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Abstract

Super-resolution of Multi-contrast MRI Images with Deep

Learning

LIAO Fangyuan

Magnetic resonance imaging (MRI), one of the medical imaging modalities, uses a

strong magnetic field and radio waves to create detailed anatomical and physiological

images of the human body without pain and ionizing radiation. Nowadays, MRI plays

an indispensable role in our daily life, such as it improves the diagnosis accuracy base

on the high-resolution MRI images. In addition, on account of the ability to display

high contrast resolution of soft tissue, MRI becomes an essential detection method for

the brain neurology.

Recently, the single image super-resolution (SISR) has a growing development in

the deep learning field. The previous study (Yuhua Chen, et al.; Brain MRI super

resolution using 3d deep densely connected neural networks. CoRR, abs/1801.02728,

2018) showed that the 3D deep densely connected neural networks (DCSRN) [1] achieved

state-of-the-art SISR performance in 3D MRI brain image reconstruction.

Inspired by the multi-contrast images of MRI and the work of DCSRN, we propose

a 3D multi-contrast super-resolution network. By conducting experiments on 3D multi-

contrast MRI images of 32 healthy adult subjects, we confirmed that the multi-contrast

input network provides better performance than using only a single-contrast image as

input.

key words Super-resolution, MRI, 3D deep convolutional neural networks
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Chapter 1

Introduction

At the beginning of this chapter, we introduce the background of our research,

such as medical imaging, magnetic resonance imaging (MRI), and super-resolution (SR).

After that, we briefly overview the stage of the current super-resolution studies in deep

learning. Then, we explain our work. In the end, we briefly introduce the dissertation

structure.

1.1 Background

1.1.1 Medical imaging

With the increasing number of people begin to pay more attention to their health

problem, through the help of the medical device’s developing and its availability, around

a billion medical diagnostic examinations take place all over the world [2]. Among these

diagnostic examinations, the clinic value that medical imaging provides is invaluable.

As a technique for creating interior tissue image with the noninvasive, medical

imaging is widely used in the medical diagnostic examination, analysis, and treatment

purpose. For surgery, a valid medical decision depends on the correct diagnosis. The

correct diagnosis usually relies on the accuracy of medical imaging in general. Therefore,

an effective and safe medical imaging takes an essential role in medical decision.

According to the status of the patient’s interior tissue which shown in the imaging

picture, the doctor could accurately locate the lesion, make an assessment of treatment
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1.1 Background

plan, accurately predict for surgical risk and reduce the area of trauma which caused

by the operation. In some case, medical imaging even could help the doctor to reduce

some unnecessary surgery base on the patient’s physical condition.

The most common types for medical imaging are radiographic imaging, nuclear

medicine, ultrasound and Magnetic Resonance Imaging (MRI). In radiographic imaging,

base on the ability for identifying the hard tissue in the body, X-ray as a cheap imaging

method is widely used for diagnosis of hard tissue like bone and tooth. However, the

X-ray only produces a two-dimensional (2D) image. The Computed Tomography (CT)

radiographic imaging solves this problem, by producing high-quality digital images in

three-dimensional (3D) with the help of X-ray and computer, and these images have

a high soft-tissue resolution. However, no matter X-ray or CT, patients have to be

exposed under ionizing radiation. The radiographic imaging method might increase the

percentage of health risk.

1.1.2 MRI

Unlike radiographic imaging, magnetic resonance imaging is a medical scanning

technique which generates medical images by strong magnetic field rather than using

ionizing radiation.

Base on a large number of water molecules within the human body, MRI could

use the magnetic properties of two hydrogen nucleus which the inside water molecule

to create MRI images. According to the fact that the different tissue in the body con-

tains different numbers of the water molecule, the water molecule distribution situation

decides the tissue density and shape, which appears in the MRI image.

On account of the MRI’s ability for displaying high contrast resolution of soft

tissue, such as it could show the vascular structure without the necessity to inject any

contrast agent, it becomes an important and common detection method for the brain
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in neurology. The superiority of MRI high spatial resolution image helps the doctor by

using the abnormal signal in MRI images to identify the abnormalities between healthy

and unhealthy tissue.

However, the disadvantage of MRI comes along with its advantage. For keeping the

regular operation of the MRI machine, it requires the liquid helium cooling equipment,

rebuilding or reinforcement of the shielding room, the electricity and more necessary

conditions according to the weight of MRI machine and the strong magnetic field it

needed. These practical reasons caused the MRI scanner is costly, and the maintenance

fee is high.

Furthermore, if the requirement for higher resolution MRI image is needed, one

option is to buy an MRI scanner which can create a stronger magnetic field, but it cost

more. For instance, a 3 Tesla MRI scanner can double the field strength than a 1.5

Tesla MRI scanner. It could create high-quality images with shorter time and more

tissue details, but a 3 Tesla MRI machine cost approximately twice for 1.5 Tesla MRI

machine, it might be unaffordable for some medical institution. Compared with the

scan time of CT (approximately 15 minutes), the MRI scan takes more than 30 minutes

in general because the acquisition time for collecting all MRI signals is long.

Base on the existing MRI disadvantages mentioned above, the super-resolution

method might be a choice to obtaining a higher resolution MRI image by breaking MRI

machine physical restriction with computing power.

1.1.3 Super-resolution

A high-resolution image usually has high perceptual quality and more valuable

information than the low-resolution image, see in Figure 1.1.

Super-resolution (SR) technique aims to generate a high-resolution (HR) image,

which has high perceptual quality and precise image details, from a low-resolution
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1.1 Background

(a) High-resolution natural image (b) Low-resolution natural image

Fig. 1.1 An example of high-resolution image and low-resolution image

(LR) image. Base on the amount of low-resolution input images, it could simply be

grouped into two categories: single image super-resolution (SISR) and multi-image

super-resolution (MISR) [3].

With the breakthrough of deep learning in recent years, a class of deep neural

networks called convolutional neural network (CNN) has been studied to recognize and

analyze the visual pattern in visual imagery. Recently, the convolutional neural network

is widely used in many fields, such as image recognition, image classification, natural

language processing, etc.

In the super-resolution area, Super-Resolution Convolutional Neural Network (SR-

CNN) [4] is the pioneering single image super-resolution method with deep learning. It

uses only three convolutional layers to producing super-resolution in 2D natural images.

By directly extracting image features and creating the end-to-end mapping in CNN, SR-

CNN achieved the state-of-the-art performance. Whereafter, SRCNN3D [5] extends the

work for SRCNN. It demonstrated that 3D fully convolutional neural network has the

potential ability to enhance 3D medical images. By fully using all features extracted by

previous layers, Dense Convolutional Network (DenseNet) [6] achieved excellent perfor-
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mance in image classification. Inspired by this, 3D Densely Connected Super-resolution

Networks (DCSRN) [1] adopt one dense block to reconstruct high-resolution details from

low-resolution 3D medical images. In addition, comparing with other SISR methods,

DCSRN achieved state-of-the-art performance in 4x resolution-reduced 3D MRI images.

1.2 Proposal

In general, MRI sequence decides the appearance and contrast of MRI image. The

most common two MRI sequences are T1-weighted scan and T2-weighted scan. Through

applying these different type of sequence, the different modality images are generated

such as T1-weighted image is obtained from T1-weighted scan.

As mentioned in the last section, most current super-resolution work is based on

single-image super-resolution. For example, the super-resolution network of SRCNN3D

and DCSRN use only T1-weighted images as network input for reconstructing super-

resolution MRI images.

As MRI could provide multi-contrast medical images, it provides a possibility of

using multi-image super-resolution technique to produce a high-resolution MRI image.

Inspired by the multi-contrast images of MRI and the work of DCSRN, we propose a 3D

multi-contrast super-resolution network. In this work, by comparing with using only a

single-contrast image as network input, we first confirm the usefulness of multi-contrast

input network in super-resolution image generation process. Then, we investigate the

performance of the proposed network in the dataset provided by the human connectome

project (HCP) [7].
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1.3 Dissertation overview

Chapter 2 mainly introduces the deep learning and the convolutional neural net-

work, and the related information at the beginning. Then it presents the previous

work of image super-resolution in the convolutional neural network. At the end part of

this chapter, it briefly introduces MRI acquisition progress and the relationship between

MRI image resolution and k-space. Chapter 3 introduces the proposal 3D multi-contrast

super-resolution network and explains its workflow in detail. Chapter 4 first introduces

the setting and design of conducted experiments. After that, it presents the experiment

results and shows the comparative analysis of the results. Chapter 5 concludes the

thesis.
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Chapter 2

Related work

In this chapter, we first introduce the deep learning and convolution neural network.

Then, we briefly introduce the batch normalization and image augmentation method.

After that, we introduce three super-resolution works with deep learning, which are

closely related to our work. At the end of this chapter, we introduce the image acqui-

sition progress of MRI and display the relationship between k-space and MRI image

resolution.

2.1 Deep Learning

About 60 years ago, artificial intelligence (AI) as a comprehensive field was born

for creating an intelligent machine, which could solve the ordinary task automated like

a human.[8] Diven by the hardware, big dataset, and improved algorithms, machine

learning started to flourish in recent years. As a branch of artificial intelligence, ma-

chine learning used a new programming paradigm. In machine learning, compared with

classical programming, the model is built by learning the optimal parameters from the

given pair of input data and its corresponding answer.

Among all the branches of machine learning, by using multiple representation layers,

deep learning achieved better performance than other methods in the computer vision

field. Due to its state-of-the-art performance, deep learning has been applied in image

recognition, image classification, language generation, and other fields.
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2.2 Convolutional Neural Network

As the foundation of deep learning, the neural network consists of the input layer,

output layer, and one or more hidden layers in general. For a neural network, a layer is

the primary data structure that process data and stores the learned features in weights.

As the basic unit of each layer, a neuron receives the inputs from other neurons in

the previous layer. Each connection between a neuron and its inputs has independent

weights. After passing the weighted sum to the activation function, the output value of

the neuron is generated and treated as one of the inputs for the next layer. An example

of the neuron and neural networks are shown in Figure 2.1.

In deep learning, training network actually could treat as making the network

approaching the best performance by adjusting the value of each weight. In addition

to layers, input data, and its corresponding answer, the loss function and optimizer are

needed for obtaining an optimal model. The loss function as the feedback signal shows

the gap between the target and network prediction. The optimizer guides the learning

progress and minimizes the loss value generated from the loss function.

After all of these components are decided, the weight of each layer will be updated

to generate the new prediction more close to the expected target. This kind of data

transformation, prediction generation, and model parameter updating will be done for

many times until finding the proper value to weights for building the optimal model. A

simple example of deep learning progress is shown in Figure 2.2.

2.2 Convolutional Neural Network

2.2.1 Background

In computer vision, as the most common deep learning model, convolutional neural

network (CNN) was designed to detect the visual pattern of its input data. Unlike the

fully connected neural network, the convolutional neural network reduces the number of
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2.2 Convolutional Neural Network

(a) Neuron

(b) Neural networks

Fig. 2.1 A simple illustration of neuron and neural networks

parameters and learns the local image pattern, which has translation-invariant property.

In general, convolutional neural networks are made by convolution layers, pooling

layers, and fully-connected layers. An example of convolutional neural network archi-

tecture is shown in Figure 2.3.

At the beginning stage of CNN, the classic LeNet-5 [9] which is shown in Figure

2.4 was born in 1998 as a pioneering work and was used to solve the handwriting

number recognition task.With the development of ReLU activation function, dropout
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2.2 Convolutional Neural Network

Fig. 2.2 Illustration of a simplified deep learning progress

Fig. 2.3 A simple illustration of convolutional nerual network

and historical opportunities which brought from GPUs and the large datasets, AlexNet

[10] won the championship in ImageNet competition with an absolute advantage in

2012. Since then, deep learning and the convolutional neural network has explosive

development. A simple illustration of AlexNet architecture is shown in Figure 2.5.

Until now, the convolutional neural network has been used for image recognition,

image classification, object detection, action recognition, text detection, etc. Also, most

deep learning methods are implemented by the convolutional neural network in image

recognition competition.
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2.2 Convolutional Neural Network

Fig. 2.4 A simple illustration of LeNet

Fig. 2.5 A simple illustration of AlexNet

2.2.2 Convolution layer

As the core building block of the convolutional neural network, to reduce the num-

ber of network parameters and help the network learn the local patter from input data,

the convolution layer takes the most critical calculation works. In the convolution layer,

the convolution filter (or convolution kernel) is treated as the neuron. The feature maps

are generated by applying the convolution operation between the convolution filters and

the input data from the previous layer.

As we knew, the pixel is the smallest unit of an image. In a grayscale image, image

is consist of pixels which has a value range from 0 to 255, among these pixel values,

0 stands for black and 255 stands for white. Furthermore, a color image is made by

different color channels. For example, an RGB image, it has three image color channels

which red, green, and blue. For a grayscale image, it has only one image color channel.
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2.2 Convolutional Neural Network

Fig. 2.6 An example of the convolution operation

When a grayscale image as the convolution layer input, image patches are first

extracted from the input data by sliding. Besides, each patch has the same shape as the

convolution filter. Then, the convolution operation is conducted between the patches

and a filter to produce a feature map which contains one type of feature information.

By applying above operations for several times, the feature maps are made by combing

all the feature map which generated from each filter. Then, the feature maps are treated

as the output feature maps of this layer. In addition, the generated feature map has

the same width and height as the filter, and it also has the depth, which is the number

of feature maps.

For the next convolution layer, the output feature maps from the previous layer are

treated as the input feature maps and do the same convolution operation several times

to produce its output feature maps. A simple example of convolution layer process is

in Figure 2.6.

In general, the output height and width of the feature map is smaller than the input

because of the convolution operation. At the convolution layer, by adding the padding

into the input feature map and adjust the convolution stride, the output feature map

could have the same width and height as the input feature map. An example of a
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2.2 Convolutional Neural Network

Fig. 2.7 An example of applying the convolution operation on the input image

data with padding

convolution operation with padding and a stride of 1 are shown in Figure 2.7.

2.2.3 Activation function

The activation function generally attached at the end of layers. It increases the

network representation capability by adding the non-linear transform.

The most common activation functions are Sigmoid, Tanh, Rectified Linear Units

(ReLU), LeakyReLU, Exponential Linear Unit (ELU). Two example activation func-

tions are shown in Figure 2.8.

2.2.4 Loss function

For measuring the difference between the ground truth image and the super-

resolution image that network predicted, the loss function is introduced to guiding

the model optimization in the network training stage. The most common loss functions

are the mean squared error (MSE) and cross-entropy.
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(a) Sigmoid (b) ELU

Fig. 2.8 The function graph of Sigmoid activation function and Exponential

Linear Unit (ELU) activation function

2.3 Batch normalization

In general, the model weight initialization will affect the training rate of deep

neural network. For example, a bad initialization parameters might leads to gradient

propagation problems such as gradient vanishing and explosion, then reduce training

speed.

Batch normalization (BN) [11] is proposed to overcome the disadvantages of the

training difficult in deep learning. It speedup the convergence and decrease the possi-

bility of overfitting in some way.

By applying batch normalization in the middle layer of the deep neural network, it

can somehow reduce the reliance on initialization parameters and set the distribution

of the independent features are more closely to the state when the input data feeds to

the network. Thus, enhanced the network generalization ability in some extent.

To sum up, batch normalization solves the gradient problem in the backpropagation

progress and makes the overall update of the weights of different scales more consistent.
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2.4 Image Augmentation

The common reason caused the underfitting problem is the small training dataset.

Without enough training examples, the model cannot be optimal and obtain general-

ization ability. When this underfitting model meets the new input data, it might not

output the correct prediction. To avoid this problem, data augmentation is a good

option that generates more training data examples from the training dataset. Base on

the larger training dataset, the model could observe the data well, then obtain better

generalization capability in training stage. The common data augmentation methods

are rotation, shift, zoom, flip, etc.

2.5 Image Super-resolution in Deep learning

Base on the current limit of imaging apparatus, the super-resolution technique

is widely used in medical imaging, security, space flight, and so on. To achieve

super-resolution performance for a single image, there are three categories which are

interpolation-based approaches, reconstruction-based approaches, and learning-based

approaches.

With the breakthrough of deep learning in recent years, learning-based super-

resolution method with deep learning achieved state-of-the-art performance. Among

them, three previous studies are closely related to our work, which are SRCNN, SR-

CNN3D, and DCSRN. We describe the detail of them by sequence.

2.6 SRCNN

In 2014, the super-resolution convolutional neural network (SRCNN) as the pio-

neering work, introduces the convolutional neural network into the progress of super-

resolution image generation. Especially, it achieved state-of-the-art super-resolution
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2.6 SRCNN

performance with only three convolution layer. The network structure of SRCNN is

shown in Figure 2.9.

For generating a low-resolution image, the 32x32 high-resolution image patches are

first cropped from the original ground truth image. Then, the 32x32 high-resolution

image patches are conducted the downsampling operation. After applied the Gaussian

blur, the image patches are conducted the upsampling operation for upscaling the image

patch size back to 32x32. The downsampling and upsampling operations are based on

bicubic interpolation with the same factor. Then, these ground truth image patches

and corresponding low-resolution image patches are treated as the input data and label

for the network.

Inspired by sparse-coding, the structure of SRCNN is divided into three parts,

which are patch extraction, non-linear mapping, and reconstruction.

The first convolution layer is treated as the patch extraction and representation

operation. The kernel size of this convolution layer is 9x9, and the kernel number is 64.

Then, its output feature maps have the matrix size 24x24x64. After that, it applied

ReLU as the activation function in this layer.

At the non-linear mapping convolution layer, the kernel size is 1x1, and the ker-

nel number is 32. Thus, the output feature maps have 24x24x32 matrix size for this

convolution layer. Then, the ReLU activation function applied again to this layer.

In the last convolution layer, which treated as reconstruction operation, it has 5x5

kernel size. For the high-resolution image reconstruction, the number of kernels is the

same as the input image channel. Thus, the high-resolution output image has the matrix

size 20 x 20 x c, which c is the input image channel.

For the training phase, SRCNN adopted the Mean Squared Error (MSE) as the loss

function of the network. In the testing phase, SRCNN achieved better performance than

traditional super-resolution method such as sparse-coding method, Anchored Neigh-
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Fig. 2.9 The structure of s uper-resolution convolutional neural network (SRCNN)

bourhood Regression (ANR) method, etc. in natural two-dimensional (2D) images.

2.7 SRCNN3D

Based on the work of SRCNN, C.-H. Pham, et al. proposed a three-dimensional

(3D) convolutional neural network (SRCNN3D). Different like SRCNN, which was de-

signed to improve the performance of super-resolution in the 2D natural image, the

SRCNN3D extend the dimension of SRCNN architecture to 3D data. Moreover, SR-

CNN3D investigated network performance in 3D MRI brain data.

With the increasing dimension of the network, the matrix size of the kernel in

each convolution layer also extends to 3D. For example, in the first convolution layer,

which stands for patch extraction and representation, the kernel size changed from 9x9

to 9x9x9. Besides, the patch size of 3D input data has decreased to 25x25x25 for

balancing the computation time and the stability of training.

In SRCNN3D, it used Kirby21 T1-weighted MRI images as network dataset.
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Among the dataset, 10 MRI images have been used in the training phase and 5 other

MRI images have been used for network performance testing. Same as SRCNN,

SRCNN3D used MSE as the loss function to measure the difference between the ground

truth image and network prediction.

For measuring the network performance, SRCNN3D used PSRN and SSIM as image

metrics. The result of SRCNN3D first shown using the specific image data (MRI) for

network training could improve the network performance for specific images than using

natural images. Also, it approaches better performance than 2D SRCNN averaging

outputs.

2.8 DCSRN

Inspired by the dense convolutional network (DenseNet), the 3D densely connected

super-resolution network (DCSRN) was proposed to restore the finer high-resolution

image detail for 3D structural brain MRI images. The architecture of DCSRN is shown

in Figure 2.10.

For simulating the real MRI image data acquisition progress, the low-resolution

MRI image was generated by the following steps: 1) convert the original high-resolution

image into k-space 2) zeroing the high-frequency area of k-space as resolution degrading

3) apply inverse FFT to 3D k-space. Then, the network training data were randomly

cropped into 64x64x64 cubes from 3D MRI images.

After the training data generation step, the input low-resolution cubes are first

fed into a convolutional layer, which has 3x3x3 kernel size and 2x24 filters. Then, the

transformed input data go through a four-unit densely connected block. Each unit has a

batch normalization layer, which followed by exponential linear units (ELUs) activation

function, and a convolution layer which has the kernel number of 24. This four-unit
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2.8 DCSRN

Fig. 2.10 The architecture of 3D Densely Connected Super-resolution networks (DCSRN)

block structure reduce the problem for gradient vanishing and enhanced the feature

propagation, supporting feature reuse. Besides, the feature maps of all preceding units

are used as inputs, and its own feature maps are used as inputs into all subsequent units.

In the end, a convolution layer transforms the data to generate the super-resolution

cubes.

The whole super-resolution image was rebuild by averaging the network output

cubes, with the 3D sliding window behavior which shifts half cube size each time.

For demonstrating the generalization and performance of the network, DCSRN used

the brain MRI database in the human connectome project (HCP), which has 1113 T1-

weighted structural images. Same as previous super-resolution works, MSE was treated

as the loss function of the network to measure the difference between super-resolution

and the high-resolution cubes. For comparing the network performance, peak signal-

to-noise ratio (PSNR), structural similarity index (SSIM), and normalized root mean

square error (NRMSE) were used to measure the image quality.

Compared with simple interpolation method and SRCNN-based method, DCSRN

achieved the highest PSNR and SSIM and lowest NRMSE among them.
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2.9 MRI and Fourier Transform

2.9 MRI and Fourier Transform

2.9.1 MRI image Acquistion

In the MRI image acquisition stage, the different pulse sequence is applied to the

MRI scanner. The MRI image generation follows the following steps:

1. placing the subject into a very strong magnetic field

2. using radio frequency (RF) coils to transmit the RF enery to the subject

3. turning off the RF transmitter

4. receiving the radio frequecny energy that emitted from the subject’s body

5. From collected MRI signals reconstructing the anatomical and physiological image

of internal body structure

2.9.2 MRI in k-space

As a spatial frequency domain, K-space is used to represent the MR image in an

array under the spatial Fourier transform. The image resolution in the image domain

is related to the number of data points in k-space. By filling more data in k-space, the

image resolution will be upgraded in the image domain. For obtaining the MRI image,

the MRI signal information will be collected for several times to fill the whole image

k-space in the scanning time.

In general, the data point in k-space is corresponding with the part of the infor-

mation in the image domain rather than a pixel. For example, in the central part of

k-space, the basic contrast in the image domain is decided by the low spatial frequencies

information. In the border part of k-space, it stores high spatial frequencies information,

which decides the details and edges for the image.

In the following Figures 2.11 – 2.16, it shows the relationship between the k-space
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2.9 MRI and Fourier Transform

and image domain. For Figures 2.11 – 2.13, the k-space data will be filled in a circle

area from the center part of k-space as a low-pass filter, and the radius of the circle area

will be increased step by step. For Figures 2.14 – 2.16, the k-space data will be filled

outside of a circle area as a high-pass filter with the same radius increase.
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2.9 MRI and Fourier Transform

Fig. 2.11 A T1-weighted MRI brain image which applied a low-pass filter with

a radius of 10

Fig. 2.12 A T1-weighted MRI brain image which applied a low-pass filter with

a radius of 30
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Fig. 2.13 A T1-weighted MRI brain image which applied a low-pass filter with

a radius of 50

Fig. 2.14 A T1-weighted MRI brain image which applied a high-pass filter with

a radius of 10
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Fig. 2.15 A T1-weighted MRI brain image which applied a high-pass filter with

a radius of 30

Fig. 2.16 A T1-weighted MRI brain image which applied a high-pass filter with

a radius of 50
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Chapter 3

Method

In this chapter, Section 3.1 gives an overview of the proposed 3D multi-contrast

super-resolution network. Then, Section 3.2 introduces the data pre-processing steps ap-

plied before inputting the data into the network. Section 3.3 introduces super-resolution

cube generation progress in detail. In the end, Section 3.4 introduces the process of re-

building the 3D MRI images from network outputs.

3.1 Overview of Proposed Network Architecture

Recent studies unfold the superiority of dense block in Densely Connected Convolu-

tional Network (DenseNet). In medical imaging super-resolution field, the deep learning

network which adopts the dense block also achieved state-of-the-art performance, such

as DCSRN and mDCSRN.

To achieve a better 3D MRI super-resolution performance, we propose a 3D multi-

contrast super-resolution network, which is shown in Figure 3.1. The framework of

the proposed network is based on the main architecture of DCSRN, and it is enhanced

with multi-contrast MRI images, which are pairs of T1-weighted MRI images and T2-

weighted MRI images in this work.

In the proposed network, we use three kind of images, T2wHR, T2wLR, and

T1wHR.

T2wHR The high-resolution T2-weighted images as the reference to guide the super-
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3.1 Overview of Proposed Network Architecture

Fig. 3.1 The architecture of proposal 3D multi-contrast super-resolution network

(a) T1-weighted HR image (b) T2-weighted HR image (c) T2-weighted LR image

Fig. 3.2 An example slice of the proposed network input 3D MRI brain image

resolution image generation progress,

T2wLR The low-resolution T2-weighted images as the network input, and

T1wHR The high-resolution T1-weighted images as the hint for improving the net-

work performance.

The example image of T2-weighted high-resolution image, T2-weighted low-resolution

image and T1-weighted high-resolution image is shown in Figure 3.2.

The workflow of 3D multi-contrast super-resolution MRI image reconstruction

could be divided into three steps:
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3.2 Data pre-processing

1. Data pre-processing,

2. Super-resolution cube generation, and

3. MRI image reconstruction.

The detail of each step will be described in the following sections.

3.2 Data pre-processing

3.2.1 Normalization

In the network training stage, the random distribution of input data might slow

down the rate of convergence, because the network might be unable to learn similar

features from the inputs. Also, in the testing stage, the network might predict the

incorrect output in unexpecting.

In our study, all the processing data are 3D MRI images. Since each image has a

different maximum and minimum intensity value, the normalization is required to be

conducted.

All the T1-weighted MRI images and T2-weighted MRI images are applied the

min-max normalization to rescale the value range from 0 to 1. The formula of min-max

normalization is:

X ′ =
X −Xmin

Xmax −Xmin
,

where X is the input image data, Xmax is the maximum value in X, Xmin is the minimum

value of X, and X’ is the image data after applied min-max normalization.

3.2.2 Low-resolution image generation

In the central part of k-space, the low-frequency information decides the image

contrast . However, the high-frequency information in the outer part of k-space decides
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3.3 Super-resolution cubes generation

the finer detail information in the image domain.

For simulating the MRI image generation and degrading the image resolution, the

low-resolution 3D T2-weighted MRI images are generated by the following steps:

1. First, converting the high-resolution 3D T2-weighted MRI image into k-space by

three-dimension Fast Fourier Transform (FFT).

2. Then, along with the phase encoding and frequency encoding direction, the reso-

lution was downgraded by zeroing 75 percentage of the high-frequency information

data.

3. In the end, the low-resolution 3D T2-weighted MRI image was generated by apply-

ing the inverse Fast Fourier Transform to k-space.

3.3 Super-resolution cubes generation

In this proposed network, the high-resolution T1-weighted MRI image cubes were

treated as the hint and expected to help the super-resolution network to produce the

better super-resolution T2-weighted MRI image cubes. Before feeding the multi-contrast

cubes into the network, the high-resolution T1-weighted and the corresponding low-

resolution T2-weighted MRI cubes were concatenated as the network input cube pairs,

whose location is matched.

First of all, a convolution layer was applied to the input with kernel size 3x3x3 and

filter numbers 2x24. Then, the output of the first convolution layer was treated as the

input for a four-unit dense block. Each unit consisted of a batch normalization layer

which followed by exponential linear units (ELUs) activation function and a convolution

layer. Each convolution layer in the dense block has the same filter size 3x3x3 and

filter number 24. However, the input feature map channel of each convolution layer is

increased by the number of convolution layer that data passed by.
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3.4 MRI image reconstruction

Fig. 3.3 Illustration the central architecture of proposal 3D multi-contrast

super-resolution network

After that, the transformed data go through the final convolution layer which has

the 3x3x3 filter size and the filter number of 1. Due to all the input data value have

been normalization between 0 and 1, Sigmoid activation function usually converts the

real value input to another value, which has the range from 0 to 1. Thus, the sigmoid

activation layer was treated as the last layer, which helps the network produce more

accurate SR image.

The detail of 3D multi-contrast super-resolution network is shown in Figure 3.3.

3.4 MRI image reconstruction

To reconstruct super-resolution 3D MRI image, the T2-weighted low-resolution

cubes were first cropped from the 3D T2-weighted low-resolution MRI images with a

3D sliding window behavior where the stride is half of the cube size.

By using the optimal model parameter, which was saved from the training phase,

the super-resolution T2-weighted cubes were generated from the proposed network.
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3.4 MRI image reconstruction

After that, the whole super-resolution T2-weighted MRI image was rebuilt by averaging

the overlapping outputs.
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Chapter 4

Experiments

In this chapter, we first introduce the dataset and the preprocessing detail of exper-

iments. Then, we explain the experiment settings, training details, evaluation settings,

and image metrics in order. Finally, we introduce experiments design for evaluating the

proposed network, and the result for each experiment.

4.1 Dataset and Preprocessing

4.1.1 Dataset

The dataset was from the Human Connectome Project (HCP)∗1, which contains

structural and diffusion imaging data for 35 healthy adult subjects. Among them, 32

subjects matched our network input requirement that they both have T1-weighted and

T2-weighted MR images.

These T1-weighted MRI images (3D MPRAGE) and T2-weighted MRI images (3D

T2-SPACE) were generated on the customized Siemens 3T Connectom scanner. For the

T1-weighted MRI image, the matrix size is 256x256x176, and its spatial resolution is

∗1 Data collection and sharing for this project was provided by the MGH-USC Human Connectome

Project (HCP; Principal Investigators: Bruce Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van

J. Weeden, MD). HCP funding was provided by the National Institute of Dental and Craniofacial

Research (NIDCR), the National Institute of Mental Health (NIMH), and the National Institute

of Neurological Disorders and Stroke (NINDS). HCP data are disseminated by the Laboratory of

Neuro Imaging at the University of Southern California.
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1mm isotropic. The T2-weighted MRI image has 320x320x256 matrix size and 0.7mm

isotropic spatial resolution. The whole dataset was split into 29 subjects for training

and 3 subjects for testing.

4.1.2 Image co-registration and NaN problem

For the reason that matrix size and spatial resolution differ in our case, the image

co-registered was conducted between T1-weighted and T2-weighted MRI image for each

subject by SPM12 (Statistical Parametric Mapping) software with the default setting.

The example of SPM interface is shown in Figure 4.1.

First, the co-registered T2-weighted MRI image was converted to keep the same ma-

trix size and spatial resolution as the T1-weighted MRI image. Then, the co-registered

T2-weighted MRI images treated as the ground-truth HR T2-weighted image because

of the dataset limitation.

In the data pre-processing progress, the co-registered T2-weighted MRI image has

NaN value in the 3D cube outer border part. These NaN values were set as 0.

4.1.3 Patch generation

As mentioned in the dataset section of this chapter, the available T1-weighted and

T2-weighted MRI image dataset are small-scaled. However, the precondition of getting

success from the deep neural network is large scale dataset.

In this case, we adopted the same data patching process as DCSRN. It could

generate similar training samples and then improving the generalization capability of

the proposed network.

For high-resolution T1-weighted and T2-weighted image, all the 64x64x64 cubes

were randomly cropped from the original MR images after applied min-max normal-
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(a) SPM menu interface (b) Coregister operation interface

Fig. 4.1 A example of SPM interface

ization. After the min-max normalization and low-resolution image generation step,

the input 64x64x64 low-resolution cubes were cropped from the same position as high-

resolution T2-weighted and T1-weighted cubes in the low-resolution T2-weighted im-

ages. Each high-resolution T1-weighted, high-resolution T2-weighted and low-resolution

T2-weighted cube pairs was cropped from the same position from each image.

4.2 Experiment setting

4.2.1 Experiment environment

All the experiments were implemented by TensorFlow 1.12.0 and conducted on a

computer with Intel Core i3-8100 3.6GHz processor, GeForce GTX 1080Ti GPU, and

16G memory. Table 4.1 shows the experiment hardware and software in detail.
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Table 4.1 Experiment environment

Processor Intel Core i3-8100 3.6GHz

GPU GeFORCEGTX 1080Ti

Memory 16G

Operating System Ubuntu 18.4.1

Programming Language Python 3.6.8

Software Library TensorFlow 1.12.0, Numpy 1.16.4

4.2.2 Training details

We used Adam optimizer [12] to minimize the mean squared error loss between the

ground truth MRI images and network prediction MRI images. The setting of Adam

optimizer are learning rate = 0.00001, β1 = 0.9, β2 = 0.999,ϵ = 1e-8.

4.2.3 Evaluation setting

For the multi-contrast super-resolution network, we shaved the 3D MRI image

matrix size from 256x256x176 to 256x256x160 for HR T1-weighted, LR T2-weighted,

and HR T2-weighted images after resolution degrading step. Then, all the network input

64x64x64 cubes for generating test SR T2-weighted images were produced by sliding

windows with stride 32 for each direction. According to this, the final super-resolution

T2-weighted image was reconstructed by overlapping and averaging 196 super-resolution

T2-weighted output cubes.

Besides, preventing the checkboard artifacts, we shaved the 8 pixels from the edges

of each super-resolution T2-weighted cubes. Then using these 48x48x48 T2-weighted

cubes, we rebuilt the T2-weighted super-resolution image, and thus matrix size turns

from 256x256x160 to 240x240x144.
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The low-resolution image generation method for nearest-neighbor interpolation

and bicubic interpolation comparison methods is different from multi-contrast super-

resolution network. After the high-resolution T2-weighted 3D image applied min-max

normalization, the normalized 3D image data convert to K-space data which has matrix

size as 256x256x176 by applying FFT.

Let the direction size is 176 as the z-axis. Then, we deleted the same high-frequency

area along the z-axis, it instead of setting them as zero. For deleting the same 75 zero

percentage in K-space, Then, we combine the remaining part as low-resolution image

k-space data which has 128x128x176 matrix size. In the end, the 3D low-resolution

T2-weighted image was obtained from applying iFFT 128x128x176 k-space data. A

simple illustration of deleting k-space data for generating low-resolution image is shown

in Figure 4.2.

In this case, we upscaled the low-resolution 3D image along the z-axis. Then,

we obtained 256x256x176 3D T2-weighted super-resolution image by applying nearest-

neighbor interpolation or bicubic interpolation. Finally, we shaved the 256x256x176 3D

T2-weighted super-resolution image into 240x240x144 matrix size.

For a fair comparison, the measurement of image quality is evaluated along the

z-axis. It means the comparison image matrix size is 244x244. Besides, the center 128

slices in z-direction took part in the final image quality evaluation because these central

part images are more close to the reality super-resolution application objects.

4.2.4 Image metrics

We used three common image metrics in this work for objective image quality as-

sessment. The assessment was conducted by peak signal-to-noise ratio (PSNR), normal-

ized root mean square error (RMSE) and structural similarity index (SSIM) to measure

the differences between the ground truth image and super-resolution image.
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Fig. 4.2 The example of generating k-space data for the low-resolution image

in bicubic interpolation and nearest-neighbor (NN) interpolation method

4.3 Experiment design

In our work, we designed three experiments to demonstrate the performance of

multi-contrast MRI image network.

In experiment 1, the input MRI data types are T1-weighted, and T2-weighted MRI

images that each of them generates 2900 cubes. The aim of experiment 1 is displaying

the network performance in a small multi-contrast image cube training dataset.

Compared with experiment 1, experiment 2 increases the number of training cubes

from 100 to 400 for each T1-weighted and T2-weighted image. The target for experi-

ment2 is investigating the performance improvement that multi-contrast image network

trained in a relatively larger dataset.

Experiment 3 was designed to demonstrate the proposed network performance using

single contrast MRI images as input. For confirming the usefulness of using multi-

contrast MRI image as network input rather than the single contrast MRI image, the

input data of experiment 3 is generated from T2-weighted MRI images. For comparison,

all the T2-weighted input cubes are the same as experiment 1.
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Table 4.2 The input data detail for experiment 1 (MC-small), experiment 2

(MC-large), experiment 3 (SC-small), and experiment 4 (DCSRN)

Experiment MC-small MC-large SC-small DCSRN

MRI image type T1w and T2w T1w and T2w T2w T2w

Input cube number 29x100x2 29x400x2 29x100 29x100

For comparing the network performance with the interpolation method, we con-

ducted nearest-neighbor (NN) interpolation and bicubic interpolation as another two

reference experiment.

In addition to demonstrating the performance improvement of the proposed net-

work, experiment 4 is treated as an additional experiment which has the same MRI

input type and the same number of input numbers as experiment 3. The network ar-

chitecture of experiment 4 is DCSRN. The input detail of each experiment is shown in

Table 4.2.

4.4 Reconstruction results in 200 epochs

As the results in Table 4.3 displayed, experiment 2 achieved the highest average

PSNR and SSIM than other experiments. In experiment 1 and 2, they have the same

input MRI image type, but they have different numbers of input cubes. Within 200

training epochs, experiment2 achieved better quantitative performance than experi-

ment1 in PSNR and SSIM. Also, experiment 2 has smaller NRMSE than experiment1.

It means, with the number of input cubes increasing, the proposed network could achieve

better super-resolution performance within the same training epochs.

As the same number of training epochs and the same amount of T2-weighted train-

ing cubes, comparing experiment 1 and 3, experiment 1 achieve better performance than
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Table 4.3 The averge 240x240x128 super-resolution result of PSNR, NRMSE

and SSIM for nearest-neighbor (NN) interpolation, bicubic interpolation, exper-

iment 1 (MC-small), experiment 2 (MC-large), experiment 3 (SC-small), and

experiment 4 (DCSRN)

Method PSNR NRMSE SSIM

NN 31.2101 0.1313 0.8928

Bicubic 32.5267 0.1128 0.9153

MC-small 35.2543 0.0822 0.9451

MC-large 35.9975 0.0755 0.9532

SC-small 34.7401 0.0874 0.9438

DCSRN 33.8114 0.0972 0.9173

experiment 3 in all image metric. It shows that the proposed network could achieve

higher performance with the help of the multi-contrast image (T1-weighted image).

Under the same input number, the same MRI image type, and the same training

epochs, by comparing experiment 3 and 4, experiment 3 achieved better performance

in all image metric than experiment 4. It shows that the proposed network achieved

better network performance than the DCSRN network by adding the sigmoid activation

function in the last convolution layer.Compared with nearest-neighbor interpolation

and Bicubic interpolation, all the deep learning-based network achieved better super-

resolution performance.

The randomly selected sample of ground truth image, and super-resolution image

result with Nearest-neighbor (NN) interpolation method, bicubic interpolation method,

experiment 1 – 4 are shown in the follow Figure 4.3 to Figure 4.9. The loss and SSIM

value of experiment 1 – 4 in the training stage are shown in the Figure 4.10. The loss

and SSIM value of experiment 1 – 4 in the testing stage are shown in the Figure 4.11.
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(a) Randomly selected sample

ground truth image

(b) Magnified image of cere-

bellum area

(c) Magnified image of the

juncture area of white mat-

ter and grey matter

Fig. 4.3 Illustration of randomly selected sample for the ground truth image

(a) Randomly selected sample

super-resolution image

(b) Magnified image of cere-

bellum area

(c) Magnified image of the

juncture area of white mat-

ter and grey matter

Fig. 4.4 Illustration of randomly selected sample for the super-resolution result

in Nearest-neighbor (NN) interpolation method
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(a) Randomly selected sample

super-resolution image

(b) Magnified image of cere-

bellum area

(c) Magnified image of the

juncture area of white mat-

ter and grey matter

Fig. 4.5 Illustration of randomly selected sample for the super-resolution result

in the bicubic interpolation method

(a) Randomly selected sample

super-resolution image

(b) Magnified image of cere-

bellum area

(c) Magnified image of the

juncture area of white mat-

ter and grey matter

Fig. 4.6 Illustration of randomly selected sample for the super-resolution result

in experiment 1 which based on multi-contrast super-resolution architecture with

a small T1-weighted and T2-weighted dataset
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(a) Randomly selected sample

super-resolution image

(b) Magnified image of cere-

bellum area

(c) Magnified image of the

juncture area of white mat-

ter and grey matter

Fig. 4.7 Illustration of randomly selected sample for the super-resolution result

in experiment 2 which based on multi-contrast super-resolution architecture with

a large T1-weighted and T2-weighted dataset

(a) Randomly selected sample

super-resolution image

(b) Magnified image of cere-

bellum area

(c) Magnified image of the

juncture area of white mat-

ter and grey matter

Fig. 4.8 Illustration of randomly selected sample for the super-resolution result

in experiment 3 which based on proposed network architecture with a small

T2-weighted only dataset
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(a) Randomly selected sample

super-resolution image

(b) Magnified image of cere-

bellum area

(c) Magnified image of the

juncture area of white mat-

ter and grey matter

Fig. 4.9 Illustration of randomly selected sample for the super-resolution result

in experiment 4 which based on DCSRN architecture with a small T2-weighted

only dataset
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(a) Training loss value trend

(b) Training SSIM value trend

Fig. 4.10 Experiment 1 - 4 training loss and SSIM trend under 200 epochs
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(a) Testing loss value trend

(b) Testing SSIM value trend

Fig. 4.11 Experiment 1 - 4 testing loss and SSIM trend under 200 epochs
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4.5 Acquisition time

The acquisition time for 256x256x176 matrix size high-resolution T1w MRI image

takes 6 minutes 2 seconds. The acquisition time for 320x320x256 matrix size high-

resolution T2w MRI image takes 6 minutes 48 seconds.

We assume the acquisition time for 256x256x160 matrix size high-resolution T2w

MRI image approximately takes 2 minutes 43 seconds. According to the 75 percent

of zero areas in k-space, we presume the 256x256x160 low-resolution T2w MRI image

takes around 41 seconds.

In the testing phase, the average generation time of 256x256x160 super-resolution

T2w MRI image takes 1 minute 18 seconds. In this case, taking a low-resolution T2w

MRI image and using proposal network to generated super-resolution T2w MRI image

used 1 minute 59 seconds. Compared with directly taking high-resolution 256x256x160

T1w and T2w MRI images, the proposal network saves 44 seconds for each subject.
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Chapter 5

Conclusion

In this thesis, inspired by the multi-contrast images in MRI, we proposed a 3D

multi-contrast super-resolution network that was based on the current state-of-the-art

single image super-resolution network DCSRN. For demonstrating the network perfor-

mance, we conducted several experiments in the dataset of the Human Connectome

Project (HCP).

By comparing with different super-resolution methods, such as nearest-neighbor

interpolation and bicubic interpolation, the result first confirmed the idea that is using

T1-weighted high-resolution MRI image as a hint to improve the T2-weighted low-

resolution MRI image quality works. Further, it confirms that the multi-contrast input

network provides better performance than using only a single-contrast image as input

in super-resolution image reconstruction. Though enlarge the proposed network input

dataset size, the network could produce higher super-resolution performance.

Base on the current work, there is a possibility to extend our work in the following

directions as future work:

1. using the structural MRI image as a hint to improve the resolution of diffusion-

weighted imaging.

2. using the structural MRI image as a hint to enhance the resolution of the fMRI

image.

3. implement the 3D multi-contrast network with Generative Adversary Networks [13].
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