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Abstract 
 

A Study on Deep Learning Algorithms for Electroencephalography (EEG) and 
Functional Magnetic Resonance Imaging (fMRI) Signal Processing 

 
 

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are neuroimaging 

techniques used to study brain function. fMRI provides high spatial resolution, allowing for detailed visualization 

of local brain activities. EEG offers high temporal resolution, allowing for the study of rapid brain processes. These 

techniques are crucial for understanding various cognitive processes, such as perception, attention, memory, and 

language. Deep learning (DL) algorithms as data-driven analysis tools for pattern recognition and regression 

problems have been applied to fMRI and EEG data. DL-based techniques can learn complex and meaningful 

representations from the raw data, which can extract high-level features from the voxel-level fMRI volumes and 

be applied to tasks such as brain state classification or decoding cognitive processes. For EEG analysis, DL-based 

techniques can learn temporal patterns and relationships in the electrical signals, facilitating tasks like emotion 

recognition or seizure detection. Therefore, this thesis conducted research based on deep learning algorithms from 

three perspectives, including P300 detection (a type of EEG signal), EEG denoising, and fMRI classification, and 

proposed a spatial-temporal neural network (STNN), a multi-module neural network (MMNN), and a multi-

pooling 3D convolutional neural network (MP3DCNN) to resolve these challenges. Specifically, the first chapter 

provided a brief overview of EEG, fMRI, and deep learning algorithms, where the definition, characteristics, and 

application of EEG and fMRI signals are given. Then the principle, key concepts, and real applications of deep 

learning algorithms are introduced. Finally, the potential and risks of EEG and fMRI signal processing based on 

deep learning are listed. From the second to the fourth chapter, the background, materials, methods, experiments, 

and discussion about the proposed algorithms will be described, respectively. The fifth chapter summarizes this 

thesis. The main works are brief described as follows: 

1) Spatial-temporal neural networks (STNN) for P300 detection: The P300 signal, also known as 

P3 or P300 component, is an electrophysiological response observed in the event-related potential (ERP) 

waveform recorded from the scalp using EEG tools. It typically occurs around 250-500 milliseconds after the 

presentation of a rare or unexpected stimulus and is associated with attention, cognitive processes, and decision-

making. P300 spellers are common brain-computer interface (BCI) systems designed to transfer information 

between human brains and computers. In most P300 detections, the P300 signals are collected by averaging 

multiple electroencephalographic (EEG) changes to the same target stimuli, so the participants are obliged to 
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endure multiple repeated stimuli. Therefore, an STNN is proposed to detect P300 signals, which can detect signals 

by combining the outputs from a temporal unit and a spatial unit. The temporal unit is a flexible framework 

consisting of several temporal modules designed for analyzing brain potential changes in the time domain. The 

spatial unit combines one-dimensional convolutions (Conv1Ds) and linear layers to generalize P300 features from 

the space domain, and it can decode EEG signals recorded using different numbers of electrodes. We demonstrate 

the effectiveness of our model using three public databases: P300 speller with ALS patients, covert and overt ERP-

based BCI, and BCI Competition III-dataset II. In the dataset of P300 speller with ALS patients, EEG signals from 

eight ALS patients were recorded, and every participant in the study went through 35 trials, with 10 rounds of 

repeated stimuli in each trial. Every round of stimuli contained two target stimuli and 10 nontarget stimuli. In the 

dataset of covert and overt ERP-based BCI, 10 healthy subjects took part in the experiment. The EEG data are 

recorded on Farwell and Donchin’s paradigm and the Geometric Speller. Each experiment included three sessions, 

with six trials in each session. Each trial contained eight rounds of repeated stimuli with 12 stimuli within each 

round of stimuli. In the dataset of BCI Competition III-dataset II, both EEG signals from two subjects (A and B) 

were divided into a training set (85 trials) and a testing set (100 trials). Every trial contained 15 rounds of repeated 

stimuli. We implemented a within-subject P300 detection and a cross-subject P300 detection, respectively using 

the dataset of P300 speller with ALS patients as well as covert and overt ERP-based BCI. 

The results showed that both amyotrophic lateral sclerosis (ALS) patients and healthy subjects can 

benefit from this study. In the within-subject P300 detection and the cross-subject P300 detection, the proposed 

STNN gained higher performance with fewer repeated stimuli than other comparative approaches. Furthermore, 

we applied the proposed STNN in the P300 detection challenge of BCI Competition III. The accuracy score was 

89% in the fifth round of repeated stimuli, outperforming the best result in the literature (accuracy = 80%) to the 

best of our knowledge. The results demonstrate that the proposed STNN performs well with limited stimuli and is 

robust enough for various P300 detections. The main reasons are as follows: 1) the temporal unit, as a flexible DL-

based network dedicated to time-domain modeling, can capture the temporal dependencies from brain potential 

changes by constructing an end-to-end multi-level sequential mapping, so it is more sensitive than the previously 

mentioned approaches when detecting P300 signals; 2) the spatial unit can constantly generalize and compress 

P300 features in the space domain, which hedges complex noise interference to a certain extent; 3) a joint decision-

making mechanism is built into the network by connecting the temporal unit and the spatial unit concurrently, 

which can utilize the above advantages of the two units, thus achieving both better performance and stronger 

robustness. In the future, the proposed STNN is predicted to reach a high information transfer rate (ITR) when 
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implementing online P300 detection. Moreover, we consider that this network has potential for applications in 

EEG-BCI systems and some other areas of signal processing, such as Electrocardiogram (ECG) classification, 

seeing that it is designed with a flexible structure and can be fast training and testing with limited data. 

2) Multi-module neural networks (MMNN) for EEG denoising: This study proposed an MMNN to 

remove ocular artifacts (OAs) and myogenic artifacts (MAs) from noisy single-channel electroencephalogram 

(EEG) signals. This network consists of multiple denoising modules connected in parallel. Each denoising module 

is built using one-dimensional convolutions (Conv1Ds) and fully connected (FC) layers, and it estimates not only 

clean EEG signals but also artifacts. The proposed MMNN has two main advantages. First, the multiple denoising 

modules can purify noisy input EEG signals by continuously removing artifacts in the forward propagation. Second, 

the parallel architecture allows the parameters of each denoising module to be updated concurrently in the 

backpropagation, thereby improving the learning capacity of neural networks. We tested the network denoising 

performance using a recent public database, namely, EEGdenoiseNet. This database provides large-scale clean 

EEG and artifact epochs, involving 4514 clean EEG epochs, 3400 EOG epochs, and 5598 EMG epochs. These 

epochs were used to synthesize the training and testing data. Among them, we implemented the model evaluation 

using 3000 pairs and 400 pairs of training and testing epochs for the OA removal, as well as 5000 pairs and 598 

pairs of training and testing epochs for the MA removal. These epochs are synthesized at ten different noise levels, 

aiming to simulate the real applications. And we performed a 10-fold cross-validation on the training samples for 

hyperparameter tuning. 

The testing results revealed that the proposed network reduced the temporal relative root mean square 

error (T-RRMSE) and spectral relative root mean square error (S-RRMSE) by at least 6% and enhanced the 

correlation coefficient (CC) by at least 3% over the state-of-the-art approaches. Observing the deviation 

distribution between the denoised and clean signals confirmed these significant performance improvements. 

Furthermore, the proposed network achieved a similar performance efficiency with only 60% of the training data 

compared to the existing DL models. Finally, the proposed model was compared with the non-deep learning 

techniques. According to the ANOVA results with Holm-Bonferroni correction, the performance improvement is 

significant (all p-values < 0.001) in both the OA and MA removals. In the future, there are some challenges worth 

exploring using the proposed model. For example, OAs and MAs are entangled with motion artifacts in a real EEG 

epoch, however, there is no available public database to evaluate the model performance for the mixed signals. 

Given that the proposed model offers significant advantages over the conventional and DL models in this study, 

the related research is within the scope of further work. 
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3) Multi-pooling 3D Convolutional Neural Networks (MP3DCNN) for fMRI Classification: Neural 

decoding of visual object classification via functional magnetic resonance imaging (fMRI) data is challenging and 

is vital to understand underlying brain mechanisms. The previous study performed categorical (face vs. object), 

face sub-categorical (male face vs. female face), and object sub-categorical (natural object vs. artificial object) 

classifications via a classic three-layer 3DCNN, revealing that the human visual system recognizes objects 

following the principle of going from categories into sub-categories. However, the previous classification model 

did not significantly present a high accuracy even with 9-fold fMRI data averaging, especially for sub-categorical 

classification tasks. Therefore, a novel multi-pooling 3D convolutional neural network (MP3DCNN) is proposed, 

which is expected to reach a higher accuracy than the previous model and play a valuable role in decoding brain 

mechanisms. The proposed MP3DCNN included a feature extraction, a feature combination, and a classifier, 

where the feature extraction has a mainchain and two branches. The mainchain is a three-layer 3DCNN, where 

each 3D convolution is combined with a batch normalization, an average 3D pooling layer, and a rectified linear 

unit (ReLU). The first and second 3D convolutions each have a branch connection, where an average 3D pooling 

layer and a linear layer are used to generalize further and connect the extracted features. In the end, through the 

feature combination and classifier, the model can provide a sophisticated decision using multi-level features in 

fMRI classification.  

In the work, the fMRI dataset is from the previous study, where 53 healthy subjects participated in the 

visual stimulus task, and each one experienced an average of 9.96 ± 2.88 rounds of visual stimuli, where the subject 

clicked the button corresponding to a random visual stimulus (an image of a male face, female face, natural object, 

or artificial object) within 0.5s. During this period, a Siemens 3T MRI scanner recorded the subject’s brain states 

as T1-weighted 3D fMRI volumes. Through SPM12, the fMRI volumes were realigned, co-registered, normalized 

to the standard Montreal Neurological Institute (MNI) template, and resampled to 2-mm isotropic voxels. After 

data cleaning, there are 17306 fMRI volumes from 50 subjects available, including 4453, 4399, 4214, and 4240 

volumes corresponding to the visual stimuli of male face, female face, natural object, and artificial object, 

respectively. To suppress the background noise and the irrelevant neural activities, the fMRI dataset of each subject 

was multi-fold averaged as an option to improve the data quality (for example 9-fold fMRI data averaging). We 

performed 9-fold cross-validation with 25 training iterations, where the batch size was 64, the learning rate was 

0.00001, and the loss function was binary cross entropy (BCE). Within the 25 iterations, the model parameters 

with the highest accuracy score on each validation dataset were used for model testing. Finally, we used a majority 

voting scheme to ensemble the nine results in determining the classification accuracy.  
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The results showed that this model can improve the classification accuracy for categorical (Face vs. 

Object), face sub-categorical (Male face vs. Female face), and object sub-categorical (Natural object vs. Artificial 

object) classifications from 1.684% to 14.918% over the previous study in decoding brain mechanisms. The main 

reasons are speculated as follows: 1) we considered that the multiple 3D average pooling layers can against the 

local feature redundancy in the feature extraction process and pass the global information to the classifier as much 

as possible; 2) through the branch connections, the model decision can depend on the merged features of the three 

3D convolutions, thereby improving the model’s robustness. In future research, we look forward to using grid-

search to optimize the model hyperparameters and exploring the visual explanations based on the reached 

classification results.  

Overall, this thesis proposed high-performance deep learning algorithms for P300 detection, EEG 

denoising, and fMRI classification, respectively. And they are expected to improve the efficiency in various brain 

decoding tasks in the future.  
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1. Introduction  

1.1 Overview of EEG (Electroencephalography) 

Electroencephalography (EEG) is a non-invasive tool for recording the brain’s electrical activity. During 

EEG signal acquisition and processing, EEG electrodes are placed on the scalp to detect the synchronized activity 

of large groups of neurons in the brain. EEG signals are characterized by the frequency, amplitude, and time-

domain [1].  

The frequency characteristic indicates the number of oscillations or cycles of electrical activity per second, 

which is measured in Hertz (Hz). EEG signals are categorized into various frequency bands, each associated with 

distinct brain states, and the primary frequency bands include: Delta waves (0.5-4 Hz) are prevalent during sleep 

and in some pathological situations, such as coma or brain injury; Theta waves (4-8 Hz) relate to drowsiness, 

meditation, and specific cognitive functions, including memory and attention; Alpha waves (8-13 Hz) are dominant 

during relaxed wakefulness and closed eyes and can be suppressed by opening the eyes or engaging in mental 

activity; Beta waves (13-30 Hz) are associated with focused attention, mental activity, and motor activity; and 

Gamma waves (30-100 Hz) are linked to cognitive activities like perception, attention, and memory [1]. 

The amplitude characteristic of EEG signals indicates the height or strength of the electrical activity 

measured by EEG electrodes because of the synchronous activity of neuronal populations in the brain. Various 

factors can impact the amplitude of EEG signals, such as neuronal activity, electrode placement, signal-to-noise 

ratio (SNR), and individual variability.  

The time-domain characteristic of EEG indicates the temporal dynamics of the electrical activity of EEG 

signals, which can be further investigated in the following perspectives: 

1) Latency indicates the time delay between a stimulus or event and the corresponding neural response. For 

example, latency is a crucial feature in measuring the P300 component and a longer latency to P300 is 

generally related to slower information processing and may indicate deficits in cognitive function. 

2) Event-related potentials (ERPs) [3] denote the specific waveforms in EEG signals that are time-locked 

to a particular stimulus or event, which is used to investigate the brain mechanisms, such as attention, 

perception, and memory. 

3) Coherence indicates the degree of synchronization or correlation between different brain regions as 

represented in EEG signals, which can be used to analysis functional connectivity between brain regions. 
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Based on the above characteristics, EEG signals have a wide range of applications in various fields, and 

some representative examples of EEG applications are as follows: 

1) Clinical diagnosis [4]: For example, clinicians can detect abnormal brain activity and identify the 

location and extent of seizure activity by analyzing EEG signals, 

2) Cognitive neuroscience research [5]: EEG signals can be used to investigate the neural correlates of 

diverse cognitive processes, such as attention, perception, memory, and language.  

3) Brain-computer interfaces (BCIs) [6]: EEG-based BCIs enable individuals to control external devices, 

such as prosthetic limbs or communication tools. This technology is particularly beneficial for 

individuals with disabilities. 

However, some potential challenges are worth noting in EEG applications, for example, P300 detection 

studies. Environmental noise, movement artifacts, electrode impedance, and biological noise are some common 

noise types that can create artifacts or distortions in EEG signals. Therefore, advanced signal processing techniques 

such as deep learning are expected to play a significant role.  
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1.2 Overview of fMRI (Functional Magnetic Resonance Imaging) 

Functional magnetic resonance imaging (fMRI) is a technique that measures brain activity by detecting 

changes in blood flow within the brain. This approach relies on the blood-oxygen-level-dependent (BOLD) 

contrast, which can capture the relationship between neuronal activation and cerebral blood flow [7]. In recent 

years, fMRI has become a crucial tool in cognitive neuroscience, psychology, and clinical research because of its 

several unique characteristics as follows: 

1) High spatial resolution: Spatial resolution refers to the smallest distinguishable detail in an image or the 

ability to identify and differentiate between closely spaced structures or brain regions. fMRI is known 

for its high spatial resolution, allowing researchers to visualize and accurately localize the activation of 

specific brain regions and structures involved in various cognitive processes and tasks. 

2) Whole-brain imaging: Whole-brain coverage means that fMRI measurement can capture activity across 

the whole brain, which enables researchers to study complex brain networks and interactions among 

different brain regions. A comprehensive view of brain activity is vital to understand the whole brain 

mechanisms and grasp the dysfunction in one region on other areas or the brain's overall functioning. 

3) Adaptability: fMRI is highly adaptable to various experimental designs. Therefore, researchers can tailor 

their studies to specific research questions or investigate various cognitive processes.  

4) Comparability in cross-subject: fMRI data is proved to have comparability in cross-subject studies. 

Therefore, researchers can examine and integrate findings from different experiments and populations, 

which is extremely valuable for understanding brain decoding’s generalizability. 

5) Data visualization: fMRI data can be visualized in a variety of ways. For example, researchers can 

analyze fMRI data at the level of large-scale brain networks. The visualization tools can help identify 

brain mechanisms and neural feedback processing for different stimuli or tasks. 

  Based on the characteristics of fMRI, several applications have emerged in lots of fields, such as: 

1) Cognitive neuroscience research [8]: fMRI is used to study the neural basis of various cognitive processes, 

such as perception, attention, memory, and emotion.  

2) Clinical diagnosis [8]: fMRI is used to understand the neural basis of neurological and psychiatric 

disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, depression, and autism. 

3) Brain mapping: fMRI plays a significant role in advancing brain mapping by offering intricate depictions 

of the functional architecture within the brain. 
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4) Pre-surgical schedule: fMRI is employed in preoperative planning to identify crucial functional regions 

within the brain that should remain intact during surgery, especially when removing brain tumors, which 

helps minimize harm to vital areas and reduces the risk of postoperative impairments. 

While fMRI has presented significant advantages in decoding brain mechanism, there are still some 

challenges that are worthy of attention: 

1) Signal-to-noise ratio (SNR) [9]: fMRI information can be affected by multiple noise sources, including 

physiological factors (like heart rate and breathing), head movement, and scanner-related artifacts. These 

noise sources can negatively impact the accuracy and reliability of fMRI measurements.  

2) Reproducibility: Variability in fMRI data acquisition, preprocessing, and analysis methods across studies 

can pose challenges when comparing and replicating results for other researchers. 

3) Cost: The high costs of acquiring, maintaining, and operating fMRI scanners can limit the applications 

of the fMRI-based studies.  

4) Contraindications: fMRI scanning requires participants to remain still in a confined, noisy environment, 

which may not be suitable for specific groups, such as young children or claustrophobic individuals, as 

well as those with implanted devices or metallic objects in their bodies. 

In the future, we expect fMRI techniques to continue evolving, driven by technological advancements 

and methodological innovations. Advancements in fMRI technology may lead to increased spatial and temporal 

resolution, thereby enhancing our understanding of brain mechanisms. On the other hand, the multimodal 

neuroimaging approach, such as fMRI-EEG [11], has the potential to provide a more comprehensive understanding 

of brain function. Finally, the development and adoption of advanced data analysis methods, such as deep learning 

algorithms, will continue to expand our ability to extract meaningful information from fMRI data.  
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1.3 Overview of deep learning algorithms 

Deep learning (DL) algorithms are a subfield of machine learning and artificial intelligence (AI), focusing 

on developing and applying multi-layer neural networks. DL-based techniques can model and learn hierarchical 

data representations to issue complex pattern recognition and regression problems. The key concepts of deep 

learning [12] can be summarized as follows: 

1) Neural connection: DL models are composed of interconnected layers of artificial neurons or nodes that 

process and transform input data through a series of non-linear transformations. Deep neural networks 

(DNN) typically have multiple hidden layers between the input and output layers, allowing the network to 

capture hierarchical data information. 

2) Convolutional layer: A convolutional layer indicates a set of filters to the input data, where each filter is 

designed to detect a specific feature or pattern. According to different data dimensionalities, there are 

various convolution operations applied to data, such as 1D, 2D, and 3D convolutions.  

3) Weights and biases: Each connection between neural layers has a set of weights, which determines the 

strength of the connection. Biases are additional parameters that are used to shift the activation function. 

The weights and biases are adjusted during training to minimize the difference between the predictions 

and the target values.  

4) Activation functions: Activation functions are non-linear functions applied to the output of each neural 

layer, introducing non-linearity into the network and then enabling it to learn and represent complex, non-

linear relationships between inputs and outputs.  

5) Loss functions and optimization: DL models are trained using loss functions, aiming to measure the 

difference between the predictions and the target values. Optimization strategies can adjust the model’s 

weights and biases to minimize the loss function. 

6) Backpropagation: Backpropagation is a crucial technique for training deep neural networks, which is used 

to minimize the difference between network outputs and ground truth labels. It can calculate the gradient 

of the loss function on the network parameters using the chain rule of differentiation. And it can update 

the network parameters in the opposite direction of the gradient. 

DL techniques have seen tremendous success in many applications, as follows: 

1) Image classification: DL algorithms have become the preferred method for image classification because 

of the data generalization ability. During the network training, the network would be presented with a 
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series of labeled images to learn the relationships between image features and class labels, which aims to 

make accurate predictions through the learning process.  

2) Language translation: For the language translation task, the network would be presented with parallel texts 

in two languages and learn to translate between them during the network training. 

3) Medical imaging: In the medical imaging tasks, the network would capture the correlations between 

medical image characteristics and medical conditions. By understanding intricate relationships within 

medical imaging data, it is expected to enhance precision in crucial tasks such as disease diagnosis and 

therapy planning. 

4) Game AI: DL algorithms have been applied to game AI and have demonstrated the capability to enhance 

the intelligence and behavior of game characters and agents. In the task, the training data is game data, 

and the model would learn to make decisions based on the different rules and objectives in the game 

scenarios, which aims to make game AI more realistic and the game experience more engaging.  

Based on the above, deep learning algorithms have the potential to greatly impact the field of fMRI and 

EEG signal processing, such as signal denoising and classification. For brain decoding tasks, deep learning is 

expected to improve the automatic capability through the fMRI and EEG data training [13]. Finally, here are 

servals perspectives to consider in studying fMRI and EEG signal processing based on deep learning. 

1) Network performance: The network performance in EEG and fMRI signal processing is greatly influenced 

by training data quality, training data quantity, and network architecture. Noisy signals will bring risks for 

data feature learning, and a smaller size of dataset maybe not cover enough data features. Meanwhile, A 

well-designed network architecture would play a crucial role for improve the learning ability based on 

training data. 

2) Interpretability [14]: Interpretability involves the level to which the network’s decisions can be understood 

or explained by humans. It is important in medical applications because the network’s decisions will have 

consequences for patients.  

3) Ethical and Privacy Concerns [15]: The ethical and privacy concerns indicate that DL-based applications 

must ensure that the technology is used responsibly and ethically for EEG and fMRI signal processing. 

For example, personal medical information as training data is sensitive and must be protected. Researchers 

have an obligation to ensure that data is not misused. 
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1.4 Thesis significance of the study 

This thesis introduces a study of deep learning algorithms for EEG and fMRI signal processing. EEG and 

fMRI signals are the analysis targets in the study because they have the advantages of measuring brain activities 

in temporal and spatial domains, respectively. Specifically, fMRI adopts the same principles of magnetic fields 

and radio waves as MRI, while it focuses on detecting and mapping brain activity and functional connectivity 

during specific tasks or stimuli. And EEG provides exceptional temporal resolution, capturing rapid changes in 

brain activity with millisecond precision, which makes it well-suited for studying dynamic processes and fast 

neural events, such as brain oscillations, event-related potentials (ERPs), and transient responses. Nowadays, the 

other techniques used for recording brain activities include positron emission tomography (PET), near-infrared 

spectroscopy (NIRS), computed tomography (CT), and magnetoencephalography (MEG). However, there are 

some limitations to them compared with EEG and fMRI, as follows:  

1) PET measures the distribution of radioactive tracers injected into the bloodstream to track brain 

metabolism and neurochemical activity. However, PET requires the administration of radioactive tracers, 

which can be costly, time-consuming, and involve radiation exposure. This limits its suitability for 

repeated measurements over short time intervals. 

2) NIRS measures the changes in blood oxygenation levels using near-infrared light. However, it has limited 

depth penetration into the brain. And its signals can be affected by the absorption and scattering of light 

in the scalp and skull, potentially leading to measurement artifacts or reduced accuracy in certain regions. 

3) CT utilizes X-rays and computer processing to generate cross-sectional images of the brain. However, CT 

lacks functional data and has lower soft tissue resolution compared to fMRI techniques. 

4) MEG measures magnetic fields generated by neuronal activity in the brain. However, compared to EEG, 

MEG is highly sensitive to external magnetic interference, such as metal objects or electrical equipment, 

which can lead to artifacts and affect the quality of recorded signals. 

EEG and fMRI are chosen because of their complementary strengths in temporal and spatial resolution, 

brain coverage, non-invasiveness, direct measurement of neural activity, and cost-effectiveness or portability.  

Deep learning algorithms can handle complex and high-dimensional data, which are thus used for EEG 

and fMRI signal processing. Specifically, deep learning models can effectively learn patterns and extract 

meaningful features from massive datasets, thereby identifying specific patterns or biomarkers and improving the 

accuracy of prediction and classification tasks. Therefore, deep learning algorithms are expected to resolve some 

challenges in EEG and fMRI signal processing. The rest of the thesis describes three proposed algorithms:  
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1) Spatial-temporal neural networks for P300 detection.  

2) Multi-module neural networks for EEG denoising.  

3) Multi-pooling 3D convolutional neural networks for fMRI classification.  

Among them, the P300 components in EEG signals are widely associated with various cognitive processes, 

including attention, memory, and decision-making. However, P300 detection is a challenging task because of low 

signal-to-noise ratio, inter-individual variability, task and stimulus variability, limited trial data, temporal overlap, 

and the presence of artifacts and noise. Deep learning algorithms have emerged as a promising approach for 

detecting P300 signals because of their advantages in feature generalization and extraction. Furthermore, deep 

learning algorithms can be used for EEG denoising. First, the deep learning models are trained on large datasets 

by mapping from noisy EEG signals to clean signals, and then the trained model can be used to generalize and 

handle different types of noisy EEG signals. The application of deep learning-based denoising methods has shown 

significant improvements in enhancing the signal quality and preserving important brain activity, so we expected 

to improve the deep-learning model performance in EEG signal processing in this thesis.   

From the perspective of fMRI classification, deep learning algorithms can play a significant role in 

capturing spatial correlations and maintaining computational efficiency. The main challenges include data 

availability, high dimensionality, inter-subject variability, spatial and temporal correlations, and interpretability 

concerns. This study will explore the design of high-performance classification models based on deep learning.  

The background, materials, methods, experiments, and discussion about the proposed algorithms will be 

described in Chapter 2,3 and 4, respectively. The final chapter provides a conclusion to the whole paper. 
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2. Spatial-Temporal Neural Networks for P300 Detection 

2.1 Background  

Brain-computer interface (BCI) systems enable neural signals to control external devices directly. In recent 

years, BCIs have been applied in many fields, such as environmental control [16], communication [17], and 

neurofeedback rehabilitation [18]. Electroencephalography (EEG) monitoring is one of the most popular 

measurement tools in BCI applications because of its non-invasiveness, mobility, and relatively low cost [19].  

The P300 speller, as an EEG-based BCI paradigm, was first proposed by Farwell and Donchin [20], as 

shown in Figure 2.1-1. During the spelling, the participants are required to focus their gaze on the lighted characters 

when the rows or columns of 36 alphanumeric characters are randomly intensified. In this process, the participants’ 

brain activity changes evoked by the target characters, which are called event-related potentials (ERPs). Within 

the ERPs, the P300 signal is one of the most robust components that corresponds to a positive deflection, occurring 

250-500ms after a target presentation [21]. 

 

Figure 2.1-1 Farwell and Donchin’s paradigm. 

    An efficient P300 detection technique is a valuable contribution for the BCI community. Humans, 

particularly amyotrophic lateral sclerosis (ALS) patients, who suffer from progressive physical disabilities caused 

by the degeneration of the motor neuron system [22], will benefit from this research. The challenges, however, are 

that EEG signals inherently have a low signal-to-noise ratio (SNR) and differ significantly between individuals. 

Even for the same individual, EEG changes can differ in responding to the same target stimuli when affected by 

internal states and external surroundings. Thus, we usually average multiple EEG responses to a target stimulus to 

weaken noise and highlight features. However, it adds inconvenience for the participants, who are obliged to spend 

more time and endure multiple repeated stimuli for the same target. To cope with this challenge, researchers should 

make a reasonable tradeoff among time, cost, accuracy, and complexity when designing a P300 detection approach.  
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The current mainstream P3000 detection approaches can be categorized into two types: deep learning (DL) 

and traditional technologies using statistical features and classifiers. In the traditional ones, the feature extraction 

mainly includes measures such as independent component analysis (ICA) [23], canonical correlation analysis 

(CCA) [24], common spatial patterns (CSP) [25], and XDAWN spatial filter [26]. Commonly used classifiers 

include linear discriminant analysis (LDA) [27], support vector machine (SVM) [28], and Riemannian geometry 

classifier (RGC) [29] , among others. Of these, the combination of XDAWN and RGC is perhaps the most potent 

approach for P300 detection [30], which exhibits a strong generalization capability for variable EEG signals. 

Nevertheless, it is still not as competitive as DL approaches [31].  

Convolutional neural network (CNN) as a representative DL framework has attracted widespread attention 

from the BCI community [32][33][34][35][36][37]. In 2010, Cecotti et al. [34] first proposed a CNN-based P300 

detection approach that won the third BCI competition. This method adopts a four-layer CNN architecture to 

extract channel features and temporal features in sequence, demonstrating that CNN can capture both spatial 

peculiarities and latent serial dependencies from EEG signals. However, although CNN improved the detection 

accuracy to an unprecedented level, there are still two major obstacles that lie ahead for such methods. Firstly, the 

network accuracy depends on the quality and quantity of training data, while the amount of high-quality data 

commonly remains limited in P300 tasks because of the high cost of time and labor. Secondly, the P300 response 

is a relatively small potential change presented at a high resolution in the time domain, yet the CNN-based 

frameworks are not skilled at decoding sequential information with limited EEG data.  

To resolve the above problems, some of the recent DL approaches tend to strengthen the learning capability 

of neural networks when limited data are available, such as [38][39][40], or adopt more advanced architectures to 

optimize the feature extraction procedure, such as [41][42][43][44], EEGNet as a generic DL network 

implemented by depth-wise and separable convolutions is proposed, which yields the satisfactory results in various 

EEG detections. This network extracts temporal features from the EEG signals and then performs spatial filtering 

on each temporal feature map. With this design, the network can directly perform sequential learning using raw 

EEG signals and then generalize the captured dependencies in the space domain. It is more competitive for P300 

detection than other DL-based pure sequence models, such as recurrent neural networks and long-short-term 

memory networks. However, this network relies on multiple repeated stimuli to collect EEG signals. 

In this paper, we proposed a spatial-temporal neural network (STNN) for P300 detection. It performs better 

and is more robust in various P300 detections with limited data and repeated stimuli. Our main contributions in 

the proposed network are as follows: 1) We proposed a parallel network consisting of a temporal unit and a spatial 
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unit to simultaneously learn spatial and temporal features from raw EEG signals; 2) In our design, the spatial unit 

is mainly constructed using Conv1Ds and linear layers. It can generalize the spatial features of EEG signals 

recorded using different numbers of electrodes (for example, 8, 16, or 64); 3) We designed a temporal unit inspired 

by [45]. This unit is used to analyze brain potential changes in the time domain by stacking multiple temporal 

modules. The number of temporal modules can be adjusted according to the corresponding P300 detection task. 

We demonstrate the effectiveness of our model using three public databases: P300 speller with ALS patients [46], 

covert and overt ERP-based BCI [47], and BCI Competition III-dataset II [48]. 

2.2 Materials 

2.2.1  Dataset 1: P300 speller with ALS patients [46] 

 In Dataset 1, EEG signals from eight ALS patients (five males and three females, mean age = 59.7 ± 

12.3 years) were recorded using BCI2000 [49] and Farwell and Donchin’s paradigm. The EEG signals were 

digitized at 256 Hz from eight channels (Fz, Cz, Pz, Oz, P3, P4, PO7, and PO8) according to 10-10 standard [50] 

and bandpass filtered between 0.1 and 30 Hz.  

 Every participant in the study went through 35 trials, with 10 rounds of repeated stimuli in each trial. 

Every round of stimuli contained two target stimuli and 10 nontarget stimuli, where a stimulus was a random 

intensification of a row or a column. Two target stimuli indicated the intensifications of the row and the column 

of the target character, respectively. The non-target stimuli were the intensifications of the rows and columns of 

the non-target characters. The time between the onset of two adjacent stimuli, called stimulus onset asynchrony 

(SOA), was 250 ms, where the intensification time and the inter-stimulus interval (ISI) were both 125 ms. 

2.2.2  Dataset 2: Covert and overt ERP-based BCI [47] 

 In Dataset 2, 10 healthy subjects (six males and four females, mean age = 26.8 ± 5.6 years) took part in 

the experiment. The EEG signals were collected with BCI2000, digitized at 256Hz from 16 channels (Fz, FCz, Cz, 

CPz, Pz, Oz, F3, F4, C3, C4, CP3, CP4, P3, P4, PO7, and PO8) and bandpass filtered between 0.1 and 20 Hz. This 

study was performed on two speller paradigms: Farwell and Donchin’s paradigm and the Geometric Speller 

(GeoSpell, Figure 2.2-1). The recordings using the two interfaces both included three sessions, with six trials in 

each session. Each trial contained eight rounds of repeated stimuli with 12 stimuli (two target stimuli and 10 

nontarget stimuli) within every round of stimuli. The SOA and the ISI were 250 ms and 125 ms, respectively. For 

the stimulating patterns, the rows or columns were illuminated on Farwell and Donchin’s interface as described in 

Dataset 1, whereas the GeoSpell interface displayed six characters per time interval until all 36 had appeared twice. 
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Figure 2.2-1 GeoSpell (Geometric Speller) paradigm. 

 
 
 
 
 
 

 
Figure 2.2-2 Overall architecture of the proposed spatial-temporal neural network (STNN). 
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2.2.3  Dataset 3: BCI Competition III-dataset II [48] 

 In Dataset 3, the EEG signals recorded using Farwell and Donchin’s interface, were bandpass filtered 

between 0.1 and 60 Hz and digitized at 240 Hz from 64 channels. Both EEG signals from two subjects (A and B) 

were divided into a training set (85 trials) and a testing set (100 trials). Every trial contained 15 rounds of repeated 

stimuli, and the intensification time and the ISI were 100 ms and 75 ms in each round. 

2.2.4  Data preprocessing 

 The EEG signals of Dataset 1-3 were down sampled to 128, 128, and 120 Hz, respectively. Then, they 

were bandpass filtered between 0.1 and 20 Hz with the fifth-order Butterworth filter [51] to remove the short-term 

fluctuations and leave the longer-term trends [52]. At last, they were extracted from 0 to 0.5 s after each stimulus 

onset, as shown in Table 2.3-1. 

2.3 Methods 

 This section describes the proposed STNN, where the temporal unit and spatial unit are connected 

concurrently, as shown in Figure 2.2-2. The details are as follows. 

2.3.1  Spatial unit Parallel mechanism  

 The proposed model adopts a parallel mechanism to perform simultaneous analysis of EEG information 

in the time and space domains, which is expressed as: 

𝑦ො =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑൫𝑡 (𝑋; 𝜃௧) +  𝑠(𝑋; 𝜃௦)൯,                                                                        (2 − 1) 
 
where 𝑋 and 𝑦ො denote the input of EEG signals and the output of predicted results, the ideal output 𝑦ො is either 

1 (target) or 0 (nontarget), 𝑡(𝑋; 𝜃௧) and 𝑠(𝑋; 𝜃௦) represent the functions of the temporal unit and the spatial unit, 

𝜃௧  and 𝜃௦ are the network parameters, and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 is an S-shaped activation function.  

2.3.2  Spatial unit 

 The spatial unit utilizes the global features of the EEG signals in the space domain for P300 detection. It 

is composed of Conv1Ds, linear layers, weight norms (WNs) [38], max-pooling operations, rectified linear units 

(ReLUs), and a dense layer, as shown in Table 2.3-2. This unit generalizes spatial features from the horizontal and 

vertical dimensions by the combination of multiple Conv1Ds and linear layers. To improve the model’s robustness 

in different P300 detections, a multistage feature generalization and compression (Conv1D to Linear layer to Max 

pooling) is built in the unit. Among them, Conv1Ds as single-dimensional filters, can generalize EEG channel 

features in the vertical dimension. By setting the kernel size to 1, the correlation between EEG electrodes at each 
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time point is extracted; Linear layers can balance the extratced feature sizes in the horizontal and vertical 

dimensions, thus minimizing the information loss when compressing feature with max-pooling operations; ReLUs 

can improve the model’s nonlinearity and avoid vanishing gradients, and WNs can accelerate network 

convergence; The dense layer is connected to the extracted features, producing the predicted results of the spatial 

unit. 

Table 2.3-1 Data description and preprocessing procedure. 

 Dataset 1 Dataset 2  Dataset 3 
Original sampling rate (Hz) 256 256 240 

# of Subjects 8 (ALS) 10 (Healthy) 2 (Healthy) 
# of Trials each subject 35 18 185 
# of Repeated stimuli 10 8 15 

# of EEG channels 8 16 64 
Target vs Non-target 1 vs 5 1 vs 5 1 vs 5 

Speller paradigm F F & G F 
Data preprocessing procedure 

Subsampling rate (Hz) 128 128 120 
Butterworth filter (Hz) 0.1-20 0.1-20 0.1-20 
Selected duration (s) 0.5 0.5 0.5 
EEG format (C × T) 8 × 64 16 × 64 64 × 60 

* F/G: Farwell and Donchin’s paradigm/GeoSpell paradigm; C/T: The number of channels / time points.  
 

Table 2.3-2 Hyperparameters of the spatial unit. 

Layer # Params  Output 
Input / C × T 

Conv1D +WN 
Conv1D + WN 

(C, 128, 1) 
(128, 128, 1) 

128 × T 
128 × T 

Linear Layer + WN 
Linear Layer + WN 

(T, 128) 
(128, 128) 

128 × 128 
128 × 128 

Max Pooling + ReLU (2, 2) 64 × 64 
Conv1D +WN 
Conv1D + WN 

(64, 64, 1) 
(64, 32, 1) 

64 × 64 
32 × 64 

Linear Layer + WN  
Linear Layer + WN 

(64, 64) 
(64, 32) 

32 × 64 
32 × 32 

Max Pooling + ReLU (2, 2) 16 × 16 
Conv1D +WN 
Conv1D + WN 

(16, 16, 1) 
(16, 4, 1) 

16 × 16 
4 × 16 

Linear Layer + WN 
Linear Layer + WN + ReLU 

(16, 16) 
(16, 4) 

4 × 16 
4 × 4 

Dense Layer (16, 1) 1 × 1 
Output / 1 × 1 

* Conv1D: (Input channel, Output channel, Kernel size); * Linear layers: (Input channel, Output channel); * C/T: Number of channels/time points 

 

 

Table 2.3-3 Hyperparameters of the temporal generalizer. 

Layer # Params Output 
Input / C × T 

Conv1D +WN (C, 128, 1) 128 × T 
Linear Layer + WN (T, 128) 128 × 128 

Conv1D +WN (128, C, 1) C × 128 
Linear Layer + WN (128, T) C × T 

Output / C × T 
* Conv1D: (Input channel, Output channel, Kernel size); Linear layers: (Input channel × Output channel); C/T: Number of channels/time points 
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2.3.3  Temporal unit 

 Temporal unit detects P300 signals by learning the features of temporal changes in EEG signals. It 

comprises n temporal modules and a dense layer, and the number of the temporal modules can be customized 

according to the input EEG signals.  

 Temporal module. As shown in Figure 2.3-1, each temporal module is assembled of a temporal 

analyzer and a global generalizer with a residual connection. The temporal analyzer performs sequence analysis, 

which is the core of learning the features of temporal changes. The global generalizer generalizes features from 

the raw EEG signals or the outputs from the former layer of the temporal module. It provides the global information 

for the next sequence analysis, which can be expressed as: 

𝑦:,்ିଵ
(௜)

, … , 𝑦:,଴
(௜)

= 𝑓௜൫𝑥:,்ିଵ
(௜ିଵ)

, … , 𝑥:,଴
(௜ିଵ)

൯,                                                            (2 − 2) 

where ൣ𝑥:,்ିଵ
(௜ିଵ)

, … , 𝑥:,଴
(௜ିଵ)

൧ and ൣ𝑦:,்ିଵ
(௜)

, … , 𝑦:,଴
(௜)

൧ are the inputs and outputs of each temporal module, and both are 

the same size of  𝐶 × 𝑇 ; 𝐶  and 𝑇  indicate the number of channels and time points, respectively; and 𝑓௜  

represents the 𝑖௧௛  temporal module. 

 Temporal analyzer. The temporal analyzer is composed of four components: a dilated Conv1D, a 

clipping operation, a weight norm, and a ReLU. Within the temporal analyzer of the 𝑖௧௛ temporal module, the 

hyperparameters of the dilated Conv1D include input channel, output channel, kernel size, dilation, and zero-

padding, where the input channel and output channel are the number of the electrodes of input EEG signals, and 

the kernel size, dilation, and zero-padding parameter are 𝑘, 2௜ିଵ, and (𝑘 − 1) × 2௜ିଵ, respectively. By them, the 

range of learning the temporal changes can be constantly extended. The function of clipping operation is to cut off 

ቂ𝑦:,ିଵ
(௜)

, … , 𝑦
:,ି(௞ିଵ)×ଶ೔షభ
(௜)

ቃ for structural consistency between the inputs and outputs. The functions of the ReLU and 

weight norm are similar to those in the spatial unit. Figure 2.3-2 shows an example of two stacked temporal 

modules where the kernal size of the dilated Conv1D was set up to 2. The two temporal analyzers in Temporal 

module-1 and Temporal module-2 construct a sequential mapping from ൣ𝑥:,ଷ
(଴)

, 𝑥:,ଶ
(଴)

, 𝑥:,ଵ
(଴)

, 𝑥:,଴
(଴)

൧ to ൣ𝑦:,ଶ
(ଵ)

, 𝑦:,଴
(ଵ)

൧ to 

ൣ𝑥:,ଶ
(ଵ)

, 𝑥:,଴
(ଵ)

൧ to ൣ𝑦:,଴
(ଶ)

൧. The output ൣ𝑦:,଴
(ଶ)

൧ represents the two-level temporal features of ൣ𝑥:,ଷ
(଴)

, 𝑥:,ଶ
(଴)

, 𝑥:,ଵ
(଴)

, 𝑥:,଴
(଴)

൧. 

 As for a temporal unit stacked by n temporal modules, the output ൣ𝑦:,଴
(௡)

൧ are the n-level mapping of the 

raw EEG signals ൣ𝑥:,௟ିଵ
(଴)

, … , 𝑥:,଴
(଴)

൧, which yields the final result of the temporal unit by connecting with a dense 

layer; 𝑙 indicates the length of receiving field, as calculated in (2 − 3). 

𝑙 = 𝑘 × 2௡ିଵ,                                                                                     (2 − 3) 

where 𝑘 is the kernel size of the dilated Conv1D within the 𝑖௧௛ temporal module. 
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 For EEG epochs in different P300 detection tasks, we can customize the temporal detection range by 

adjusting n (the number of stacked temporal modules) and k (the kernel size of the dilated Conv1D in the dilated 

Conv1D). Among them, the structure of the temporal generalizer is similar to the spatial unit, consisting of 

Conv1Ds, linear layers, and WNs, as shown in Table 2.3-3. The residual connection simplifies the network learning 

process, especially when multiple temporal modules are stacked. 

 

 

 

 

Figure 2.3-1 Internal structure of the temporal module. 

 
 
 
 

 

Figure 2.3-2 Mapping relations when stacking two temporal modules. 
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2.4 Experiments and Results   

 We performed three experiments to evaluate the proposed STNN: 1) P300 detection under multiple 

repeated stimuli with applications to ALS patients; 2) P300 detection on two speller paradigms to healthy subjects; 

3) an ablation and combination study using BCI Competition III-dataset II.  

 All the experiments involved 30 iterations of network training within 5 mins, where the Adam optimizer 

(learning rate = 0.001) was used to minimize the binary cross entropy (BCE) [53] between the outputs and the 

labels in Pytorch environment. The evaluation metrics included accuracy, area under the receiver operating 

characteristic curve (AUC) [54], F1-score, and Kappa coefficient [55]. 

 The reference approaches were 3D Input CNN [56], the winner in BCI Competition III [57], and 

EEGNet-t&p [58], where t and p were the number of temporal filters and pointwise filters, respectively. 

 

2.4.1 Experiment 1 
 

 The first experiment explored our model performance under multiple rounds of repeated stimuli to ALS 

patients using Dataset 1. As described in Section III, Dataset 1 was composed of 8-channel EEG signals from eight 

ALS subjects, and there were 35 trials of each subject. Each trial was included of EEG signals under 10 rounds of 

repeated stimuli, there were 12 stimuli (two target and 10 nontarget stimuli) in each round. In a trial, by averaging 

the EEG epochs under the same stimuli from 1 to i rounds, there were 12 EEG epochs for training or testing the 

model performance under the 𝑖௧௛ round of the repeated stimuli. The first experiment explored our model 

performance under multiple rounds of repeated stimuli to ALS patients using Dataset 1. As described in Section 

III, Dataset 1 was composed of 8-channel EEG signals from eight ALS subjects, and there were 35 trials of each 

subject. Each trial was included of EEG signals under 10 rounds of repeated stimuli, there were 12 stimuli (two 

target and 10 nontarget stimuli) in each round. In a trial, by averaging the EEG epochs under the same stimuli from 

1 to 𝑖 rounds, there were 12 EEG epochs for training or testing the model performance under the 𝑖௧௛ round of 

the repeated stimuli.  

 The proposed model was represented as STNN-n&k, where n was the number of temporal modules and  

k was the kernel size of the dilated Conv1D in each module. STNN-3&15, 4&7, 4&8, 5&3, and 5&4 were used in 

the experiment, and they produced the receptive fields of length 60, 56, 64, 48 and 64, covering the main portion 

of the EEG signals (The data length is 64 in Databset 1) in the temporal domain. The reference models were 

EEGNet-4&2, 8&2, 16&2, 4&4, 8&4, 16&4, and the most used in [44] were EEGNet-8&2 and EEGNet-4&2. 
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 We implemented a within-subject P300 detection and a cross-subject P300 detection, respectively. In 

the within-subject task, we randomly selected 20 trials (240 EEG epochs) for model training from each subject 

and the remaining 15 trials (180 EEG epochs) for testing the model. The average results of eight subjects with 1-

10 rounds of repeated stimuli are shown in Table 2.4-1 and Table 2.4-2. From the performance comparison of 

these models, we can see that the average AUC and F1 scores of the proposed models are higher than its 

competitors under 1-10 rounds of repeated stimuli. All our models reach above 0.95 AUC scores using the EEG 

signals from the first five rounds of repeated stimuli, while EEGNet cannot reach it until at least the ninth round 

of stimuli. Moreover, the average F1 score of our models under the fifth round of repeated stimuli improved 25.3% 

than EEGNet in the same condition. This result is close to that of the reference models using 10 rounds of stimuli. 

It is demonstrated that the proposed models can attain the similar high detection accuracy using fewer repeated 

stimuli, thereby reducing the number of stimuli for ALS patients in applications. 

 In the cross-subject P300 detection, we utilized all trials of five random subjects for network training 

and the trials from the remaining three subjects to evaluate the network performance. The average AUC and F1-

score results of five experiments following the above steps are listed in Table 2.4-3 and Table 2.4-4, where we can 

see that our models obtain improvements of 2% in the average AUC score and 12.4% in the average F1 score 

under 10 rounds of stimuli. Notably, our models using EEG signals of six rounds of stimuli can reach the similar 

performance compared to the reference ones of 10 rounds of stimuli. 

 The average results of the kappa coefficient are given in Figure 2.4-1. According to [55], a study has 

substantial reliability when the kappa coefficient is greater than 0.6. STNN-average reached this standard under 

the 3rd and the 6th rounds of repeated stimuli in the with-subject detection and cross-subject detection, 

respectively. While EEGNet-average fulfilled the criterion under the 7th and the 10th rounds of stimuli, 

respectively. Overall, the proposed models achieved advantages both in the within-subject and cross-subject P300 

detections, and they can reduce four rounds of repeated stimuli than the reference ones when gaining the similar 

results. 
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Table 2.4-1 The AUC results of 1-10 rounds of repeated stimuli in the within-subject P300 detection. 

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
STNN-3&15 0.691 0.828 0.879 0.941 0.950 0.959 0.968 0.969 0.974 0.975 
STNN-4&7 0.695 0.833 0.883 0.936 0.953 0.962 0.970 0.973 0.979 0.979 
STNN-4&8 0.705 0.841 0.891 0.938 0.953 0.961 0.968 0.971 0.977 0.978 
STNN-5&3 0.742 0.875 0.932 0.973 0.975 0.980 0.982 0.991 0.993 0.995 
STNN-5&4 0.739 0.877 0.938 0.975 0.969 0.985 0.988 0.993 0.993 0.993 

STNN-Average 0.714 0.851 0.904 0.952 0.960 0.969 0.975 0.979 0.983 0.984 
EEGNet-4&2 0.677 0.788 0.836 0.877 0.905 0.918 0.909 0.946 0.963 0.967 
EEGNet-8&2 0.709 0.813 0.874 0.940 0.934 0.944 0.951 0.977 0.970 0.970 

EEGNet-16&2 0.709 0.810 0.877 0.935 0.935 0.941 0.949 0.979 0.975 0.975 
EEGNet-4&4 0.677 0.788 0.841 0.881 0.917 0.921 0.915 0.950 0.965 0.970 
EEGNet-8&4 0.679 0.793 0.845 0.891 0.921 0.925 0.936 0.955 0.968 0.969 

EEGNet-16&4 0.705 0.811 0.867 0.940 0.938 0.944 0.953 0.976 0.971 0.973 
EEGNet-Average 0.692 0.801 0.857 0.911 0.925 0.932 0.935 0.963 0.968 0.971 

Table 2.4-2 The F1scores of 1-10 rounds of repeated stimuli in the within-subject P300 detection. 

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
STNN-3&15 0.253 0.531 0.651 0.709 0.774 0.815 0.832 0.875 0.888 0.885 
STNN-4&7 0.286 0.549 0.678 0.731 0.793 0.833 0.850 0.883 0.894 0.886 
STNN-4&8 0.295 0.551 0.677 0.723 0.795 0.833 0.851 0.886 0.897 0.899 
STNN-5&3 0.455 0.571 0.728 0.787 0.823 0.845 0.863 0.902 0.918 0.921 
STNN-5&4 0.440 0.563 0.731 0.793 0.813 0.843 0.841 0.895 0.925 0.923 

STNN-Average 0.346 0.553 0.693 0.749 0.800 0.834 0.847 0.888 0.904 0.903 
EEGNet-4&2 0.053 0.128 0.241 0.410 0.433 0.541 0.641 0.773 0.748 0.772 
EEGNet-8&2 0.095 0.233 0.347 0.454 0.587 0.643 0.732 0.790 0.787 0.751 

EEGNet-16&2 0.107 0.258 0.372 0.471 0.591 0.648 0.739 0.791 0.795 0.785 
EEGNet-4&4 0.062 0.134 0.271 0.399 0.456 0.571 0.643 0.783 0.745 0.781 
EEGNet-8&4 0.116 0.245 0.357 0.463 0.597 0.638 0.741 0.783 0.792 0.789 

EEGNet-16&4 0.131 0.241 0.371 0.453 0.620 0.645 0.735 0.790 0.789 0.789 
EEGNet-Average 0.094 0.207 0.326 0.442 0.547 0.614 0.705 0.785 0.776 0.778 

Table 2.4-3 The AUC results of 1-10 rounds of repeated stimuli in the cross-subject P300 detection. 

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
STNN-3&15 0.734 0.788 0.815 0.885 0.888 0.910 0.913 0.913 0.917 0.918 
STNN-4&7 0.779 0.813 0.843 0.889 0.908 0.915 0.921 0.920 0.923 0.925 
STNN-4&8 0.778 0.805 0.839 0.893 0.907 0.921 0.923 0.925 0.924 0.925 
STNN-5&3 0.792 0.815 0.845 0.901 0.911 0.919 0.925 0.938 0.935 0.937 
STNN-5&4 0.789 0.809 0.851 0.899 0.909 0.918 0.923 0.935 0.936 0.936 

STNN-Average 0.774 0.806 0.836 0.893 0.904 0.916 0.921 0.926 0.927 0.928 
EEGNet-4&2 0.675 0.775 0.803 0.833 0.855 0.870 0.895 0.901 0.903 0.905 
EEGNet-8&2 0.701 0.799 0.825 0.865 0.891 0.896 0.900 0.903 0.905 0.907 

EEGNet-16&2 0.703 0.808 0.827 0.887 0.894 0.897 0.908 0.911 0.905 0.910 
EEGNet-4&4 0.685 0.788 0.813 0.845 0.874 0.888 0.901 0.905 0.904 0.909 
EEGNet-8&4 0.705 0.803 0.825 0.883 0.901 0.909 0.910 0.905 0.917 0.910 

EEGNet-16&4 0.705 0.811 0.831 0.899 0.893 0.905 0.907 0.903 0.907 0.907 
EEGNet-Average 0.695 0.797 0.821 0.869 0.884 0.894 0.903 0.904 0.906 0.908 

Table 2.4-4 The F1scores of 1-10 rounds of repeated stimuli in the cross-subject P300 detection. 

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
STNN-3&15 0.328 0.401 0.486 0.543 0.592 0.632 0.639 0.688 0.721 0.755 
STNN-4&7 0.356 0.414 0.505 0.560 0.611 0.640 0.645 0.700 0.735 0.774 
STNN-4&8 0.356 0.407 0.499 0.574 0.605 0.639 0.641 0.705 0.740 0.776 
STNN-5&3 0.381 0.445 0.503 0.599 0.635 0.669 0.671 0.711 0.753 0.785 
STNN-5&4 0.385 0.443 0.510 0.607 0.643 0.671 0.681 0.709 0.761 0.779 

STNN-Average 0.361 0.422 0.501 0.577 0.617 0.650 0.656 0.703 0.742 0.774 
EEGNet-4&2 0.157 0.287 0.352 0.411 0.555 0.578 0.600 0.628 0.639 0.638 
EEGNet-8&2 0.187 0.305 0.405 0.421 0.576 0.590 0.615 0.631 0.645 0.671 

EEGNet-16&2 0.195 0.311 0.370 0.450 0.563 0.584 0.607 0.630 0.639 0.658 
EEGNet-4&4 0.143 0.277 0.348 0.399 0.541 0.573 0.599 0.611 0.642 0.645 
EEGNet-8&4 0.185 0.315 0.401 0.433 0.588 0.601 0.606 0.605 0.635 0.648 

EEGNet-16&4 0.199 0.322 0.399 0.441 0.571 0.591 0.617 0.622 0.639 0.641 
EEGNet-Average 0.178 0.303 0.379 0.426 0.566 0.586 0.607 0.621 0.640 0.650 
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Figure 2.4-1 Kappa coefficient results in the within-subject P300 detection and cross-subject P300 detection. 

 

2.4.2 Experiment 2 
 
 The second experiment studied our model performance on the two P300 speller paradigms to healthy 

subjects using Databset 2. Databset 2 were 16-channel EEG signals from 10 healthy subjects. There were three 

sessions (six trials in each session) in each subject’s recordings. In each trial, the subject experienced eight rounds 

of repeated stimuli. Due to the fact that the data from Databets 1 and 2 have the same length in the time domain, 

we still used STNN-3&15, 4&7, 4&8, 5&3, and 5&4 to implement the P300 detection tasks. 

 In the within-subject experiment, two sessions were randomly chosen as the training set from each 

healthy subject, and the remaining one was used for testing the models. Figure 2.4-2 and Figure 2.4-3 give the 

AUC and F1 scores and Kappa coefficient results of the proposed models and reference models using Farwell and 

Donchin’s paradigm and the GeoSpell paradigm. We can see that the proposed STNN-3&15, 4&7, 4&8, 5&3, and 

5&4 all achieved perfect detection (AUC, F1 scores and Kappa coefficient results were equal to 1) under the 

second rounds of stimuli on Farwell and Donchin’s paradigm and under the fourth rounds of stimuli on the 

GeoSpell paradigm, while the reference ones need at least four and six rounds of repeated stimuli to reach this 

goal on Farwell and Donchin’s and the GeoSpell paradigm, respectively. It shows that our models reached better 

performance using fewer stimuli to healthy subjects. In the cross-subject experiment, we utilized all the trials from 

five random subjects to train network parameters. The trials from the remaining five subjects were used for the 

network testing. Figure 2.4-4 and Figure 2.4-5 show that our models always score higher than or equal to the 

reference ones under 1-8 rounds of repeated stimuli and reach perfect detection under the second round of stimuli 

over the two paradigms, while the reference ones fulfill this condition in the third or the fourth stimuli. Therefore, 

it can be seen that the proposed models can reduce repeated stimuli to healthy subjects and is robust to the two 

different P300 speller paradigms. 
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Figure 2.4-2 The AUC, F1 scores and Kappa coefficient results using Farwell and Donchin’s paradigm in the within-subject 
P300 detection. 

 
Figure 2.4-3 The AUC, F1 scores and Kappa coefficient results using the GeoSpell paradigm in the within-subject P300 
detection. 
 

 
Figure 2.4-4 The AUC, F1 scores and Kappa coefficient results using Farwell and Donchin’s paradigm in the cross-subject 
P300 detection. 

 
Figure 2.4-5 The AUC and F1 scores and Kappa coefficient results using the GeoSpell paradigm in the cross-subject P300 
detection. 
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2.4.3 Experiment 3 
 
 To measure the contribution of individual components and component combinations on the model 

performance, the third experiment was an ablation and combination study on Dataset 3 (BCI Competition III-

dataset II, 64 channels), where the training and testing sets of two subjects (A and B) were described in Chapter 

2.2. In order to compare to other models, we implemented the P300 detection using the same evaluation metrics 

and rounds of stimuli as in the literatures [22][44]. 

 In the combination study, we tested the accuracy of multiple combinations of STNN, including STNN-

1&60, 2&30, 3&15, 4&7, 4&8, 5&3, 5&4, and 6&2. In the ablation study, the above combinations were compared 

with their temporal units and STNN assembled with only the spatial unit. The results are shown in Table 2.4-5, 

where we can see that 1) the network performance is continuously improved by stacking one to four temporal 

modules in the temporal unit, while the performance does not continue to be enhanced when stacking more than 

four modules; 2) the parallel mechanism of the temporal unit and the spatial unit improves the accuracy by 1-3% 

over the temporal unit working alone; 3) the temporal unit is superior to the spatial unit in terms of the average 

accuracy; 4) to the best of our knowledge, the proposed STNN stacked with four or more temporal units 

outperforms the best state-of-the-art model in the literatures by at least 9% in accuracy. 

 

Table 2.4-5 Ablation and combination study: Accuracy under 5 rounds of repeated stimuli on Database 3. 

Method Subject-A Subject-B Average 
STNN-1&60 (𝑙 = 60) 82.5% 89.1% 85.8% 

STNN-1&60 - Only with the temporal unit 81.0% 86.2% 83.6% 
STNN-2&30 (𝑙 = 60) 83.5% 88.5% 86.0% 

STNN-2&30 - Only with the temporal unit 82.2% 87.4% 84.8% 
STNN-3&15 (𝑙 = 60) 88.3% 89.5% 88.9% 

STNN-3&15 - Only with the temporal unit 85.8% 89.2% 87.5% 
 STNN-4&7 (𝑙 = 56) 88.0% 90.0% 89.0% 

STNN-4&7 - Only with the temporal unit 87.6% 87.7% 87.7% 
 STNN-4&8 (𝑙 = 64) 87.5% 90.5% 89.0% 

STNN-4&8 - Only with the temporal unit 86.9% 87.5% 87.2% 
 STNN-5&3 (𝑙 = 48) 87.7% 90.5% 89.1% 

STNN-5&3 - Only with the temporal unit 85.4% 88.8% 87.1% 
 STNN-5&4 (𝑙 = 64) 88.3% 89.7% 89.0% 

STNN-5&4 - Only with the temporal unit 84.7% 87.9% 86.3% 
 STNN-6&2 (𝑙 = 64) 88.4% 89.8% 89.2% 

STNN-6&2 - Only with the temporal unit 86.1% 85.9% 86.0% 
STNN - Only with the spatial unit  82.5% 83.5% 83.0% 

Competitors 
3D Input CNN (Best result in literatures)  74% 86% 80% 

Winner in BCI Competition III  60% 87% 73.5% 
 *𝑙 represents the receiving field size. 
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2.5 Discussion and Conclusion 

 The results prove that STNN performs better than other DL model and reduces the number of repeated 

stimuli in different P300 detections. Both healthy subjects and ALS patients can benefit from this research, even 

with limited data. The main reasons are as follows: 1) the temporal unit, as a flexible DL-based network dedicated 

to time-domain analysis, can capture the temporal dependencies from brain potential changes by constructing an 

end-to-end multi-level sequential mapping, so it is more sensitive than the previously mentioned approaches when 

detecting P300 signals; 2) the spatial unit can constantly generalize and compress P300 features in the space 

domain, which hedges complex noise interference to a certain extent; 3) a joint decision-making mechanism is 

built into the network by connecting the temporal unit and the spatial unit concurrently, which can utilize the above 

advantages of the two units, thus achieving both better performance and stronger robustness, as shown in 

Experiments 1 and 2.  

Furthermore, it should be emphasized that stacking multiple temporal modules within the temporal unit 

is critical for sequential modeling, as shown in Experiment 3. The network accuracy is constantly improved when 

one to four temporal modules are stacked, which demonstrates a more complicated multi-level sequence model is 

more suitable for characterizing temporal changes in human brain regions. Nevertheless, the over-stacking of 

temporal modules cannnot endlessly improve its performance but rather increase the model complexity because 

of the larger number of training parameters, as we can see that the accuracy scores of STNN-4&7, 4&8, 5&3, 5&4, 

and 6&2 are almost equivalent. Even so, our results still significantly outperform the best methods in the literature, 

to the best of our knowledge, in BCI Competition III. This is possible because, driven by the great success of 2D 

or 3D CNNs in image processing and video analysis, some current state-of-the-art DL frameworks are commonly 

obsessed with high-dimensional feature extraction from EEG data. However, the P300 signals present significant 

1D features (the deflections in the time domain) rather than high-dimensional ones. While the 2D or 3D CNN 

frameworks are not skilled at decoding features from EEG signals recorded using a small number of channels, 

because the EEG data inherently lack the spatial resolution [57]. In contrast, our network focuses more on the 

temporal activities within the P300 signals and EEG channel generalization in the space domain, which thus can 

capture more hidden information from EEG signals at a low SNR. 

     In the future, the proposed STNN is predicted to reach a high information transfer rate (ITR) when 

implementing online P300 detection. Moreover, we consider that this network has potential for applications in 

EEG-BCI systems and some other areas of signal processing, such as Electrocardiogram (ECG) classification [58], 

seeing that it is designed with a flexible structure and can be fast training and testing with limitied data. 
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3. Multi-Module Neural Networks for EEG Denoising 

3.1 Background  

 Electroencephalography (EEG) is a safe, reliable, and relatively non-invasive measurement tool to study 

human brain activity. However, noise and artifacts are always contained in EEG signals, and they are entangled 

with brain activity.  

 Eye movements [59] and facial muscle [60] activity are two common causes of noise and artifacts in 

EEG epochs. Eye movements distort the electric field around the eyes and over the scalp, thus causing ocular 

artifacts (OAs) [61]. Facial muscle activity responds to pressure changes in the upper airway, generating electrical 

amplitude signals, called myogenic artifacts (MAs) [62]. Recently, many approaches, such as regression 

[63][64][65], adaptive filtering [66][67], blind source separation (BSS) [68][69][70][71], and empirical mode 

decomposition (EMD) [72] have been proposed to remove OAs and MAs from EEG epochs. A high-performance 

denoising approach should be able to accurately remove artifacts in real-time without distorting the signal of 

interest and be sufficiently robust to reconstruct EEG data in various formats, especially the signals recorded using 

only a few electrodes. However, these methods are not fully competent in fulfilling these criteria. The regression 

and adaptive filtering techniques are not efficient for real-time applications, because they need to estimate the 

transfer and filtering coefficients before removing the artifacts. BSS and EMD are not functional for single-channel 

signals, because they remove artifacts by decomposing and reconstructing the EEG signals in the time and 

frequency domains. However, the signal decomposition relies on the independence between channels that the 

single-channel signals do not have.   

 Researchers have applied deep learning (DL) technologies to address these issues after witnessing their 

breakthroughs in the fields of computer vision [73][74][75][76][77][78][79] and natural language processing 

[80][81][82]. Recently proposed DL-based EEG denoising approaches [83][84][85][86][87] use fully connected 

(FC) layers, one-dimensional convolutions (Conv1Ds), and long short-term memory (LSTM) to build end-to-end 

learning models. Such models can automatically output real-time results and perform well even when both the 

multi-channel EEG information and reference signals are unavailable.  

     One of the key aspects of the DL models is that artifact removal strategies are not designed by human 

engineers but are learned from data, so the model performance is greatly influenced by training data [88]. However, 

in many cases, particularly in real applications, it is highly expensive to collect high-quality training data [89]. 

Therefore, there is value in studying the DL model performance on limited data. On the other aspect, DL models 
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usually run as black boxes [90]. The lack of transparency may hinder DL applications in the medical field because 

it is difficult for humans to verify whether a complex DL model has expert medical or signal-processing knowledge. 

Thus, DL models that provide the explanations for their mechanism deserve to be further explored. 

 In this study, we propose a novel multi-module neural network (MMNN) for EEG denoising. This 

network can be implemented in real-time and applied to single-channel EEG data. Our contributions are as follows: 

1) Artifact removal is defined as the detachment of pure EEG signals from signals containing additive noise, 

therefore we create a network flow that can constantly decompose and assemble EEG information using the 

proposed denoising modules. 2) We designed the denoising modules using Conv1Ds and FC layers, aiming to 

customize a solution specialized at separating OAs or MAs from noisy EEG signals by network learning. Conv1Ds 

were used to extract and generalize the informative features of brain activity, and FC layers were used to 

reconstruct the clean signals and artifacts. Their combination acted as an end-to-end trainable filter. 3) Referring 

to the work of EEGdenoiseNet that provided a publicly available structured database for EEG denoising studies, 

we compared the proposed network with the existing DL and conventional techniques under the same condition. 

4) The model denoising performance using different amounts of learning data was explored, and the visualization 

of the model’s component was discussed. 

 

3.2 Materials 

 The database used in this study is summarized in Table 3.2-1. This database provided a large-scale 

dataset of clean EEG and artifact epochs, involving 4514 clean EEG epochs, 3400 EOG epochs, and 5598 EMG 

epochs. In the previous DL denoising studies [86][87], these epochs were used to synthesize the training and testing 

data. Their extraction process is briefly described as follows: 

 

Table 3.2-1 The benchmark data used in our EEG denoising study. 

 EEG EOG EMG 
# of Epochs 4514 3400 5598 

Sampling rate (Hz) 256 and 512 256 512 
Bandpass filter (Hz) 1 to 80 0.3 to 10 1 to 120 
# of EEG channels 1 1 1 

Selected duration (s) 2 2 2 
Notch filter (Hz) 50 50 50 

Detrend Yes Yes Yes 
Manual check Yes Yes Yes 
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3.2.1  Clean EEG data 

 The EEG data are composed of 4514 clean EEG epochs, and each epoch is a single-channel EEG 

segment of 2s. As described in [86], 64-channel EEG epochs were collected from a public database of motor-

imagery BCI [91]. These epochs were then band-pass filtered between 1 and 80 Hz, notch-filtered (50 Hz), 

detrended, and processed using independent component analysis on ICLabel [92], Finally, the processed epochs 

were sampled at 256 and 512 Hz, respectively, cut into single-channel epochs, and manually checked to ensure 

that each one was clean. 

3.2.2  Electrooculogram (EOG) data 

 The dataset of EOG data contains 3400 single-channel OA epochs with a sample rate of 256 Hz. These 

epochs were extracted from previous studies [93][94][95][96][97]. As described in[86], the data were bandpass 

filtered between 0.3 and 10 Hz, notch-filtered (50 Hz), and detrended. The extracted OAs were subsequently 

segmented into 2s per epoch and visually checked by experts.  

3.2.3  Electromyography (EMG) data 

 The dataset of EMG data consists of 5598 MA epochs, and each epoch is a single-channel EEG epoch 

with a duration of 2s and a sampling rate of 512 Hz. These MA epochs were collected from [98] and band-pass 

filtered between 1 and 120 Hz. Afterwards, these epochs were notch-filtered (50 Hz), detrended, and visually 

checked by experts. 

 

3.3 Methods 

This section describes the proposed MMNN in detail. We first define the EEG denoising problem and 

then describe the denoising module, which serves as the basic component in our model, followed by the model 

structure. Finally, we introduce the synthesis process of noisy EEG signals, as well as training and testing data for 

OA and MA removals. 

3.3.1  Problem definition 

OAs and MAs belong to ambient noises, also called background noises [99][100]. They are generated 

independent of the clean signals, therefore the relationship among clean signals, OAs or MAs, and noisy signals 

in EEG recordings can be expressed as [101][102]:  

𝑌 =  𝑋 + 𝑍                                                                              (3 − 1) 

where 𝑋 , 𝑍  and 𝑌  denote clean signals, ocular or myogenic artifacts, and noisy signals, respectively. 
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 The essence of EEG denoising is to estimate the clean signals using the noisy signals 𝑌 . For DL 

denoising models, it is challenging to use the prior knowledge [103] learned from 𝑍 distribution to filter 𝑌. 

3.3.2  Denoising module 

In our design, the denoising module is constructed by four Conv1Ds with rectified linear units (ReLUs), 

a residual connection, and two FC layers, as shown in Figure 3.3-1. Table 3.3-1 provides the details of the 

hyperparameters, and the parameter tuning process of c and k is given in Section III. Notably, the proposed 

denoising module outputs both clean signals and artifacts. 

 

Figure 3.3-1. The internal structure of the denoising module. 

 

Table 3.3-1 Hyperparameters of the denoising module. 

Input Noisy signals (1 × T) 

Conv1d-A + ReLU 
Conv1d-B + ReLU 

Input channel = 1; Output channel = c; Kernel size = k; Zero-padding = (k-1)/2 
Input channel = c; Output channel = c; Kernel size = k; Zero-padding = (k-1)/2 

Conv1d-C + ReLU 
Conv1d-D +ReLU 

Input channel = c; Output channel = c; Kernel size = k; Zero-padding = (k-1)/2 
Input channel = c; Output channel = c; Kernel size = k; Zero-padding = (k-1)/2 

FC-layer-A Input features = c × T; Output features = T 
FC-layer-B Input features = c × T; Output features = T 

Outputs Clean signals (1 × T) 
Artifacts (1 × T) 

 

 The objective of Conv1Ds is to decompose noisy EEG signals, and their parameters need to be learned 

from training data. Within each Conv1D, the output channel and kernel size determine the computational 

complexity and filter length of feature extraction, respectively. The zero-padding operation can maintain the 

structural consistency between the inputs and outputs. ReLUs can improve the model’s nonlinearity and avoid the 

vanishing gradient problem in the learning stage. Conv1D-A first dismantles noisy single-channel EEG signals 

into features in multiple dimensions. Conv1D-B, C, and D, are subsequently used to continuously generalize the 

extracted features. The combination of multiple Conv1Ds with ReLUs can build complex mappings, thus 

dismantling EEG signals more finely. Residual connections can accelerate network convergence and improve the 

Conv1D-A
+

ReLU

FC layer-A

FC layer-B

Denoising module

Noisy signals

Clean signals

Artifacts

Conv1D-B
+

ReLU

Conv1D-C
+
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model’s learning ability. The function of the FC layers is to reconstruct clean signals and artifacts by connecting 

the generalized features. The output clean signals and artifacts have the same data size as the input (data size: 1 × 

T). 

3.3.3  Network structure 

 The proposed MMNN is built using multiple denoising modules, their number is flexible and can be 

adjusted according to different denoising tasks. An MMNN assembled using 𝑛 denoising modules (MMNN-n) is 

shown in Figure 3.3-2, where the inputs and outputs of 𝑛 denoising modules are 𝑌, 𝑌 −  𝑍መଵ to 𝑌 −  𝑍መ௡ିଵ and 

𝑋෠ଵ, 𝑋෠ଶ to 𝑋෠௡. The final estimation of clean signals is the sum of 𝑋෠ଵ, 𝑋෠ଶ to 𝑋෠௡. In our designed structure, the 

proposed MMNN constantly purifies the inputs for each denoising module by removing the artifact estimation. 

Specifically, 𝑌 −  𝑍መ௜ିଵ replaces 𝑌 itself as the input for the 𝑖௧௛  denoising module. According to (3−1), the 

former is a purer EEG signal than the latter. Therefore, there is a high probability that the outputs of the 𝑖௧௛ 

denoising module, 𝑋෠௜  and 𝑍መ௜, are closer to the ground truth of EEG signals and artifacts in theory.  

 

 

Figure 3.3-2 The structure of MMNN-n (Multi-Module Neural Network-n). 

 

 Based on the above, a workflow of multiple denoising modules can constantly improve the network’s 

performance in theory. However, multi-stacking structures may lead to vanishing gradient problem during 

backpropagation [104]. To hedge this risk, the proposed model is designed as a parallel architecture, thus allowing 

the parameters from each denoising module to be updated synchronously. The network architecture is expressed 

as: 

𝑋෠௜ ,   𝑍መ௜  =  ℱ௜൫𝑌 − 𝑍መ௜ିଵ ൯                                                                    (3 − 2) 

𝑋෠ =  𝒢(𝑌) = ෍ 𝑋෠௜                                                                           

௡

௜ୀଵ

(3 − 3)  

Denoising module-1

Denoising module-2

Denoising module-3

Denoising module-n

(Noisy signals) (Clean signals)

… …
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where 𝑋෠ is the final estimation of the clean signal;  𝒢 is the proposed MMNN, 𝑌 is the input noisy signal, and 

𝑛 is the number of the denoising modules; ℱ௜  indicates the 𝑖௧௛ denoising module, 𝑋෠௜  and 𝑍መ௜ are the 

reconstructed clean signals and artifacts, respectively, and 𝑍መ଴ = 0. 

3.3.4  Noisy signal synthesis 

 Using the clean EEG, EOG, and EMG epochs from the mentioned database, we synthesized noisy EEG 

epochs for model training and testing. The synthesized noisy EEG epochs and clean EEG epochs were the data 

and labels, respectively. In the training stage, the Adam optimizer was adopted to minimize the mean squared error 

(MSE) [105] between the model outputs and labels. The details of the noisy signal synthesis are as follows. 

 To synthesize noisy signals with different noise levels, the signal-to-noise ratio (SNR) as a reference is 

first given, as shown in (3 − 4). It describes the ratio of the true signal to the background noise and is widely 

used to evaluate noise levels. 

𝑆𝑁𝑅 =  10 log
𝑅𝑀𝑆(𝑋)

𝑅𝑀𝑆(𝑍)
                                                                  (3 − 4) 

where 𝑋 and 𝑍 are the discrete-time clean EEG signal and artifact, respectively; and 𝑅𝑀𝑆 is the root mean 

squared value, as defined: 

𝑅𝑀𝑆(𝑃) =  ඩ
1

𝑛
෍ 𝑝௜

ଶ

௡

௜ୀଵ

                                                                      (3 − 5) 

where 𝑝௜  indicates the 𝑖௧௛ discrete time point in an epoch of 𝑃, and 𝑛 is the number of time points in the epoch. 

     For signal synthesis with the given dataset, 𝑋 denotes any clean single-channel EEG epoch, and 𝑍 is 

expressed as 𝜆 × 𝑁, where 𝑁 is any single-channel EOG or EMG epoch and 𝜆 is the parameter used to control 

the 𝑆𝑁𝑅 of the noisy signal. By (3 − 4), 𝜆 can be derived as: 

𝜆 =  
𝑅𝑀𝑆(𝑋)

10଴.ଵ×ௌேோ × 𝑅𝑀𝑆(𝑁)
                                                           (3 − 6)   

 

 According to (3 − 1), a clean EEG epoch 𝑋 and an EOG or EMG epoch 𝑁 can be simulated into a 

noisy EEG epoch 𝑌 with any SNR level, as shown in (3 − 7): 

 

𝑌 = 𝑋 +  𝜆 × 𝑁                                                                             (3 − 7) 
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3.3.5  Training data and testing data 

Previous studies [106][108][109] have demonstrated that the SNR values of OAs and MAs are commonly 

between -7 and 2dB, thus the noisy signals were synthesized within this SNR range.  

The OA removal task was implemented using 30000 pairs and 4000 pairs of training and testing samples, 

respectively. They were synthesized using 3400 clean EEG epochs (randomly selected from 4514 clean EEG 

epochs) and all 3400 EOG epochs, according to (3 − 6) and (3 − 7). For the noisy EEG synthesis of training 

dataset, the 𝑆𝑁𝑅 values were followed a uniform distribution from -7 to 2dB, 𝑋 and 𝑁 were 3000 of 3400 

clean epochs and EOG epochs, respectively. The testing set were synthesized using the remaining 400 pairs of 

EEG epochs and EOG epochs, and the 𝑆𝑁𝑅 values ranged from -7dB to 2dB at an interval of one. (-7dB, -6dB, 

-5dB, -4dB, -3dB, -2dB, -1dB, 0dB, 1dB, 2dB). In the MA removal task, all 4514 clean EEG epochs and 5598 

EMG epochs were utilized, where we randomly copied 1084 clean EEG epochs into original EEG epochs, thus 

producing 5598 clean EEG epochs. Finally, we used 5000 of 5598 EEG epochs and EMG epochs to construct 

50000 pairs of training samples, and the remaining 598 pairs were used to construct 5980 pairs of testing samples. 

The synthesis process followed the OA removal task. Figure 3.3-3 briefly summarizes the above process. 

 

 

 

Figure 3.3-3 Noisy signal synthesis for model training and testing. 

 
 
 
 
 
 
 
 
 
 

Synthesized noisy EEG epoch 

×

Clean EEG epoch EOG/EMG epoch 
OA (ocular artifact) removal
Training set:
30000 pairs of clean EEG epochs (Labels) and noisy EEG epochs (data) 

Testing set:
4000 pairs of clean EEG epochs (Labels) and noisy EEG epochs (data) 

MA (myogenic artifact) removal
Training set:
50000 pairs of clean EEG epochs (Labels) and noisy EEG epochs (data) 

Testing set:
5980 pairs of clean EEG epochs (Labels) and noisy EEG epochs (data) 
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3.4 Experiments and Results 

 In this section, we first present the experimental hardware and evaluation metrics. Then, the 

hyperparameter tuning process of the denoising module is described. Finally, we compare the proposed model 

with other DL and conventional approaches through scoring and visualization. 

3.4.1  Hardware and evaluation metrics 

 All the experiments were implemented using Pytorch and two GeForce GTX 1080 GPUs in a Linux 

system. The evaluation metrics included the temporal relative root mean square error (T-RRMSE), spectral relative 

root mean square error (S-RRMSE), and correlation coefficient (CC), as shown: 

𝑇 − 𝑅𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆(𝒢(𝑦) −  𝑥)

𝑅𝑀𝑆(𝑥)
                                                         (3 − 8) 

 

𝑆 − 𝑅𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆 ቀ𝑃𝑆𝐷൫𝒢(𝑦)൯ − 𝑃𝑆𝐷(𝑥)ቁ

𝑅𝑀𝑆൫𝑃𝑆𝐷(𝑥)൯
                                  (3 − 9) 

 
 

𝐶𝐶 =  
𝐶𝑜𝑣(𝒢(𝑦), 𝑥)

ට𝑉𝑎𝑟൫𝒢(𝑦)൯ × 𝑉𝑎𝑟(𝑥)

                                                              (3 − 10) 

 

where 𝑥 and 𝑦 are the clean EEG epoch and input noisy EEG epoch, respectively; 𝒢 indicates the proposed 

model; 𝑃𝑆𝐷  is the power spectral density function; 𝐶𝑜𝑣 and 𝑉𝑎𝑟 are short for the covariance function and 

variance function. In general, the smaller the T-RRMSE and S-RRMSE values are, the closer to 1 the CC value is, 

the better the performance is. 

3.4.2  Hyperparameter tuning. 

 To select the hyperparameters (c, k) of the denoising module, we performed a 10-fold cross-validation 

on the given 30000 and 50000 pairs of training samples in the OA and MA removals, respectively. In comparison 

with the specified validation dataset, a cross-validation strategy can avoid the problems caused by the unreasonable 

division of the dataset. 

 In the hyperparameter tuning process, the number of output channels was set as 8, 16, 32, and 64. The 

filter length for feature extraction was set as 0.05s, 0.1s, 0.2s, 0.3s, 0.4s, and 0.5s, which corresponds to the kernel 

size of 13, 25, 51, 77, 103, and 127 in the OA (256Hz) task and the kernel size of 25, 51, 103, 155, 207, and 255 

in the MA (512Hz) task, respectively. 
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 The CC results of the 10-fold cross-validation from MMNN-1 to MMNN-6 are shown in Figure 3.4-1 

and Figure 3.4-2. We can see that the model performance did not significantly improve, but the computational 

complexity increased when the number of output channels exceeded 32 in both the OA and MA removal tasks. 

Moreover, the filter lengths of 0.1s (kernel size = 25) and 0.2s (kernel size = 103) were obviously capable of 

improving the model performance with fewer training parameters in the OA and MA removals. Therefore, we 

separately chose (32, 25) and (32, 103) as the module’s hyperparameters for removing OAs and MAs. 

 

Figure 3.4-1. The CC results of 10-fold cross-validation in the OA removal task. 

 
Figure 3.4-2 The CC results of 10-fold cross-validation in the MA removal task. 
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3.4.3  Results of OA and MA removals 

 We performed EEG denoising using MMNN-1 to MMNN-6. The reference DL models included fully 

connected neural network (FCNN), simple convolution neural network (Simple CNN), complex convolution 

neural network (Complex CNN), and recurrent neural network (RNN) from [86], and novel Convolutional Neural 

Network (Novel CNN) [87]. To fairly compare the model performance under the same condition, we trained and 

tested the models [86][87] using the same amount of dataset. The learning rate and batch size were 0.0001 and 

128, respectively. The trained parameters of our models at the 10th iteration were used to test the denoising 

performance.  

 Table 3.4-1 and Table 3.4-2 show the denoising performance on the 4000 pairs of testing samples in the 

OA removal and 5980 pairs of testing samples in the MA removal. The results show that the scores of the proposed 

model can be constantly improved when using one to four denoising modules, whereas more than four denoising 

modules cannot significantly enhance its performance. Moreover, compared to the best results of the reference 

models, the proposed model (MMNN-4) reduced the T-RRMSE and S-RRMSE by at least 6.3% and 6.4%, 

respectively, and improved the CC by at least 3.5% when removing OAs. In the MA removal, it reduced the T-

RRMSE and S-RRMSE by at least 6.2% and 6.4%, respectively, and improved the CC by at least 3.3%. These 

results illustrate that the proposed model performs well on the given database. 

 Subsequently, through the visualization of the denoised results, we compared the robustness between 

the proposed model and the top-scoring reference models for OA and MA removals (Complex CNN and Novel 

CNN). As shown in Figure 3.4-3 and Figure 3.4-4, we presented the signal deviation in the time and frequency 

domains between the denoised results and the sample labels by calculating the absolute values of the noise-free 

epoch minus the denoised epoch. From the deviation results of the OA and MA removals within the 95% 

confidence interval, we can observe that the signal deviation of the proposed model (MMNN-4) is closer to the 

horizontal axis (noise-free situation) and exhibits a smaller range of deviation than the other competitors in both 

the time and frequency domains, which confirms the relative robustness of the proposed model. 
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Table 3.4-1 Average denoising performance in the OA removal task. 

Approach T-RRMSE S-RRMSE CC 
FCNN  0.367 0.387 0.906 

Simple CNN  0.359 0.361 0.916 
Complex CNN  0.336 0.343 0.923 

RNN  0.411 0.389 0.900 
MMNN-1 0.321 0.323 0.925 
MMNN-2 0.301 0.309 0.936 
MMNN-3 0.289 0.295 0.941 
MMNN-4 0.273 0.279 0.958 
MMNN-5 0.273 0.277 0.959 
MMNN-6 0.273 0.276 0.959 

 
Table 3.4-2 Average denoising performance in the MA removal task. 

Approach T-RRMSE S-RRMSE CC 
FCNN  0.367 0.387 0.906 

Simple CNN  0.359 0.361 0.916 
Complex CNN  0.336 0.343 0.923 

RNN  0.411 0.389 0.900 
MMNN-1 0.321 0.323 0.925 
MMNN-2 0.301 0.309 0.936 
MMNN-3 0.289 0.295 0.941 
MMNN-4 0.273 0.279 0.958 
MMNN-5 0.273 0.277 0.959 
MMNN-6 0.273 0.276 0.959 

 
 

 
Figure 3.4-3 Distribution of signal deviation in the time and frequency domains for OA removal (Confidence interval = 0.95). 

 

 
Figure 3.4-4 Distribution of signal deviation in the time and frequency domains for MA removal (Confidence interval = 
0.95). 

 



35 
 

3.4.4  Proposed models vs. Conventional models 

We further compared the proposed model with three conventional models: Regression[64], ICA[109], 

and SSP[111]. These models are classic EEG denoising approaches applied to MNE toolbox[112]. Figure 3.4-5 

and Figure 3.4-6 show the score distributions of the OA removal (4000 testing epochs) and MA removal (5980 

testing epochs), respectively, where the proposed model achieves higher CC and smaller T-RRMSE and S-RRMSE 

scores than the conventional ones. According to the ANOVA results with Holm-Bonferroni correction, the 

performance differences between the proposed model and the classical approaches are significant (all p-values < 

0.001) in both the OA and MA removals.  

 

 

 

 
Figure 3.4-5 Performance comparison between the proposed model and traditional models in the OA removal. 

 
Figure 3.4-6 Performance comparison between the proposed model and traditional models in the MA removal. 
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3.4.5  OA and MA removals on limited training data 

 In the applications of DL-based EEG denoising, sufficient high-quality training data are usually 

unavailable. Therefore, we investigated the robustness of DL models when using limited training data, as shown 

in Figure 3.4-5 and Figure 3.4-6. The proposed MMNN-4 was compared with the top-scoring reference models 

for the OA and MA removals, Complex CNN, and Novel CNN, respectively, where 10 to 100% of the training 

data were separately selected from the given database for network learning, and the training iterations and 

parameters were consistent with the former settings. The results show that the proposed model always has a 

superior performance over its competitors when using the same amount of training data both for the OA and MA 

removals. Notably, our model can reach scores similar to the reference ones using only 60% of the training data 

when removing OAs and MAs. 

 
Table 3.4-3 Denoising performance with limited training data in the OA removal. 

Training data Testing data Complex CNN 
(T-RRMSE/S-RRMSE/CC) 

MMNN-4 
(T-RRMSE/S-RRMSE/CC) 

3000 4000 0.641/0.557/0.737 0.562/0.501/0.790 
6000 4000 0.543/0.507/0.810 0.495/0.459/0.840 
9000 4000 0.481/0.462/0.849 0.437/0.417/0.871 
12000 4000 0.445/0.454/0.872 0.382/0.375/0.902 
15000 4000 0.427/0.442/0.879 0.346/0.351/0.916 
18000 4000 0.410/0.438/0.892 0.322/0.340/0.929 
21000 4000 0.381/0.393/0.902 0.307/0.328/0.935 
24000 4000 0.366/0.377/0.908 0.298/0.303/0.945 
27000 4000 0.342/0.361/0.917 0.287/0.297/0.950 
30000 4000 0.336/0.343/0.923 0.273/0.279/0.958 

 
 
 
Table 3.4-4 Denoising performance with limited training data in the MA removal. 

Training data Testing data Novel CNN 
(T-RRMSE/S-RRMSE/CC) 

MMNN-4 
(T-RRMSE/S-RRMSE/CC) 

5000 5980 0.770/0.680/0.597 0.615/0.579/0.745 
10000 5980 0.597/0.554/0.751 0.537/0.518/0.804 
15000 5980 0.555/0.537/0.776 0.503/0.494/0.826 
20000 5980 0.516/0.515/0.814 0.474/0.453/0.843 
25000 5980 0.499/0.508/0.829 0.446/0.437/0.855 
30000 5980 0.485/0.489/0.840 0.430/0.430/0.865 
35000 5980 0.491/0.473/0.844 0.420/0.410/0.872 
40000 5980 0.462/0.464/0.851 0.415/0.404/0.874 
45000 5980 0.457/0.452/0.857 0.395/0.395/0.883 
50000 5980 0.448/0.442/0.863 0.386/0.378/0.896 
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3.5 Discussion and Conclusion 

In this paper, we proposed a novel DL-based EEG denoising model called MMNN. This model achieved 

smaller T-RRMSE and S-RRMSE scores and higher CC scores than the other models when removing OAs and 

MAs. It can reach a performance similar to that of the reference DL models with only 60% of the training data. 

Through the visualization of signal deviation distribution, the performance differences between the reference and 

the proposed models are clearly observed in the time and frequency domains. 

 Overall, the proposed model has a superior performance compared to the reference DL models. There 

are two reasons for this. First, the proposed model enables constantly providing more purified input signals for 

denoising modules. As shown in Figure 3.5-1 and Figure 3.5-2, we present the signal deviation distribution 

between the inputs of four denoising modules and clean signals. In Figure 3.5-1, the OAs in the range of 0-80 Hz 

were rapidly suppressed using two denoising modules, and the OAs above 80 Hz were gradually reduced when 

more modules were used. In Figure 3.5-2, the MAs of the input signals were suppressed by degrees from the first 

to the fourth module. Second, the parallel architecture of the proposed model allows the gradients to flow through 

each denoising module directly in the backpropagation, thereby avoiding the vanishing gradient problem and 

enhancing the network learning ability.  

 
Figure 3.5-1 Deviation distribution between the input signals of denoising modules and clean signals for OA removal 
(Confidence interval = 0.95). 

 
Figure 3.5-2 Deviation distribution between the input signals of denoising modules and clean signals for MA removal 
(Confidence interval = 0.95). 
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 For further clarification, the parallel and series mechanisms of the denoising modules are presented in 

Figure 3.5-3. The training and testing losses of the two mechanisms (batch size = 128 and learning rate = 0.0001) 

using the given database are shown in Figure 3.5-4 and Figure 3.5-5. The followings were observed, respectively: 

1) both the two models converge in 10 iterations; 2) the training and testing losses of the parallel mechanism are 

smaller than those of the series mechanism when more than two denoising modules are assembled within our 

model, which illustrates that the parallel mechanism of the proposed model possesses a stronger learning capacity; 

3) for the series mechanism, the network learning capacity is weakened when more denoising modules are stacked 

in the model, which is possibly caused by the vanishing gradient problem in the learning process; 4) in contrast 

with the series mechanism, the parallel mechanism can improve the learning capacity when more denoising 

modules are used. However, there was a limitation to the improvement of network learning. We can see that the 

training and testing losses of MMNN-4, MMNN-5, and MMNN-6 are almost the same for the parallel model, 

which explains their similar scores in the experiment. Furthermore, the loss comparison between the proposed 

MMNN-4 and the other DL models is given in Figure 3.5-6, where our model has smaller training and testing 

losses and can converge faster than the others, which is possibly the reason why it performs well with fewer 

training data in both the OA and MA removals. 

 In the future, there are some challenges worth exploring using the proposed model. Specifically, we 

used the denoising modules of the different filter sizes in the OA and MA removals. Whether the filter size of 

feature extraction is caused by noise feature differences should be further studied. Moreover, OAs and MAs are 

entangled with motion artifacts in a real EEG epoch, however, for the mixed signals, there is no available public 

database to evaluate the model performance [112]. Given that the proposed model offers significant advantages 

over the conventional and DL models in this study, the related research is within the scope of further work. 

 

 

Figure 3.5-3 Parallel and series mechanisms. 
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Figure 3.5-4 Training and testing losses using the given database in the OA removal. 
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Figure 3.5-5 Training and testing losses using the given database in the OA removal. 
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Figure 3.5-6 . Loss comparison between the proposed model and the other DL models. 
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4. Multi-pooling 3D Convolutional Neural Networks for fMRI 

Classification  

4.1 Background  
 Functional magnetic resonance imaging (fMRI) is a non-invasive and reliable technique that measures 

the small changes in blood flow caused by brain activities. fMRI data have relatively high spatial resolution and 

availability, thus providing a solution to reveal neural activities of brain regions under visual stimuli 

[113][114][115]. However, there are many difficulties in analyzing fMRI data because the data are highly 

dimensional, structurally complex, and have intra- and inter-subject variability [116][117][118]. For fMRI 

classification tasks, the challenges are four aspects as follows: 1) background noise; 2) the complex spatial 

relevance between features; 3) feature redundancy; 4) incomprehensible but rich brain features [119][120][121]. 

 Various techniques have been proposed to resolve these problems, such as general linear model (GLM) 

[122], multivoxel pattern analysis (MVPA) [123], and principal component analysis (PCA) [124]. GLM is skilled 

at separating stimulus-induced signals from noise; MVPA can analyze spatial activity patterns from the region of 

interest (ROI) of the cerebral cortex; PCA removes irrelevant features through dimensionality reduction. 

 Compared with the conventional techniques, CNN is an end-to-end learning model that can leave out 

all the steps from the input fMRI data to the classification results. In the learning process, CNN architecture can 

capture sufficiently general features from the training data and has a relatively high tolerance for data quality. 

Moreover, CNN is a multi-layer perception mechanism that presents a generalization like human visuals 

[125][126]. Therefore, it can process massive complex spatial features and understand the deep relevance among 

them. CNN architecture can process one-dimensional (1D) sequences, two-dimensional (2D) images, or 3D 

volumes, corresponding to 1D, 2D, or 3D CNNs for brain decoding, respectively. Among them, the 3D CNN 

structure can process neural activity patterns from the raw spatial domain of fMRI voxels, exhibiting a superior 

capability to decode visual brain states. As one of the 3D CNN-based applications, Watanabe et al. [127] revealed 

the flow of human visual processing of categorical and sub-categorical information. In detail, the researchers 

collected the brain activities from several subjects under three visual stimuli tasks (faces vs. objects, male faces 

vs. female faces, and natural objects vs. artificial objects). Afterward, they implemented CNN-based classification 

to fMRI and electroencephalogram (EEG) data and investigated the relevant brain regions regarding the 

classification results.  
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 Considering that the classification results are critical to explaining human visual processing, the fMRI 

classification model used in [127] attracts our attention in two aspects: 1) the training data and test data need to be 

processed by averaging the trials under the same visual stimuli, otherwise the classification accuracy would drop 

significantly; 2) the brain neural activities are relatively slight in the face sub-categorical and object sub-categorical 

classifications tasks, so the classification model does not reach statistical significance in accuracy even when 

features are enhanced by averaging nine trials. 

 Therefore, this paper proposed a novel multi-pooling 3D convolutional neural network (MP3DCNN) to 

improve the classification performance for categorical and sub-categorical classifications. Our solutions are as 

follows: 1) we design a feature extraction unit using three 3D convolutions with average 3D pooling layers. The 

3D pooling layers perform constant generalization and compression to the rich extracted features from the 3D 

convolutions, which aims to fight against the local feature redundancy in feature extraction. 2) moreover, the first 

two 3D convolutions each have a further branch of pooling connection, respectively. The features extracted from 

the branches are merged into the mainchain of the model. Finally, the classifier makes a joint decision based on 

the extracted features from all 3D convolutions.  

 

4.2 Materials 

4.2.1 Visual stimulus task 

 In their work, 53 healthy subjects (34 males and 19 females, ages 18 to 26) participated the visual 

stimulus task, and each one experienced averaged 9.96 ± 2.88 rounds of visual stimuli. In each round of the visual 

stimulus procedure, the participant perceived four types of visual stimuli, involving male face, female face, natural 

object, and artificial object. And there were ten images (two identities with five angles) for each type of stimulus.  

 

 

Figure 4.2-1 Example of a single-round stimulus procedure.   
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 Male face, female face, natural object, and artificial object as four different visual stimuli are randomly presented one after anther;
 There are ten different images  (two identities with five angles) for each type of stimulus
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A single-round visual stimulus procedure (530s in total).
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 Figure 4.2-1 is an example of a single-round stimulus procedure, where the fixation cross was presented 

in the first 30s. Next, the participant perceived a random visual stimulus (an image of a male face, female face, 

natural object, or artificial object) for 0.5s followed by a fixation cross for 9.5s. In this period, he or she needed to 

click the button corresponding to the stimulus. After four types of stimuli, a blank image for 0.5s and a fixation 

cross for 9.5s were presented to regulate the cerebral hemodynamic responses. By ten times from four stimuli to 

one blank image, the participant perceived 40 stimuli, costing 530s in a single-round stimulus procedure. 

 

4.2.2 fMRI data collection and pre-processing 

A 3T MRI scanner (Siemens Prisma, Germany) with a 64-channel head coil scanned the brain activities 

of all subjects in the visual stimulus task. The T1-weighted 3D fMRI volumes were acquired using a 

magnetization-prepared rapid gradient-echo (MP-RAGE) sequence (TR: 2,400ms; TE = 2.32ms; FA: 8 deg; 192 

slices; slice thickness: 0.9 mm; in-plane resolution: 0.93 × 0.93 mm). Through SPM12 [128] , the collected fMRI 

volumes were realigned, co-registered, normalized to the standard Montreal Neurological Institute (MNI) template, 

and resampled to 2-mm isotropic voxels. 

4.2.3 fMRI data cleaning and averaging 

 CNN-based classification tasks used the fMRI volume collected from 4s after each visual stimulus 

presentation. The collected fMRI dataset was cleaned according to the following criteria: 1) the subject was 

excluded from the study whose mean reaction time exceeded 1.5s or whose error rate was higher than 20%; 2) the 

fMRI volume was discarded when a subject responded to a visual stimulus for longer 2s or gave an error response; 

3) considering the possibility of combining EEG analysis, if excessive (EEG) noises were detected manually from 

the heil coil, the fMRI volume in this range was not adopted. Finally, 17306 fMRI volumes from 50 subjects were 

available for our CNN-based classification tasks, including 4453, 4399, 4214, and 4240 volumes corresponding 

to the visual stimuli of man face, female face, natural object, and artificial object, respectively. 

 During the fMRI scanning, intense noises originated from irrelevant neural activities and the scanner. 

The fMRI dataset of each subject was thus multi-fold averaged to improve the data quality used for classification 

tasks. To compare the performance of the classification model between unaveraged and averaged data, the 

averaged data needed to be augmented to the original data amount. 
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4.3 Methods 

The proposed MP3DCNN is composed of feature extraction, feature combination, and classifier, as 

shown in Figure 4.3-1. This model is an end-to-end learning approach to decode visual brain states using fMRI 

data. 

 

Figure 4.3-1 The structure of the proposed multi-pooling 3D convolutional neural network (MP3DCNN). 

 

4.3.1 Feature extraction 

 The feature extraction has a mainchain and two branches. Its mainchain is three 3D convolutions 

connected in series, and each 3D convolution combines with a batch normalization [25], an average 3D pooling 

layer, and a rectified linear unit (ReLU). Batch normalization can accelerate network learning by reducing the 

internal covariate shift. The average 3D pooling can compress the extracted features, and the ReLU can improve 

the model’s nonlinearity.  
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 The two branches connect with the first and the second 3D convolution, respectively. They combine an 

average 3D pooling layer and a linear layer to generalize further and compress features. The relevant 

hyperparameters are as follows: 1) 3D Convolution: An input fMRI volume can be represented as a matrix with 

the size of 𝑥 × 𝑦 × 𝑧, where 𝑥, 𝑦, and 𝑧 are 79, 95, and 79, respectively. An 3D convolution is a 3D tensor with 

the hyperparameter of (𝑐௜௡ , 𝑐௢௨௧ , 𝑘௖௢௡௩), where 𝑐௜௡ depends on the number of the input feature maps (default 1 

to the input fMRI volume), 𝑐௢௨௧ determines the number of output feature maps, and 𝑘௖௢௡௩ × 𝑘௖௢௡௩ × 𝑘௖௢௡௩  is 

the kernel size of 3D convolutional calculation. Batch normalization is applied on 𝑐 dimension, where 𝑐 equals 

to the 𝑐௢௨௧ of the former-layer 3D convolution. The hyperparameters of the three 3D convolutions in the feature 

extraction are (1,4,7) , (4,4,5)  and (4,4,3) , respectively. 2) Average 3D pooling. Suppose the 𝑖௧௛  3D 

convolution outputs a 3D tensor with the size of 𝑐௜ × ℎ௜ × 𝑤௜ × 𝑑௜ , where 𝑐௜ is the number of feature maps, ℎ௜ , 

𝑤௜ , and 𝑑௜  indicate the height, width and depth of each feature map, respectively. An average 3D pooling with a 

hyperparameter of 𝑘௣௢௢௟  can perform the average pooling on each feature map using a kernel size of 

𝑘௣௢௢௟ × 𝑘௣௢௢௟ × 𝑘௣௢௢௟ . 𝑘௣௢௢௟  is set to 2 for the three 3D convolutions in the mainchain. In the branch-1 and 

branch-2, 𝑘௣௢௢௟  is set to 3 and 2, respectively. 3) Linear layer. Linear layer with the hyperparameters of (𝑓௜௡ , 𝑓௢௨௧) 

can convert 1D tensors of arbitrary size. The output of the third 3D convolution is  𝑐ଷ × ℎଷ × 𝑤ଷ × 𝑑ଷ , which is 

flattened into a 1D tensor with the size of 1 × 1764. To obtain the features with the size of 1 × 3528 and 

1 × 1764  from the first and second 3D convolutions, the hyperparameters of the linear layer are set to 

(8064,3528) and (2569,1764) respectively.  

4.3.2 Feature combination and classifier 

 In the proposed model, the mainchain of the feature extraction outputs the third-level feature 

representations of fMRI data, and the branch-1 and -2 make the first and second feature representations to be fed 

into the classifier also. Based on this structure, the network has the potential to provide a sophisticated decision 

using multi-level features in classification problems. Moreover, this design adds a further learning path for the first 

and second 3D convolutions in the backpropagation, respectively, thereby improving the model’s efficiency.  

 The classifier is composed of two linear layers with the parameters of (7057,128) and (128,1), 

respectively. The dropout is used to prevent overfitting in the training processing, and the probability is set to 0.05. 

Sigmoid activation [130] is the last layer of the proposed model, and binary cross entropy (BCE) is the loss function 

for fMRI classification in our study. 
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4.3.3 Model training, validation, and testing 

 The proposed model is implemented in Pytorch, trained and tested on an NVIDIA GeForce RTX 3060 

(12GB) GPU in a Linux system. To evaluate the model performance independently, the fMRI volumes from 5 of 

50 subjects are detached as the test dataset, which would not be used for tuning the model’s hyperparameters. 

 According to the previous study, the amount of the test dataset is equalized by discarding data, and there 

are 1468 (734 faces vs. 734 objects), 772 (386 male faces vs. 386 female faces), and 718 (359 natural objects vs. 

359 artificial objects) trials for the categorical classification, face sub-categorical classification, and object sub-

categorical classification, respectively. 

 We performed 9-fold cross-validation on the training dataset from the 45 leftover subjects. Specifically, 

45 subjects were randomly divided into nine groups according to each group of five subjects, the data from each 

group only were used for model validation once, and data from the left eight groups were used for model training. 

 In the training stage, each of the nine models was iterated 25 times with a batch size of 64, and the 

learning rate was 0.00001. Within the 25 iterations, the model parameters with the highest accuracy score on the 

validation dataset are retained for model testing. A majority voting scheme [132] was applied for fMRI 

classification on the test dataset. As is shown in Figure 4.3-2, the final prediction is the output when more than 

four models predict consistently. 

 

 

Figure 4.3-2 Model training, validation, and testing.   
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4.4 Experiments and Results 

 We compared the results of the categorical (face vs. object), face sub-categorical (male face vs. female 

face), and object sub-categorical (natural object vs. artificial object) classification, respectively. Thanks to the 

open-source code provided by the study [127], the proposed and existing models were able to be trained and tested 

in our hardware environment. 

4.4.1 Face vs. Object 

 Table 4.4-1 and Table 4.4-2 are the classification results of the unaveraged and 9-fold averaged fMRI 

data on the categorical (face vs. object) classification, respectively. And Figure 4.4-1 and Figure 4.4-2 reveal the 

model training processes of the proposed and existing models, where the model parameters of the best validation 

accuracy within 25 epochs are used for model testing.   

Table 4.4-1 Classification performance comparison on Faces vs. Objects (unaveraged fMRI data). 

 
Group 

Validation accuracy  
(Proposed / Existing) 

Test accuracy 
(Proposed / Existing) 

1 72.256% 54.222% 71.458% 55.381% 
2 71.709% 54.022% 69.346% 48.978% 
3 70.962% 56.35% 71.866% 54.087% 
4 69.526% 54.182% 68.801% 51.294% 
5 71.812% 54.484% 72.207% 52.793% 
6 68.851% 55.271% 69.959% 54.768% 
7 74.609% 55.473% 72.548% 52.112% 
8 74.857% 54.951% 71.117% 53.542% 
9 76.369% 53.383% 70.368% 52.997% 

Voting \ 71.458% 56.54% 
*Bold: Better score in comparison between the proposed and existing models 

 

Table 4.4-2 Classification performance comparison on Faces vs. Objects (9-fold averaged fMRI data). 

 
Group 

Validation accuracy  
(Proposed / Existing) 

Test accuracy 
(Proposed / Existing) 

1 94.27% 84.741% 90.599% 79.36% 
2 92.367% 84.278% 86.853% 79.223% 
3 87.3% 84.649% 90.736% 82.766% 
4 83.591% 81.034% 89.986% 79.36% 
5 93.228% 82.245% 89.237% 79.973% 
6 88.267% 80.226% 87.193% 83.583% 
7 94.267% 90.841% 90.054% 82.698% 
8 93.831% 87.921% 89.578% 83.106% 
9 94.307% 87.594% 85.627% 82.834% 

Voting \ 89.578% 85.49% 
*Bold: Better score in comparison between the proposed and existing models 

 

 In Table 4.4-1, the validation accuracy is improved from 13.58% to 22.986% and the test accuracy is 

improved from 15.191% to 20.436% using the unaveraged data. Figure 4.4-1 presents that the proposed model has 

a smaller training and validation losses in all nine training groups. It shows that the proposed model has a stronger 

learning ability than the existing model for high-noisy fMRI data. Finally, the voting result of the proposed model 

reaches 71.458% using the unaveraged data, which improves 14.918% over the existing one in the test accuracy.  
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Figure 4.4-1 Training and validation losses within 25 iterations on Faces vs. Objects (unaveraged data). 
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Figure 4.4-2 Training and validation losses within 25 iterations on Faces vs. Objects (9-fold averaged data). 
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When the 9-fold averaged fMRI data are used, the training and validation losses are as shown in Figure 

4.4-2. The proposed model improves the validation accuracy and test accuracy from 2.557% to 10.983% and from 

2.793% to 11.239%, respectively, as shown in Table 4.4-2. The proposed model achieves the test accuracy of 

89.578% by voting, which is 4.088% higher than the existing one. By comparing the voting accuracies between 

Table 4.4-1 and Table 4.4-2, we can see that the existing model has degraded by 28.95% without 9-fold data 

averaging. By contrast, the proposed model has devalued by 18.12% for the voting accuracy, which shows the 

robustness of the proposed model in the categorical (face vs. object) classification. 

4.4.2 Male face vs. Female face 

 Table 4.4-3 and Table 4.4-4 are the classification results of the unaveraged and 9-fold averaged fMRI 

data on the face sub-categorical (male face vs. female face) classification, respectively. Compared to the existing 

model, the proposed model improves the validation accuracy from 1.114% to 1.788% in the 1st, 3rd, 5th, 6th, and 

8th training groups, but it shows a decrease from 0.663% to 1.765% for the 2nd, 4th, 7th, and 9th groups.  

 

Table 4.4-3 Classification performance comparison on Male face vs. Female face (unaveraged fMRI data). 

 
Group 

Validation accuracy  
(Proposed / Existing) 

Test accuracy 
(Proposed / Existing) 

1 52.984% 51.832% 50.777% 48.964% 
2 52.038% 52.701% 52.073% 47.539% 
3 54.291% 52.595% 49.223% 51.943% 
4 53.984% 55.357% 50.13% 47.15% 
5 55.432% 54.318% 52.073% 47.28% 
6 54.022% 52.234% 51.036% 48.316% 
7 52.647% 54.412% 51.425% 51.943% 
8 55.942% 54.493% 55.57% 52.591% 
9 53.215% 53.991% 51.554% 49.611% 

Voting \ 52.72% 49.352% 
 *Bold: Better score in comparison between the proposed and existing models 

 

Table 4.4-4 Classification performance comparison on Male face vs. Female face (9-fold averaged fMRI data). 

 
Group 

Validation accuracy  
(Proposed / Existing) 

Test accuracy 
(Proposed / Existing) 

1 59.476% 54.764% 52.979% 48.964% 
2 61.611% 55.735% 50.389% 56.477% 
3 63.373% 54.79% 52.073% 54.922% 
4 58.242% 53.434% 54.663% 49.87% 
5 61.838% 54.875% 55.57% 52.073% 
6 60.973% 53.128% 49.741% 48.964% 
7 59.02% 52.059% 53.109% 49.482% 
8 61.304% 56.812% 55.829% 56.347% 
9 62.417% 56.098% 56.606% 52.332% 

Voting \ 55.311% 53.627% 
*Bold: Better score in comparison between the proposed and existing models 
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Figure 4.4-3 Training and validation losses within 25 iterations on Male face vs. Female face (unaveraged fMRI data). 
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Figure 4.4-4 Training and validation losses within 25 iterations on Male face vs. Female face (9-fold averaged fMRI data). 
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 In Figure 4.4-3, we can see that the proposed and existing model performs very close in the training and 

validation losses, which shows that the proposed model does not present a better learning ability than the existing 

one for high-noisy fMRI data in the face sub-categorical classification. As for the test accuracy, the proposed 

model reaches over 50% in eight training groups, while the existing one reaches it in only three groups. Finally, 

the voting result of the proposed model is 52.72%, and the existing one is 49.352% which does not exceed 50%. 

It reveals that the proposed model is more robust than the existing one for the face sub-categorical classification 

using high-noisy fMRI data.  

 When the 9-fold averaged fMRI data are used, the proposed model improves the validation accuracy 

from 4.492% to 8.583% and always produces a smaller training loss than the existing one within 25 iterations of 

training. As for the test accuracy, the proposed model reaches over 50% in eight training groups, while the existing 

one reaches it in only five groups. The voting result of the proposed model is 55.311%, which improves 1.684% 

compared to the existing one. And the test accuracy is improved from 0.777% to 4.793% in the 1st, 4th, 5th, 6th, 

7th, and 9th groups while decreases from 0.518% to 6.088% in the 2nd, 3rd, and 8th groups. However, we can see 

that the proposed and existing models both have a pronounced upward trend in the validation loss, as shown in 

Figure 4.4-4. The reason is that the training loss continuously approaches zero in the training process, making the 

model overconfidence [132]. For example, the ideal model output is 0 or 1, and the model output would gradually 

approach either of them through training, then the wrong predictions increase the calculation loss. In an extreme 

case, the wrong predictions would affect the test results. Compared to the existing model, the proposed model 

produced results closer to 0 or 1, so its upward trend was more apparent when the proposed and existing models 

were overconfident. 

 Overall, the proposed model has slightly improved over the existing model in face sub-categorical 

classification. After voting, the classification accuracies are 3.368% and 1.684% over the existing one when the 

unaveraged and 9-fold averaged fMRI data, respectively. Notably, it always enables more groups to reach a 

classification accuracy above 50% than the existing model, which presents the robustness of the proposed model. 

 

 

 

 

 

 



55 
 

4.4.3 Natural object vs. Artificial object 

 Table 4.4-5 and Table 4.4-6 are the classification results of the unaveraged and 9-fold averaged fMRI 

data on the object sub-categorical (natural object vs. artificial object) classification. When the unaveraged fMRI 

data are used, the proposed and existing models exhibit a similar learning performance, as shown in Figure 4.4-5. 

We can see that the proposed model improves the validation accuracy by 0.349-2.43% over the existing one for 

the 1st, 2nd, 6th, 8th, and 9th groups, while the validation accuracy is decreased by 1.72-3.65% for the 3rd, 4th, 

5th, and 7th groups. For test accuracy, the proposed model all reaches above 50% in the test accuracy except the 

8th group, while the existing one reaches it only for the 2nd, 5th, 7th, and 8th groups. Finally, the voting accuracy 

of the proposed model is 51.532%. However, the existing model still does not exceed 50% by voting. When 9-fold 

averaged fMRI data are used, the proposed model significantly improves the classification accuracy over the 

existing one. In Table 4.4-6, the proposed model improves the validation accuracy by 0.973-10.931% and the test 

accuracy by 4.178-16.853% for all groups. The voting result of the proposed model is 61.978%, which is 13.649% 

higher than the existing one. Figure 4.4-6 is the training and test processes of 9-fold averaged fMRI data, where 

we can see that the proposed model always presents a smaller training loss but is trending upwards in the validation 

loss for the 4th, 7th, and 8th groups. The possible reason is because the model is overconfident, as explained in 

the face sub-categorical classification. 

Table 4.4-5 Classification performance comparison on Natural object vs. Artificial object (unaveraged fMRI data). 

 
Group 

Validation accuracy  
(Proposed / Existing) 

Test accuracy 
(Proposed / Existing) 

1 54.273% 52.636% 50.418% 47.772% 
2 54.861% 52.431% 55.014% 50.139% 
3 53.906% 56.25% 52.089% 48.607% 
4 52.581% 54.301% 53.621% 49.443% 
5 51.338% 54.988% 51.671% 50.139% 
6 54.419% 54.07% 52.228% 47.493% 
7 53.081% 55.332% 53.482% 50.836% 
8 54.0% 53.385% 49.861% 51.253% 
9 54.111% 53.448% 52.646% 49.721% 

Voting \ 51.532% 48.886% 
*Bold: Better score in comparison between the proposed and existing model 

 

Table 4.4-6 Classification performance comparison on Natural object vs. Artificial object (9-fold averaged fMRI data). 

 
Group 

Validation accuracy  
(Proposed / Existing) 

Test accuracy 
(Proposed / Existing) 

1 58.273% 51.545% 59.053% 53.064% 
2 60.648% 53.009% 56.685% 49.582% 
3 59.598% 54.911% 59.749% 47.354% 
4 54.194% 51.935% 61.699% 45.125% 
5 53.163% 52.19% 60.167% 55.989% 
6 66.512% 55.581% 61.003% 49.025% 
7 54.858% 52.962% 59.889% 51.253% 
8 54.0% 52.923% 62.256% 48.747% 
9 57.56% 52.52% 66.017% 49.164% 

Voting \ 61.978% 48.329% 
*Bold: Better score in comparison between the proposed and existing model 
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Figure 4.4-5 Training and validation losses within 25 iterations on Natural object vs. Artificial object (unaveraged fMRI 
data). 
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Figure 4.4-6 Training and validation losses within 25 iterations on Natural object vs. Artificial object (9-fold averaged fMRI 
data). 
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4.5 Discussion and Conclusion 

 
 This study proposed a novel fMRI classification model called MP3DCNN. Its mainchain is 

constructed with three-layer 3D convolutions, and the first and the second convolutions each have a branch 

connection. There are multiple 3D average pooling layers used in the mainchain and branches. 

 Compared to the existing model in the categorical classification (face vs. object), face sub-

categorical classification (male face vs. female face), and object sub-categorical classification (natural object 

vs. artificial object), the proposed model improved the voting accuracy by 14.918%, 3.368%, and 2.646% 

when using the unaveraged fMRI data, and by 4.088%, 1.684% and 13.649 % when using the 9-fold averaged 

fMRI data, respectively.  

 To investigate the role of the model component in improving the classification performance, we 

further compared the existing model, the proposed model that contains only the mainchain, and the proposed 

model, as shown in Figure 4.5-1.  

 

Figure 4.5-1 Existing model vs. Proposed model (mainchain) vs. Proposed model.   
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Figure 4.5-2 Performance comparison among the existing model, the proposed model (mainchain), and the proposed model 
in the categorical classification (face vs. object). 

 

Figure 4.5-3 Performance comparison among the existing model, the proposed model (mainchain), and the proposed model 
in the face sub-categorical classification (male face vs. female face). 
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Figure 4.5-4 Performance comparison among the existing model, the proposed model (mainchain), and the proposed model 
in the object sub-categorical classification (natural object vs. artificial object). 
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 In Figure 4.5-4, the mainchain of the proposed model improved the voting accuracy by 1.253% for the 

unaveraged data and by 9.888% for the 9-fold averaged data, however, the performance difference between it and 

the existing model is insignificant (p-values > 0.001). In contrast, the complete body of the proposed model can 

reach higher voting accuracy and always has statistical significance to the existing model, which proves that the 

branch connections are critical for the object sub-categorical classification.  

 Based on the above, we speculated that the proposed model reached higher performance than the 

existing model for two reasons: first, brain activity in the categorical classification is relatively strong, which leads 

to a more pronounced distinction between the global features of the different categories. In the mainchain of the 

proposed model, the 3D average pooling layer can against the local feature redundancy in the feature extraction 

process and pass the global information to the classifier as much as possible. Therefore, the 3D pooling within the 

model’s mainchain is the main reason for the improved classification accuracy. Second, in the face and object sub-

categorical classifications, the mainchain of the proposed model presented a higher classification error rate because 

the brain activity became relatively slight. Through the branch connections, the model decision can depend on the 

merged features of the three 3D convolutions, thereby improving the model’s robustness. Moreover, the branch 

connections provided extra learning paths for the first two convolutions, thereby improving the learning efficiency 

in the backpropagation. The results demonstrate that the branch connections can be used as an effective supplement 

for enhancing the model’s robustness and accuracy. 
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5. Conclusion 

5.1 Contribution & Summary 

This thesis reported the study on deep learning algorithms for EEG and fMRI signal processing, 

including 1) STNN (spatial-temporal neural network) for P300 detection; 2) MMNN (multi-module neural 

network) for EEG denoising; and 3) MP3DCNN (multi-pooling 3D Convolutional Neural Networks) for fMRI 

Classification. Chapter 1 brief provided a brief overview of EEG, fMRI, and deep learning algorithms, involving 

the key concepts and EEG and fMRI based deep learning. Chapter 2 described the proposed STNN for P300 

detection network, which is a parallel architecture consisting of a temporal unit and a spatial unit that can perform 

EEG channel generalization and analyze the brain’s potential changes simultaneously. The results using three 

public datasets reveal that the proposed model performed better with fewer rounds of stimuli than other competitors. 

It is robust with limited data and is suitable for decoding EEG data recorded with various electrodes. Chapter 3 

described the proposed MMNN for EEG denoising, which is assembled with multiple denoising modules. The 

results revealed that the proposed model can automatically remove OAs and MAs from single-channel noisy EEG 

signals. Compared to the existing models, it achieved higher signal reconstruction accuracy and reached this goal 

with less training data, which is expected to have applications in real tasks. Chapter 4 described the proposed 

MP3DCNN for fMRI classification. This model’s mainchain is a three-layer 3DCNN, where the first and the 

second layers of convolution each have a branch connection. In the mainchain and branches, the extracted fMRI 

featured are multiple pooled. The results show that the proposed model reached higher classification accuracies 

for the categorical, face sub-categorical, and object sub-categorical classifications. From the study in this thesis, 

the model structure, the amount and quality of data, data diversity, and the training process have proven to be 

critical for EEG and fMRI signal processing using deep learning algorithms. To design a high-performance model 

for EEG and fMRI signal processing in the future, some strategies need to be considered as follows:  

1) The specific object in tasks should be clearly defined first. Specifically, the output variable, the model's 

prediction, and the evaluation metrics should be set up carefully. For example, the EEG denoising task is 

defined as a regression problem, the model’s output variable is continuous or numerical, and the model 

predicts values within a constant range. The evaluation metric calculates the mean squared error (MSE) 

between the labels and the model’s outputs. On the other hand, the P300 detection and fMRI classification 

tasks are defined as the classification problems, where the model assigns input instances to predefined 

classes, and the evaluation metrics include accuracy, precision, recall, or F1 score.  
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2) The model’s components should be customized based on the data type of EEG or fMRI signals, aiming to 

handle the specific signal characteristics. EEG data are sequential or time series data, then the model’s 

components should be able to capture long-term dependencies and temporal patterns. Therefore, Conv1Ds 

are the base units in P300 detection and EEG classification tasks. However, the fMRI classification task is 

required to obtain the spatial information from different brain regions in three dimensions, therefore 

Conv3Ds are commonly used to capture local and global patterns of brain activities. It is worth noting that 

the experiences about the component choice are based on our specific task, available data, and 

computational resources. In the different tasks, the experimentation, iteration, and careful evaluation are 

often necessary to refine and optimize the architecture and techniques for optimal performance. 

3) Deep learning models usually benefit from high-quality and diverse EEG and fMRI datasets. More data 

from different subjects can provide a broader representation of the underlying distribution, enabling the 

model to generalize better to unseen instances. Furthermore, the high-quality and diverse dataset can 

reduce the risk of overfitting and contribute to more accurate and robust models.  

4) The capacity of deep learning models should be increased to improve the model’s performance. The 

implementation approaches include adding more parameters or layers to a model. The larger capacity 

models are better equipped to handle large and diverse datasets, capturing a wider range of features and 

variations present in the large dataset. However, the larger capacity models will bring the model overfitting 

or gradient diffusion problem. Regularization can help prevent overfitting and improve the generalization 

ability of deep learning models. Therefore, we used dropout, batch normalization, and early stopping to 

improve the model's generalization in the training process. Meanwhile, the gradient diffusion is a common 

challenge during the training of deep learning models. To deal with it, some activation functions such as 

ReLU and the skip connections, are widely used in the proposed models. Furthermore, the parallel 

connections are adopted in the proposed models, which can improve the gradient efficiency and reach 

more stable training, faster convergence, as well as higher performance across EEG and fMRI signal 

processing.  

5) The fine-tuning of hyperparameters can explore the right balance between the model complexity and 

overfitting. This strategy includes the tuning of learning rate, batch size, regularization techniques, 

activation functions, optimizer algorithms, and network initialization. The systematic experiments should 

be used to find the optimal combination of hyperparameters through techniques like grid search or random 

search. 
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5.2  Prospects of this study 

5.2.1 Prospects of the proposed STNN 

 When users intend to select specific targets or communicate through the BCI, the proposed high-

performance P300 detection model can ensure that their intentions are correctly interpreted. Improved accuracy 

results in more precise identification of P300 responses, leading to enhanced user experience and faster information 

transfer rates. Moreover, the high-performance P300 detection model can reduce the occurrence of false positives 

or false negatives, thereby ensuring the reliable and robust operation of BCIs in real-world scenarios. In the field 

of clinical diagnostics, P300 responses have been extensively studied to understand cognitive processes, diagnose 

neurological disorders, and assess cognitive impairments. High-performance P300 detection approaches hold 

significant potential for improving the reliability and sensitivity of diagnostic tools. Accurate identification and 

quantification of P300 signals can aid in the early detection, monitoring, and treatment evaluation of conditions 

such as Alzheimer's disease, attention-deficit/hyperactivity disorder (ADHD), and other cognitive disorders. By 

achieving high accuracy, clinicians and researchers can extract valuable insights from P300 signals, enabling them 

to make more accurate diagnoses, personalize treatment plans, and track disease progression more effectively.  

 Furthermore, the underlying methodology and principles of P300 detection can be adapted and extended 

to various domains where the accurate detection of specific patterns within time series data is essential. For 

example, time series data from sensors, such as accelerometers or environmental sensors, often contain specific 

events or patterns of interest. The proposed P300 detection model can be adapted to detect these events. By training 

the model on labeled data with desired event patterns, the proposed model can identify and localize occurrences 

of these events in real-time sensor data, enabling applications in areas like activity recognition, anomaly detection, 

or environmental monitoring. For financial data, the proposed P300 detection model is expected to identify 

anomalous patterns that may indicate market manipulation, unusual trading activities, or fraudulent behavior. By 

training the model on historical financial data and defining the target anomalies, the proposed model is expected 

to accurately detect such events and assist in early warning systems or fraud detection mechanisms. For 

abnormality detection in health monitoring, the proposed model is expected to identify abnormal patterns in such 

data, enabling early detection of health issues or abnormalities. This model is expected to detect and alert 

healthcare providers or individuals to potential health risks by training the model on labeled health data and 

defining the target abnormalities. 
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5.2.2 Prospects of the proposed MMNN 

 The proposed EEG denoising model is expected to be applied to the field of neuroscience research and 

clinical diagnostics. High-performance EEG denoising approaches can help researchers obtain cleaner and more 

reliable data, allowing them to analyze and interpret brain activity with higher precision. Meanwhile, this technique 

can be used to enable more accurate identification and analysis of relevant biomarkers and abnormalities. 

Therefore, we look forward to applying this approach for individuals to control prosthetic limbs, interact with 

computers, or communicate through brain signals in the future.  

 Notably, the essence of the EEG denoising task is the regression study based on deep learning. Therefore, 

the proposed model structure will have the potential for other fields, such as financial forecasting, energy demand 

forecasting, environmental analysis, customer behavior analysis, recommender systems, quality control and 

manufacturing, and traffic flow prediction. Specifically, the proposed model is expected to predict financial 

metrics such as stock prices, market indices, exchange rates, and future sales. By training historical data, we 

expected the proposed model to capture complex patterns and relationships and provide financial planning, 

investment strategies, and risk management. Also, the data about weather patterns, historical energy consumption, 

and demographic information can be used to forecast energy demand for utilities and energy companies, which 

aims to predict future energy demand, facilitating efficient resource allocation, load balancing, and energy 

planning. In environmental analysis, the proposed model is expected to be trained by atmospheric data and 

pollutant levels, thereby providing predictions for ecological changes and guiding policy decisions. For customer 

behavior analysis, the training data include customer segmentation, churn prediction, and demand forecasting. By 

integrating various customer-related data, such as purchase history, demographics, and browsing patterns, our 

models have the potential to capture customer preferences, predict future behavior, and enable targeted marketing 

strategies. Also, this model can potentially be trained as a recommender system for personalized recommendations. 

In this case, the training data would come from user preferences, historical interactions, and contextual data. In 

quality control and manufacturing, the proposed model is expected to be used to enhance productivity and reduce 

defects through analyzing sensor data and historical performance. At the end, the proposed model as a regression 

approach based on deep learning, is expected to predict traffic flow patterns, congestion levels, and travel time 

estimation. By analyzing historical traffic data, weather conditions, and real-time information, deep regression 

models can forecast traffic patterns, enabling efficient route planning, traffic management, and urban planning. 
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5.2.3 Prospects of the proposed MP3DCNN. 

 In the future, the proposed fMRI classification model will have a wide range of applications, which are 

not limited to the applications in studying brain function and cognition. For example, fMRI classification can be 

used to understand consumers' preferences and responses to marketing stimuli. By analyzing brain activity patterns, 

researchers can identify neural correlates of positive or negative responses to advertisements, product designs, or 

brand experiences. This information can inform marketers and advertisers on how to optimize their strategies to 

elicit desired consumer reactions. Similarly, fMRI classification can help in understanding consumer decision-

making processes and preferences. By examining brain activity, researchers can gain insights into the neural 

mechanisms underlying consumer choices and identify factors that influence purchasing behavior. This knowledge 

can be valuable for designing effective marketing campaigns, product development, and pricing strategies. In the 

education field, fMRI classification can help improve educational strategies by identifying neural markers 

associated with effective learning. By studying brain activity patterns, researchers can develop classifiers to assess 

cognitive engagement, attention, and comprehension during learning tasks. This information can inform the 

development of optimized teaching methods and personalized educational approaches. And fMRI classification 

also can be applied to understand the neural mechanisms associated with sports performance and expertise. By 

comparing brain activity patterns between athletes of different skill levels, classifiers can identify neural signatures 

related to superior performance. This information can be used to optimize training protocols, talent identification, 

and performance enhancement strategies. 
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5.3 Future challenges 

 Deep learning techniques are proven to offer promising opportunities for EEG and fMRI signal 

processing, but they also come with associated risks in the future. The key concerns include limited data 

availability, interpretability challenges, model complexity, generalization to new domains, data quality, and ethical 

considerations. Therefore, the further study can consider combining data augmentation and transfer learning with 

the proposed models. Furthermore, deep learning models trained on specific EEG or fMRI datasets may not 

generalize well to new datasets acquired from different populations or experimental conditions. Variability across 

individuals, equipment, and experimental setups can affect the performance of the trained models on unseen data. 

Therefore, we should be cautious about the generalizability of their models and validate their performance on 

diverse datasets. Meanwhile, we should seek for a balance between precision and complexity in deep learning, 

aiming to ensures that the deep learning model is not only accurate but also efficient, practical, and adaptable to 

various real-world scenarios. 

 In medical applications, the model’s explanations are essential for clinical decision-making but the 

model structure is very complex, then a huge challenge is that how to ensure transparency and interpretability of 

deep learning models for EEG and fMRI signal processing. Nevertheless, we believe that deep learning algorithms 

are revolutionizing EEG and fMRI signal processing. Unlike traditional techniques that require manual feature 

engineering, deep learning eliminates the need for domain-specific knowledge and handcrafted feature extraction, 

making the analysis process more efficient and less subjective. EEG and fMRI signals are inherently complex, and 

traditional techniques often struggle to model their nonlinear dynamics. Deep learning models, with their 

hierarchical architectures and powerful computational capacity, can effectively model and capture the intricate 

dependencies and subtle patterns in brain signals, leading to improved accuracy and understanding. Therefore, we 

look forward to going deep into cross-study for EEG and fMRI signal processing based on deep learning in the 

future. For example, we expect to explore the technical feasibility of fMRI denoising based on deep learning after 

witnessing the application in EEG denoising. Compared with EEG denoising, fMRI denoising task encompasses 

not only temporal but also spatial artifacts, therefore fMRI denoising will pose more challenges in various factors, 

such as how to distinguish true neural signals from noise, choose optimal denoising techniques, avoid overfitting, 

and address subject variability.   
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Appendix 

A.1  Hyperparameter tuning & Running time – STNN. 

A. 1 lists the hyperparameter tuning process of the spatial unit, where the average accuracy of STNN-

3&15, 4&7, 4&8, 5&3, and 5&4 are given. We utilized the dataset-3 for training, validating, and testing models, 

where we performed 5-fold cross-validation on the training dataset (85 trials), and the testing dataset (100 trials) 

was given in Section II. V-A, V-B, T-A, and T-B are short for the validation result of subject-A, validation result 

of subject-B, testing result of subject-A, and testing result of subject- B. A. 2 gives the average training loss and 

validation loss of subjects A and B. We can see that the model performance can be improved by increasing the 

number of hyperparameters in the spatial unit, while the excessive increase in the hyperparameters does not 

significantly improve its performance. Therefore, the spatial unit with maximum channel = 128 was adopted in 

our P300 detection study. 

A. 3 gives the hyperparameter tuning process of the global generalizers in the temporal module using 

the dataset-3. A. 4 shows the average training loss and validation loss of subjects A and B. We separately 

assembled the global generalizers with different maximum channels into STNN-3&15, 4&7, 4&8, 5&3, and 5&4. 

According to the average 5-fold cross-validation and testing AUC scores of these five models, we can see that the 

model performance can be improved using the global generalizers in the temporal modules. However, a huge 

amount of training parameters led to computational redundancy but obviously did not improve the model’s 

performance. Therefore, the output channel of the temporal feature generalizer was set up to 128 in our P300 

detection study. 

A. 5 shows the processing time of the within-subject P300 detection and cross-subject P300 detection 

in the first experiment, where we list the average training and testing times of 1-10 rounds of stimuli. In the second 

experiment, we calculated the average training and testing times of 1-8 rounds of stimuli in the within-subject 

P300 detection and cross-subject P300 detection. The results in Farwell and Donchin’s paradigm and the GeoSpell 

paradigm are given in A. 6 and A. 7, respectively. A. 8 gives the average training and testing times of two subjects 

using our model components and combinations in the third experiment. 
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A. 1 Hyperparameter tuning of the spatial unit. 

 
 

 
 

 
A. 2 Average training loss and validation loss of the spatial unit (Batch size = 32). 
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A. 3 Hyperparameter tuning of the global generalizers in the temporal module. 

 

 
A. 4 Average training loss and validation loss of the global generalizers in the temporal module (Batch size = 32). 
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A. 5 Average running time in the first experiment. 

Model (# of parameters) Training time(s) Testing time(s) 
Within-subject P300 detection, Batch size = 32 

STNN-3&15(48827) 16.15 0.026 
STNN-4&7(56299) 21.05 0.027 
STNN-4&8(56811) 21.27 0.030 
STNN-5&3(64283) 23.69 0.038 
STNN-5&4(64923) 23.93 0.037 

Cross-subject P300 detection, Batch size = 32 
STNN-3&15(48827) 95.5 0.037 
STNN-4&7(56299) 112.5 0.039 
STNN-4&8(56811) 111.6 0.040 
STNN-5&3(64283) 126.1 0.042 
STNN-5&4(64923) 125.9 0.042 

 
 
 

A. 6 Average running time in the second experiment (Farwell and Donchin’s paradigm).   

Model (# of parameters) Training time(s) Testing time(s) 
Within-subject P300 detection, Batch size = 32 

STNN-3&15(70355) 9.07 0.023 
STNN-4&7(72371) 10.53 0.029 
STNN-4&8(74419) 10.53 0.029 
STNN-5&3(76435) 11.57 0.032 
STNN-5&4(78994) 11.58 0.032 

Cross-subject P300 detection, Batch size = 32 
STNN-3&15(70355) 51.05 0.036 
STNN-4&7(72371) 59.30 0.041 
STNN-4&8(74419) 59.78 0.042 
STNN-5&3(76435) 66.55 0.046 
STNN-5&4(78994) 66.74 0.047 

 
 
 

 

 

 

 

 
 
 
 
 
 
 
 



83 
 

 
 
 

 
 

A. 7 Average running time in the second experiment (GeoSpell paradigm).   

Model (# of parameters) Training time(s) Testing time(s) 
Within-subject P300 detection, Batch size = 32 

STNN-3&15(70355) 9.22 0.025 
STNN-4&7(72371) 10.31 0.027 
STNN-4&8(74419) 10.52 0.028 
STNN-5&3(76435) 11.44 0.030 
STNN-5&4(78994) 11.46 0.030 

Cross-subject P300 detection, Batch size = 32 
STNN-3&15(70355) 51.73 0.036 
STNN-4&7(72371) 60.50 0.041 
STNN-4&8(74419) 60.53 0.043 
STNN-5&3(76435) 67.90 0.048 
STNN-5&4(78994) 67.91 0.048 

 
 

A. 8 Average running time in the third experiment.   

Model (# of parameters) Training time(s) Testing time(s) 
STNN-1&60(130019) 29.43 0.029 

STNN-1&60-Only with the temporal unit (108737) 27.53 0.027 
STNN-2&30(147171) 35.70 0.032 

STNN-2&30-Only with the temporal unit (125889) 33.79 0.031 
STNN-3&15(201443) 40.62 0.035 

STNN-3&15-Only with the temporal unit (180161) 39.40 0.034 
STNN-4&7(259331) 45.07 0.036 

STNN-4&7-Only with the temporal unit (238049) 44.15 0.035 
STNN-4&8(262099) 45.36 0.036 

STNN-4&8-Only with the temporal unit (240817) 43.70 0.036 
STNN-5&3(272987) 50.40 0.037 

STNN-5&3-Only with the temporal unit (251705) 48.90 0.036 
STNN-5&4(281947) 50.50 0.037 

STNN-5&4-Only with the temporal unit (260665) 48.95 0.040 
STNN-6&2(322563) 54.60 0.041 

STNN-6&2-Only with the temporal unit (301281) 53.91 0.041 
STNN - Only with the spatial unit (21282) 41.05 0.028 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



84 
 

A.2  Denoising modules & Compared models – MMNN. 

A. 9 shows the different configurations of the denoising modules, in which the number of parameters, and running 

time increased with the number of Conv1Ds. However, the module performance reaches its limit when using four Conv1Ds. 

Therefore, we configured four Conv1Ds for the denoising module in our model. 

 

 

 

 
A. 9 Configuration of the denoising modules. 

 

 

A. 10 presents the architecture of the compared models, including FCNN, Simple CNN, Complex CNN, 

and RNN, and Novel CNN. These models decomposed noisy EEG signals using the different combinations of 

Conv1D, FC, and LSTM blocks, and then reconstructed clean signals using an FC block. Hyperparameter formats 

of “Conv1D”, “FC”, and “LSTM” are (input channel, output channel, kernel size), (input feature, output feature), 

(input channel, output channel), respectively. “T” the number of discrete time points of the input EEG epoch. 
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A. 10 Architecture of the compared models for EEG denoising.  
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A.3  Compared models – MP3DCNN. 

A. 11 presents the compared architecture for categorical (face vs. object), face sub-categorical (male face 

vs. female face), and object sub-categorical (natural object vs. artificial object) classifications. 
 
 
 
 
 
 

 

A. 11 Architecture of the compared models for fMRI classification. 
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