2024 年 修士論文

格子ボルツマン法を用いた氷晶周りの流れ場とベンチ レーション効果の解析

Analysis of the flow field and ventilation effect of ice crystals with the Lattice Boltzmann Method

> 高知工科大学大学院 工学基盤専攻 環境数理コース 修士2年 学籍番号;1265062 氏名:並河 立希 Name: Tatsuki Namikawa 指導教員:端野 典平 Supervisor: Tempei Hashino

> > 2024年3月7日提出

概要

雲中に存在する粒子の成長は大きく分けて2種類存在する。1つは粒子の衝突によって、2つ以 上の粒子が併合する衝突成長である。もう1つは周囲の環境が過飽和の時、粒子の表面に向かっ て水蒸気が移流拡散する蒸着成長である。ベンチレーション効果とは、粒子が落下することで水 蒸気密度の勾配が上流側において大きくなり蒸着成長率が大きくなることであり、先行研究([4]) ではその効果を流体の運動方程式に基づき評価した。しかし、氷粒子の形状は一般に複雑で氷粒 子の融解が起こりうるため、混相流の計算が必要である。そこで本研究は混相流や境界の表現に おいて利点のある格子ボルツマン法を用いて氷粒子まわりの流れ場とベンチレーション効果を評 価することを目的とする。具体的には3次元における流れ場を計算し、抗力係数やベンチレー ション効果を検証する。

直方体領域の中に円柱を入れて実験を行う。ただし、この時、円柱が受ける流れ場の抗力と重 力が釣り合っているとする。先行研究 ([5]) を参考に領域の大きさや、円柱の直径、中心位置、レ イノルズ数、また上流端の流速を設定する。また、上流側で流速を与え、終端速度に達するまで 上流側の流速を徐々に大きくする。さらに円柱の近傍領域では境界から流体に及ぼす外力を流体 の運動方程式から導く IBM という手法を用いる。これは複雑な境界や移動境界を表現することが できる点が利点である ([7])。

Re = 20 で 0.004s 経過した時の結果を示す。この時の領域の大きさは lattice unit で 1002 × 502 × 502 であり、解像度は 20 μ m である。この時の抗力係数は 3 であり、先行研究 [2] の 1.5 倍に相当する。また、円柱中心を通る XY 平面における流速分布を円柱軸の中心から見た図で先 行研究 [6] と比較すると、円柱周りでの流速変化は先行研究と比べて捉えられていない状況であ り、これらの原因として円柱周りでの解像度が不足していることや領域の大きさが不十分である ことが挙げられる。また、ベンチレーション効果は 0.37 であり、先行研究 [6] より小さくなった。水蒸気密度場によると、定性的に移流拡散の再現は確認できるが、定量的な移流拡散の再現が確 認できない。今後は移流拡散の定量的な再現性と $\nabla \phi$ の評価方法を球体の場合で検証する。

目次

第1章	序論	1			
1.1	研究背景と目的				
1.2	ベンチレーション効果				
1.3	抗力	3			
1.4	格子ボルツマン法	4			
	1.4.1 はじめに	4			
	1.4.2 基礎方程式	4			
	1.4.3 衝突項	5			
	1.4.3.1 BGK モデル	5			
	1.4.3.2 TRT モデル	6			
	1.4.4 平衡分布関数の求め方	7			
	1.4.5 流速、圧力の求め方	7			
	1.4.6 パラメータの安定性	8			
第2章	格子ボルツマン法のアルゴリズム	9			
2.1	初期条件				
2.2	円柱の境界設定....................................	10			
2.3	collision step \mathcal{E} streaming step				
2.4	境界条件	11			
	2.4.1 すべりなし条件とすべりあり条件	12			
	2.4.2 周期境界条件	13			
2.5	外力を考慮した円柱周りでの速度分布関数の計算(IBM)	14			
2.6	抗力係数の計算方法	16			
2.7	ベンチレーション効果の計算方法	17			
笛 3音	実験設定	18			
31	2次元で行った時の実験設定	18			
3.2	3次元で行った時の実験設定	19			
0.2	321 円柱	19			
		10			
		211			

第4章	流れ場とベンチレーション係数の結果	21
4.1	2 次元の時の流れ場	21
4.2	3 次元の時の流れ場	25
	4.2.1 円柱	25
	4.2.2 円板	28
4.3	ベンチレーション効果の結果	31
第5章	まとめと今後の展望	34
参考文献		36

第1章

序論

1.1 研究背景と目的

2010 年、アメリカのサウスダコタ州では直径 20cm の雹が観測され、この雹の落下速度は時速 160km に達した(Ackerman and Knox 2013)。また R.Dozmbak, (2021) によると雹による被害 はアメリカ全体で年間 100 億ドルに達しており、今後気候変動とともには雹が巨大化することで 被害が増大する可能性がある。

電の成長を理解するためには、氷粒子の 成長メカニズムを物理的に理解する必要が ある。氷粒子の成長には、水粒子と氷粒子 が衝突して成長する「衝突成長」と、周囲の 環境が過飽和の状態で水蒸気が氷粒子に向 かって拡散する「蒸着成長」の2つがある。 図1は2つの成長を模式的に表した図であ る。先行研究(Cheng.Wang et al 2014)で は後者の蒸着成長に焦点を当てた。

蒸着成長の速度を評価する上での重要な

指標が「ベンチレーション効果」である。これは、氷粒子が落下することで水蒸気密度の勾配が上 流側で大きくなり、それにより成長率が大きくなることを指す (Wang 2013)。先行研究(Cheng et al 2014) ではその効果を流体の運動方程式に基づき評価した。

しかし、雹の形状は複雑であり、数値的に扱いづらい。また、氷の融解が伴うため、混相流の 計算が必要である。そこで、本研究では混相流や境界の表現において利点のある格子ボルツマン 法を用いて、氷粒子周りの流れ場とベンチレーション効果を評価することを最終目標としている。 ここでは、3次元の流れ場を計算し、物体周りの流れ場を定量的に評価する抗力係数やベンチレー ション効果を検証する。

1.2 ベンチレーション効果

ベンチレーション効果は水蒸気密度の勾配によって決まる. 氷粒子が落下している時の成長率は 以下の式で表される。

$$\frac{dm}{dt} = \oint_{S} \left(-D_v \nabla \rho_v \right)_{r=a} \cdot d\mathbf{S}$$
(1)

ここでの D_v は水蒸気の拡散係数 (単位:m²/s)、 ρ_v は水蒸気の密度である。水蒸気の拡散係数 は-40 ℃から 40 ℃の間では経験的に求められ、以下に表す。

$$D_v = 0.211 \left(\frac{T}{T_0}\right)^{1.94} \left(\frac{p_0}{p}\right) \times 10^{-4} \tag{2}$$

 T_0 は 273.15K、 p_0 は 1013.25hPa であり、気温が上がり圧力が下がれば D_v は大きくなる。また、氷粒子が静止している時の成長率は (1) 式の密度変化が一定になることを使って計算すると以下の式で表される。

$$\left(\frac{dm}{dt}\right)_{0} = 4\pi C D_{v} \left(\rho_{v\infty} - \rho_{vs}\right) \tag{3}$$

$$\boxed{3}$$

ρ_{vs} は表面の水蒸気密度、*ρ_{v∞}* は氷粒子の表面から離れ たところの水蒸気密度を表している。また、*C* はキャパシ タンスであり、これは氷粒子の形状によって変わる。本実 験では円柱と円盤, 球体での実験を行い、*C* は表1のように なる。さらに静止している時の拡散成長率を基準とした時 の落下している時の拡散成長率の比がベンチレーション定 数の定義であり、これを式で表現すると以下の式になる。

$$\bar{f}_v = \frac{\left(\frac{dm}{dt}\right)}{\left(\frac{dm}{dt}\right)_0} \tag{4}$$

これは、静止しているときと比較して、落下しているときの

氷粒子の蒸着成長のスピードを示している。例えば、2.54cm の雹が降ると仮定するとベンチレー ション係数は 48 であり、落下している雹の蒸着成長は静止しているときの約 50 倍の速さで成長 していることを表している。

形状 C
球体
$$r$$

(r:球体の半径)
円柱 A
 $\square [(A+a)/b]$
 $A = (a^2 - b^2)^{1/2}$
 $a:長軸,b:短軸$
円盤 $\frac{2a}{\pi}$
 $a:円盤の半径$

1.3 抗力

この節では文献 [11],[12] を参考に抗力につい て説明する。

流体の中を物体が動く時、あるいは流れの中 に物体が置かれている時、物体が流体から受け る力のことを抗力 (drag) という。ここでは簡単 のため、図2のように物体が落下する状況を考 える。すると、物体に働く力は重力 W と物体が 流体から受ける抗力 D がある。ここで重力と抗 力が釣り合っていると仮定すると、重力と抗力 との関係式は以下のようになる。

W = D

本研究ではこの条件を用いて実験を行っている。

また、抗力 D は 2 つの成分からなり、1 つは流体の粘性により物体表面で作用する摩擦抗力 D_f 、もう 1 つは流体の流れが物体から剥離することで上流側と下流側で圧力差が生じ高圧から低 圧に向けて働く圧力抗力(形状抗力) D_n がある。すなわち、これを式で表現すると、

$$D = D_f + D_p$$

となる。全抗力 D のうち、形状抗力や摩擦抗力の占める割合は物体の形状や表面の状態などにより変わってくる。例えば、円柱の軸を流れに対し垂直に置くと Re が十分大きい場合、円柱周りに 働く抗力のほとんどが形状抗力であり、逆に流れに対し、平行に置かれた薄いプレートの場合、抗 力のほとんどが摩擦抗力である。

この抗力を用いて、流れ場を定量的に評価する指標が抗力係数 (drag Coefficient)C_D である。 これは抗力を無次元量で表した値であり、以下のように定義される。

$$C_D = \frac{D}{\frac{\rho U^2 F}{2}} \tag{5}$$

ここで、ρは流体の密度、U は終端速度、F は流れに対し垂直な面の面積を表している。

1.4 格子ボルツマン法

この節では格子ボルツマン法について文献 [8] から [10] を参考に説明する。

1.4.1 はじめに

流体を数値的に解析する方法は大きく分けて2つある。1つは流体は連続体であると仮定し、 偏微分方程式で記述された質量、運動量、エネルギーの保存則を離散的に解くという方法である。 つまり、連続の式やナビエ・ストークス方程式、ポアソン方程式さらに移流拡散方程式を離散的 に解くことによって流速や圧力、温度が求められる。これらの手法の代表として、有限要素法や 有限差分法などが挙げられる。しかし、ポアソン方程式の繰り返し計算を行うことに時間を要し、 この計算が高速化の問題になっている。

そこで、もう1つの手法として流体をミクロな立場から気体分子運動論をもとに流れ場を解く 格子ボルツマン法(LBM: Lattice Boltzman Method)がある。これは各粒子の衝突(collision) と並進(streaming)を粒子の速度分布関数を使って逐次計算し流れ場を求める方法である。LBM は計算スキームが簡単で質量や運動量の保存に優れており、時間と空間に対して2次精度である。 また、並列計算にも適しており、本研究でも並列化を行い、圧力や流速などのパラメータを計算 した。次の項では格子ボルツマン法の基礎方程式を説明する。なお、これ以降は特に断りのない 限り、文字および速度分布関数は無次元量(lattice unit)で表す。

1.4.2 基礎方程式

LBM の基礎モデルとして等温場の非圧縮性単相流モデルで 考える。等温場の非圧縮性流体に用いられる格子は2次元では 正方形格子、3次元では立方体格子が主流であり、図2は2次 元での速度ベクトル *c*_i、図3は3次元での速度ベクトル *c*_iを表 している。2次元での*c*_iは9方向、3次元では15方向で本研究 では実験を行った。

座標 x および時刻 t における速度 c_i をもつ仮想粒子の速度分 布関数 $f_i(x,t)$ は次の離散ボルツマン方程式に従う。

$$\mathrm{Sh}\frac{\partial f_{i}}{\partial t} + \boldsymbol{c}_{i} \cdot \nabla f_{i} = \frac{1}{\epsilon} \Omega_{i}[\boldsymbol{f}(\boldsymbol{x}, t)]$$
(6)

ここで Sh はストローハル数、 ϵ はクヌーセン数、 Ω は仮想粒子 の衝突項、 $\mathbf{f} = (f_1, f_2,, f_N)^T$ を表しており、(5) 式は仮想 粒子の運動方程式を表している。また等温モデルでは運動量お よび質量保存の法則が成り立つことから衝突項は次式を満たす

図3 D2Q9の速度ベクトル

図 4 D3Q15 の速度ベクトル

必要がある。

$$\sum_{i=1}^{N} \Omega_i = 0 \tag{7}$$

$$\sum_{i=1}^{N} \boldsymbol{c}_{i} \Omega_{i} = 0 \tag{8}$$

さらに (6) 式の左辺の対流項に対し $t + \Delta t$ を用い、陰解法を使って 1 次差分すると (6) 式は

$$\operatorname{Sh}\frac{f_i(\boldsymbol{x}, t + \Delta t) - f_i(\boldsymbol{x}, t)}{\Delta t} + \frac{f_i(\boldsymbol{x} + \boldsymbol{c}_i \Delta t, t + \Delta t) - f_i(\boldsymbol{x}, t + \Delta t)}{\Delta x} = \frac{1}{\epsilon} \Omega_i[\boldsymbol{f}(\boldsymbol{x}, t)] \quad (9)$$

となる。さらに、 $\epsilon = \Delta x$ 、 $\Delta t = Sh\Delta x$ (仮想粒子が隣の格子点に達するまでの時間)、Sh=1 とすると

$$f_i(\boldsymbol{x} + \boldsymbol{c}_i \Delta t, t + \Delta t) - f_i(\boldsymbol{x}, t) = \Omega_i[\boldsymbol{f}(\boldsymbol{x}, t)]$$
(10)

となる。(10) 式は格子ボルツマン方程式とよばれ、LBM の基礎方程式である。すなわち、時間 発展させた速度分布関数 f_i は仮想粒子がやってくる隣の格子点の速度分布関数 f_i から決まり、 速度分布関数 f_i は完全移流の形になっている。ここで拡散時間スケールは Sh = $O(\Delta x), \Delta t = O[(\Delta x)^2]$ であることから物理量のゆっくりした時間変化を調べるには多くの時間ステップを要 する。

1.4.3 衝突項

一般のボルツマン方程式と同様に格子ボルツマン方程式においても衝突項の扱い方が重要である。この項では衝突項のモデルとして2つ取り上げて説明する (文献 [8]-[10])。

1.4.3.1 BGK モデル

BGK モデルは 1989 年に Higura により平衡分布関数が導入され、さらに 1992 年に H.Chen, H.Chen, S.Chen,W.Mattueaeus により BGK モデル(SRT モデルともいう)が導入された。 BGK モデルでは (10) 式の右辺の衝突項は以下のように表される。

$$\Omega_i[\boldsymbol{f}(\boldsymbol{x},t)] = -\frac{1}{\tau} \left(f_i(\boldsymbol{x},t) - f_i^{\text{eq}}(\boldsymbol{x},t) \right)$$
(11)

(11) 式を(10) 式に代入し、変形すると以下のようになる。

$$f_i\left(\boldsymbol{x} + \boldsymbol{c}_i \Delta t, t + \Delta t\right) = f_i(\boldsymbol{x}, t) - \frac{1}{\tau} \left(f_i(\boldsymbol{x}, t) - f_i^{\rm eq}(\boldsymbol{x}, t)\right)$$
(12)

(12) 式は LBM の一般的な運動方程式の形である。ここで τ は緩和時間であり流体の粘性に比例 する。すなわち緩和時間 τ が大きければ流体はゆっくり運動し、粘性が大きいことを表している。 また (10) 式に出てくる f_i^{eq} は平衡分布関数とよばれ、1.4.4 項で解説する。

1.4.3.2 TRT モデル

TRT モデルは Ginzburg によって提案され,MRT モデルを簡素化したモデルである。このモデ ルは、BGK モデルと同程度の計算効率であるが、BGK モデルよりも正確に精度と安定性を制御 できる。

TRT モデルでは離散速度 c_i の反対向きの速度 c_i 、つまり、 $c_i = -c_i$ の関係をもつ速度分布関数 f_i を利用する。速度分布関数 f_i とその反対向きの離散速度に対応する速度分布関数 f_i を用いて偶関数成分 f_i^+ と奇関数成分 f_i^- を以下で求める。

$$f_i^+ = \frac{f_i + f_{\bar{i}}}{2}$$
(13)

$$f_i^- = \frac{f_i - f_{\bar{i}}}{2} \tag{14}$$

$$f_{i}^{\rm eq+} = \frac{f_{i}^{\rm eq} + f_{\bar{i}}^{\rm eq}}{2}$$
(15)

$$f_i^{\rm eq-} = \frac{f_i^{\rm eq} - f_{\bar{i}}^{\rm eq}}{2}$$
(16)

$$f_i = f_i^+ + f_i^-$$
(17)

$$f_{\bar{i}} = f_{i}^{+} - f_{i}^{-} \tag{18}$$

$$f_i^{\rm eq} = f_i^{\rm eq+} + f_i^{\rm eq-} \tag{19}$$

$$f_{\overline{i}}^{\mathrm{eq}} = f_i^{\mathrm{eq}+} - f_i^{\mathrm{eq}-} \tag{20}$$

また、静止している仮想粒子に対しては、 $f_1^+ = f_1$ 、 $f_1^{eq+} = f_1^{eq}$ 、 $f_1^- = f_1^{eq-} = 0$ とし、TRT モデルにおける衝突項は以下で定義される。

$$\Omega_i[\boldsymbol{f}(\boldsymbol{x},t)] = -\omega^+ \Delta t \left(f_i^+(\boldsymbol{x},t) - f_i^{\mathrm{eq}+}(\boldsymbol{x},t) \right) - \omega^- \Delta t \left(f_i^-(\boldsymbol{x},t) - f_i^{\mathrm{eq}-}(\boldsymbol{x},t) \right)$$
(21)

(21) 式を(10) 式に代入し、変形すると以下のようになる。

$$f_i\left(\boldsymbol{x} + \boldsymbol{c}_i\Delta t, t + \Delta t\right) = f_i(\boldsymbol{x}, t) - \omega^+ \Delta t \left(f_i^+(\boldsymbol{x}, t) - f_i^{\text{eq}+}(\boldsymbol{x}, t)\right) - \omega^- \Delta t \left(f_i^-(\boldsymbol{x}, t) - f_i^{\text{eq}-}(\boldsymbol{x}, t)\right)$$
(22)

(22) 式は TRT モデルによる LBM の方程式である。ここで ω^+, ω^- は緩和率と呼ばれ、 ω^+ は動 粘性係数 ν からきまる。

$$\nu = c_s^2 \left(\frac{1}{\omega^+ \Delta t} - \frac{1}{2} \right) \tag{23}$$

(23) 式の c_s は音速パラメータであり、 $c_s = \sqrt{\frac{1}{3}}$ である。また、 ω^- は自由パラメータであり、次 式の Λ が固定されることでこれは決まる。

$$\Lambda = \left(\frac{1}{\omega^+ \Delta t} - \frac{1}{2}\right) \left(\frac{1}{\omega^- \Delta t} - \frac{1}{2}\right) \tag{24}$$

 Λ はマジックパラメータと呼ばれており、正確性と安定性を大きく左右するパラメータである。 $\Lambda = \frac{1}{4}$ の時が最も安定度が高いことが報告されている。

1.4.4 平衡分布関数の求め方

本節では平衡分布関数について説明する (文献 [8]~[10])。平衡分布関数 f_i^{eq} はマクスウェルー ボルツマン (Maxwell-Boltzman) 方程式をテイラー展開して得られ、次のように定義する。

$$f_{I}^{\text{eq}}\left(\boldsymbol{x},t\right) = E_{i}\rho\left[1 + 3\boldsymbol{c}_{i}\cdot\boldsymbol{u} + \frac{9}{2}\left(\boldsymbol{c}_{i}\cdot\boldsymbol{u}\right)^{2} + \frac{3}{2}\boldsymbol{u}\cdot\boldsymbol{u}\right]$$
(25)

ここで E_i は重み係数であり、 $\sum_{i=1}^{N} E_i = 1$ の関係が成り立つ。また、D2Q9 モデルにおいての重み係数 E_i は以下で定義される。

$$E_{i} = \begin{cases} \frac{4}{9} & (i = 1) \\ \frac{1}{9} & (i = 2, 3, 4, 5) \\ \frac{1}{36} & (i = 6, 7, 8, 9) \end{cases}$$
(26)

さらに D3Q15 のモデルにおいての重み係数 E_i は以下で定義される。

$$E_{i} = \begin{cases} \frac{2}{9} & (i = 1) \\ \frac{1}{9} & (i = 2, 3, ..., 7) \\ \frac{1}{72} & (i = 8, 9,, 15) \end{cases}$$
(27)

1.4.5 流速、圧力の求め方

この節では圧力、密度の求め方および速度の求め方について説明する (文献 [8]~[10])。これら は速度分布関数 *f_i* を用いることで求めることができその式は以下のようになる。

$$\rho = \sum_{i=1}^{N} f_i \tag{28}$$

$$p = \frac{1}{3} \sum_{i=1}^{N} f_i$$
 (29)

$$\boldsymbol{u} = \frac{1}{\rho} \sum_{i=1}^{N} \boldsymbol{c}_i f_i \tag{30}$$

D2Q9 モデルにおいては N = 9,D3Q15 モデルでは N = 15 となる。

1.4.6 パラメータの安定性

この項ではパラメータの安定性について文献 [10] をもとに説明する。一般的に安定性を評価す るのに必要な変数は *τ*, *u*_{max}、Re_g である。ここで Re_g はグリッドレイノルズ数を表している。 さてこれらの評価を行うには粘性係数 *ν* を計算する必要があり、それは以下で求められる。

$$Re = \frac{u_{\max}w}{\nu} \tag{31}$$

ここで *w* は代表長さであり、ここでは円柱の直径とした。またレイノルズ数 Re は粘性の力に対 してどけだけ慣性の力が働いているかを示し本実験ではユーザーが設定する。これらの変数がわ かれば緩和時間 *τ* を求めることができ以下の式で計算される

$$\nu = \frac{1}{3} \left(\tau - \frac{1}{2} \right) \Delta x$$

$$\tau = \frac{1}{2} + \frac{3\nu}{\Delta x}$$
(32)

また、グリッドレイノルズ数は以下で定義される。

$$\operatorname{Re}_{g} = \frac{u\Delta x}{\nu} \tag{33}$$

ここで $\Delta x = 1$ であることに留意する。

(32)(33) 式を用いることで τ , Reg が求められた。しかし安定性、正確性の 2 つの観点から τ , Reg, u_{\max} 、格子間隔や時間変化を評価する必要がある。すなわち、解像度を上げて、時間変化 を小さくすることで安定かつ正確にシミュレートできる。また $0.5 < \tau < 1$ であり, $u_{\max} < 0.03$ ~ 0.1 , Reg < O(10) である。

第2章

格子ボルツマン法のアルゴリズム

第2章ではLBMの計算のアルゴリズムを解説する(文献 [8]~[10])。図5は本実験における全体のLBMアルゴリズムを示したものである。圧力や流速の初期条件を与えた後、平衡分布関数を計算しその後速度分布関数を計算する。速度分布関数は collison step, streaming step, 境界条件の3つで構成されており、後ほど説明する。ここまでで速度分布関数の計算が終わり、それを用いて圧力や流速、水蒸気密度場のマクロな物理パラメータを求める。この出力を使って時間更新行われると速度分布関数が再度計算され、圧力や流速、水蒸気密度場も再計算される。この操作を繰り返し流れの時間発展を解く。また、水蒸気密度場や流速が計算されると、抗力係数やベンチレーション係数も計算が可能になり、これを用いて先行研究 ([5]) と比較する。

図5 LBM におけるアルゴリズム

2.1 初期条件

流速や密度などの初期条件を physical unit でユーザーが設定する。その後、lattice unit でこ れらのパラメータの値を設定する。非圧縮流体は Re が同じ流れは次元の大きさに関わらず同一 のものとなる (相似則)。1.4.6 項のように Re、 u_{max} ,w から v を求める。その後、変換係数を求 める。ここで、lattice unit で決めるパラメータは安定性や正確性を考慮して決めることに留意す る。変換係数の計算方法はそれぞれ

$$ds = C_x = \frac{x_{\rm p}}{x_{\rm l}} \tag{34}$$

$$C_u = \frac{u_{\rm p}}{u_{\rm l}} \tag{35}$$

$$C_{\rho} = \frac{\rho_{\rm p}}{\rho_{\rm l}} \tag{36}$$

$$C_{\nu} = \frac{\nu_{\rm p}}{\nu_{\rm l}} \tag{37}$$

$$C_p = C_\rho C_u^2 \tag{38}$$

である。ここで添え字に phy は物理ユニット,lat は格子ユニット、*ds* は解像度を表しており、*ds* はユーザが設定する。また、これらの初期条件を使って平衡分布関数を (25) から求める。

2.2 円柱の境界設定

図 6 のように壁が曲がっているものを考える。 壁面を挟み隣接する 2 つの格子点のうち、流体 側の格子点を x_f , 壁側の格子点を x_b とする。円 柱は壁が曲がっているため、境界点と格子点が必 ず一致するとは限らず、上記の格子点の情報だけ では円の境界がどこにあるかは不明である。そ こで body という関数を設置する。body = 1 と いう点は壁側の格子点を x_b の点とし、図 6 では 青い点を指していている。また、body = 0.5 と いう点は円柱の流体側の格子点を x_f の点とし、 図 6 では赤い点を指していている。その間につ いては body の値が 0.5 から 1 で変化している。 これにより Tecplot を用いると isosurface の機

能を用いて body がある位置ごとに物理パラメータの値を取り出せる。

2.3 collision step と streaming step

2.2 節では collision step および streaming step について解説する。collision step は以下のように表される。

$$f_i(\boldsymbol{x}, t) = f_i(\boldsymbol{x}, t) + \Omega_i[\boldsymbol{f}(\boldsymbol{x}, t)]$$
(39)

ここでの Ω_i は衝突項を表している。衝突項の詳細は 1.3.3 節で説明しているが、本実験での衝突 項は流れ場に対する速度分布関数は TRT モデルを用いて計算しており、水蒸気密度場に対する 速度分布関数は BGK モデルを用いて計算を行う。collsion step は時間発展、場所発展は行わず、 格子点上の速度方向ごとに速度分布関数を衝突項を用いて更新する step のことである。図 7 は時 間発展する前後の速度分布関数を表しており、collision step は図 7 の左の状態を表している。ま た streaming step は以下で表される。

$$f_i(\boldsymbol{x} + \boldsymbol{c}_i \Delta t, t + \Delta t) = f_i(\boldsymbol{x}, t) \tag{40}$$

すなわち、(40) 式は各格子点の速度 方向ごとに、速度分布関数がその方 向に隣接している格子点に伝播し、次 の Time step において物理量の移動 や流れをシミュレートする step のこ とであり、図 7 の右の状態を表して いる。本研究のプログラムの並列化 を念頭に collision step と streaming step に分けて書かれている。

図7 時間発展する前と後の速度分布関数

2.4 境界条件

格子ボルツマン法では境界上で境界から領域に入る方向の速度分布関数を全て決定する必要が ある。ここでは壁面がすべる状況、すべらない状況及び周期境界条件を紹介する。なお、簡単に 説明するためここでは2次元9速度モデルでの説明を行うが、3次元15速度モデルの場合も基本 的に2次元と同様の作業を行えば良い。ただし2次元の場合は辺と角に境界条件が発生するが、3 次元の場合は辺、面、角にそれぞれ境界条件が発生するので注意する必要がある。

2.4.1 すべりなし条件とすべりあり条件

本節では壁面が滑る鏡面反射条件と壁面が滑らない bounce back 条件を説明する。なお、本節においては空 気の流れが左から右に流れているとし入口は左面、出口 は右面とし、入口面では徐々に壁の速度を大きくする。 また上下面は静止している壁とする。

図8は下の壁での速度分布関数を表している。この状況で streaming step を行うと streaming step で計算できない速度分布関数が発生する。鏡面反射条件では壁面上で流体がすべる場合、境界に入ってくる仮想粒子が壁面に衝突すると鏡面反射が起こる。すなわち,図6における鏡面反射条件は

となり、上の壁における境界条件は

$$\begin{cases} f_{5}'(t + \Delta t) = f_{3}'(t + \Delta t) \\ f_{8}'(t + \Delta t) = f_{7}'(t + \Delta t) \\ f_{9}'(t + \Delta t) = f_{6}'(t + \Delta t) \end{cases}$$
(42)

となる。ここで f'_i は内部の streaming が終わった速度分布関数である。一方 bounce back 条件 は壁面上で流体がすべらない場合、境界に入ってくる仮想粒子はそのまま逆方向に反射する。す なわち、図 8 における bounce back 条件は

$$\begin{cases} f'_{3}(t + \Delta t) = f'_{5}(t + \Delta t) \\ f'_{6}(t + \Delta t) = f'_{8}(t + \Delta t) \\ f'_{7}(t + \Delta t) = f'_{9}(t + \Delta t) \end{cases}$$
(43)

となり、上の壁における bounce back 条件は

$$\begin{cases} f_{5}'(t + \Delta t) = f_{3}'(t + \Delta t) \\ f_{8}'(t + \Delta t) = f_{6}'(t + \Delta t) \\ f_{9}'(t + \Delta t) = f_{7}'(t + \Delta t) \end{cases}$$
(44)

となる。すなわち、鏡面反射条件では物理的に対称性を考慮して速度分布関数が計算されるが、 bounce back 条件では壁面で速度分布関数を直接的に反転する。 ここまでは壁が静止している状況を考えたが、次 は入口面と出口面で壁が動いている状況で考える。 壁は静止していないため、跳ね返された粒子は壁に 衝突後、運動量を得たり失ったりする。このことを 考慮すると、まず壁が動いている状況を静止してい る状況で bounce back し、その後再び壁が動いてい る状況に戻す。図9は出口面における速度分布関数 を表しており、このときの境界条件は以下の式で表 現される。

$$\begin{cases} f'_{4}(t + \Delta t) = f'_{2}(t + \Delta t) - 2E_{2}\rho \frac{c_{2} \cdot u_{w}}{c_{s}^{2}} \\ f'_{7}(t + \Delta t) = f'_{9}(t + \Delta t) - 2E_{9}\rho \frac{c_{9} \cdot u_{w}}{c_{s}^{2}} \\ f'_{8}(t + \Delta t) = f'_{6}(t + \Delta t) - 2E_{6}\rho \frac{c_{6} \cdot u_{w}}{c_{s}^{2}} \end{cases}$$
(45)

となる。ここで *u*_w は壁の速度を表している。また、入口の境界条件は以下の式で表される。

$$\begin{cases} f_{2}'(t + \Delta t) = f_{4}'(t + \Delta t) - 2E_{4}\rho \frac{\boldsymbol{c}_{4} \cdot \boldsymbol{u}_{w}}{c_{s}^{2}} \\ f_{6}'(t + \Delta t) = f_{8}'(t + \Delta t) - 2E_{8}\rho \frac{\boldsymbol{c}_{8} \cdot \boldsymbol{u}_{w}}{c_{s}^{2}} \\ f_{9}'(t + \Delta t) = f_{7}'(t + \Delta t) - 2E_{7}\rho \frac{\boldsymbol{c}_{7} \cdot \boldsymbol{u}_{w}}{c_{s}^{2}} \end{cases}$$
(46)

本実験では上流側で流速を与え、終端速度に達するまでの上流側の流速を徐々に大きくする。また、角における境界条件は壁面が動いている場合の bounce back 条件を用いる。

2.4.2 周期境界条件

計算領域の入口および出口で周期境界条件を与える。入り口の場所をx = 0,出口の場所をx = Lとし、空気の流れ場を左側から右側に流れると仮定する。この時の入口と出口の圧力差 Δp を取るような定数 *C* を取るとすると

$$C = \Delta p - \frac{1}{3} \left[f_1(0) - f_1(L) + f_3(0) - f_3(L) + f_5(0) - f_5(L) \right]$$
(47)

となる。これを用いて入口における周期境界条件は

$$\begin{cases} f_2(0) = f_2(L) + C \\ f_6(0) = f_6(L) + \frac{1}{4}C \\ f_9(0) = f_9(L) + \frac{1}{4}C \end{cases}$$
(48)

$$\begin{cases} f_4(0) = f_4(L) - C \\ f_7(0) = f_7(L) - \frac{1}{4}C \\ f_8(0) = f_8(L) - \frac{1}{4}C \end{cases}$$
(49)

となる。

2.5 外力を考慮した円柱周りでの速度分布関数の計算(IBM)

IBM(Immersed Boundary Method:埋め込み境 界法)は境界から流体に及ぼす力を流体の運動方程式 であるナビエストークス方程式から決める手法のこ とである [10]。この手法は境界が流体から受ける抗 力と流体が境界から受ける力の作用反作用の法則に 基づき、移動壁が設定される。IBM では図 10 のよ うに境界 X_k (赤丸)と格子点x(青丸)との位置関 係を表しており、境界点と格子点が無関係に定義さ れていることがわかる。また、図 11 は IBM におけ る外力(体積力)の計算方法を簡単にまとめており、 ここで求めた体積力を境界近傍付近で考慮して最終

的に速度分布関数を決定する。以下ではその詳細について説明する。

図 11 IBM における体積力の決定方法

STEP 1) 境界点上の流速の決定

物体境界とともに移動する境界点 X_k と格子点 x は一致しないため境界点上の流速 $u^*(X_k, t + \Delta t)$ を周囲の格子点から決定する。すなわちこれを式で表現すると以下で 表される。

$$\boldsymbol{u}^*(\boldsymbol{X}_k, t + \Delta t) = \sum_{\boldsymbol{x}} \boldsymbol{u}^*(\boldsymbol{x}, t + \Delta t) W(\boldsymbol{x} - \boldsymbol{X}_k) (\Delta x)^d$$
(50)

ここで \sum_{x} は全ての格子点での和であり、dは次元を表している。またWは重み関数を表しており、以下で表される。

$$W(x, y, z) = \frac{1}{\Delta x} w\left(\frac{x}{\Delta x}\right) \frac{1}{\Delta x} w\left(\frac{y}{\Delta x}\right) \frac{1}{\Delta x} w\left(\frac{z}{\Delta x}\right)$$
(51)

ここで

$$w(r) = \begin{cases} \frac{1}{8} \left(3 - 2|r| + \sqrt{1 + 4|r| - 4r^2} \right) & |r| \leq 1 \\ \frac{1}{8} \left(5 - 2|r| + \sqrt{-7 + 12|r| - 4r^2} \right) & 1 \leq |r| \leq 2 \\ 0 &$$
(52)

である。上式は3次元空間の重み関数が1次元空間の重み関数の積であることを示している。

STEP 2) 初期の境界点上の体積力の決定 物体の初期の境界点上における体積力 $G_0(X_k, t + \Delta t)$ を以下の式で計算する。

$$\boldsymbol{G}_{0}(\boldsymbol{X}_{k}, t + \Delta t) = \frac{\boldsymbol{U}_{k} - \boldsymbol{u}^{*}\left(\boldsymbol{X}_{k}, t + \Delta t\right)}{\Delta x}$$
(53)

ここで Uk は物体境界とともに移動する速度のことである。

STEP 3) 格子点上の体積力の決定

l回反復したときの体積力を格子点上で決定する。

$$\boldsymbol{G}_{l}(\boldsymbol{X}_{k}, t + \Delta t) = \sum_{k=1}^{N_{b}} \boldsymbol{G}_{l}(\boldsymbol{X}_{k}, t + \Delta t) W(\boldsymbol{x} - \boldsymbol{X}_{k}) \Delta V$$
(54)

ここで N_b は境界点の個数、 ΔV は外力を作用させる微小な力のことであり、物体の表面積 S を用いると

$$\Delta V = \frac{S}{N_b} \Delta x \tag{55}$$

で表される。なお、 S/N_b はほぼ $(\Delta x)^{d-1}$ に等しくなるようにする。

STEP 4) 格子点上の流速を修正

格子点上の流速を以下のように修正する。

$$\boldsymbol{u}_{l}(\boldsymbol{x}, t + \Delta t) = \boldsymbol{u}^{*}(\boldsymbol{x}, t + \Delta t) + \boldsymbol{G}_{l}(\boldsymbol{x}, t + \Delta t)\Delta x$$
(56)

STEP 5) 境界点上の流速の内挿

境界点上の流速を以下のように修正する。

$$\boldsymbol{u}_{l}(\boldsymbol{X}_{k}, t + \Delta t) = \sum_{\boldsymbol{x}} \boldsymbol{u}_{l}(\boldsymbol{x}, t + \Delta t) W(\boldsymbol{x} - \boldsymbol{X}_{k}) (\Delta x)^{d}$$
(57)

STEP 6) 収束判定

STEP5 で求めた境界点上の流速のすべりなし条件からの誤差が大きい場合、境界点上の体積力を次の式で修正し、その後 STEP3 に戻る。

$$\boldsymbol{G}_{l+1}(\boldsymbol{X}_k, t + \Delta t) = \boldsymbol{G}_l(\boldsymbol{X}_k, t + \Delta t) + \frac{\boldsymbol{U}_k - \boldsymbol{u}^* \left(\boldsymbol{X}_k, t + \Delta t \right)}{\Delta x}$$
(58)

STEP5 で求めた境界点上の流速のすべりなし条件からの誤差が小さい場合、格子上の体積力が以下の式で決定される。

$$\boldsymbol{G}(\boldsymbol{x}, t + \Delta t) = \boldsymbol{G}_l(\boldsymbol{x}, t + \Delta t)$$
(59)

ここまでで体積力 G が決定された。これを考慮した速度分布関数は以下の式で表される。

$$f_i(\boldsymbol{x} + \boldsymbol{c}_i \Delta t, t + \Delta t) = f_i(\boldsymbol{x}, t) + \Omega_i \left[\boldsymbol{f}(\boldsymbol{x}, t)\right] + 3\Delta x E_i \boldsymbol{c}_i \cdot \boldsymbol{G}(\boldsymbol{x}, t + \Delta t)$$
(60)

ここで、緩和時間 $\tau > 1$ のとき、境界で大きな流速が発生し、体積力の反復作用に影響するため 注意が必要である。また、IBM は物体境界で速度勾配が不連続になるため空間 1 次精度であるこ とにも注意が必要である。ここで streaming 後の速度分布関数を用いて、圧力 p や流速 u, また密 度 ρ を計算する (式 (28)~(30))。

2.6 抗力係数の計算方法

抗力係数は 1.3 節で紹介したが、円柱周りの抗力が計算できれば抗力係数を求めることができ る。そこで、まず円柱周りの抗力はを格子ボルツマン法の IBM で求めた体積力から計算する。物 体が流体から受ける力 **F**_{tot}(t) は体積力の総和から求めることができる。

$$\boldsymbol{F}_{\text{tot}}(t) = -\sum_{\boldsymbol{x}} \boldsymbol{G}(\boldsymbol{x}, t) (\Delta x)^d$$
(61)

ただし、 $F_{tot}(t)$ は物体が物体境界の内外部の両方の流体から受ける力であることに留意する。したがって、物体境界の内側に与えられる力 $F_{in}(t)$ とすると、流体が物体の外側から物体に及ぼす力 F(t)は

$$\boldsymbol{F}(t) = \boldsymbol{F}_{\text{tot}}(t) + \boldsymbol{F}_{\text{in}}(t)$$
(62)

である。次に、物体境界の内側に与えられる力 **F**_{in}(t) について説明する。これは流体の内部の運 動量の時間変化に等しいので

$$\boldsymbol{F}_{\rm in}(t) = \frac{d}{dt} \int_{\boldsymbol{x} \in \Omega(t)} \boldsymbol{u}(\boldsymbol{x}, t) d\boldsymbol{x}$$
(63)

となる。これを近似する方法としてラグランジアン近似がある。この方法は物体の内部に物体の 運動に伴って移動するラグランジアン点 **X**_{in}(t) を定義し、1つ1つのその点の運動量を足し合わ せることで決定される。そこでまず、ラグランジアン点上での流速を決定する必要がある。これ は以下の式で求められる。

$$\boldsymbol{u}(\boldsymbol{X}_{\rm in}(t), t) = \sum_{\boldsymbol{x}} \boldsymbol{u}(\boldsymbol{x}, t) W(\boldsymbol{x} - \boldsymbol{X}_{\rm in}(t)) (\Delta x)^d$$
(64)

次に運動量の求め方は以下の通りである。

$$\boldsymbol{P}_{\rm in}(t) = \sum_{\rm all \boldsymbol{X}_{\rm in}(t)} \boldsymbol{u}(\boldsymbol{X}_{\rm in}(t), t) (\Delta x)^d$$
(65)

よって、物体が内側の流体から受ける力は

$$\boldsymbol{F}_{\rm in}(t) = \mathrm{Sh} \frac{\boldsymbol{P}_{\rm in}(t) - \boldsymbol{P}_{\rm in}(t - \Delta t)}{\Delta t}$$
(66)

となる。これを使って $F_{in}(t)$ を求め、さらに (59) 式を使って物体が物体の外側から受ける力を求 める。その後、これと (5) 式を使って抗力係数を求める。ただし、F(t) は lattice unit であるた め本実験では流速と断面積、および密度は lattice unit で計算して抗力係数を求めた。

2.7 ベンチレーション効果の計算方法

ベンチレーション効果は (1.2 節) を以下の手順で評価する。まず、水蒸気拡散係数を (2) 式で 求め、それを用いて氷粒子が落下したときの成長率を (1) 式で求める。その後、氷粒子の形状に 対応するキャパシタンスを求め、氷粒子が静止している時の成長率を (3) 式で求める。そしてこ れらの氷粒子の成長率の比を求める ((4) 式)。

第3章

実験設定

直方体領域の中に物体を入れて実験を行う。ただし、この時、物体が受ける流れ場の抗力と重 力が釣り合っているとする。先行研究([5])を参考に領域の大きさや、物体の直径、中心位置、レ イノルズ数、また上流端の流速を設定する。また、上流側で流速を与え、終端速度に達するまで 上流側の流速を徐々に大きくする。さらに円柱の近傍領域では IBM を用いて境界から流体に及ぼ す外力を流体の運動方程式から計算する。水蒸気密度分布場についても境界上の値を満たすため の熱源を移流拡散方程式から計算する [7]。

3.1 2次元で行った時の実験設定

以下の表にに 2 次元での実験設定を示している。ただし、以下の表中に単位が記載されていな いパラメータは lattice unit で表記しており、解像度に対する相対比である。

Re	マーカー	領域(Grid point)	解像度 [μm]	円柱の中心位置	直径	終端速度 [m/s]
20	•	833×666	8.878 (1)	(166, 333)	50	0.72
20	•	1666×1332	4.439(2)	$(332,\!666)$	100	0.72
20	•	4165×3332	8.878(1)	(833, 1666)	50	0.72
20	•	2083×1666	4.439(2)	(416, 833)	100	0.72

表 2 2 次元での実験設定

図 12 円柱での実験の概要

3.2 3次元で行った時の実験設定

3次元では直方体領域の中に入れる物体を円柱と円板の2つに分けて実験を行った。

3.2.1 円柱

円柱で実験を行った時の実験設定を以下の表と図に示す。ただし、単位がないものは2次元の 実験と同様に lattice unit で表記している。

百日	Bo-2	$B_0 - 20$
	100-2	10-20
解像度 ds [µm]	5.535	20
物体の直径 d [µm]	110.7	443.9
物体の高さ <i>H</i> [µm]	245.6	3698
領域の大きさ (lattice unit)	X:740, Y:592, Z:592	X:1002, Y:502, Z:502
物体の中心位置 (lattice unit)	XC:296, YC:296, ZC:296	XC:200, YC:250, ZC:250
終端速度 $u[m/s]$ (physical unit)	0.29	0.72
終端速度 u_0 (lattice unit)	0.003	0.006
緩和定数 $ au_0$ (流速、lattice unit)	0.59	0.52
緩和定数 τ_g (水蒸気密度場、lattice unit)	0.64	0.53

表3 円柱の実験設定

図 13 円柱での実験の概要

3.2.2 円板

Re = 2 で円板の軸比を変えた時の実験設定を以下の表と図に示す。ただし、単位がないものは 2 次元の実験と同様に lattice unit で表記している。

項目	Re=2	Re=20	
解像度 ds [µm]	10.8	10.8	
物体の直径 d [µm]	229.3	795.9	
物体の厚み H[µm]	22.93	39.80	
領域の大きさ (lattice unit)	X:538, Y:426, Z:426	X:538, Y:426, Z:426	
物体の中心位置 (lattice unit)	XC:110, YC:213, ZC:213	XC:110, YC:213, ZC:213	
終端速度 [m/s]	0.139	0.401	
終端速度 u_0 (lattice unit)	0.003	0.003	
緩和定数 $ au_0$ (流速、lattice unit)	0.59	0.53	
緩和定数 τ_g (水蒸気密度場、lattice unit)	0.64	0.55	

表4 円板の実験設定

図 14 円板での実験の概要

第4章

流れ場とベンチレーション係数の結果

4.1 2次元の時の流れ場

図 15 は Re=20 で時間が 0.01s 経過した時の 抗力係数を表している。先行研究 [5] での抗力係 数の大きさは Re=20 で 2.0 である。本実験で抗 力係数が最も先行研究に近づいた設定は Re=20 の橙色に対応しており、これは先行研究の X(Y) 方向の領域の 1/2 である。この時の抗力係数は 3.5 である。一方、本実験で抗力係数が最も先行 研究から離れた設定は Re=20 の青(赤)色に対 応しており、これは先行研究の X(Y) 方向の領 域の 1/10 である。この時の抗力係数は 4 であ る。このことから、領域を大きくすると抗力係 数は先行研究の結果に近づくが、解像度を上げ ても抗力係数は改善されなかった。

図 15 0.01s 経過した時の抗力係数

図 16~図 19 はそれぞれの実験設定における円柱周りで流速分布を表している。XY 平面の円 柱の中心から上流を指す方向を 0°とし、その表面に沿って 90°から 100°回転した方向の流速 を比較する。すると、その方向の流速は図 16と図 17 の時が最も大きく、図 19 の時が、最も小さ い。また、この部分での差をとると、図 16 や図 17 が図 19 より 0.1m/s 大きい。これは領域の大 きさに依存していることが考えられる。さらに図 16 と図 17 は領域の大きさは等しく、図 17 の解 像度を図 16 の 2 倍にしているため、 図 17 は図 16 より円柱周りでの流れ場を細かく捉えられて いる。

図 20 は青のマーカにおける実験での全体の温度分布、図 21 はその時の流速分布を表している。 この時の初期条件として円柱の表面温度付近は 218K, 表面から離れているところは 265K とし た。すると、下流側へ空気が流れており、円柱から見て下流側の方向で温度が低くなっているこ とがわかる。また時間が経つにつれて、物体の背後方向で温度が低くなっているエリアが拡大し ていることが確認された。このことから定性的に移流拡散の再現ができることが確認された。

図 16 833×666 で解像度1とした時の円柱周りの流速分布と流線

図 17 1666×1332 で解像度 2 とした時の円柱周りの流速分布と流線

図 18 4165×3332 で解像度1とした時の円柱周りの流速分布と流線

図 19 2083×1666 で解像度 2 とした時の円柱周りの流速分布と流線

図 20 833×666 で解像度1とした時の領域全体の流速分布と流線

図 21 833×666 で解像度1とした時の領域全体の温度分布と流線

4.2 3次元の時の流れ場

4.2.1 円柱

図 22 は領域の中の物体を円柱にしたときの 抗力係数の時間変化を表している。図 22 の青の マーカーが Re=20 のときの本実験での結果、赤 のマーカーは Re=2 のときの本実験の結果であ る。また、青の点線は Re=20 のときの先行研究 [5] の結果、赤の点線は先行研究 [5] での結果を 表している。

Re=2 のとき、時間が 0.001s 付近で抗力係数 は一定になり、このときの結果は 18 になった。 この結果は先行研究 [5] の結果の 1.8 倍に相当 し、先行研究よりも大きい。また、Re=20 のと き、時間が 0.003s 付近で抗力係数は一定になり、 このときの結果は 3 になった。この結果は先行 研究 [5] の結果の 1.5 倍に相当する。これらの結

図 22 0.004s 経過した時の抗力係数

果から円柱での抗力係数は先行研究より大きいことが確認され、その理由を流れ場の図を通して 考察する。

図 23 は Re=2 のとき、円柱中心を通る XY 平面における流速分布を円柱軸の中心から見た図 であり、図 24 はこのときの先行研究 [5] の結果である(先行研究 [5] の結果は提供されたデータ を用いて作図)。また、colorbar は鉛直方向の流速を表しており、黒の矢印の線は流線を表してい る。2 次元の時と同様に XY 平面の円柱の中心から上流を指す方向を 0°とし、その表面に沿って 0°から 180°回転した部分及びその延長線上のの流速を比較する。すると、円柱周りでの流速は 先行研究 [5] より大きいことがわかり、特に 60°から 120°回転した方向およびその周辺で最大 で 0.1m/s の差が生じている。これは領域が先行研究 [5] より小さく、流れ場に対して広さが不十 分であるためであると考えられ、流体から受ける抗力にも影響している可能性がある。また、円 柱の表面に沿って 120°以上回転した時において物体の表面付近で剥離が確認されるが、先行研 究 [5] では同様の部分において剥離は確認されなかった。これは解像度が不足している影響で流体 の流れ場の変化を捉えられていないことが考えられる。

図 25 は Re=20 のとき、円柱中心を通る XY 平面における流速分布を円柱軸の中心から見た図 であり、図 26 はこのときの先行研究 [5] の結果である(先行研究 [5] の結果はデータを用いて作 図)。図の見方は先ほどと同様である。Re=2 の時と同様に、円柱の表面に沿って回転した方向の 速度を比較すると流速は先行研究 [5] より大きいことがわかり、特に 60°から 120°回転した方 向およびその周辺で最大で 0.1m/から 0.2m/s の差が生じている。これは Re=2 と同様に領域の 大きさが不十分であることが考えられ、流体から受ける抗力にも影響している可能性がある。ま た、Re = 2 と比較すると、慣性が粘性より大きいため、円柱の背後で 2 つの渦が確認された。しかし、その渦の形状を見ると、本研究ではその渦は閉じていたが、先行研究ではその渦は開いていることが確認された。これは解像度が不足している影響で流体の流れ場の変化を捉えられていないことが考えられる。

図 24 Re = 2 における円柱周りの鉛直方向の流速分布 (先行研究 [5])。提供されたデータを用いて作図

図 26 Re=20 における円柱周りの鉛直方向の流速分布 (先行研究 [5])。提供されたデータを用いて作図

4.2.2 円板

図 27 は領域の中の物体を円板にしたときの 抗力係数の時間変化を表している。図 27 の青の マーカーが Re=20 の本実験での結果、赤のマー カーは Re=2 の本実験の結果である。また、青 の点線は Re=20 の先行研究 [5] の結果、赤の点 線は先行研究 [5] での結果を表す。

Re=2 のとき、時間が 0.003s 付近で抗力係数 は一定になり、このときの結果は 12 になった。 この結果は先行研究 [5] の結果の 0.85 倍に相当 し、先行研究よりも小さい。一方で、Re=20 の とき、時間が 0.003s 付近で抗力係数は一定にな り、このときの結果は 3 になった。この結果は 先行研究 [5] の結果とほぼ等しい。抗力係数にお いてこれらの結果の違いが生じた理由を流れ場 の図を通して考察する。

図 27 0.004s 経過した時の抗力係数

図 28 は Re=2 のとき、円板中心を通る XY 平面における流速分布を示す図であり、図 29 はこ のときの先行研究 [5] の結果である(先行研究 [5] の結果は提供されたデータを用いて作図)。図の 見方は先ほどと同様である。円柱の時と同様に XY 平面の円柱の中心から上流を指す方向を 0° と し、その表面に沿って 0° から 180° 回転した部分及びその延長線上のの流速を比較する。すると、 円柱周りでの流速は先行研究 [5] より大きく、特に物体表面付近での流速の差が大きい。これは半 径や軸比が先行研究 [5] より大きいためである。また、本研究では物体の表面に沿って 90° 以下付 近で複数箇所で流れ場の剥離を確認することができたが、先行研究 [5] では見られなかった。これ は解像度が不足している影響が考えられ、流体から受ける抗力にも影響している可能性がある。

図 30 は Re=20 のとき、円板中心を通る XY 平面における流速分布を示す図であり、図 31 は このときの先行研究 [5] の結果である(先行研究 [5] の結果は提供されたデータをもとに作図)。 Re=2 の時と同様に、円柱の表面に沿って回転した方向の速度を比較すると流速は先行研究 [5] の 結果と一致している。これは流れ場に対し領域の影響を受けていないことから抗力係数はほぼ一 致したと見られる。Re =20 の円柱と同様に慣性が粘性を上回るため、両実験で渦が見られる。た だし、その渦の形状による違いがあり、本研究では渦の形は閉じているが、先行研究ではその渦 は開いていることが確認された。これは解像度が不足している影響で流体の流れ場の変化を正確 に捉えられていないことが考えられる。

図 29 Re=2 における円板周りの鉛直方向の流速分布 (先行研究 [5])。提供されたデータを用いて作図。

図 30 Re=20 における円板周りの鉛直方向の流速分布 (本研究)

図 31 Re=20 における円板周りの鉛直方向の流速分布 (先行研究 [5])。提供されたデータを用いて作図。

4.3 ベンチレーション効果の結果

表5にそれぞれの実験におけるベ ンチレーション係数の結果を示す。 なお、Re = 20の円板では解像度を default (D1)としたときと2倍にし たとき (D2)との両方でベンチレー ション係数の評価を行った。(4)式の 分母つまり粒子が静止しているとき の昇華成長率を (3)式を用いて理論 的に計算した場合、ベンチレーショ

物体	円板 (plate)		円柱 (column)	
Re	2	20	2	20
本研究	0.000	0.15	0.04	0.37
(静止:理論計算)	0.023			
本研究	06	D1:64		
(静止:数値計算)	90	D2:76	_	_
先行研究 [6]	1.0	1.4	1.23	3.23

表5 ベンチレーション係数の結果

ン係数の結果は先行研究の結果より過小評価していることがわかる。一方で、静止しているとき の蒸着成長率を数値計算で求めた場合、この結果は先行研究より大きい。

また、図 32〜図 35 はそれぞれの条件での円板の表面を基準としたときの水蒸気密度場 ϕ で表し、以下の式で定義される。

$$\phi = \frac{\rho_v - \rho_{v,s}}{\rho_{v,\infty} - \rho_{v,s}}$$

先行研究 [6] と比較すると、水蒸気密度場は円板の表面から離れているところは背面側での違いが あるが、表面付近では先行研究に類似した結果がみられ、定性的に移流拡散の再現ができている と考えられる。しかし、定量的な移流拡散の再現性と (2) 式に登場する円盤の表面における ∇φ の評価方法に問題がある可能性があり、ベンチレーション係数が先行研究の結果と乖離している ことが考えられる。また、変換係数の決め方が不適切な場合も考えられ、今後、球体での実験で ベンチレーション効果の検証を定量的に行う。

図 32 Re=2 における円板周りの水蒸気密度分布(落下)

図 33 Re=2 における円板周りの水蒸気密度分布(静止)

図 34 Re=20 における円板周りの水蒸気密度分布(落下)

図 35 Re=20 における円板周りの水蒸気密度分布(静止)

第5章

まとめと今後の展望

2次元の実験において、抗力係数の評価を行うと、流れに対し領域の大きさが不十分であるため、流体から受ける抗力が大きくなり、全ての実験で抗力係数は先行研究の結果より大きくなった。ただし、先行研究の領域の大きさに近づけると、抗力係数は先行研究の結果に近づいており、 解像度を上げたことによる抗力係数の変化は見られなかった。

3 次元の実験において、落下する物体を円柱としたとき、2 次元の実験と同様に、領域の大きさ が不十分であるため、抗力係数は Re=2 のときで先行研究の結果の 2 倍、Re=20 のときで先行研 究の結果の 1.5 倍になった。一方で落下する物体を円板で実験を行ったとき、流れに対する領域 の大きさの影響は少なく、Re=20 での抗力係数の結果は先行研究とほぼ一致しているが、物体の 背後付近で渦が閉じており先行研究にみられない結果になった。また、Re=2 のときは抗力係数 は先行研究の結果の 0.9 倍となり、先行研究の結果に類似しているが、円板表面で先行研究 [6] に は見られない剥離が確認できた。今後はマルチグリッドを導入し、抗力係数の評価を行う。

最後にベンチレーション係数についてである。静止した状態を理論的に計算したものと数値計 算したものと比較を行った。静止した状態を理論的に計算したとき、ベンチレーション係数はす べての実験設定において先行研究の 10% 以下となり過小評価する結果となった。また、静止した 状態を数値計算したとき、ベンチレーション係数は円板の実験設定において先行研究の 1000% 以 上となり過大評価している。今後は移流拡散が定量的に行われているかの確認を球体の場合で行 い検証をする。

34

謝辞

はじめに、2024年元日に発生した石川県能登半島地震で被災された皆様、およびお亡くなりに なられた皆様に、心からのお悔やみとご冥福を申し上げます。被災された皆様が安心して生活で きますよう、1日でも早い復興を心よりお祈り申し上げます。

さて、本研究では、高知工科大学理工学群の端野典平准教授から多大なご支援とご指導をいた だきました。端野先生の豊富な知識と助言は、私の研究を前進させる手助けとなりました。感謝 を申し上げます。

そして、研究室の仲間からも本研究に関する有益なアドバイスをいただき、また自身の研究の モチベーションを維持する手助けとなりました。彼らの支えのおかげで、5年間もこの研究室で学 ぶことができました。本当にありがとうございました。

また、九州大学のスーパーコンピュータ ITO を利用して本研究を実施いたしました。この場を お借りし、関係者の皆様に御礼を申し上げます。

最後に、被災地の方々の復興と安全を願いながら、本研究を通じて得た経験と知識を社会に活 かして参ります。

2024年3月7日

高知工科大学大学院 環境数理コース

修士2年 並河 立希

参考文献

- Steven A.Ackerman and John A. Knox 2013/4th EDITION METEOLOGY- Under standing the Atomosphere
- [2] Rebecca Dzombak 2021:Severe Hailstorms Are Costly and Hard to Predict :Eos https://eos.org/articles/severe-hailstorms-are-costly-and-hard-to-predict
- [3] Pao.K.Wang 2013:Physics and Dynamics of Clouds and Precipitation:CAMBRIDGE
- [4] Kai-Yuan Cheng, Pao.K.Wang, Chen-Kang Wang 2014 : A Numerical Study on the Ventilation Coefficients of Falling Hailstones : JOURNAL OF THE ATOMOSPHERIC RESEARCH
- [5] Tempei Hashino, Mihai Chiruta, Dierk Polzin, Alexander Kubicek, Pao K.Wang 2014: Numerical simulation of the flow fields around falling ice crystals with inclined orientation and the hydrodynamic torque : Atmospheric Research
- [6] WUSHENG JI AND PAO.K.WANG 1999: Ventilation Coefficient for Falling Ice Crystals in the Atomosphere at Low-Intermediate Reynolds number : JOURNAL OF THE ATOMOSPHERIC SCIENCE
- [7] Inamuro Takaji 2012: Lattice Boltzmann methods for moving boundary flows : Fluid Dynamic Research
- [8] 稲室隆二、吉野正人、鈴木康祐 2020:格子ボルツマン法入門: 複雑境界および移動境界流れの数値計算法:丸善出版
- [9] Tim Kruger et al 2018 : The Lattice Boltzman Method -Principle and Practice
- [10] 瀬田剛 2021:格子ボルツマン法:森北出版
- [11] 森川敬信 鮎川恭三 辻裕 2019: 新版 流れ学: 朝倉書店
- [12] 巽知正 1982:流体力学:培風館