 

disparity. The red horizontal dotted lines indicate the baseline of statistical significance for each ROI. The locations of these lines 

indicate the upper 99.6% percentile of the classification accuracy distribution for permutated data. The black horizontal line indicates 

the chance level. The error bars depict the standard error of the mean across subjects (n = 9). 

 

3.5 Discussion 

In the present study, we examined the processing of different visual elements (dots and lines) and 

depth cues (disparity and perspective) by different subregions of the visual cortex using fMRI and 

MVPA to elucidate the mechanisms of 3D image processing. To examine processing of visual 

elements, measurements were conducted using similar images (a convex or concave shape) generated 

by a RDS and by black−white dotted lines, both with binocular disparity as the depth cue. 

Alternatively, processing of depth cues was examined by measuring responses to similar images 

generated by the same elements (black−white dotted lines) but with different depth cues (disparity or 



68 

 

 

 

 

perspective). The major findings can be summarized as follows. (I) When the depth cue (including 

element) was the same, regions with activity showing significant classification accuracy by SVM 

learning were mainly located in lower- and mid-level visual areas, and the higher-order DIPS region 

also demonstrated significant or near significant classification accuracy. (II) When the depth cues (or 

elements) were different, the DIPS area and other higher-order areas demonstrated high accuracy. 

These results suggest that in general, lower level visual areas generate unique activity patterns in 

response to the same image with different depth cues, while some of higher-level regions generate 

similar activity patterns in response to the same image with different depth cues. 

3.5.1 Differential response of various low- and high-level cortices to depth cues 

It is believed that the visual system is split into two separate pathways after primary visual cortex 

(V1), a dorsal pathway to parietal cortex and a ventral pathway to IT cortex. Visual information is 

processed progressively in a hierarchical manner from lower- to higher-order visual areas. Lower-

order visual areas in each pathway mainly process simple attributes, such as motion direction, 

orientation, and speed, whereas the visual attributes processed by higher-order visual areas of each 

pathway are much more complex, culminating in recognition of objects and complex shapes. We 

hypothesized that lower-order visual areas would show high accuracy in the same cue (including 

element) type convex vs. concave classification condition, and that some higher-order visual areas 

would show high accuracy in both the same cue (and element) type and different cue (including 

different element) type (transfer) convex vs. concave classification conditions. In general, the MVPA 

results are in line with our expectations. 

(1) The classification accuracy of V1 was above the baseline of statistical significance for all convex 

vs. concave classifications with the same cue (and element) type. This type of classification includes 

three subtypes depending on the stimuli used. For the same cue type (lines with perspective) convex 

vs. concave classification condition, the convex and concave shapes are distinguished by line 

orientation, and V1 neurons are highly sensitive to lines of different orientation (Hubel and Wiesel, 

1959). For the same cue type (RDS or lines with disparity) convex vs. concave classification, it is 

possible that the high accuracy was dependent on the selectivity of V1 neurons to the sign of 

disparity gradient: the disparity sign is different for concave and convex forms, and V1 neurons are 

highly sensitive to the sign of binocular disparity (Preston et al., 2008). In addition, the convex 

shapes provided information of uncrossed disparity and the concave shapes provided information of 

crossed disparity, which may differentially activate populations of V1 neurons. It is also possible that 

the high classification accuracy of V1 for these two conditions may have been aided by the 
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difference in image depth (near or far to the fixation marker image plane). 

(2) The classification accuracy of V3d was high for the same cue (disparity) convex vs. concave 

condition (same elements: dots or lines), possibly because V3d neurons are also sensitive to 

binocular disparity. In an fMRI study by Preston et al. (2008), neurons in V3d demonstrated 

selectivity to absolute disparity, while Chandrasekaran et al. (2006) reported that fMRI activity in 

area V3d is related to performance in binocular disparity-defined shape judgments. Therefore, the 

high classification accuracy in these two conditions is consistent with the response properties of V3d 

neurons. Conversely, classification accuracy of V3d activity was below significance for the convex 

vs. concave classification of images generated by lines with perspective, suggesting that V3d neurons 

are not selective to perspective or that perspective-selective neurons are not clustered densely enough 

(and thus the local signal is not strong enough) for SVM classification. Classification accuracy was 

also not significant for the transfer convex vs. concave classification conditions using different depth 

cues. We speculate that this classification requires high-order processing (greater integration), while 

V3d is an early visual area in the dorsal pathway. At a lower level of processing, differences in 

training and testing conditions would induce different activity patterns for the same shape type, 

resulting in poor classification accuracy. 

(3) Classification accuracy of the dorsal area V3A was significant for the same cue convex vs. 

concave conditions RDS and lines with perspective as well as for the transfer condition RDS/lines 

with disparity. These findings may be explained by the selectively of V3A neurons for disparity 

(Goncalves et al., 2015). Moreover, our previous fMRI study in topic 1 showed that V3A is selective 

to stereoscopic convex–concave shapes. The disparity patterns between the convex and concave 

shapes defined by RDS were different, so the high accuracy for the RDS convex vs. concave 

classification condition is consistent with known response properties of V3A neurons. In addition, 

there is evidence that basic perspective processing can be performed in V3A (Welchman et al., 

2005), thereby accounting for the high accuracy for lines with perspective convex vs. concave 

classification. While both RDS and lines with disparity create 3D convex and concave shapes by 

binocular disparity, classification accuracy was high for the RDS condition but around chance for the 

lines with disparity condition. As V3A neurons are selective for shape from disparity, it is reasonable 

that classification accuracy would be high for RDS. However, the shapes generated by lines of 

disparity were depicted by conflicting cues: the disparity produced the convex and concave shapes, 

whereas the horizontal and vertical parallel lines created the flat plane. As mentioned, V3A neurons 

are also involved in the processing of perspective. Therefore, V3A accuracy in the lines with 

disparity condition was near chance level. 
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The V3A classification accuracy for the RDS/lines with disparity transfer condition was also higher 

than the baseline of statistical significance, consistent with our study in topic 1 in which we found 

that V3A neurons showed a common activity pattern to convex and concave shapes defined by 

disparity in two different orientations and depth positions. It is thus possible that area V3A is 

involved in a generalized representation of shape defined by binocular disparity and do not depend 

element type (random dots vs. lines). 

(4) IPS areas 

The classification accuracy of the DIPS was around the baseline of statistical significance for the 

same cue (and element) condition and higher than the baseline of statistical significance for all 

transfer (different depth cue or element) conditions. Mid- and higher-order visual cortices appear to 

process first-order and second-order depth information (such as slant and curvature, respectively) on 

3D object structure. Areas involved in processing higher-order depth features of objects in dorsal 

cortex include hMT+, V3A, V7, and regions along the IPS (Alizadeh et al., 2018; Freud et al., 2016; 

Georgieva et al., 2009; Janssen et al., 2018; Katsuyama et al., 2011). Many previous studies have 

found that intraparietal areas are involved in 3D shape processing. For example, there is evidence 

that the CIP in monkeys, which corresponds to VIPS, V7/IPS0, or V7A in humans (Konen et al., 

2013; Orban, 2016), is involved in the representation of 3D curvature defined by disparity (Alizadeh 

et al., 2018). The CIP region may also be a locus where different types of depth cues are integrated, 

including disparity and linear perspective (Tsutsui et al., 2001). The CIP area projects to anterior 

regions of the intraparietal area (AIP) and may belong to a larger object-processing network 

(Erlikhman et al., 2018). There is also evidence that the AIP region in non-human primates is 

sensitive to 3D curvature and 3D shape (Joly et al., 2009; Srivastava et al., 2009). The AIP of non-

human primates is believed to correspond partially to the human DIPS (Orban, 2016) and Durand et 

al. (2009) found that some human DIPS regions are sensitive to depth structure. Considering these 

findings, it is reasonable that accuracy was high in DIPS for all types of classification. In addition, in 

the two-stream theory proposed by Goodale and Milner (1992), information in the dorsal stream is 

used for the unconscious control of action, such as the movement of the body guided by visual input. 

It is possible that the 3D information in the dorsal stream ultimately serves visually guided actions 

(Cohen and Andersen, 2002; Sakata et al., 1998)). Accordingly, some regions in posterior parietal 

cortex involved in motor planning respond to depth signals, including AIP for grasping (Snvastava et 

al., 2009; Theys et al., 2012), the parietal reach region (PRR) (Bhattacharyya et al., 2009), and the 

lateral intraparietal area (LIP) (Durand et al., 2007). This high classification accuracy independent of 

depth cue type may be required for rapid visually guided actions. As this information is more 
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generalized, it does not depend on the specific nature of the depth cue. Therefore, DIPS showed high 

classification accuracy for both same cue (and element) type and transfer conditions. 

3.5.2 Limitations 

The main limitation of this study is the potential use of monocular information for concave vs. 

convex classification. Monocular information may be used for two same cue classification 

conditions, RDS and lines with disparity, as well as for one transfer classification, RDS/lines with 

disparity. These monocular cues are explained for the lines with disparity in Figure 3.7 as the RDS 

condition is similar. Figure 3.7 shows the shapes defined by black–white dotted lines with disparity. 

For illustration, these images have greater disparity and fewer lines than those used for experiments. 

Part A shows a stimulus depicting a convex shape, and part B a stimulus depicting a concave shape. 

For the convex shape, the distance between the left side line and the fixation marker [L1 in (A) of 

Figure 3.7] is longer than the distance between the right side line and the fixation marker [L2 in (A) 

of Figure 3.7], i.e., L1 > L2. Alternatively, for the concave shape, the distance between the left side 

line and the fixation marker [L1’ in (B) of Figure 3.7] is shorter than the length between the right 

side line and the fixation marker [L2’ in (B) of Figure 3.7], i.e., L1’ < L2’. This difference between 

convex and concave stimuli may be used by the left eye for the lines with disparity convex vs. 

concave classification. There is also monocular information accessible to the right eye for 

classification. For the convex shape, the left side is shorter than the right, i.e., L3 < L4 [(A) in Figure 

3.7], whereas for the concave shape, the left side is longer than the right, i.e., L3’ > L4’ [(B) in 

Figure 3.7]. Similar differences can also be used for the RDS/lines with disparity transfer 

classification. 
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Figure 3.7 Illustration of monocular information for judging convex vs. concave shapes. Shapes defined by black−white dotted 

lines with disparity are shown. L indicates image projected to the left eye, and R indicates image projected to the right eye. The stimuli 

shown in this figure are simplified for illustration and are not the real stimuli shown to the participants. (A) Stimuli generating the 

convex shape. (B) Stimuli generating the concave shape. 

 

Although it is possible that this monocular information was used for classification, we think it is 

unlikely. First, in the real stimuli for experiments, the length difference between the left side and the 

right side relative to the fixation marker was only 5.05 mm, which is about 0.2°. Second and more 

importantly, there was no such monocular information for black−white dotted lines with perspective; 

therefore, the transfer RDS/lines with perspective and transfer lines with perspective/lines with 

disparity classifications cannot be made using monocular cues. We conclude that there are common 

neural activity patterns in the DIPS region for the processing of shapes with different depth cues. 
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CHAPTER 4  

GENERAL DISCUSSION 

 

In our research, we investigated to main topics: the first topic is the representation of convex–

concave shape and horizontal–vertical orientation of stereoscopic curved surface; the second topic is 

the representation of convex–concave 3D shape consisted of two slanted planes which defined by 

disparity and perspective respectively. How can we understand these results? What are the 

relationship between our research and previous researches of others’? In this chapter, we will discuss 

these questions. 

4.1 3D information processing among cortices 

The processing of shape and orientation of 3D shape is vital for the survive of human. One of the 

most important theories about the visual information processing is “two-stream” theory. According 

to the theory, visual information is progressively through the retina, thalamus, and primary visual 

cortex (V1) in occipital cortex and then divided into two anatomically and functionally separate 

streams, a dorsal stream from V1 to the parietal cortex and a ventral stream from V1 to the temporal 

cortex. Each stream processes visual information in a hierarchical manner, with each cortical region 

processing information based on the results (output) of the lower regions. Mishkin and Ungerleider 

(1982) first proposed this theory based on lesion research in non-human primates. The ventral stream 

has been termed the “what” stream as it processes information related to an object’s identity (e.g., 

shape, size, color, and texture) whereas the dorsal steam has been termed the “where” stream as it 

processes visual information related to object location, movement, and spatial relationships. Goodale 

and Milner (1992) proposed a revised version of two-stream theory. Rather than viewing both 

streams as contributing to conscious visual awareness, they claimed that only the ventral stream 

contributes to conscious vision (known as the “perception” stream) while information in the dorsal 

stream is used for the unconscious control of action, such as the movement of the body guided by 

visual input (and so is known as the “action” stream). From this point of view, 3D shape processing 

can be occurred in both of the streams, with information in the ventral stream serve for shape 
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perception while information in the dorsal stream serve for vision-guided action.  

During the processing of 3D information along the streams, it is thought that early visual areas 

mainly process simple attributes of objects, such as orientation, motion direction, and speed; whereas 

the visual attributes processed by higher visual areas are much more complex, culminating in 

recognition of objects and complex shapes. Therefore, for “same-type stimuli convex–concave 

classification” in our first topic, and “classification of convex vs. concave 3D images with the same 

depth cue” in our second topic, classification accuracy was higher than the baseline of statistical 

significance in both some of early visual areas and higher visual areas. And we hypnotized that for 

early visual areas, the high accuracy is based on selectivity for simple attributes of stimuli, while for 

the high areas, the high accuracy is based on selectivity for the overall information about convex–

concave shapes.  

(1) Processing shape from disparity 

In our study of first topic, we performed three types of convex–concave classification: “same-type 

stimuli convex–concave classification,” “transfer convex–concave classification of surfaces at the 

same depth position,” and “transfer convex–concave classification of surfaces at different depth 

position.” We found that in V3A, classification accuracy is higher than the baseline of statistical 

significance. This results indicate that V3A play is an important role in the stereoscopic information 

processing along the visual streams. This is consistent with previous related studies:  

First, V3A is selective for disparity. In a study of Preston et al. (2008), they adopted MVPA method 

on fMRI data, and found that V3A is selective for depth position of plane defined by disparity. The 

selectivity for disparity is one of possible reason for high accuracy in “same-type stimuli convex–

concave classification.” 

Second, Coarse stereopsis is processed in the dorsal steam and fine stereopsis in processed in the 

ventral stream (Neri et al., 2004; Uka & DeAngelis, 2006; Roe et al., 2007; Schiller et al., 1990). In 

addition, V3A is on the dorsal visual stream, and this visual stream is related to coarse stereopsis. It 

is likely that V3A was involved in the representation of the shape in a more abstract (coarse) manner, 

which did not depend on the orientation of the surface and depth position. 

Third, it is possible that the coarse information in the dorsal stream is needed by the ventral stream 

for perceive fine stereopsis and information exchange is required between dorsal and ventral stream. 

Many evidence showed that there is information exchange between the dorsal and ventral streams 

and V3A is one of the areas for information exchange. In the anatomical study of Takemura et al. 

(2016), they identified a major white pathway, the vertical occipital fasciculus (VOF), connecting 
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maps within the dorsal and ventral visual cortex. They used a model-based method to assess the 

statistical evidence supporting several aspects of the VOF wiring pattern. They claimed that there is 

strong evidence supporting the hypothesis that dorsal and ventral visual maps communicate through 

the VOF, and the cortical projection zones of the VOF suggest that human ventral (hV4/VO-1) and 

dorsal (V3A, KO) maps exchange substantial information. Also, for functional study, Sim et al. 

(2015) investigated the functional contribution of the visuo-motor system to visual object recognition 

using fMRI and ERP during action priming. Effective connectivity analyses suggested functional 

influences of parietal areas (dorsal stream) on anterior temporal area (ventral stream). In this 

consideration, V3A may be a locus to transfer coarse stereopsis information to ventral stream, and it 

therefore showed high accuracy in all types of convex–concave classification in the first topic of our 

study. 

(2) Processing shape from different cues (disparity or perspective) 

For shape from perspective, similar to disparity, early visual areas are thought process elements of 

the shape from perspective (such as orientation of lines), higher areas process more complex factors 

of shape. This is also supported by our results in our study of the second topic: same cue type 

classification showed high accuracy in both early and high visual areas, whereas transfer convex vs. 

concave classification on stimuli of different type types of cues showed high accuracy mainly in 

DIPS. As the 3D shape information from different cues processed along the visual pathways, these 

depth cues concurrently contribute to 3D shape perception, and many models have been proposed to 

explain how different depth cues contribute to 3D shape processing at the neural level. Maloney and 

Landy (1989) proposed a simple statistical framework for combining depth estimates from consistent 

depth cues in which information from different cues is processed independently by different modules 

and then fused into a single depth estimate about each point of the scene. They also assumed that the 

assigned weights of different estimates are variable and that the combination is linear (additive). In 

contrast, Clark and Yuille (1990) distinguished between “strong fusion” and “weak fusion”. In strong 

fusion, information from different cues interacts and is processed cooperatively to yield a single 

depth estimate, whereas in weak fusion information from different cues is independent and the final 

estimate is obtained by combining the individual information. Although there is no consistent idea on 

how depth cues work together, it commonly agrees that a final depth estimate of each point of shape 

will generated at a certain stage, and 3D information is less dependent on the concrete depth cues. 

Specifically, in the dorsal stream, visual information processing follows an overarching posterior-to-

anterior visual-to-motor gradient, with more posterior areas dedicate predominantly to analysis of 

visual properties, while anterior areas are increasingly concerned with computations related to 
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potential motor interactions with the stimulus, such as encoding the object’s absolute location in 

egocentric space, reaching trajectory, and hand pre-shaping (Fabbri et al., 2016; Stark et al., 2008). 

In the second topic of our study, classification accuracy was higher than the baseline of statistical 

significance in transfer convex vs. concave 3D images generated with different depth cues in DIPS 

which indicate common neural activity pattern is involved in the processing 3D information from 

disparity depth cue and perspective depth cue. It is possible this common activity pattern is related to 

the potential motor interactions with the shapes, and this information is not related to the concrete 

depth cue type. 
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Appendix  

A. Define the ROIs 

The ROIs include retinotopic areas V1, V2, V3d, V3v, and V3A, higher dorsal areas KO, V7, and 

hMT+, higher ventral areas: LOC, IPS areas: DIPS, POIPS, and VIPS. All the stimuli we used were 

generated using Psychotoolbox 3 in MATLAB (The MathWorks). 

A.1 Retinotopic Mapping 

V1, V2, V3d, V3v, and V3A is localized by a rotating wedge (Figure A.1-A) and an expanding ring 

(Figure A.1-B). The rotating wedge stimulus is used to delineate the retinotopic areas. The angle of 

the wedge is 45°, and the angular velocity of rotating is 11.25 deg/s. Each cycle lasts 32 s, and for 

each run includes 8 cycles. The expanding ring stimulus, the ring expands from the center to the 

periphery, it is used to determine the eccentricity axis from the center to periphery. Each cycle lasts 

32 s, and for each run includes 8 cycles. There is a fixation point in the center of both the rotating 

wedge stimulus and the expanding ring stimulus which is used to help participants to maintain 

vergence and avoid eye movement. 

 

Figure A.1 Illustration of stimuli for retinotopic mapping. (A) Stimulus of single a wedge. (B) Stimulus of a ring. 
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A.2 Localizing higher dorsal areas 

The higher dorsal areas which we investigated in our experiments include hMT+ and KO. Figures 

A.2 shows the stimuli to localize hMT+ area. The localizer of hMT+ is similar to the one used by 

Huk et al. (2002). It consists of two types of stimuli: randomly generated static white dots within a 

circle area (Figure A.2-A); randomly generated white dots which are coherently moving outward or 

inward (Figure A.2-B).  The hMT+ is defined as an area which shows more activated to stimulus the 

moving dots compared to the static dots. In the center of the screen, there is a small white square 

which works as fixation marker to help participants to keep the vergence and avoid eye movement. 

 

Figure A.2 Illustration of hMT+ localizer. 

 

Figure A.3 shows the localizer of KO. It is similar to the studies of Dupont et al. (1997) and Van 

Oostende et al. (1997). It contains two types of stimuli: motion-defined contours of a field of black 

and white dots (Figure A.3-A); transparent motion of a field of black and white dots (Figure A.3-B). 

KO is defined by a continues areas which shows more activated to stimulus of motion-defined 

contours compare to transparent motion. There is a black dot in the center of the screen which works 

as a fixation point in order to keep the vergence of the eyes and avoid eye movement. 
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Figure A.3 Illustration of the KO localizer. 

 

A.3 Localizing higher ventral areas 

We localized higher ventral area LOC. The localizer we used is similar with stimuli used in the study 

of Kourtzi and Kanwisher (2000). The localizer of LOC contains two types of stimuli: the intact 

object (Figure A.4-A, B, C, D) and the scrambled version of the object (Figure A.4-A’, B’, C’, D’). 

The intact object is depicted by either grayscale image (Figure A.4-A, B) or line drawing (Figure 

A.4-C, D) image. The objects of images can be familiar (Figure A.4-A, C) or novel (Figure A.4-B, D) 

to the participants. The scramble version of object is generated as follows: first, divide the intact 

images into a 20 × 20 square grid; second, shift the positions of squares randomly.  

A block design was used to show these stimuli. Each run consisted of sixteen stimulus epochs with 

fixation epochs interleaved. Each stimulus epochs lasted for 16 s. Twenty different images of the 

same type (intact or scramble) were shown in each stimulus epochs. Each image was shown for 0.25 

s with a black interval of 0.55 s after it. During the scans, the participants were required to performed 

a fixation task and judged whether they familiar with each intact object or not. The LOC area is 

defined as a set of continuous voxels in the lateral occipito-temporal cortex that showed stronger 

activation to intact versus scrambled images of objects. 
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Figure A.4 Illustration of the LOC localizer. 

 

A.4 Localizing IPS areas 

We adopted the similar stimuli which were used in the studies of Orban et al. (1999) and Vanduffel 

et al. (2002). The stimuli consist of nine connected lines. There are two conditions for our stimuli: (1) 

the stimuli move in the fixation plane, including translating in along the horizontal and vertical axes, 

and rotating along depth axis; (2) in addition to move in the fixation plain, the stimuli also rotate in 

depth for 3D shape from motion, including rotating along horizontal and vertical axes. During the 

scan, the participants were required to observe the fixation marker. The IPS areas are identified by 

contracting activity to condition 2 to activity to condition 1. 
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Figure A.5 Illustration of the stimulus to localize IPS. 

 

B. Abbreviations 

AIP anterior intraparietal area 

BOLD blood oxygenation level-dependent 

CIP caudal intraparietal area 

DIPS dorsal intraparietal sulcus 

EPI echo-planar imaging 

fMRI functional magnetic resonance imaging 

GM gray matter 

IPS intraparietal sulcus 

KO kinetic occipital area 

LGN lateral geniculate nuclei 

LOC lateral occipital complex 

MT middle temporal 

MVPA Multi-voxel pattern analysis 

hMT+ human middle temporal complex 

POIPS parieto-occipital intraparietal sulcus 

ROI region of interest 

RDS rondom dot stereogram 

SVM support vector machine 

TE temporal sulcus 

VIPS ventral intraparietal sulcus 

WM white matter 
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