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Abstract

According to the Japanese National Institute of Population and Social Security Re-

search, the productive age population (between 15 and 64 years old) will continue to

decrease. And in 2060, one out of every 2.5 people will be 65 years old or older. The

challenge can be summarized as a declining birthrate and an aging population, with

two consequences: (i) the increase of caring cost and (ii) the shortage of young labor.

Confronting these challenges: (i) on one hand, we tried to achieve high-level cog-

nitive intelligence on personal care robot (understanding people) so that caring tasks

can be conducted as required where no care givers are available; (ii) on the other

hand, we focus on the intelligent of understanding the environments, that enables

autonomous material transportation in construction sites, so that the effect cased by

the lack of young labor in construction sites can be effectively decreased.

All the presented approaches have been evaluated in a real household environment

and construction sites respectively.
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Chapter 1

Outline

The challenge of a declining birthrate and an aging population comes with two con-

sequences: (i) the increase of caring cost; and (ii) the shortage of young labor.

Confronting these challenges, we have conducted two novel studies (Figure 1-1)

accordingly: (i) personal care robots, to help reducing the caring cost of human care

givers, and (ii) autonomous material transportation robots, to deal with the time-

consuming and laborious on-site handling.

In the rest of this thesis, (i) in Chapter 2, we introduce a series of approaches

and methods to achieve high-level intelligence (understanding people) on personal

care robot KUT-PCR so that caring tasks can be conducted as required where no

care givers are available. As a result, the quality of life of the care recipients can

be improved while the caring cost will be decreased; (ii) in Chapter 3, we discuss

how the automatic material transportation can be achieved through "understanding

environments", so that the effect caused by the lack of young labor in construction

sites can be effectively decreased.

All the presented approaches have been evaluated in a real household environment

and construction sites respectively.
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Chapter 2

Personal Care for the Bedridden

Elderly

Many countries including China, Japan and Germany are facing an ever-increasing

and aging population and a shortage of caring force. As Figure 2-1 shows, the shortage

of caregivers in Japan is estimated to increase up to 790,000 in 2035. Caregivers who

Figure 2-1: Shortage of caregivers.

look after people that are bedridden, due to aging, illness, or an accident, need not

3



only physical strength but also a proper understanding of their patients’ physiological

needs. Professional caregivers are required to carry out such tasks in nursing homes

and hospitals, while visiting caregivers are needed in individuals’ homes [1]. However,

in order to deal with the nursing shortage [2][3] and improve care efficiency, a small

number of caregivers are unable to focus on specific care recipients but instead must

check in on them periodically.

This means that, the bedridden individuals sometimes have no-one to take care

of their needs (Figure 2-2), which leads to inconvenient lives.

Figure 2-2: Inconvenient life.

In this case, if we could develop personal care robots capable of conducting simple

care tasks (e.g., delivering drinks/food, adjusting the temperature or lighting), the

burden on the caregivers can be reduced dramatically (Figure 2-3). As a result, the

quality of life for many people could hopefully be increased.

In this work, we argue that intelligence of the personal care robots can be classified

into three aspects: (i) intelligence of perception; (ii) intelligence of motion; and (iii)

intelligence of reasoning. Accordingly, in the following sections, after we introduce

the basic robotic system, we will present how these three types of intelligence are

realized considering the following research: (i) pose estimation of daily containers;

(ii) context-aware motion control; and (iii)desire-driven reasoning.

4



Figure 2-3: Robotic assistance.

2.1 System Overview

2.1.1 Hardware and Sensors

Figure 2-4 is our newly developed personal care robot named KUT-PCR. KUT-PCR

is a mobile humanoid robot. The humanoid upper body, omnidirectional mobile

platform, and various types of sensors allow KUT-PCR to conduct caring tasks similar

to human caregivers.

The humanoid upper body is designed so that tasks requiring object manipulation

can be achieved. The head has three degrees of freedom including roll, pitch, and tilt.

Each of the two arms has seven degrees of freedom as well as an end effector with one

degree of freedom. Also, the waist has three degrees of freedom so that it can bow

and bend like human beings, which effectively extends the operation.

The robot’s upper body also includes a range of sensors. It uses two RGB-depth

(RGB-D) cameras, mounted on the head and chest, to perceive its environment using

RGB images and point clouds. Force sensors attached to the wrists provide infor-

mation about the objects it holds, while microphones and speakers allow natural

language communication and multimedia applications.

5



Figure 2-4: Personal care robot: KUT-PCR.
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2.1.2 Mathematical Model

The parameters configuration as shown in Figure 2-5 is as follows:

Σ(𝑥, 𝑜, 𝑦): world coordinate;

Σ(𝑥′, 𝑜′, 𝑦′): robot coordinate;

𝑣: robot speed;

𝛼: angle between 𝑥′ and the direction of 𝑣;

𝑓𝑖: force of each wheel;

𝑣𝑖: speed of each wheel;

𝑜′: geometric center and center of gravity of the robot;

𝐿: distance from 𝑜′ to each wheel;

𝜃: angle between 𝑥′ and the wheel numbered 1.

Figure 2-5: Model of the mobile platform.
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Kinematics

The kinematic model of the robot is:

⎡⎢⎢⎢⎢⎢⎢⎣
𝑣1

𝑣2

𝑣3

𝑣4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑠𝑖𝑛𝜃 𝑠𝑖𝑛(𝜋

2
− 𝜃) 𝐿

𝑐𝑜𝑠𝜃 𝑐𝑜𝑠(𝜋
2
− 𝜃) −𝐿

−𝑠𝑖𝑛𝜃 𝑠𝑖𝑛(𝜋
2
− 𝜃) −𝐿

𝑐𝑜𝑠𝜃 𝑐𝑜𝑠(𝜋
2
− 𝜃) 𝐿

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑣𝑥

𝑣𝑦

𝜃

⎤⎥⎥⎥⎦ (2.1)

where 𝑣𝑥 and 𝑣𝑦 are the subcomponents of the robot’s velocity, respectively.

Also, the following relations should be fulfilled:

𝑣1 + 𝑣2 = 𝑣3 + 𝑣4 (2.2)

Dynamics

The dynamics model of the robot is given as:

𝑀0𝑋̈ = 𝐵𝐹 (2.3)

where 𝐵, 𝑀0, 𝐹 and 𝑋̈ are defined as:

𝐵 =

⎡⎢⎢⎢⎣
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

𝐿 −𝐿 −𝐿 𝐿

⎤⎥⎥⎥⎦ (2.4)

𝑀0 =

⎡⎢⎢⎢⎣
𝑀 +𝑚 0 0

0 𝑀 +𝑚 0

0 0 𝐼

⎤⎥⎥⎥⎦ (2.5)

𝐹 =
[︁
𝑓1 𝑓2 𝑓3 𝑓4

]︁𝑇
(2.6)

𝑋̈ =
[︁
𝑣𝑥 𝑣𝑦 𝜃

]︁𝑇
(2.7)
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2.2 Pose Estimation of Daily Containers

Considerable research effort has been devoted to object fetching. In addition to

academic research, many methods have been proposed and verified in competitions

such as the Amazon Picking Challenge. One of the most effective approaches is based

on a pipeline with two stages, namely (i) object detection based on a convolutional

neural network (CNN) and (ii) point-cloud registration based on the iterative closest-

point (ICP) algorithm [4]. Our research benefits from this pipeline while limiting the

scope of objects to daily containers, which, to the best of our knowledge, has not been

discussed previously.

By daily containers, we mean the boxes and bottles that normally contain drink,

food, or medicine. We focus on daily containers because fetching and serving them

properly would fulfill the majority of the daily needs of a person who is elderly,

including eating and drinking. To realize the pipeline successfully, we confront two

main challenges.

1) Highly personalized containers: the daily containers used by different fam-

ilies vary considerably regarding brand, color, and shape. For instance, “tea”

for user A may imply a bottled drink whereas the ideal service for user B would

be hot fresh tea in a mug. This type of variable (sometimes opposite) definition

of classes makes it almost impossible to meet every need with just one trained

model. A more feasible solution is to retrain the model while considering var-

ious users or changes in preferences. Therefore, the complexity of the model

retraining should also be considered seriously.

2) Self- and partial occlusions: because of self- and partial occlusions, the

scanned point clouds may not contain all the information about a given con-

tainer. To perform highly accurate registration with the ICP algorithm, we must

address properly problems such as initial alignment and model cloud processing.

Herein, we present a pose-estimation pipeline for daily containers. We investigated

several CNN models with the aim of maintaining a balance between performance and

9



retraining complexity. Additionally, with the good initial alignment and suitable

model clouds provided by our proposed methods, accurate pose estimation could be

obtained in daily environments considering partial occlusions. Consequently, the life-

support robot KUT-PCR can fetch the target container successfully with the proposed

pipeline.

2.2.1 Related Work

Object Detection

As a classical computer-vision problem, object detection has drawn increasing atten-

tion in recent years with the application of deep learning. The classical approaches to

this challenge are based on algorithms such as shape matching [5] and histogram back

projection [6]. However, these methods usually suffer from low recognition accuracy

and limited tolerance for unstructured environments.

Deep learning for image classification was implemented successfully in 2012 [7]

and was modified soon after to solve problems such as object detection. Delicately

designed models such as MobileNets [8] and Faster R-CNN [9] allowed accurate rect-

angular masks (RMs) to be generated containing the target objects. Moreover, the

use of deep learning has increased the performance of semantic segmentation dramat-

ically, making highly accurate pixel-level segmentation available [10].

The choice among such approaches depends primarily on the needs of the given

task. Traditional methods do not perform reliably in cluttered daily environments.

Semantic segmentation requires large numbers of images labeled at pixel level as

training data, but that is impractical because it is common to have to retrain the

model for different users or newly included containers when supporting the lives of

people who are elderly. Therefore, object-detection approaches resulting in RMs

are chosen given their low retraining complexity and steady performance in daily

scenarios.

10



Pose Estimation

Because object detection can identify and localize daily containers in two-dimensional

(2D) red–green–blue (RGB) images, pose estimation is supposed to provide six-

dimensional (6D) pose estimation for each recognized container based on the object

cloud extracted from the scanned scene cloud.

There are several widely used approaches to pose estimation. Local descriptors

such as SIFT [11] have been applied successfully for objects with sufficient texture.

As for the texture-less objects that are common in daily life, three-dimensional (3D)

template-matching-based methods including LINEMOD [12] prove effective, combin-

ing depth and color information. Nevertheless, this type of method normally performs

less well than desired when confronted with an unstructured environment.

Moreover, ICP-based registration methods [13] can be used to align 3D point

clouds, thereby producing accurate pose estimation. Because ICP is an iterative

local optimizer, we must address problems such as initial alignment and point-cloud

pre-processing to guarantee performance.

2.2.2 Method

Figure 2-6 illustrates the structure of our proposed pipeline. The original point cloud

acquired from a Kinect 2 motion-sensing device is regarded as the “scene cloud”

containing the raw sensor information and can be registered with the RGB image via

accurate camera calibration. With a fine-tuned CNN model in the object-detection

phase, accurate RMs of the target containers can be obtained from the RGB images.

Then, by projecting the RMs from the RGB-image frame to the point-cloud frame,

the point cloud of the target container can be extracted from the scene cloud, the

former being described as the “object cloud.” Nevertheless, because the extraction is

based on rectangles, there will be some background outliers.

Meanwhile, models of various containers are drawn with CAD software or scanned

using a depth camera. A suitable model is retrieved from the model library based on

the recognized container label. The “model cloud” results from multiple processing
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Figure 2-6: Pose-estimation pipeline.

of container models such as down sampling and rotation. The ICP algorithm is then

used to register the model cloud with the object cloud. Upon successful registration,

a 6D pose can finally be estimated.

To select a CNN model that could keep accuracy, speed, and retraining complexity

in ideal balance, we explored several models from the Tensorflow detection-model zoo.

Ultimately, we chose the ssd_mobilenet_v1_coco model, which was pre-trained on

the Microsoft COCO dataset [14]. Originally, the dataset consisted of only general

container classes such as “bottle”. By taking advantage of transfer learning, we fine-

tuned the model with 200 labeled images (which were finished easily with software

such as DarkLabel) for three containers and less than 10 h of training on a PC (Intel i7

processor with no graphics-processing unit). Recognizing more containers in various

scenarios requires more effort, but the overall process is relatively easy and simple,

making it practical for daily use.

The ICP algorithm was designed initially to register two point clouds with the

same or similar number of points and close initial poses. In our case, good initial

alignment and suitable model clouds are crucial for acceptable performance.
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Regarding pose initialization, without good initial alignment, the ICP algorithm

can easily converge to an incorrect local minimum. We have observed experimentally

that the initial orientation of a container does not influence the result dramatically

because containers are usually placed vertically on platforms such as a desk. In

previous work, we proposed an approach based on prior knowledge to address the

initial position 𝑝𝑚(𝑥, 𝑦, 𝑧).

With a finely tuned CNN model, we can assume that the generated RMs surround

the target container properly. In other words, the container should be approximately

centered in the corresponding RM (Figure 2-7).

Figure 2-7: Pose initialization.

We then simply set the median point of the mask as 𝑝𝑚(𝑥, 𝑦) in 2D RGB space.

Projecting the point into the point-cloud frame allows 𝑝𝑚(𝑥, 𝑦, 𝑧) to be obtained in

3D space. It should lie on the surface of the container, which is an initial pose close

to the target cloud. Nevertheless, it often fails for two reasons: (i) the sensor data

are noisy, meaning that the value of z could be either empty or inaccurate; (ii) if the

median point in the RGB image is covered by other objects, 𝑝𝑚(𝑥, 𝑦, 𝑧) could be set

close to an incorrect object.

Considering these factors, we modify the approach as follows. A blue rectangular

area is placed on the RM as shown in Figure 2-7; 𝑃𝑟 is the extracted point cloud with

regard to this rectangle. The 𝐶ℎ𝑒𝑐𝑘𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑 function in Equation 2.8 iterates

all the points in 𝑃𝑟, eliminates empty values, and reorganizes the remaining points,

returning the median point along the 𝑧 axis as 𝑝(𝑥, 𝑦, 𝑧) in the 3D point-cloud space.
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𝑝(𝑥, 𝑦, 𝑧) = 𝐶ℎ𝑒𝑐𝑘𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑(𝑃𝑟) (2.8)

Furthermore, we push the point back along the 𝑧 axis by a distance 𝑑, which is

half the 𝑧 dimension of the model. Eventually, the initial-position guess 𝑝(𝑥, 𝑦, 𝑧) can

be calculated. In practice, 𝑝′(𝑥, 𝑦, 𝑧) would be compensated further considering the

container frame position.

This newly introduced approach allows good initial poses to be calculated with

higher accuracy and better tolerance to sensor noise and object occlusions.

Regarding model cloud processing, limited camera positions mean that only one

side of the container can be scanned. Providing a full model of the container directly

to the registration would result in poor performance because the external points could

act as outliers.

Additionally, some containers such as the juice box shown in Figure 2-8 have

movable parts that can influence the registration. Herein, we use only the most

stable and reliable parts of the container when constructing the mesh model.

Figure 2-8: Valuable parts of a container.

In [15], the self-occlusion issue was solved using a multi-hypothesis approach.

Because most daily containers have relatively simple shapes (mainly cubes and cylin-

ders), we can decrease the algorithmic complexity by having far fewer candidate crops

(in [15], 30 crops were required for each object). As shown in Figure 2-9, because

the object clouds from bottles scanned from different angles are similar, only one

candidate crop is needed in that case.
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The situation becomes slightly more complicated when cubic containers are in-

volved. Two types of target cloud are possible, namely the “half” type and the “one

face” type. Two candidate model clouds that comprise only those parts labeled with

green lines are provided to the ICP registration, and for pose estimation we choose

the one with the lower registration error.

Figure 2-9: Self-occlusion examples.

Partial occlusions occur because the target container is partially hidden by other

objects, making the scanned container surfaces incomplete. Herein, we consider only

partial occlusions caused by other objects on the same surface with the target con-

tainer.

The multi-hypothesis method itself offers a certain degree of tolerance of partial

occlusions. In Figure 2-10-1, the coffee can is causing an occlusion: two surfaces of

the juice box are scanned, one incompletely so. In this case, the half-type model cloud

would perform poor registration whereas the one-face model cloud would register the

complete surface accurately. Therefore, no extra effort is required to deal with the

occlusion in this situation.

However, if both scanned surfaces are incomplete because of the coffee can (Figure

2-10-2), the pose is estimated inaccurately. In this situation, a suitable model cloud

could be provided by cropping the model upward from the bottom. In previous

work, we cropped the model with a constant step length until the registration error

𝜀 decreased below a given threshold 𝜀𝑡.

However, it is difficult to choose the step length because doing so involves a trade-

off between speed and accuracy. Herein, we propose an approach involving a model

cropped with a variable step size. During the experiment, we noticed that the ICP
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Figure 2-10: Examples of partial occlusions.

registration error 𝜀 could also be a metric for the degree of partial occlusion. There-

fore, we calculate the model-cropping step length 𝑙 as:

𝑙 = 𝜇𝜀 (2.9)

where 𝜇 is an empirical value. Similar to the principle of a classical P controller, 𝑙 can

be calculated based on the degree of partial occlusion. Two successful registration

scenarios are demonstrated in Figure 2-11.

Figure 2-11: Successful registration scenarios with partial occlusions.

2.2.3 Experiments

Evaluation of Effectiveness and Accuracy

In the first experiment, we used a Kinect 2 RGB-D camera as the data source. We

placed several daily containers on a crowded desk and used a maker board to provide
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the ground truth of the target-container poses (Figure 2-12).

We began with pose estimation with no partial occlusion, taking a juice box as

the target container (Figure 2-12-1). We conducted 20 estimations of various poses

relative to the camera. The position error was less than 2 mm and the orientation

error was less than 2 degrees.

Next, we conducted 20 estimations of various poses with the juice box partially

hidden (Figure 2-12-2). We note that the error bounds increased to 1 cm in position

and 7 degrees in orientation considering 18 successful registrations. The remaining

two trials ended with failed information because 𝜀 did not decease below 𝜀𝑡 after

multiple model cropping. Nevertheless, the performance fulfills the requirements of

container picking.

Figure 2-12: Scenarios used to evaluate accuracy.

Container Fetching with KUT-PCR

The second experiment was to demonstrate various fetching tasks performed with a

KUT-PCR robot. The scenario involved a working desk that was excluded from the

model training phase to challenge the pipeline’s generalization ability.

We placed several daily containers on the desk along with some tools. Figure

2-13-1 to Figure 2-13-4 show one of 10 fetching tasks conducted with the right arm,

and Figure 2-13-5 to Figure 2-13-8 show the same task recorded from another angle.
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Figure 2-13: Container-fetching experiment with KUT-PCR.

2.3 Context-Aware Local Planning

Personal care robots can help with the everyday activities of people who suffer from

illness, disease, or injury. A fine-tuned local planner is essential for a robot to follow

a planned path while avoiding obstacles. Within this well-studied domain, our area

of interest is a local planner that can change its configurations actively considering

the environmental context.

In the field of robotics, context awareness refers to the ability of a robot to sense

and react according to its environment [16]. A semantic-aware robotic system typi-

cally comprises two functions, namely (i) recognizing different environmental seman-

tics and (ii) reacting accordingly with reasonable actions. In the present work, we

focus on the latter function.

Previous research has introduced context-aware global planning methods that al-

low a robot to plan a global path without invading human workspaces [17]. However,

in scenarios involving homecare in household environments, interacting closely with

people is inevitable. Because avoiding certain locations is not an option, we argue that

a context-aware local planner is required for the robot to deal with diverse scenarios.

The need for a context-aware local planner can be explained with a simple caring

scenario involving a human caregiver. While caring for a bedridden patient, the

caregiver walks relatively quickly through doorways and empty rooms (i.e., where
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there are no other people). However, upon entering the bedroom, the caregiver slows

down so as not to disturb the patient. Furthermore, when conducting activities

near the patient or other people, the caregiver pays extra attention so as to avoid

accidents such as colliding with people or dropping objects. Put simply, a human

caregiver performs homecare tasks with different behavioral characteristics depending

on where she/he is and who/what is around.

Herein, we first present a dynamic re-configurable local planner so that suitable

behavioral characteristics can be triggered with pre-defined semantic labels. We then

introduce a complete system describing how a robot can take advantage of the pro-

posed planner. Finally, through extensive experiments in an actual household domain,

we establish that the proposed approach is effective.

2.3.1 Related Work

Semantic information can provide considerable impetus for advances in robotics ap-

plications, especially when considering human environments. Researchers have pre-

viously built a system based on a state-of-the-art convolutional network, generating

semantic labels for indoor (e.g., kitchen, office, corridor) and outdoor (e.g., parking

garage, food court, café) environments [18].

With the means to sense or predict semantic information in an operating environ-

ment, considerable corresponding efforts have been made to enable robot motion that

is more reasonable and effective, the main direction being semantic-aware path plan-

ning. Human motion patterns have been learned based on sampled hidden Markov

models and used in a path-planning algorithm based on a probabilistic roadmap

[17]. This was done to minimize social distractions such as going through someone’s

working space. From another perspective, avoiding the need to observe people, an

affordance map has been proposed that describes the environment considering geo-

metric features, whereupon a global planning method A* could be conducted aimed

at a semantic-aware global path [16].

The aforementioned approaches are focused on minimizing the extent to which

robots affect people by preventing the former from entering the working spaces of the
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latter. However, to the best of our knowledge, re-configuring a local planner [6] in

run time to achieve better performance is yet to be discussed.

2.3.2 Method

In this section, we introduce a robot controller based on a dynamic window approach

(DWA). We also discuss how we modified the original approach to be able to adjust

the robot motion given a pre-defined semantic label.

Dynamic Footprint

The DWA generates actuator commands so that the robot can follow the global path

without running into obstacles or violating the dynamic limitations of the actuators.

An initial step is to define the footprint of the robot with a polygon, which is the

basis for collision checking in the following procedures. In most cases, the footprint

is hardcoded and remains unchanged unless there is a mechanical re-design (2-14).

Figure 2-14: Perception range and work space.

In our implementation, the robot footprint is assumed to be dynamic with two con-

siderations, namely that (i) different levels of safety should be achievable by adjusting

the size of the footprint and (ii) for a mobile humanoid robot, the configurations of

the upper body should also be considered for controlling the motion of the mobile

platform.
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Figure 2-15-1 shows the upper body remaining within the mobile platform; the

light-blue area is referred to as the inflation footprint, obtained by extending the

robot shape in four directions with the inflation lengths 𝜂𝑓 , 𝜂𝑙, 𝜂𝑏, and 𝜂𝑟. The

original footprint considering only the mobile platform without inflation is a square

of side 2𝑅, while an actual footprint is described by the distances from the ori-

gin to each side. Therefore, the expanded footprint in 2-15-1 is denoted as 𝐹 =

𝑅 + 𝜂𝑓 , 𝑅 + 𝜂𝑙, 𝑅 + 𝜂𝑏, 𝑅 + 𝜂𝑟. The inflation provides a “safe zone” between obstacles

and the robot. A larger inflation body provides better capability to deal with possible

collisions, such as those with fast-moving obstacles.

In 2-15-2, the forearms of the upper body reach beyond the mobile platform, there-

fore requiring a method for expanding the footprint considering the upper-body con-

figuration. Evaluation points 𝑒𝑙𝑒, 𝑒𝑙𝑤, 𝑒𝑟𝑒, and 𝑒𝑟𝑤 represent the coordinates mapped

to the ground of the robot’s left elbow joint, left wrist, right elbow joint, and right

wrist, respectively.

Figure 2-15: Dynamic footprint.

Table 2.1 presents a footprint inflation algorithm that calculates the expanded

footprint on the fly with respect to the evaluation points on the upper body. First,

a footprint 𝐹 considering only the mobile platform is initialized. The evaluation

points are then passed to the function 𝐶𝐴𝐿𝐶_𝑅𝐸𝐶𝑇𝐴𝑁𝐺𝐿𝐸 that calculates the

minimum bounding rectangle REC of the input point sets by using the gift-wrapping
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Table 2.1: Footprint Inflation Algorithm

method. We then evaluate each distance (origin to side distance) in REC with 𝑅; if

the distance exceeds 𝑅, then the corresponding distance in 𝐹 is replaced. Eventually,

the resulting footprint is returned.

Additional Reduction of Velocity Search Space

KUT-PCR sits on an omnidirectional mobile platform: transitional/rotational motion

is generated by four omnidirectional wheels and is denoted as 𝑣(𝑥̇, 𝑦̇, 𝜃). Normally,

the search space of the possible velocities is reduced as follows:

1) Circular Trajectories: the DWA considers only circular trajectories, which

are determined by a given velocity comprising the two-dimensional translational

speed (𝑥̇, 𝑦̇) and the one-dimensional rotational speed 𝜃. This leads eventually

to a three-dimensional velocity search space. For clarity, we discuss the problem

in a two-dimensional space considering only 𝑥̇ and 𝜃. Initially, the space 𝑉𝑠 is

determined by the actuator limitations (maximum and minimum speed) (Fig

2-16).

2) Admissible Velocities: avoiding obstacles is the top priority for a robot. Any

generated circular trajectory that could result in colliding with an obstacle is

considered a failed trajectory and the corresponding velocity is regarded as

inadmissible. All the safe trajectories in the initial space establish a space 𝑉𝑎.
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Figure 2-16: Velocity search space.

3) Dynamic Window: originally, the dynamic window 𝑉𝑑 contains the velocities

that are reachable in the next time interval, considering the limited accelerations

of the actuators. Thus, the final velocity search space 𝑉𝑟 is calculated by 𝑉𝑟 =

𝑉𝑠 ∩ 𝑉𝑎 ∩ 𝑉𝑑. In our application, we assume that reducing the dynamic window

and initial velocity space further results in different motion patterns fitting

certain requirements.

4) Reduction of 𝑉𝑠: usually, robots tend to exhaust the power of the actuators to

obtain the highest performance (greatest efficiency). However, in personal care

scenarios, there can be additional restriction on the actuators. In Figure 2-17,

we reduce the rotational speed equally in both directions to avoid high-speed

turning actions. The speed in the forward direction is similarly limited, whereas

the limitation on the backward direction is obviously larger. This indicates

that although the backward speed is required to avoid dynamic obstacles, high-

speed backward operation in a human-centered environment is dangerous. The

reduction 𝜁𝑠 is denoted as:

𝜁𝑠 = {𝑥̇𝑚𝑎𝑥, 𝑥̇𝑚𝑖𝑛, 𝑦̇𝑚𝑎𝑥, 𝑦̇𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥, 𝜃𝑚𝑖𝑛} (2.10)

where 𝑥̇𝑚𝑎𝑥,𝑥̇𝑚𝑖𝑛 are the velocity limitations in the positive and negative direc-

tions, respectively, on the 𝑥 axis, and 𝑦̇𝑚𝑎𝑥, 𝑦̇𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥, 𝜃𝑚𝑖𝑛 are the restrictions

on the 𝑦 and 𝜃 axes, respectively.
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5) Reduction of 𝑉𝑑: while 𝑉𝑠 defines the operation bounds, the dynamic per-

formance considering acceleration/breaking is determined by 𝑉𝑑. The original

dynamic window 𝑉𝑑 is typically a rectangle located symmetrically around the

current speed, but we add an additional limitation for further reduction. For

instance, although high-speed backward operation must be prohibited, we ex-

pect backward motion while avoiding a dynamic obstacle to be efficient (i.e.,

with high acceleration). The reduction of 𝑉𝑑 is described with 𝜁𝑑, namely:

𝜁𝑑 = {𝑥̈𝑚𝑎𝑥, 𝑥̈𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥, 𝜃𝑚𝑖𝑛} (2.11)

where 𝑥̈𝑚𝑎𝑥 and 𝑥̈𝑚𝑖𝑛 are the acceleration limits in the positive and negative

directions, respectively, of accelerations 𝑥̈, 𝑦𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥, 𝜃𝑚𝑖𝑛 are the lim-

itations of accelerations 𝑦 and 𝜃, respectively, and T is the time interval. By

tuning parameters 𝜂𝑓 , 𝜂𝑏, 𝜂𝑙, 𝜂𝑟, 𝜁𝑠, and 𝜁𝑑, different behavioral patterns of the

robot can be defined freely.

Figure 2-17: Additional limitation on velocity search space.

2.3.3 System Configuration

We now introduce a complete system (Figure 2-18) that enables a personal care robot

to reconfigure the local planner dynamically considering environmental semantics.
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The dark blocks refer to the modules introduced herein, while the light ones are

robot-specific software packages. Block 1 comprises navigation and object-detection

functions; the module perceives the environment continuously and passes semantic

labels to block 3 if certain locations are reached or objects are detected. Block 3 keeps

a list of all the pre-defined patterns; given a semantic label, it simply goes through

all the patterns and chooses the configuration corresponding to the given semantic

label. Meanwhile, the checking points sent from block 2 are evaluated by block 4,

deciding how the footprint should be adjusted. Blocks 3 and 4 both produce planner

parameters that are then sent to block 5. In the system, the communication between

blocks 5 and 6 takes place at 10 Hz, while the rest are event-driven with no fixed

updating frequency.

Figure 2-18: Control system diagram.

2.3.4 Experiments

To evaluate the proposed method, we conducted experiments in an actual house-

hold environment. In the first experiment, we examined how the dynamic footprint

guaranteed safety during operations of a humanoid mobile platform. In the scenario,

KUT-PCR was expected to fetch objects from the refrigerator and deliver them to

the next-door room. In trial 1, the robot did not pick up anything. In trial 2, the
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robot picked up a bottle of drink; it held the bottle with two arms stretched out.

As Figure 2-19 shows, in trial 1 the upper body stayed within the range of the

mobile platform, thus the robot finished the task having strictly followed the global

path. In trial 2, with the arms stretched outside the mobile platform, the dynamic

footprint method kept the robot away from the wall with a path that departed slightly

from the planned global path.

Figure 2-19: Experimental trials without and with dynamic footprint.

In the second experiment, we conducted a fetch-and-serve task commonly seen

during caring services, and we examined how the behavioral patterns of the robot

changed when faced with different semantic situations. Figure 2-20 demonstrates the

parameter configurations of four behavioral patterns including “Kitchen”, “Bedroom”,

“Doorway”, and “Near Patient”. Parameters considering footprint size, velocity and

acceleration are described with five levels: very small, small, middle, big, and very

big. The parameters served the purpose of our applications and can be adjusted freely

to meet diverse requirements.

Figure 2-20: Behavioral pattern configurations.
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As shown in Figure 2-21, at t1, t2, and t3 the robot detected semantic locations

(“Doorway”, “Bedroom”, and “Kitchen”); at t4 the object-dependent semantic label

“Near patient” was triggered. The robot succeeded in switching among four pre-

defined behavioral patterns dealing with different semantic scenarios.

Figure 2-21: Personal care trial considering environmental context.

2.4 Desire-Driven Reasoning

Several types of robots have been developed to provide daily care services. For in-

stance, there are robots that can provide mechanical assistance to caregivers or care

recipients: a nursing-care assistance robot called RIBA [19] is able to transport a

patient between their bed and a wheelchair; exoskeletons can amplify the strength of

caregivers [20]; and transfer robots from TOYOTA can carry out tasks when operated

locally by a caregiver. In recent years, non-contact robots have also been developed

that can carry objects or open and close curtains, such as TOYOTA’s HSR [21].

Since the first type of robot operates directly on patients who are bedridden,

caregivers who understand their operations must also be present. By contrast, since
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robots of the latter type do not make direct contact with patients, caregivers are not

required to be present. However, these robots must still be given clear commands,

such as “fetch a bottle of tea” or “set the room temperature to 25 degrees,” and

patients may struggle to remember whether there is any tea in the refrigerator or

decide what exact temperature they want to set for the room. Patients generally

find it much easier to express their physiological needs, such as hunger, thirst, being

too hot or cold, needing brighter or dimmer light, or wanting fresh air. If personal

care robots could understand such physiological needs and take appropriate actions

to satisfy them, a higher intelligence level would have been reached, and these robots

could eventually contribute in real caring scenarios.

For personal care robots to perform actions that satisfy given physiological needs

when caregivers or home helpers are unavailable, they must at least have the following

functions: (i) estimate their own location and those of the target objects; (ii) reach

the desired destination while avoiding obstacles; (iii) recognize the presence and state

of objects; (iv) manipulate objects; (v) identify patients’ physiological needs; and (vi)

reason about the objects and operations required to satisfy these physiological needs.

Functions (i) and (ii) have long been fundamental to research into autonomous

mobile robots. In recent years, simultaneous localization and mapping (SLAM) [22]

proved to be highly successful and has been applied in various fields [23][24]. Function

(iv) is critical for industrial robots, for which several different mechanical designs

have been proposed, along with methods of controlling the end effectors [25]. Great

progress has also been made toward function (iii), including the development of image

sensors (high-speed industrial cameras [26] and depth cameras [27]) and advanced

algorithms (deep learning [28]). In particular, dramatic advances have been made

by combining work on functions (iii) and (iv), as demonstrated by multiple global

competitions, such as the DARPA Robotics Challenge (DRC) [29] and the Amazon

Picking Challenge (APC) [30].

These techniques can also be applied to personal care robots. For instance, given

the command to serve a bottle of water, HSR can pick up the bottle and serve it

to the care recipient [21], while Dora [31] can navigate between rooms to search for

28



a book given its name. Such achievements have gained much attention in robotics

research and shown convincing results. However, to the best of our knowledge, there

has been little discussion on how to recognize physiological needs (such as thirst) and

infer how they can be satisfied by particular objects or actions.

Our previous studies on personal care robots presented results related to func-

tions (iii) and (v). In this part, we instead concentrate on function (vi) and propose a

method of reasoning about the objects and operations needed to satisfy a given phys-

iological need. In addition, we also evaluate the proposed approach in real household

scenarios. Implementing function (vi), however, presents two main difficulties.

First, there is a range of possible options: since more than one object or action

may be able to satisfy a given need, we need a reasoning method that can determine

which one to choose. For example, there may be several instances of a particular

object class in multiple locations (e.g., a house can have two or more windows and

doors) or a single action may involve different states (e.g., an electrical switch can be

on or off). Second, operations can be uncertain; for example, a robot may reach the

target location only to find that an object does not exist or an action is impossible

to perform.

2.4.1 Related Work

In recent years, developments in mechanical design [32], actuator performance [33],

and sensor properties [34] have resulted in increasing numbers of robots being deployed

in various fields. Robots can now navigate complex environments [35][36], interact

with people [37], and manipulate different types of objects [38]. However, in order

for them to perform such tasks more intelligently, further research into knowledge

representation and reasoning will be required.

Various approaches to this problem have been proposed, all focusing on generating

a series of robot actions given a clear command such as “fetch a bottle of cola.” For

such human–robot interaction (HRI) tasks, the BC action language can be used to

formalize both sensing and physical actions, enabling service robots to behave intelli-

gently while dealing with incomplete information, underspecified goals, and dynamic
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changes [39].

Answer set programming (ASP) is suitable for representing and reasoning with

commonsense knowledge. Partially observable Markov decision processes (POMDPs)

provide a mathematical framework that enables autonomous robots to solve motion-

planning problems in uncertain and dynamic environments. ASP and POMDPs

can also be combined to automatically tailor sensor input processing and naviga-

tion methods for robots deployed in partial domains [40]. In addition, PDDL [41]

is a domain definition language for specifying deterministic planning domains and

problems. When combined with heuristic search methods, such as the fast downward

planning system [42], it can address many planning or even control problems.

Researchers also attempted to build higher-level knowledge systems that are not

limited to one or two representations but can instead handle different tasks by taking

advantage of different techniques. Integrating various methods (such as probabilistic

graphs, PDDL, or POMDP solvers) into one framework can enable robots to plan

in the face of uncertain and incomplete information [31], and this idea has been

implemented in a mobile robot platform.

The ontology-based unified robot knowledge (OUR-K) framework [43] has also

been introduced for service robots, and it includes both knowledge descriptions and

associations. Other researchers also discussed how to structure knowledgebases by

combining different knowledge areas [44], going on to propose the KNOWROB frame-

work, which introduces representational structures and a common vocabulary for

representing knowledge.

Although these frameworks have successfully addressed problems in various fields,

most researchers have concentrated on solving the problems caused by vague or in-

complete information when given task-oriented instructions; as far as we are aware,

few have considered situations where there are no instructions in the first place. In

scenarios involving caring for patients who are bedridden, there is a gap between their

abstract physiological needs (e.g., “hunger”) and the corresponding instructions (e.g.,

“fetch a pack of biscuits”).
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2.4.2 Household Environment Description

Human caregivers can provide appropriate service because they have two types of

knowledge: commonsense knowledge that describes how various objects could con-

tribute to satisfying a need and instance knowledge that describes properties of objects

in the household environment, such as their locations and weights.

Commonsense Knowledge

It is generally assumed that cognitive activities, such as reasoning and decision mak-

ing, presuppose the existence of a conceptual system in the person’s memory. For

example, a caregiver may give someone a bottle of tea if that person feels thirsty

because their understanding of “tea” includes the idea that “tea can satisfy thirst.”

For a robot to do likewise, it would also need a thorough understanding of concepts

related to household environments, which we call commonsense knowledge.

Table 2.2 gives ten desires and ten objects commonly seen in personal care scenar-

ios, listing the contribution of each object to satisfying each desire on a scale from 0.0

to 1.0, where 0.0 indicates that the object makes no contribution. For instance, milk

makes contributions of 0.6 and 0.3 to satisfying thirst and hunger, respectively, while

bread helps more with hunger (0.9) and juice helps more with thirst (0.8). Here, we

only list some of the commonsense knowledge 𝐾𝑐 related to one individual who is

bedridden; the detailed values will vary between patients depending on their personal

preferences and may also change during the personal care process. In this study,

we do not focus on the acquisition and updating of commonsense knowledge so we

consider 𝐾𝑐 to be fixed for a given patient.

Instance Knowledge

Unlike commonsense knowledge, instance knowledge is dynamic, as it describes the

objects’ properties; here, this means their names, spatial properties, characteristics,

and electrical states.

1) Name: an object’s name identifies its type.
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2) Spatial properties: the position of an object in the world can be defined

using three-dimensional coordinates (𝑥, 𝑦, 𝑧). For example, the positions of

door 𝑑1 and window 𝑤1could be represented as (𝑥𝑑1 , 𝑦𝑑1 , 𝑧𝑑1) and (𝑥𝑤1 , 𝑦𝑤1 , 𝑧𝑤1),

respectively (Figure 2-22). In addition, for objects such as doors, windows, and

refrigerators, the positions of their movable parts can substantially affect their

functional attributes.

Since there are various different types of mechanical structures, we define a pa-

rameter 𝜁, called the “opening degree,” to describe an object’s spatial state. For

example, the opening degree of a sliding window is described by 𝜁 = 2 𝑑
𝐷

, while

𝜁 = 𝜃
𝜃𝑚

describes a push-pull door. The specific algorithms used for perception

and to calculate 𝜁 are delegated to the robot controller, and only 𝜁 is stored in

the spatial description. Thus, the spatial properties of the window in Figure

2-22 are completely described by 𝑃𝑠 = {(𝑥, 𝑦, 𝑧), 𝜁} = {(0.0, 3.0, 4.0), 0.7}.

3) Characteristics: an object’s characteristics describe its physical properties,

namely its weight, volume, and state. For example, a bottle of milk may be

defined as 𝑃𝑐 = {𝑤, 𝑣, 𝑠} = {2.5, 0.3, 𝐿𝑖𝑞𝑢𝑖𝑑}.

4) Electrical state: An appliance may have multiple different functional states,

which can dramatically affect its operation; we capture this in the electrical

state 𝜗. For example, an air-conditioner is described by:

𝜗 ∈ {”𝑂𝐹𝐹,𝐻𝑒𝑎𝑡𝑖𝑛𝑔, 𝐶𝑜𝑜𝑙𝑖𝑛𝑔, 𝑉 𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛”} and 𝑠𝑖𝑧𝑒(𝜗) = 1

meaning that it has four operational states but can only be in one of them at

any given time.

Table 2.3 lists all the instance knowledge about the objects in the room shown

in Figure 2-22. .

Now that we have defined both commonsense and instance knowledge, we can

introduce the complete description for an object 𝑂. Since commonsense knowledge is

used to describe the functions of an object class, each instance inherits the common-
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Table 2.3: Instance Knowledge

Figure 2-22: Instance knowledge for the objects in one room.
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sense knowledge of its class. Specifically, an object 𝑂 can be described as:

𝑂 = (𝑛,𝐾, 𝑃𝑠, 𝑃𝑐, 𝑃𝑒) (2.12)

where 𝑛 is the object’s name. Here 𝐾 is the commonsense knowledge retrieved from

𝐾𝑐 based on 𝑛, namely:

𝐾 = 𝐾𝑐(𝑛) = {𝐶0, ..., 𝐶𝑘} (2.13)

where 𝐶0,𝐶𝑘 are the contributions to the k desire types.

In addition, 𝑃𝑠, 𝑃𝑐, and 𝑃𝑒 represent the object’s spatial properties, characteristics,

and electrical state, respectively:

𝑃𝑠 = {(𝑥, 𝑦, 𝑧), 𝜁} (2.14)

𝑃𝑐 = {𝑤, 𝑣, 𝑠} (2.15)

𝑃𝑒 = {𝜗} (2.16)

Knowledge Integration

Now we have a way to describe objects in household environments, the other fun-

damental challenge is how to build and maintain a personal care knowledge base

involving the objects in personal care scenarios. The robot should have a certain

degree of prior knowledge when initially activated and then integrate new knowl-

edge while interacting with the environment. Knowledge integration is the task of

identifying how new and prior knowledge interact with each other and incorporating

additional information into an existing knowledge base.

We divide the knowledge integration task into two basic operations: initialization

and updating.

1) Initializing the knowledge base: the initialization step provides basic prior
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knowledge about two types of objects: static and dynamic objects.

We define the knowledge base as 𝐾𝐵. Static objects, such as doors and win-

dows, are added directly to 𝐾𝐵, while dynamic objects, such as food and drinks

whose quantities and locations are unknown, are initialized as dummy objects

based on commonsense understanding.

For example, in Figure 2-23, each type of object maintains a list of objects of

that type in the current environment. Here, the house is assumed to have two

doors, three windows, and one bed. The figure shows 𝐾𝐵’s initial state; the

locations of the static objects are fixed and will not be further verified by the

robot system, while the initial dummy objects for juice, bread, and biscuits

(based on commonsense understanding) will be verified and updated as the

robot searches the environment.

Figure 2-23: Example of initializing a knowledge base.

2) Updating the knowledge base: the update step proceeds based on the

robot’s perceptions. The result of a valid perception is denoted as 𝑃 = (𝑓,𝐾𝐵𝑝),

where 𝑓 describes the spatial field that the robot has perceived and 𝐾𝐵𝑝 is a

small knowledge base containing the objects identified.
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Table 2.4: Knowledge Base Update Algorithm

As Figure 2-24 shows, for a given perception 𝑃 = (𝑓,𝐾𝐵𝑝), the objects in 𝐾𝐵

located within the perceived field f are first fetched and then used to build a

sub-knowledge base 𝐾𝐵𝑠. The intersection between 𝐾𝐵𝑠 and 𝐾𝐵𝑝 consists of

the objects verified by the perception 𝑃 . Objects that are in 𝐾𝐵𝑠 but not 𝐾𝐵𝑝

should be deleted from 𝐾𝐵, since they cannot be identified in their recorded

locations, while objects in 𝐾𝐵𝑝 but not 𝐾𝐵𝑠 should be added to 𝐾𝐵. Table

2.4 shows the algorithm used to update the knowledge base.

An object 𝑜 can be considered to belong to the knowledge base 𝐾𝐵 if there is

an object 𝑜𝑘 in 𝐾𝐵 that is equal to 𝑜. The definition of object equality is as

follows:

IF 𝑜𝑘.𝑛𝑎𝑚𝑒 = 𝑜.𝑛𝑎𝑚𝑒 AND 𝐷𝐼𝑆(𝑜𝑘.𝑃𝑠, 𝑜.𝑃𝑠) < 𝛾, THEN 𝑜 = 𝑜𝑘

where the 𝐷𝐼𝑆 function calculates the spatial distance between the two objects

and the threshold 𝛾 accounts for factors such as localization and perception

error.
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Figure 2-24: Updating the knowledge base.

2.4.3 Desire-Driven Reasoning Approach

Desire-driven reasoning is defined as reasoning via a sequence of steps with the aim

of meeting given desires (in this case of people who are bedridden).

Desire-Driven Reasoning System

Figure 2-25 shows a flowchart of the proposed desire-driven reasoning (DDR) system.

First, the knowledge base 𝐾𝐵 is initialized. When the robot is activated by a par-

ticular patient desire 𝑑, this is passed to the DDR module. This then reasons about

suitable goals, considering 𝑑 and 𝐾𝐵. The resulting goal is then sent to the planner,

which generates an action list for the robot to execute.

Two main loops define the robot’s behavior, including execution, perception, and

knowledge updating. The robot controller executes a loop consisting of a motion

execution command followed by a perception query command. If nothing is identified

during a given iteration, the loop continues until the action list is confirmed exhausted,

indicating the task is complete. If, during this process, the robot acquires a valid

perception (either recognizing objects or the locations of objects in 𝐾𝐵), 𝐾𝐵 is

updated using the knowledge integration method, and a new action list is calculated
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with the same 𝑑 but the newly updated 𝐾𝐵. Then, the controller begins executing

the newly generated action list.

Figure 2-25: Flowchart for the desire-driven reasoning system.

Desire-Driven Reasoning Module

The system’s core component is the DDR module, which reasons as follows (Figure

2-26): (i) fetch candidates from the knowledge base that can contribute to meeting

the given need; (ii) evaluate the candidates; (iii) select the highest-rated candidate as

the goal.

Table 2.5 describes the DDR algorithm. First, the FIND function fetches all ob-

jects that make contributions greater than 0 to the given desire d from the knowledge

base 𝐾𝐵. Then, the EVALUATE function ranks the objects. Finally, the SELECT

function selects the highest-scoring object, which is returned to the task planner as

the goal for further planning.
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Figure 2-26: Workflow of the DDR module.

Table 2.5: DDR Algorithm
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Table 2.6: Object Ranking Algorithm

The key element of the EVALUATE function is the object ranking method, which

considers two aspects: the object’s contribution to fulfilling the need and the operation

cost. Table 2.6 describes how the object ranks are calculated. First, the 𝐹𝐼𝑁𝐷 func-

tion retrieves the contribution 𝑅𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 made by the object o to fulfilling the desire

d from the commonsense knowledge base 𝐾. Next, the 𝐶𝑂𝑆𝑇 function calculates

the operation cost 𝑅𝑐𝑜𝑠𝑡, based on the given desire and the object’s characteristics,

spatial properties, and electrical state. Finally, the overall rank R is calculated as a

weighted sum of 𝑅𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 and 𝑅𝑐𝑜𝑠𝑡. 𝛼 and 𝛽 are selected so that the importance

of desire fulfilling contribution and task conduction cost can be reflected.

The 𝐶𝑂𝑆𝑇 function depends on the object type, and the detailed implementation

requires knowledge of navigation and vision systems that is beyond the scope of

this paper. In short, it evaluates the transportation distance and the manipulation

complexity based on the robot and object states and the given desire. The higher

𝑅𝑐𝑜𝑠𝑡 is, the more difficult it is for the robot to meet the given desire with the specified

object.
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Long Short-Term Care Preference

A desire-driven reasoning system (DDRS) bridges the gap between abstracted desire

𝑑 and specific action a in consideration of care preference 𝑜 over the available options.

As shown in Figure 2-27-1, a constant LTCP knowledge base “LTCP KB” was used as

the resource of 𝑜. It simply fetches related preference data considering 𝑑 and provides

these data to the DDRS for further evaluation.

As shown in Figure 2-27-2, rather than a fixed knowledge base, a LSTCPM is used

to generate 𝑜 dynamically each time a request is made. The LSTCPM generates 𝑜

in consideration of LTCP, given desire 𝑑, and data from the previous reasoning circle

(including reference function 𝜓, request timestamp 𝑡, and executed action 𝑎). As a

result, the sequential influence of service actions is modeled.

Figure 2-27: Flowchart of DDRS cooperating with LSTCPM.

In practice, requests can be considered as a time-aware sequence with uneven time

intervals. Here, 𝑘 is the index of the request, and 𝑡𝑘 is the timestamp indicating when

the request occurs. Figure 2-28 shows how the system works given a request list from
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𝑑0 to 𝑑𝑘.

Figure 2-28: Workflow considering 𝑡0 requests.

In addition to obtaining trusted feedback, another important step is updating

the LTCP in consideration of the obtained feedback, which allows the LTCP to be

optimized during interactions. The EKF [45] algorithm is well known, and we describe

them to convey the implementation details of how the EKF can be adopted to estimate

LTCP during personal care over time.

2.4.4 Experiments

To evaluate our KUT-PCR personal care robot, we conducted experiments in a real

household domain. Here, the aim was to evaluate whether the proposed DDR method

could enable the robot to carry out appropriate actions when given only a person’s

physiological needs.

Experimental Setup

The experimental domain (Figure 2-29) consisted of two rooms, namely a bedroom

and a kitchen. There were three static objects: a bed (bedroom), dining table
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(kitchen), and refrigerator (kitchen). The two rooms were connected by a sliding

door. Figure 2-30 shows photographs of the domain, taken from the bedroom (left)

and kitchen (right).

In addition, a patient who was bedridden lay on the bed, and KUT-PCR was

initially at position 𝑆 (Figure 2-31). When the robot was activated by the patient’s

desire, it began to perform the operations generated by the proposed DDR system.

Figure 2-29: Experimental domain.

Figure 2-30: Photographs of the experimental care domain.

Results

In order to validate different aspects of our proposed reasoning system, we conducted

three trials, each based on the patient feeling hungry but with different object con-

figurations.

1) Trial 1.
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Figure 2-31: Personal care scenario.

In the first scenario, the food and drinks were placed in commonsense locations.

Specifically, a loaf of bread and a packet of biscuits were placed on the kitchen

table, while bottles of milk, juice, and cola were stored in the refrigerator.

The robot was activated by the “hunger” desire at time 𝑡1. At that time,

the robot initialized its knowledge base with the static objects, namely the

bed (Bed1), dining table (Table1), and refrigerator (Refrigerator1), along with

dummy objects for the biscuits (Biscuit1), bread (Bread1), milk (Milk1), juice

(Juice1) and cola (Cola1).

Based on this information, the DDR algorithm ordered the robot to serve Bis-

cuit1 to the patient so KUT-PCR turned and moved to the dining table, reach-

ing it at 𝑡2. When the robot perceived the food on the table, the knowledge

base was updated. Since the presence of these objects agreed with the initial

commonsense knowledge, only the positions of Biscuit1 and Bread1 were up-

dated. After that, the robot fetched Biscuit1 and served it to the patient at

𝑡3, during which time the planning module was paused. However, the moment

that the robot handed over Biscuit1, the knowledge base was updated to change

the position of Biscuit1 to match that of Bed1. Finally, at time 𝑡4, KUT-PCR

returned to the standby point. The route is shown in Figure 2-32, while Fig-

ure 2-33 shows photographs taken at times 𝑡1–𝑡4. Here, the reasoning system

worked as anticipated throughout, without any unexpected situations.
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Figure 2-32: Route during Trial 1.

2) Trial 2.

In the second trial, no food was placed in the environment, although the drinks

were stored in the refrigerator as usual. KUT-PCR’s initialization and reason-

ing processes were as in Trial 1, and it again attempted to serve Biscuit1 to the

patient. However, when the robot arrived at the dining table at 𝑡2, it did not

perceive any objects on the table and thus deleted the dummy objects Biscuit1

and Bread1 that were initially located there. This triggered the reasoning pro-

cess again, and this time, the robot was instructed to serve the bottle of milk

(Milk1) from the refrigerator. The robot then navigated to the refrigerator,

picked up Milk1 at 𝑡3, and was able to successfully deliver the milk to the pa-

tient at 𝑡4 before returning to its standby position at 𝑡5. Figure 2-34 and Figure

2-35 show the route and photographs taken at times 𝑡1–𝑡5, respectively.

3) Trial 3.

In the third trial, both the food and drinks were placed as in Trial 1, but a

new desk T2 was also placed in the bedroom, with another packet of biscuits on

it. As in Trials 1 and 2, the robot initially began navigating toward the dining
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Figure 2-34: Route during Trial 2.

table. However, on the way, it perceived the biscuits on the new table at 𝑡2 and

updated its knowledge base with a new biscuit instance Biscuit2 located at T2.

This triggered the reasoning process, leading the robot to select Biscuit2 as the

target object to serve due to it being spatially closer. The robot then picked

up Biscuit2 and served it to the patient at 𝑡3 before returning to its standby

position at 𝑡4. Figure 2-36 and Figure 2-37 show the route and photographs

taken at times t1–t4, respectively.

In summary, the first trial evaluated the DDR system when nothing unexpected

occurred, while the second challenged it to deal with false instance knowledge,

namely that an object was not at its expected location. Finally, the third trial

tested whether the system could update itself to take advantage of dynamic

knowledge. The proposed method enabled KUT-PCR to successfully complete

all three trials.
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Figure 2-36: Route during Trial 3.

2.5 Conclusion

In this part of the thesis, we present an intelligent personal care system considering

perception intelligence, motion intelligent, and reasoning intelligence.

We argue that personal care robots can assist patients similar to human caregivers,

only if the robots can reason based on human’s physiological desires rather than

requiring direct instructions;

Achieving this final goal requires various types of intelligence of a care robot,

including perception, motion, and reasoning. Accordingly, we presented a series of

approaches and algorithms that allow a robot to "think", "see", and "manipulate".

Experiments with our newly developed KUT-PCR personal care robot in a real

household domain were conducted, showing that the proposed method was able to

successfully complete a range of trial scenarios. In future work, we plan to address

more complex domains and consider a wider range of potential issues. We hope that

with our personal care robot, bedridden people can live a more comfortable life, and

the load of caregivers could be effectively reduced.
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Chapter 3

Automatic Material Transportation

in Construction Sites

Continued attempts have been conducted to improve the construction work efficiency

with automatic material transportation robots, yet neither of them has been popu-

larized. The reason is that navigating in highly unstructured and dynamic indoor

environments remains a great challenge.

Therefore, we present a hallway exploration-inspired guidance approach (HEIGA),

which guides an agent to its destination based on a series of directional guidance

without the need for self-localization in a global frame.

A series of experiments were conducted, showing that HEIGA-based fully au-

tonomous material transportation tasks can be achieved, without being influenced by

the complexity or dynamics of the environment. We expect this new approach to:

1) free construction employees from heavy and repetitive material transportation

tasks;

2) improve construction working efficiency.

53



3.1 Introduction

3.1.1 Motivation

Material transport [46][47][48] is an essential phase in construction processes that

accounts for 15%-20% of the total project expenditure [49]. During the interior reno-

vation process of a construction task, about 28 kinds of materials and goods unloaded

from trucks need to be transported between working zones on different floors of the

building.

Traditionally, transportation work requires a considerable amount of effort. For

instance (Figure 3-1-1, a cart full of gypsum boards weighs around 1000 kg and

typically requires the effort of three employees. Figure 3-1-2 shows how two workers

push a cart through a narrow space. Nowadays, most construction sites are currently

facing or are expected to experience the shortage of young workers in the future as

the society is aging worldwide [50] [51] [52].

Figure 3-1: Human manipulation of cart.

Therefore, if construction robots [53][54] can be adopted in some transportation

tasks in construction sites, employees will be freed up for more valuable tasks. As a

result, working efficiency is estimated to increase by 20% (data from our cooperated

construction company Maeda Corporation).

However, despite that autonomous robots have been applied successfully in var-

ious types of fields, including factories, warehouses [55], logistics centers [56], and

hotels [57], enabling autonomous material handling in construction sites faces great
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challenges.

Figure 3-2 presents how material handling tasks are conducted in construction

sites. The building for demonstration has four floors connected by an elevator. In the

assumed scenarios, autonomous material transportation begins as daily work finishes.

Typically, a transportation task consists of two basic steps: (i) as the preparation step,

all the building materials requiring transportation will be unloaded from trucks into

carts, which will be located in D1-1; (ii) material transportation robots relocate carts

from loading zones to the expected unloading zones (D2-1, D3-1, D4-1);

Figure 3-2: Demonstration of a material handling task.

It is worth noticing that the preparation step is not specially required for auto-

matic transportation. Unloading material from trucks to carts is a typical process

in construction sites. The carts with wheels will ease the effort of relocating carts

both for long-distance transportation and short-distance adjustments. Although a

material transportation task seems clear and simple, automating the task has been a

great challenge for decades, considering the following reasons.
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1) Undergoing interior renovation. As Figure 3-3 demonstrates, the construc-

tion site is under interior renovation. The floor can be covered by cables or

covers, walls are being printed, and power supply is limited to construction

tools and elevators. Consequently, it is unreliable and, in some cases, impos-

sible to apply fixed makers on the ground or use a series of routers to provide

reference information.

Figure 3-3: Undergoing interior renovation.

2) Complex and dynamic environments. One of the characteristics that a

construction site is different from other fields (e.g., hotels, logistics centers, and

offices) is that the sites change continuously. Available paths are not deter-

mined by the walls, but by various kinds of materials, carts, machines, which

will be relocated frequently during the construction process. Although most of

the novel localization techniques are robust within certain limits confronting dy-

namic environments, in most cases, changes as shown in Figure 3-4 and Figure

3-5 cannot be handled with expected performance.

3) Dim and nonuniform illumination. As Figure 3-6 shows, the illumination

condition inside a construction side is typically dim, nonuniform, and even worse
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Figure 3-4: Dynamic construction environment.

Figure 3-5: Dynamic environment concerning laser data.
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during nighttime. The stability and performance of machine vision approaches

are under great challenges.

Figure 3-6: Dim and nonuniform illustration.

Confronting these challenges, construction robots were initially designed in the

beginning 1970s in Japan. And big Japanese construction companies have been in-

vestigating and developing robotized construction processes since the beginning of the

1980s, including transportation robots [58]. In that stage, traditional methods such

as line-tracking [59] were used. However, construction environments need to be much

more structured and controlled before construction robots can really start to take

over[60]. Additionally, various methods (e.g., RFID tag [61], bar-code matrix [62],

magnetic tapes/nails [63][64], GPS [65], Bluetooth beacons [66] and motion capture

cameras [67]) were considered not suitable for dealing with the indoor construction

sites.

In recent years, with the rapid development of sensor technology (e.g., laser

rangefinders) and positioning/mapping algorithms (e.g., SLAM), another trend has

emerged to realize automated handling in construction sites. The major contractors

in Japan have launched their own handling robots and conducted experiments in their

construction sites [68][69][70][71]. Approaches such as SLAM have been integrated

so that the transportation systems are now much more robust handling unstructured

and dynamic environments.

However, it is worth noting the navigation approaches mentioned above typically

require real-time localization in a global frame, which has two features: (i) goals can
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be described with precise coordinates based on a global frame and (ii) the shortest

path can be followed.

These features are required in scenarios such as factories and warehouses. How-

ever, in many scenarios, there are no such requirements, including construction sites.

The transport task in a construction site has the following features:

1) Sufficient running time. The nighttime usually spans 10 hours. As a result,

there is no strict requirement for transportation speed. In other words, the path

that robots follow does not have to be the shortest path of a global frame.

2) Limited destinations. The destinations belong to a discrete set whose ele-

ments are described as info points rather than precise coordinates in a global

frame.

Based on the two assumptions above and the process, by which people find hotel

rooms, we argue that the idea of the info point-based guidance approach is a more

suitable solution.

3.1.2 Contribution

In this work, we:

1) present a newly developed gate-type robot that combines the advantages of the

comely seen types. A gate-type robot can: (i) move carts of material stably and

safely like a forklift-type robot [69][71]; (ii) has a compact structure, therefore

can pass through narrow spaces as a unit load AGV [70]; (iii) transport heavy

objects easily, as the weight of the cart is mainly carried by its own wheels

similar to a trailer-type robot [68].

2) propose a hallway exploration-inspired guidance approach (HEIGA) capable of

guiding an agent to its goal without the need for self-localization in a global

frame. Therefore, the performance of the system can be decoupled from the

complexity or the dynamics of the environment;
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3) apply the proposed approach to solve the problem of automated transport tasks

in construction sites and conducted experiments in three sites with our novel

robot, Capper. The performance of the indoor guidance approach HEIGA is

then evaluated.

3.2 Related Work

3.2.1 Navigation Approaches

Navigation is a fundamental problem in robotics. The traditional way of solving a

navigation problem requires self-localization to plan and follow a path to the goal.

Under this navigation mechanism, various techniques have been applied to enable

self-localization. Electromagnetic guidance system is most popular and famous as an

automated guidance method, which has been adopted by almost 90% of AGV [72].

[73] proposed a GPS-based path following control method for a car-like wheeled mo-

bile robot considering skidding and slipping. An accurate method for localization of

a mobile robot using Bluetooth beacons were introduced in [74], which is considered

reliable and scalable. [59] discussed the line-tracking problem with AGVs and pre-

sented a robust line detection algorithm implemented on an embedded vision system.

Laser reflectors as indistinguishable landmarks can also be used to address the global

localization problem in a known environment [75]. Also, Amazon has introduced

Kiva robots into their shipping facilities, which is a successful application of localiza-

tion based on a series of markers [76]. And recently, simultaneous localization and

mapping (SLAM) [77] has attracted significant attention as a method that requires

no additional sensors or configurations in the environment. Additionally, improved

algorithms (e.g., active SLAM [78] and hierarchical SLAM [79]) have allowed SLAM

based navigation to be more robust confronting dynamic environments.

Meanwhile, efforts have been made to relax the requirement of continuous local-

ization. More specifically, the idea of how people give and follow instructions (e.g.,

go forward, turn right) to reach the desired locations has inspired many applications.
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[80] has the idea of providing limited instructions to guide people toward a goal.

The main contribution of their work is to provide a mobile device-based solution gen-

erating a series of instructions. However, mapping and localization are required at the

back end during the whole period. With the rapid development of machine vision, [81]

presented a vision-language navigation approach with enforced cross-modal match-

ing and self-supervised limitation learning. The instructions are activity-based (turn

right and head toward the kitchen). However, the application requires highly accurate

recognition of the environment. Thus, it is difficult to deploy it in the environment

with complex illumination conditions and textureless background. Moreover, [82]

presented a novel design of an augmented reality (AR) interface with activity-based

instructions. They described how indoor navigation could be completed with sparse

localization. Besides, they optimized the actual usage of the map to a graph rather

than a full-sized map. However, since the application is HCI-based, the instructions

can be confusing, and ambiguous to machines or robots. Furthermore, a full-sized

map is the center of the application, although a graph is used to save, and calculate

paths rather than an actual map. Still, the instruction system alone is not treated as

an independent approach capable of leading the agent to its destination.

3.2.2 Autonomous Material Transportation Robots

In recent years, various types of material transportation robots have been proposed

(Figure 3-7).

In this work, we presented a gate-type robot that combines the advantages of other

types of robots, a gate-type robot can: (i) move carts of material stably and safely like

a forklift-type robot; (ii) has a compact structure, therefore can pass through narrow

spaces similar to a unit load robot ; (iii) transport heavy objects easily, because like

a trailer-type robot, the weight of the cart is mainly carried by its own wheels.
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Figure 3-7: Different types of robots for material handling.
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3.3 Gate-Type Material Transportation Robot

Given the challenges of transporting heavy carts in complex and unstructured con-

struction sites, we developed a novel autonomous material transportation robot named

Capper.

3.3.1 Mechanical Design

Capper is a gate-type robot (Figure 3-8), whose center of gravity is close to that of

a cart. The omnidirectional base comprises four mecanum wheels which allow the

robot to navigate through narrow and complex environments freely. The gate-type

structure and two connectors equipped guarantee solid cart loading and unloading

operations. This kind of design allows the light-weighted robot (about 200kg) to

manipulate heavy carts up to around 1000 kg [83].

3.3.2 Hardware Configuration

The following hardware setup (Figure 3-9) ensures that Capper can perceive the en-

vironment, run algorithms, and communicate with other devices: (i) the main control

computer has an Intel i7 processor and an SSD drive, which provide enough comput-

ing resources for applications, including machine vision, knowledge reasoning, and

motion control; (ii) a wireless router that allows it to be connected with other on-site

devices, including the manager PC and ELVs; and (iii) three industrial cameras and

three/four laser-range finders that provide a detailed perception of the surroundings.

3.3.3 Mathematical Model

Kinematics

The parameters configuration as shown in Figure 3-10 is as follows:

Σ(𝑥, 𝑜, 𝑦): world coordinate;

Σ(𝑥′, 𝑜′, 𝑦′): robot coordinate;

𝑣: linear speed;

63



Figure 3-8: Mechanical design of Capper.
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Figure 3-9: A gate-type material handling robot.
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𝜔: rotational speed;

𝑜′: geometric center of the robot;

𝑣𝑖𝑚: speed originated from wheel rotation;

𝑣𝑖𝑝: speed in the direction of the contact point;

𝑣𝑖: real speed of wheel 𝑖;

2𝐿: length of the robot;

2𝑊 : width of the robot;

Figure 3-10: Kinematic model of the mobile platform.

Therefore, the inverse kinematics of the robot is given as:

⎡⎢⎢⎢⎢⎢⎢⎣
𝜔1

𝜔2

𝜔3

𝜔4

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

𝑅

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1 (𝐿+𝑊 )

1 1 −(𝐿+𝑊 )

−1 1 −(𝐿+𝑊 )

1 1 (𝐿+𝑊 )

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑣𝑥′

𝑣𝑦′

𝜔

⎤⎥⎥⎥⎦ (3.1)

Dynamics

For simplification, the robot is treated as a rigid body. Parameters and coordinate

systems are denoted as follows:

Σ(𝑥, 𝑜, 𝑦): world coordinate;

Σ(𝑥′, 𝑜′, 𝑦′): robot coordinate;
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𝑣: robot speed;

𝑜′: geometric center of the robot;

𝐹1 − 𝐹4: force of each wheel;

2𝐿: length of the robot;

2𝑊 : width of the robot;

Figure 3-11: Dynamic model of the mobile platform.

𝑀 is the inertial matrix of the robot considering the geometric center,

𝑀 =

⎡⎢⎢⎢⎣
𝑀 +𝑚 0 0

0 𝑀 +𝑚 0

0 0 𝐼

⎤⎥⎥⎥⎦ (3.2)

where 𝑀 is the mass of the robot, 𝑚 is the mass of the cart, and 𝐼 is the inertia of

the robot around the geometric center.

𝑋̈ is the velocity matrix:

𝑋̈ =
[︁
𝑥̈ 𝑦 𝜃

]︁𝑇
(3.3)

where 𝑥̈, 𝑦 are the linear speed in the direction of 𝑥 and 𝑦, respectively. Ans 𝜃 is

the rotational speed.
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𝐹 and 𝑓 are the driving force matrix and friction force matrix, respectively:

𝐹 =
[︁
𝐹1 𝐹2 𝐹3 𝐹4

]︁𝑇
(3.4)

𝑓 =
[︁
𝑓1 𝑓2 𝑓3 𝑓4

]︁𝑇
(3.5)

𝐾𝑇 is the nonlinear coupling relationship between the resultant force at the geo-

metric center and the wheel driving forces:

𝐾𝑇 =

⎡⎢⎢⎢⎣
−𝑠𝑖𝑛(𝜃 − 𝜋

4
) 𝑐𝑜𝑠(𝜃 − 𝜋

4
) −𝑠𝑖𝑛(𝜃 − 𝜋

4
) 𝑐𝑜𝑠(𝜃 − 𝜋

4
)

𝑐𝑜𝑠(𝜃 − 𝜋
4
) 𝑠𝑖𝑛(𝜃 − 𝜋

4
) 𝑐𝑜𝑠(𝜃 − 𝜋

4
) 𝑠𝑖𝑛(𝜃 − 𝜋

4
)

𝐷 −𝐷 −𝐷 𝐷

⎤⎥⎥⎥⎦ (3.6)

The dynamics model of the robot is derived as:

𝑀𝑋̈ = 𝐾𝑇 (𝐹 − 𝑓) (3.7)

3.4 Material Transportation Task

In practice, a material handling task is conducted by repeating the following oper-

ations: (i) go to the loading zone; (ii) load the cart; (iii) go to the unloading zone;

(iv) unload the cart. From the viewpoint of the automatic control system, four sub-

modules are required including task planning, path planning, trajectory planning, and

servo control. Task planning is currently conducted by on-site operators, by inputting

material types, quantity, transportation targets with an UI system. Servo control and

trajectory planning realize all the necessary sub-tasks such as loading/unloading of

carts, obstacle avoidance, and ELV operations. The path planning in between is the

most challenging part.
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Figure 3-12: A material transportation task: from the viewpoint of robots.

3.5 Path Planning: A Guidance Based Approach

3.5.1 Knowledge Transfer from Employees to Robots

Material handling employees can work confronting dynamic and complex environ-

ments, as humans are quite talented in addressing vague and complex visual infor-

mation. Limited by the level of robotic intelligence and machine vision technologies,

attempting to address the problem purely by robotic systems is a long-term chal-

lenge. Instead, we argue that transferring the site cognition of employees to material

transportation robots will be more realistic and efficient in construction sites.

It is worth noticing that a human employee in construction sites can navigate

among loading/unloading zones easily, without the need for a global map or accurate

self-localization. Instead, a high-level understanding of the environment and suitable

inference accordingly is required. The inference process can be simulated by searching

and scoring algorithms, but the current cutting-edge machine vision technologies are

still far from what humans are capable of, especially considering complex and dynamic
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environments.

From another perspective, anyone can find his room in a hotel even it is the first

time that he checks in. The key is that given a room number as the target, we can

easily decide where to proceed considering the current room number spotted. As

Figure 3-13 shows, if room 140 is the target, given the spotted room 130 and 131, we

can decide that going forward is the choice.

Figure 3-13: Directional guidance in hotels and construction sites.

In summary, the existence of ordered room numbers loses the requirement for high-

level perception capabilities greatly. Reaching a desired hotel room can be achieved

by: (i) look for a nearby room number; (ii) inference for the directional action con-

cerning the target room number; and (iii) execute the action. For a person to find

his room, neither map information nor self-localization is necessary, only two require-

ments are needed: (i) be able to recognize markers (room numbers); (ii) be able to

inference considering the relations among markers.

In construction sites, what’s missing between the humans’ understanding of the

environment and knowledge that a robot can use is a discrete abstraction. As Figure
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3-13 indicates, by deploying markers into a construction site, an abstraction of the

site can be obtained as a set of markers connected by phase relations.

As Figure 3-14 demonstrates, the system works as follows: (i) the operators on-site

are responsible of observing the environment and defining available paths; (ii) also the

operators are responsible of configuring the site by deploying necessary AR markers.

(iii) an UI system (deployed on the managing PC) is the bridge between operators

and robots, site configuration (including markers and the directional information that

connects them) and task information are inputted by operators and then sent to the

robots; (iv) eventually, the robot, will receive the date sent by UI, formalize them

into a robotic knowledge base and a task list. As a result, the material transportation

system will actually execute the tasks with respect to the knowledge base and AR

markers perceived.

Figure 3-14: Overview of the knowledge transfer system.

In other words, by applying such a system, we will be able to map human cognition

of the sites into a format of robotic knowledge, so that robots can conduct material
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handling tasks similar to how employees will address the problem, but without the

need for human working force.

3.5.2 Knowledge Transfer Method: HEIGA

We developed HEIGA to transfer knowledge from employees to robots, that allows

an agent to reach its destination in an unstructured environment. It is inspired by

the hallway exploration process searching for the desired hotel rooms.

Guidance Problem

In robotics, the navigational techniques involve locating the agent’s position in a

global frame. To clearly distinguish a guidance problem from a navigation problem,

we now define a guidance problem.

Definition: the guidance problem in an unstructured environment configured

with a series of info points is to enable an agent to move from the current location to

the goal described with relative geometry relation of one of the info points.

Characteristics: a guidance problem (i) does not require mapping of the envi-

ronment and (ii) does not require self-localization based on a global frame.

HEIGA

To address a guidance problem, a guidance approach typically requires the following:

(i) a knowledge base comprising information about all the info points and their rela-

tionship; (ii) given a goal described with respect to an info point, directional guidance

should be provided with every info point perceived, thus enabling an agent to reach

its goal.

Figure 3-15 illustrates how a HEIGA system typically works. Firstly, the guidance

knowledge base “Guidance KB" needs to be initialized and updated by human experts

that are familiar with the field, who are also in charge of configuring the info points.

Then, the “Guidance Core" will be able to provide a directional instruction considering

each perceived info point and the guidance knowledge base. Meanwhile, agents can
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either be robots, humans, or even cell phones capable of recognizing info points and

querying for instructions.

Figure 3-15: Schema of a HEIGA system

Relationship-Centered Guidance Knowledge Base

Guidance knowledge base is a kind of relationship-centered description. In other

words, besides info points, how all the points are connected also matters. In the

following example, we will demonstrate how a relational description is different from

an absolute description.

Figure 3-16 shows two completely different fields A and B from the viewpoint of

absolute geometry. However, if an agent needs to move from the start location to the

goal location in A and B, both fields can be configured using six info points (from 1 to

6). Eventually, from the start location to the goal location, the sequence of perceived

info points with directional instructions in between can be exactly the same.

In summary, info point-based relationship-centered description abstracts a field at

a more abstracted level, which results in strong robustness confronting complex and

dynamic environments. More specifically, a guidance knowledge base can quickly be

established in a complex environment. When the environment changes, the knowledge
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base could stay unchanged or be easily adjusted by modifying a few info points and

their connections.

Figure 3-16: Relational description vs. absolute description

Definition of Guidance Graph The info point-based description is formulated

as a kind of directed graph as:

𝐺 = (𝑉,𝐸) (3.8)

where 𝑉 is the set of vertexes, and 𝐸 is the set of arcs. The vertices refer to the

info points deployed in the environment while the arcs encode directional guidance

information that allows an agent to be accurately guided by info points.

Besides, both the vertices and arcs were labeled so that various types of useful

information can be included in the graph for further usage. Typically, one label set

was integrated for vertices, which are denoted as 𝐹 = {𝑓1, 𝑓2, ...𝑓𝑛}. With a label set

𝐹 of size 𝑛, 𝑛 types of information can be encoded. For instance, one commonly used

property is the floor number indicating where the info point is located.
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For arcs, two label sets were considered including the weight set 𝑊 = {𝑥 | 𝑥 ∈ R∧

0 ≤ 𝑥 ≤ 1} (describing the cost of moving between two info points) and the directional

guidance set 𝐺 = {𝑔1, 𝑔2, ...𝑔𝑚} (including 𝑚 types of directional instructions). As a

result, the following mapping is required to completely describe a guidance graph:

𝛼 : 𝑉 → 𝐹, 𝛽1 : 𝐸 → 𝑊,𝛽2 : 𝐸 → 𝐺 (3.9)

Graph Operations After defining the guidance graph, the following basic opera-

tions allow a guidance graph to be manipulated considering various scenarios:

1) Union

Union allows new graphs to be added to the original graph, which can be used

either when the knowledge base is initialized by combining multiple subgraphs

or when updating is required considering new routes available.

Info points on-site are typically deployed considering a number of paths among

locations of interest. For instance, we define a set of locations as 𝐿, then 𝐺𝐿𝑖,𝐿𝑗

𝑘

(𝐿𝑖, 𝐿𝑗 ∈ 𝐿) is the guidance graph describing one possible path from 𝐿𝑖 to 𝐿𝑗,

which is a independent line-type graph. Then the complete nest-type guidance

graph consisting 𝑁 paths can be obtained by the union of all the paths available:∑︀𝑁
𝑘=1𝐺

𝐿𝑖,𝐿𝑗

𝑘

2) Remove

The removal of a vertex or an arc indicates an unused info point or a blocked

path in real environments.

However, if the situation is temporal, such that the path will only be blocked for

an hour, then restoring the graph after removal will take extra effort since the

information was previously deleted. Therefore, we suggest blocking the path by

increasing the weight on the corresponded arc, then the path can be restored

by simply recovering the weight.
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Guidance Provision

With a guidance knowledge base established, the remaining procedure is how to

provide guidance, given the query including the goal and the current info point in

view.

A path can be described as a sequence of vertices and arcs:

𝑝 = 𝑣0, 𝑒1, 𝑣1, 𝑒2, ..., 𝑒𝑘, 𝑣𝑘 (3.10)

where 𝑣0 is the start and 𝑣𝑘 is the end of the path. Vertices 𝑣𝑡−1 and 𝑣𝑡 are end

vertices of 𝑒𝑡 (𝑡 = 1, ..., 𝑘),and 𝑘 is the length of the path. A zero-length path is a

single vertex 𝑣0. In a path, it is only allowed to visit a vertex or go through an arc

once.

The shortest path 𝑝 from the current info point to the goal info point can be

effectively obtained with methods such as the A-star algorithm [84] or focussed D-

star algorithm [85] (which can be chosen freely considering application requirements):

𝑝 = 𝐹 (𝐾𝐵, 𝐼𝑠, 𝐼𝑔, 𝑤) (3.11)

where 𝐾𝐵 is the knowledge base described with a guidance graph; 𝐼𝑠 and 𝐼𝑔 are the

current and goal info points, respectively; and 𝑤 refers to the property that should be

considered while evaluating the path, which in default is the weights. The resulting

path contains a series of info points and corresponding instructions leading to the

goal.

In real applications though, the execution of the instructions does not always align

with the expectations. Therefore, although a complete path is formed, only the part

related to the current spotted info point will be trusted and provided as guidance,

and instructions that rely on the rest of the path will be dropped. In this way,

challenges such as failing to follow directional instructions and missing info points

can be naturally addressed without the need for additional functions. Guidance is
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defined as:

𝜁 = {𝑔, 𝑃} (3.12)

where 𝑔 ∈ 𝐺 is the direction guidance, 𝑃 is a set containing labeled information of

𝑣𝑖0 and 𝑣𝑖1 . The properties of the current and next vertex provide information for

possible further applications (e.g., ELV operations considering floor numbers).

The necessary guidance information from a path is extracted by an operator 𝑓𝑒(.),

which extracts the necessary data from path 𝑝 and establishes an expected guidance

𝜁 = 𝑓𝑒(𝑝). Still there are special conditions, the complete guidance generation algo-

rithm is shown in Table 3.1. Here we assume two special codes: 0 indicates stop and

255 indicates error.

In the algorithm, if 𝑝 = 𝑁𝑈𝐿𝐿, then no path is obtained. This situation is

generated when the source or goal info point is not in the graph or not connected.

The code 255 is then returned to remind the agent to perform some actions such as

recheck. When the length of the shortest path is 0, the goal info point is the current

spotted one. Therefore, the task is finished and 0 is generated to request the agent

to stop. Otherwise, executable guidance 𝜁 will be returned.

Table 3.1: Guidance Generation Algorithm
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3.5.3 Material Transportation with HEIGA

How HEIGA can be used to solve the material transportation problem is described in

Figure 3-17. A task list consisting of 𝑁 task is denoted as {𝑇1, ..., 𝑇𝑁}. The marker

of the loading zone and unloading zone are denoted as 𝐴𝑅𝑙 and 𝐴𝑅𝑢, respectively.

The target marker is denoted as 𝐴𝑅𝑔, and 𝑆 is the current working status. With

such a workflow, a robot can change between “loading”, “unloading”, “reaching for

loading/unloading zones” effectively, eventually leading to a list of material handling

tasks being completed successfully.

3.6 Trajectory Planning: Actual Material Handling

In this section, we present how various functions required achieved by trajectory

planning in the automatic transportation system.

3.6.1 Cart Manipulation

A material handling robot needs to locate and join a cart into one unit in order to

perform efficient transportation tasks, as well as autonomously self-detach so that

the carts can be relocated to desired locations. In this work, we present a novel two-

stage latching system that enables robots to catch carts in complex and uncontrolled

construction sites.

A cart is labeled by a set of AR markers. The number of the markers can be

adjusted considering different applications. In the first stage (Figure 3-18), marker

tracking will be conducted that drives the robot into a position ready for further

operation. In the second stage (Figure 3-19), lase-range finders will be used to locate

the cart and conduct accurate latching action. The latching task will be considered

successful when the cart is connected by two lockers.
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Figure 3-17: Material transportation with HEIGA.
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Figure 3-18: Loading action: first stage.

Figure 3-19: Loading action: second stage.

3.6.2 Directional Instructions: Perception and Execution

A HEIGA-based system can provide directional instructions regarding each info point

spotted. However, two problems need to be addressed to take advantage of this

approach: (i) suitable choice of info points so that directional instructions can be

provided accordingly and (ii) ability to execute directional instructions.

For humans, signs or text information can be used as info points, considering our

robust vision processing and understanding capabilities. However, info points that

can be recognized by a robot are limited. Available methods include deep learning-

based or marker-based object detection. Besides, people can easily follow directional
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instructions based solely on vision. However, it is difficult for a robot to perform

similar actions in a complex and unstructured environment. For a robot to follow a

directional instruction based on an info point, a local reference source is required for

distance and angle information.

To achieve a system with high stability and low complexity, we chose AR markers

to serve as info points in the HEIGA system and as a reference source in the motion

execution system.

Figure 3-20 is an example of the info points used on-site. The machine reading

area occupies most of the board area so that Capper can recognize it with cameras.

Moreover, there are customized areas that provide information for humans, intelligent

hardware scans, etc. Additionally, info points can be deployed in the environment

based on multiple configuration patterns.

Figure 3-20: AR marker-based info point boards and use cases

Figure 3-21 shows the two roles of AR markers. In Figure 3-21-1, six types of

directional instructions numbered 1-6 are presented. Here markers are info points,

and only a directional instruction will be provided when the marker is perceived. In

Figure 3-21-2, a two-marker set is used to ensure a solid corner turn action when

the No.4 directional instruction is provided considering the primary marker. By

designing different marker configuration patterns, various motion capabilities can be

achieved, including following directional guidance, moving in/out of an ELV, accurate

picking/releasing, and autonomous charging.

81



In more detail, in Figure 3-22, we use practical examples to illustrate how the

guidance patterns are achieved using AR markers. Capper is capable of a wide-range

perception (three industrial cameras are used, including the left camera, front camera,

and right camera). Regardless of the starting position, as long as an AR marker is

detected, the triggered navigation task will guide the robot to the specified direction.

While being guided, the robot tracks its position relative to the maker through visual

recognition (markers are within view range ) and speed accumulation (markers are

out of view range). The positioning is neither global nor highly precise, but sufficient

in completing the given guidance task. Three examples are given for guidance pattern

No.1 and No.2. It is worth noting that to improve the stability of guidance, pattern

No. 2 uses a set of two AR markers. The rest patterns (No.3, No.4, No.5, No.6) can

be configured similarly.

Figure 3-21: Two roles of AR markers

Typically, the number of info points is smaller than the number of AR markers

deployed. In other words, some of the AR markers have the functions of info points,

while some of them only function as reference resources. For instance, as Figure

3-23 shows, markers 200, 210, 220, 101, and 102 perform roles of both info points

and reference resources, while markers 201, 202, 211, 212, and 221 only function as

reference resources inside picking/releasing zones 200, 210, and 220, respectively.
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Figure 3-23: Usage of AR markers

3.6.3 Construction Site Configuration with Info Points

In the previous section, we proposed a graph-based description of a HEIGA system.

In this section, the approach is further configured to address the issues peculiar to con-

struction sites. The construction knowledge graph is denoted as 𝐺𝑐𝑜𝑛𝑠 = (𝑉𝑐𝑜𝑛𝑠, 𝐸𝑐𝑜𝑛𝑠).

For each info point as well as the floor information that is useful in multi-floor con-

struction sites, special functions need to be marked for further usage. Therefore,

𝐹 = {𝑓1, 𝑓2}. If an info point is configured in 2F and also shows where the charge

station is, then 𝐹 = {“2𝐹”, “𝐶ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑎𝑡𝑖𝑜𝑛”}.

For arcs, two label sets are considered including the weight set 𝑊 = {𝑥 | 𝑥 ∈

R ∧ 0 ≤ 𝑥 ≤ 1}and the directional guidance set 𝐺 = {1, 2, 3, 4, 5, 6} as introduced in

Figure 10-1.

Hence, the following mappings are required to label each vertex and arc with the

necessary information:

𝛼 : 𝑉𝑐𝑜𝑛𝑠 → 𝐹, 𝛽1 : 𝐸𝑐𝑜𝑛𝑠 → 𝑊,𝛽2 : 𝐸𝑐𝑜𝑛𝑠 → 𝐺 (3.13)
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With AR markers deployed in the construction environment and the HEIGA sys-

tem adequately configured, Capper can reach any location in a construction site as

long as there is an info point set.

In summary, the automatic control system is presented in Figure 3-24. The knowl-

edge base is a directed graph, where each node represents a marker and each vertex

describes the guidance information between markers. Given a valid marker detection,

the path planning will inference considering the task and knowledge base. It’s worth

noticing that, the output of the path planning module is not an actual path including

a series of points with respect to a global frame. Instead, a target that guides the

robot to the right/left/front/backward will be assigned to the trajectory planning

module. Eventually, robotic motion is conducted by the trajectory planning module.

3.7 Experiments

The automatic material transportation robots are expected to be deployed into real

construction sites. However, deploying robots under continues development into con-

struction sites is both dangerous and surely will have impact on the original con-

struction schedules. Therefore, newly designed robots and algorithms need to be well

evaluated before being deployed into real construction sites.

In this projects, we have conducted a three-stage evaluation including: (i) devel-

opment and evaluation of robotic systems including hardware and algorithms in an

abandoned supermarket named ACOOP; (ii) evaluation of long-distance transporta-

tion and vertical transportation (with an elevator) tasks in a construction lab named

ICI; (iii) integrated assessment of material handling in multiple real construction sites.

3.7.1 Abandoned Supermarket: ACOOP

An abandoned supermarket named “ACOOP” near college campus was used for initial

evaluation of all the hardware and algorithms. Figure 3-25 shows the basic informa-

tion of ACOOP. The empty supermarket provided sufficient space for plane move-
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ment. Additionally, carts, traffic cones, and gypsum panels were used to simulate

different site configurations. In this fully controlled environment, unlimited types of

simulated scenarios can be configured to test the system from different angles, without

disrupting any other activities.

Figure 3-25: Basic information of ACOOP.

Figure 3-26 shows the route of one of the conducted trails. Capper needed to

move two carts from zone L1 to U1 and one cart from L1 to U2. Eight markers

numbered from M1 to M8 were used. The info points, along with their relationships,

were entered into the system to establish a guidance knowledge base. We evaluated

the effectiveness of HEIGA in providing directional instructions and the effectiveness

of Capper at executing them. Figure 3-27 shows four photos of the trial.

In ACOOP, all the required functions including cart manipulation, obstacle avoid-

ance, marker-based knowledge base have been evaluated. However, due to the filed

limitation, long-distance transcription and vertical transportation (ELV) yet need

further evaluation.

87



Figure 3-26: ACOOP: Trial 1 (marker configuration).
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Figure 3-27: ACOOP: Trial 1 (photos).

3.7.2 Construction Laboratory: ICI

We performed the next phase of experiments in the construction laboratory of our

cooperated construction company. The laboratory is named ICI and has a massive

indoor space, as it was designed to conduct construction-related experiments.

Compared with ACOOP, ICI can be configured with scenarios that are closer to

real construction sites, including more construction materials, and equipment. More

importantly, the lab allows the evaluation for long-distance horizon transportation

and vertical transportation with an elevator (Figure 3-28).

Here, we demonstrate two experiments conducted in the ICI lab.

1) Long-Distance and Vertical Task. Although basic automatic control algo-

rithms have been fully investigated back in the experiments in ACOOP. The

actual long-distance transportation with an elevator is what will frequently be

required in real construction sites. Therefore, a similar configuration was con-

ducted in ICI to evaluate the system considering both long-term horizon trans-

portation, and vertical transportation. Despite that only six markers were used,
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Figure 3-28: Basic information of ICI lab.

the transportation from 1F to 2F for around 100m was succeeded.

As Figure 3-29 shows, Capper picked the cart in L1, went to 2F through the

ELV, dropped the cart in U1, returned to 1F through the ELV, and finally

returned to L1. Figure 3-30 shows the photos captured during the trial. As

demonstrated, the ELV was just 10 cm wider than the length of Capper carrying

a cart. In this scenario, although only five AR markers were deployed (markers

on the carts are not included), the field was successfully configured.

2) Transportation in an Environment Closer to Real Sites. Another im-

portant difference from ACOOP to a real construction site is the environment

that a robot may perceives. Therefore, in ICI, we simulated an environment

with carts loaded with materials and various building machines. Nine markers

marked form 𝑀1 to 𝑀9 were used to configure the environment.

Figure 3-31 illustrates the route: two carts were initially placed in L1; Capper

was then instructed to move them to U1 and U2, respectively. Meanwhile, a

wide-range camera was configured from a bird viewpoint (Figure 3-32).
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Figure 3-29: ICI: Trial 1 (marker configuration).
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Figure 3-30: ICI: Trial 1 (photos).

3.7.3 Construction Site in Shinagawa, Tokyo

The Yamato construction sit as shown in Figure 3-33 was designed as a logistics center

and office for the Yamato cooperation, which is located in Shinagawa, Tokyo. The

building has ten floors and an elevator available for vertical transportation.

For first time, our newly developed material handing robots were deployed into a

real construction site. A cart transportation and recycle task was presented.

As Figure 3-34 shows, Capper loaded a cart in 1F, went to 5F through the ELV,

dropped the cart in U1, picked another cart in U2, and eventually returned to 1F.

Figure 3-35 shows the photos that were taken during the trial.

3.7.4 Construction Site in Nagoya

As Figure 3-36 shows, the Fuji Machinery construction site was designed as a new fac-

tory for the Fuji Machinery Cooperation. The factory has three floors, and elevators

can be used for material transportation.
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Figure 3-31: ICI: Trial 2 (marker configuration).

Figure 3-32: ICI: Trial 2 (photos).
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Figure 3-33: Basic information of the Yamato construction site.

1) Coordinate Material Transportation. In a multi-floor wide construction

sites, coordination is required for a more effective material handling system.

More detailly, one robot would be responsible for relocating all the carts from 1F

to their target floors respectively. Meanwhile, multiple robots will be deployed

in each floor, while the master robot leaves the cart near the elevator and return,

the slave robots in each floor will continue to load the carts and unload them

to the desired unloading zones.

We spent a few days in the site especially for the evaluation of coordinate

material handling. Figure 3-37 shows one of the trials. A total of 12 markers

were used in both 1F and 3F. The master robot was commanded to relocate

a cart from L1 to U1, and the slave robot was deployed in 3F, waiting for the

cart being relocated into U1, then conduct the transportation task from U1 to

U2. Photos during the trial are presented in Figure 3-38.

2) Transportation of Building Materials. As the last experiment introduced

in the work, we conducted material transportation which was on the original

schedule of the construction site. In other words, instead of experimental ma-
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Figure 3-34: Shinagawa: Trial 1 (marker configuration).
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Figure 3-35: Shinagawa: Trial 1 (photos).

Figure 3-36: Basic information of Fuji Machinery Construction Site.
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Figure 3-37: Nagoya: Trial 1 (marker configuration).

Figure 3-38: Nagoya: Trial 1 (photos).
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terial handling tests, the trials conducted actually contributed to the site. A

single cart was loaded with 40 tanks of painting oil, which added up to 600kg.

During the two-day trial in the nights between PM 9:00 to AM 2:00, a total of

20 carts (800 tanks) were transported from 1F to 3F.

As Figure 3-39 shows, 28 markers were deployed. During the night, the con-

struction site can be completely dark. Three LED lights were configured on

the robot, so that the robot can perceive the environment without requiring for

on-site lighting. Figure 3-40 shows the photos taken during the trial.

Figure 3-39: Nagoya: Trial 2 (marker configuration).

3.8 Discussion

By deploying the HIEGA based material transportation system into three different

types of sites, HEIGA has been proved to be effective in enabling autonomous mate-

rial transportation in unstructured and dynamics indoor environments. Since robots

are expected to work outside human working hours, rather than competing with

employees considering transportation speed, the construction working efficiency will

guaranteed to be increased.
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Figure 3-40: Nagoya: Trial 2 (photos).

For the widely investigated navigation methods (either using tape, beacons or

mark-less solutions such as SLAM), the core idea, is self-localization in a global frame.

In other words, once accurate self-positioning can be achieved, navigating to any

coordinate is obtainable. The biggest challenge is that obtaining an accurate self-

localization becomes harder and harder as the environment gets more complex and

dynamic.

The most important characteristic of HEIGA is that the performance of the system

will not be influenced dramatically by the complexity or the dynamics of the environ-

ment. From ACOOP, ICI, to real construction sites, the performance of the system

has not been influenced. In other words, we eventually decouple the performance of

the automated handling system from environmental complexity and dynamics.

3.9 Conclusions and Future Work

In this paper, we have proposed a guidance approach called HEIGA. By deploying

info points at critical locations and building a guidance knowledge base accordingly,

an agent can reach its destination without the need for self-localization in a global

frame. The approach has been evaluated in three types of fields, as a result, HEIGA
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based automated material transportation:

1) keeps humans out of heavy manipulation and repetitive tasks (material trans-

portation), thus reducing the risk of harms and repetitive motion injuries;

2) improve construction working efficiency dramatically since material handling

can be conducted automatically in longer working hours.

Most importantly, as far as we are concerned, for the first time, we have achieved

fully autonomous material transportation in uncontrolled multi-floored construction

sites (the transported items are real construction materials that are scheduled to be

used).

Our future work would focus on two directions aiming at higher transportation

working efficiency: (i) coordinated transportation that allows more kinds of carts to

be manipulated with multiple robots working together; and (ii) relay transportation

on a larger scale that allows a team of robots to conduct multi-floored transportation

in a much higher efficiency.
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Chapter 4

Conclusion

Our main contributions in this work is summarized as follows. With the goal of

contributing to a declining birthrate and an aging population: (i) on one hand, we

tried to achieve high-level cognitive intelligence on personal care robot KUT-PCR so

that caring tasks can be conducted as required where no care givers are available. As

a result, the quality of life of the care recipients can be improved while the caring

cost will be decreased; (ii) on the other hand we focus on motion intelligent, that

enables autonomous material transportation in construction sites with Capper, so

that the effect caused by the lack of young labor in construction sites can be effectively

decreased.

As all the presented approaches have been evaluated in a real household environ-

ment and construction sites respectively, we still face great challenges in deploying the

robots into homes and hospitals, or all kinds of construction sites needing automatic

handling. In the future work, we have planned continues development and evaluation

schedule, so that the algorithms now developed in the laboratory can be evaluated

and deployed into the society and make certain contribution.
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