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Deep Neural Networks (DNNs), an approach inspired by human brain internal 
mechanism, have revolutionized fields like image recognition, natural language 
processing, and speech recognition through their advanced feature extraction and 
pattern recognition capabilities. This success mainly depended on that DNNs 
achieve high-level feature extraction and complex pattern recognition through a 
multi-layered neuronal structure, enabling the extraction of deep features from data. 
However, despite their outstanding performance in handling these tasks, DNNs still 
exhibit significant limitations in robustness and interpretability. They are highly 
sensitive to minor changes in input data and are easily make errors when facing 
adversarial attacks or extreme situations, revealing their sensitivity to inputs and 
insufficient understanding of complex contexts. In other word, there is still a 
significant gap between DNNs and the human visual system. 
These limitations have prompted researchers to seek inspiration from brain-like 
computing to improve neural network design and performance. The human brain 
exhibits high robustness and flexibility in processing visual information, making 
accurate judgments even in complex and ambiguous environments. In particular, 
the brain integrates contextual information and multi-level feature processing to 
address various visual challenges. This hierarchical processing structure and 
feedback mechanism provide important insights for the improvement of DNNs. 
Based on this purpose, research in artificial vision systems has increasingly focused 
on how to enhance the visual perception capabilities of models to make them more 
akin to the human visual system. For example, by enhancing the contextual 
understanding and temporal information processing capabilities of DNNs, 
introducing recurrent networks (RNNs) and self-attention mechanisms to simulate 
the feedback loops and attention regulation in the visual cortex. These 
advancements have improved DNNs' performance and robustness in complex visual 
tasks, such as object recognition and scene understanding. Moreover, models such 
as Generative Adversarial Networks (GANs) has also demonstrated powerful 
potential in data generation and understanding. 
However, despite these improvements enhancing some brain-like features of DNNs, 
such as processing speed and accuracy, they are still limited in simulating real 
neurobiological functions. Achieving brain-like characteristics is not merely through 



simulating a single process or mechanism; it requires a deep understanding and 
comprehensive simulation of various brain functions. In this context, research 
around brain-like computing has deepened, exploring various directions, including 
the study of optical illusions. 
The integration of visual illusions provides a new perspective for DNN research, 
using brain-like mechanisms to reveal and understand the limitations of neural 
networks. Visual illusions serve as an intriguing tool to explore the parallels and 
differences between human visual perception and machine vision. These illusions 
often exploit the ways in which humans process visual information, revealing the 
underlying mechanisms of our perception. Historically, visual illusions have been 
used to probe the workings of the human brain, offering insights into depth 
perception, color constancy, and the geometrical interpretation of space. Therefore, 
this research topic can guide potential improvements in model optimization and 
training methods., by studying how DNNs handle these illusions, researchers can 
uncover the extent to which neural networks simulate human-like perception and 
where they differ, shedding light on both the capabilities and limitations of these 
systems. 
Thus, this study delves into the simulation of human visual perception by DNNs, 
using a unique and comprehensive visualization approach that integrates six 
classical visual illusions to probe and compare the brain-like characteristics of 
different DNNs architectures. Specifically, depending on the human perceptual data 
as benchmark, we integrated visual and analytical techniques, including 
representational similarity analysis and class activation maps (CAM), to provide 
deeper explain of internal mechanism into how DNNs process visual illusions. For 
instance, GradCAM shows the image areas focused on by DNNs when making 
decisions, revealing key features that might be considered during the processing of 
illusions. These methods help us understand the internal workings of DNNs when 
dealing with visual illusions. In addition, the DNNs models we utilized in this study 
are both according to Brain-Score and BH-score, which are current brain-like 
rankings on visual pathway mapping. This study also considers the other types of 
DNNs, such as spatiotemporal and predictive decoding models, to explore the 
universality of DNNs on visual illusion completely. 
Based on the proposed comprehensive interpretive visualization method, the study's 
specific approach is divided into four steps which respond to four chapters: firstly, 
verifying and testing the pre-trained DNNs' performance on visual illusions, 
followed by comparisons based on training with specific visual illusion datasets. 



Next, differences based on the models' architectures are examined in detail, and 
finally, the findings are used to explore potential brain-like characteristics through 
fMRI experiments.  
In Chapter 3, several top-ranking DNNs on Brain-Score were selected to test the 
Müller-Lyer illusion. The differences among the models in terms of feature attention 
distribution were significant. Advanced models with excellent performance in visual 
tasks, such as the Transformer-based ViT and Swin-T, did not exhibit visual 
illusions. In contrast, classic networks with single architectures like AlexNet and 
ResNet101 showed the illusion of line length change. This phenomenon emphasizes 
the differences in brain-like characteristics of DNNs, where high performance in 
visual tasks does not equate to brain-like characteristics. For example, in our 
Chapter 3 testing on five types of illusions—focusing on color, brightness contrast, 
length, angle, and perception—it is discussed that regarding color sensitivity, among 
12 DNN models, only two align relatively well with human perception of color depth 
rankings. There is no regular pattern in the ranking distribution among the models, 
but an increase in network depth leads to changes in color ranking, indicating a 
change in color sensitivity, though this change is only apparent in the last module. 
In terms of feature focus visualization, DNNs also show significant differences, with 
ResNext101 recognizing the entire color rectangle and focusing on the whole area, 
while other models focus on partial areas. This differs from our understanding of 
vision; DNNs cannot comprehend color and its resulting shapes, affecting attention 
differences in color depth rankings. Moreover, ResNext101 does not exhibit a 
performance closer to the depth ranking of human subjects. Although some advanced 
DNNs perform well in visual tasks, they may lack the ability to handle certain 
human visual illusions, whereas some simpler traditional networks may more 
closely resemble human visual system characteristics in certain aspects. 
In Chapter 4, further training on multiple models with specific datasets showed 
significant differences among the models. Notably, VGG19 almost did not exhibit 
any visual illusions during this training. The training with specific visual illusion 
datasets mainly aimed to develop DNNs' understanding of single physical attributes, 
followed by related physical attribute visual illusion tests on these trained models, 
such as the tilt illusion. The results showed that the performance of DNNs in visual 
illusions is indeed influenced by the training datasets. Among them, ResNet101 
performed the best in the tests, achieving a classification accuracy of 90.28%, and 
excelling in recall and F1 scores. Although VGG19's feature attention distribution 
was similar to ResNet101, it did not exhibit any visual illusions in the tests, with an 



accuracy of only 61.81%. Additionally, ResNet101's representational dissimilarity 
matrices (RDMs) indicated the highest representation similarity in its early 
modules, suggesting the importance of visual illusion responses in early visual 
regions (such as the V1 area). The analysis also revealed that most models performed 
exceptionally well on colors like "green," "spring green," "cyan," and "yellow," with 
many achieving 100% accuracy, but performed poorly on "blue," "magenta," and 
"purple." EfficientNet-B1 and ResNet101 showed higher accuracy across most colors, 
reflecting their potential advantage in handling natural tones, while EfficientNet-
B6 and VGG19 showed lower accuracy on "orange" and "purple." In terms of strength 
recognition, most models were more accurate at medium strength but had challenges 
at extreme strengths. ResNet152 and DenseNet201 performed well across most 
strength levels, while ResNet101 also showed balanced capabilities at medium 
strength. VGG19 and PNASLarge performed poorly at extreme strength levels, and 
EfficientNet-B6 had limitations at low strength. Furthermore, visualization 
techniques like Grad-CAM revealed distinct feature trends between illusion and 
non-illusion stimuli across DNNs, emphasizing the complex interplay of neural and 
computational mechanisms in visual perception. These findings highlight the 
intricate processing layers in DNNs and their varying capabilities in handling visual 
illusions, with models like ResNet101 demonstrating superior performance across 
different strengths and colors of illusions. 
Combining the temporal and static characteristics of the models, Chapter 5 explored 
the visual illusion performance of four video classification models and one predictive 
coding model. A new training strategy, teacher-student self-supervised learning, was 
proposed to fully simulate human-like learning methods to enhance the brain-like 
characteristics of DNNs. The results showed that the models exhibited visual 
illusion responses in terms of representational similarity, particularly similar to the 
distribution shown by previous static models. However, in GradCAM analysis, static 
models like AlexNet, VGG19, and ResNet101 focused more on the arrows themselves 
in the feature attention heatmaps, similar to the human visual system, which is 
strongly influenced by the direction of the arrows when perceiving visual illusions. 
In contrast, the video models only focused on the combination of arrows and lines. 
This significant difference in attention indicates that although video models have 
advantages in global and spatiotemporal analysis, they may be less precise than 
static models in capturing key visual cues directly related to visual illusions. 
Additionally, the study revealed that under training with Type A and Type B 
datasets, the four video models exhibited distinct behaviors. For instance, MViT-V1-



B consistently showed the greatest dissimilarity, indicating a significant difference 
in the perceived lengths of Müller-Lyer lines between the perception and control 
groups. S3D and R3D-18 exhibited a trend of decreasing dissimilarity with 
increasing labeled line lengths, suggesting varying sensitivity to line length based 
on the training dataset. Moreover, RDM analysis indicated that R3D-18, MViT-V1-
B, and S3D displayed high similarity on the diagonal in both Type A and Type B 
datasets, implying that these models perceive line lengths similarly regardless of 
arrow orientation, akin to human visual illusions. However, Swin3D-T’s irregular 
similarity distribution suggests it does not effectively understand the Müller-Lyer 
illusion. These findings underscore the models’ varied capabilities in recognizing and 
interpreting visual illusions, highlighting the need for further refinement to enhance 
their brain-like characteristics. 
In Chapter 6, fMRI-based experiments further explored the correlation between 
visual regions and visual illusions, based on the visual illusion data from Chapter 4. 
The results showed that the response regions were closer to the early regions of the 
ventral pathway, such as V1/V2, similar to the RDM distributions at different 
network depths in Chapter 4. This result suggests a potential relationship between 
DNNs and the ventral pathway in the human visual system, highlighting the 
importance of shallow modules in brain-like modeling of DNNs. The systematic 
analysis revealed significant activation differences among the ROIs under conditions 
of illusion and non-illusion. Notably, V2 showed a pronounced response under 
illusion conditions, underlining its crucial role in reaction of visual illusions, whereas 
V1 demonstrated stronger activation under non-illusion conditions, indicating its 
dominance in processing basic visual elements. As for individual perception, where 
significant variability in responses to illusions among participants underscored the 
complexity of perceptual processing in the human visual system. This variability 
mirrors the responses of DNNs, suggesting some commonalities in visual processing 
strategies between the human brain and DNNs, particularly in primary visual 
processing areas. 
In summary, this comparative study of DNNs architectures and classical visual 
illusions provides important insights into the differences between human and DNNs 
perception. The main contribution of this study is as following: 
1. This study contributes to the understanding of DNNs behavior in visual illusions 

and establishes methods for further examining their brain-like processing 
capabilities. We provide evidence demonstrating the potential brain-like advantages 
and limitations of DNNs. 



 
2. By integrating neuroscientific findings into DNNs development, this work 

supports targeted improvements in network architecture to more closely align with 
human cognitive processes. Through detailed analysis and experimental insights, 
this research provides the reference on improving DNNs' performance in tasks 
requiring complex visual processing and interpretation. 
3. This study reveals the strengths and weaknesses of DNNs in handling visual 

illusions, offering new perspectives on their potential and limitations in practical 
applications. For example, in fields such as autonomous driving, medical image 
analysis, and human-computer interaction, understanding and improving the visual 
perception capabilities of DNNs can significantly enhance their performance and 
reliability. 
Finally, to enhance the brain-like characteristics of DNNs, future work needs to 
further set specific visual illusion datasets and design models with specific 
architectures, particularly focusing on the feature information of shallow modules 
for brain-like modeling. Through such optimizations, we can better simulate the 
human visual system, thereby promoting the development and application of 
artificial intelligence technology. 


