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Abstract

Deep Neural Networks (DNNs), an approach inspired by human brain internal mecha-

nism, have revolutionized fields like image recognition, natural language processing, and

speech recognition through their advanced feature extraction and pattern recognition ca-

pabilities. Despite these advancements, DNNs still exhibit significant challenges related

to robustness and interpretability, particularly when subjected to minor input variations

and adversarial conditions. In other word, there is still a significant gap between DNNs

and the human visual system. Thus, DNNs only can be as one of vision study models

to learn potential visual mechanism. Based on this idea, we dedicated to explore how

much DNNs similar to human vision that call brain-like characteristic and how improve

the brain-like modeling on DNNs.

Visual illusions serve as an intriguing tool to explore the parallels and di↵erences

between human visual perception and machine vision. These illusions often exploit the

ways in which humans process visual information, revealing the underlying mechanisms

of our perception. Historically, visual illusions have been used to probe the workings

of the human brain, o↵ering insights into depth perception, color constancy, and the

geometrical interpretation of space. Therefore, by studying how DNNs handle these il-

lusions, researchers can uncover the extent to which neural networks simulate human-like

perception and where they di↵er, shedding light on both the capabilities and limitations

of these systems.

Thus, This study delves into the simulation of human visual perception by DNNs,

using a unique and comprehensive visualization approach that integrates six classical

visual illusions to probe and compare the brain-like characteristics of di↵erent DNNs

architectures. Specifically, depending on the human perceptual data as benchmark, we

integrated visual and analytical techniques, including representational similarity analysis

and class activation maps, to provide deeper explain of internal mechanism into how

DNNs process visual illusions.

Our experimental results indicate that visual illusions are widely present in DNNs.

Despite di↵erences between models, those exhibiting visual illusion e↵ects share some

common patterns, such as relatively low network complexity and relatively simple archi-

tectures. For example, classic DNNs models like VGG19 and ResNet101. However, an

important gap is highlighted: in the distribution of feature attention heatmaps, DNNs

primarily focus on the overall features of objects and fail to understand real physical

concepts, a fundamental di↵erence from humans. Furthermore, they are highly influ-

enced by training dataset. For instance, pre-trained weights on the ImageNet dataset

lead models to have a preference for focusing on the edges of geometric shapes. This
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results in good performance on simple and singular types of visual illusions, while com-

plex visual illusions with multiple components exhibit irregular and inconsistent visual

illusion e↵ects.

Moreover, from the RDMs of DNNs with simpler architectures that perform well,

high visual illusion responses in shallow layers align with the high correlation of visual

illusions in V1/V2 observed in fMRI experiments. This demonstrates the potential

similarity between DNNs and the visual pathways, especially the early pathways and the

shallow modules of DNNs. This suggests the importance of focusing on the architecture

and feature information of primary modules in brain-like modeling.

In summary, this comparative study of DNNs architectures and classical visual

illusions provides important insights into the di↵erences between human and DNNs

perception. The main contribution of this study is as following :

1. This study contributes to the understanding of DNNs behavior in visual illusions

and establishes methods for further examining their brain-like processing capabil-

ities. We provide evidence demonstrating the potential brain-like advantages and

limitations of DNNs.

2. By integrating neuroscientific findings into DNNs development, this work supports

targeted improvements in network architecture to more closely align with human

cognitive processes. Through detailed analysis and experimental insights, this

research provides the reference on improving DNNs’ performance in tasks requiring

complex visual processing and interpretation.

3. This study reveals the strengths and weaknesses of DNNs in handling visual il-

lusions, o↵ering new perspectives on their potential and limitations in practical

applications. For example, in fields such as autonomous driving, medical image

analysis, and human-computer interaction, understanding and improving the vi-

sual perception capabilities of DNNs can significantly enhance their performance

and reliability.

Future research can further explore how optimizing training data, improving net-

work architectures, and integrating multimodal information can enhance DNNs perfor-

mance in complex visual tasks.
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Chapter 1

Introduction

1.1 Overview

The development of Deep Neural Networks (DNNs) has achieved revolutionary progress

in numerous fields, especially in image recognition, natural language processing, and

speech recognition [1]. DNNs achieve high-level feature extraction and complex pattern

recognition through a multi-layered neuronal structure, enabling the extraction of deep

features from data [1]. However, despite their outstanding performance in handling these

tasks, DNNs still exhibit significant limitations in robustness and interpretability. They

are highly sensitive to minor changes in input data and are easily make errors when

facing adversarial attacks or extreme situations, revealing their sensitivity to inputs and

insu�cient understanding of complex contexts [2, 3].

These limitations have prompted researchers to seek inspiration from brain-like

computing to improve neural network design and performance. The human brain ex-

hibits high robustness and flexibility in processing visual information, making accurate

judgments even in complex and ambiguous environments [4]. In particular, the brain

integrates contextual information and multi-level feature processing to address various

visual challenges [5, 6]. This hierarchical processing structure and feedback mechanism

provide important insights for the improvement of DNNs [4].

In this process, research in artificial vision systems has increasingly focused on how

to enhance the visual perception capabilities of models to make them more akin to the

human visual system. For example, by enhancing the contextual understanding and

temporal information processing capabilities of DNNs, introducing recurrent networks

2



1.2 Research Objectives 3

(RNNs) and self-attention mechanisms to mimic the feedback loops and attention regula-

tion in the visual cortex [7, 8]. These advancements have improved DNNs’ performance

and robustness in complex visual tasks, such as object recognition and scene under-

standing [9]. Moreover, models such as Generative Adversarial Networks (GANs) and

Variational Autoencoders (VAEs) have also demonstrated powerful potential in data

generation and understanding [10].

However, despite these improvements enhancing some brain-like features of DNNs,

such as processing speed and accuracy, they are still limited in simulating real neurobi-

ological functions. Achieving brain-like characteristics is not merely through simulating

a single process or mechanism; it requires a deep understanding and comprehensive

simulation of various brain functions [11]. In this context, research around brain-like

computing has deepened, exploring various directions, including the study of perceptual

illusions.

Visual illusions, as a branch of this research, provide a unique perspective on un-

derstanding the mechanisms and limitations of DNNs. Visual illusions are a common

phenomenon in the human visual system, reflecting how the brain processes visual inputs

in specific contexts [12]. By studying the reactions of DNNs to images that induce visual

illusions, researchers can more deeply analyze the model’s deficiencies in visual recog-

nition and information processing [13]. This research not only reveals the processing

characteristics of DNNs but also helps researchers improve network structures, making

them perform more similarly to the human brain in handling a broader range of visual

tasks [14].

The integration of visual illusions provides a new perspective for DNN research,

using brain-like mechanisms to reveal and understand the limitations of neural networks.

This research can guide potential improvements in model optimization and training

methods [12]. As research in this area deepens, the integration of visual illusions and

DNNs will continue to drive the development of artificial intelligence technology, o↵ering

new possibilities of brain-like modeling for more e�cient and reliable intelligent systems

[5, 15].

1.2 Research Objectives

This study aims to explore and reveal the behavior and performance of Deep Neural

Networks (DNNs) when dealing with visual illusions, and to explore and enhance the
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capabilities of DNNs in simulating the human visual system, thus providing references

for improving their structure and algorithms. Specifically, the main objectives of the

study include:

1. Analyze the response of DNNs to visual illusions: through experiments, observe

and record the responses of DNNs to various visual illusion images. Study the

sensitivity of DNNs to di↵erent types of visual illusions (such as geometric illu-

sions, color illusions), and analyze the types and frequency of errors they make in

processing these illusions.

2. Compare the di↵erences between DNNs and the human visual system: compare

the responses of DNNs to those of the human visual system in handling the same

visual illusions, identifying the main di↵erences in their processing mechanisms.

Through psychophysical experiments, obtain performance data of humans in visual

illusion tasks and compare it in detail with the outputs of DNNs.

3. Improve the robustness and interpretability of DNNs: based on the performance

analysis of DNNs with di↵erent characteristics and architectures in processing vi-

sual illusions, propose possible improvements to enhance their robustness against

anomalous inputs. Especially whether DNNs inherently possess brain-like univer-

sality, reflecting common points in the brain-like mechanisms exhibited by DNNs.

1.3 Structure of the Dissertation

This dissertation is mainly divided into 8 chapters, with the main content of each chapter

as follows:

• Chapter 1 summarizes the general situation of the current research and the main

objectives of the experiments.

• Chapter 2 mainly introduces various backgrounds of the research, such as deep

neural networks, visual illusions, and interdisciplinary studies. Also this chapter

includes research questions and the main proposal method.

• Chapter 3 describes the work exploring the performance of DNNs in visual illusions.

• Chapter 4 explores the performance of visual illusions under specific visual illusion

datasets.
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• Chapter 5 shows the performance of DNNs in visual illusions under spatial-temporal

and static characteristic.

• Chapter 6 revolves around the mapping relationship between DNNs and the ven-

tral pathway, combining fMRI to explore the regional similarities under di↵erent

modules of DNNs.

• Chapter 7 discusses based on current findings, especially the real gap between

DNNs and the optimal visual model paradigm, potential advantages, and proposed

improvements.

• Chapter 8 summarizes all chapters and the outlook for future research work.



Chapter 2

Background, Motivation and

Purpose

2.1 Deep Neural Networks

Deep Neural Networks (DNNs) are a subset of machine learning models that have rev-

olutionized various fields, from computer vision to natural language processing. They

are characterized by their deep architectures, consisting of multiple layers that learn

hierarchical representations of data [1]. This section mainly introduce DNNs, including

their types, underlying mechanisms, and applications.

2.1.1 What is Deep Neural Networks?

DNNs are composed of multiple layers of neurons, where each layer transforms the input

data through a series of weights and activation functions. The most common type of

DNN is the feedforward neural network, which includes architectures such as Multilayer

Perceptrons (MLPs) and Convolutional Neural Networks (CNNs) [16].

A feedforward neural network can be mathematically represented as:

y = f(x; ✓) (2.1)

where x is the input, ✓ represents the parameters (weights and biases), and f is the

function representing the network’s layers and activations.

6
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2.1.2 Convolutional Neural Networks

CNNs are designed to process data with a grid-like topology, such as images. They

utilize convolutional layers, pooling layers, and fully connected layers to extract spatial

hierarchies of features (Fig. 2.1).

The output of a convolutional layer can be expressed as:

(f ⇤ g)(i, j) =
kX

m=�k

kX

n=�k

f(i+m, j + n)g(m,n) (2.2)

where:

• f(i, j) is the input feature map at position (i, j),

• g(m,n) is the convolution kernel (or filter) at position (m,n),

• (i, j) denotes the coordinates of the output feature map,

• k is the radius of the convolution kernel, which determines the size of the kernel.

For example, if the kernel size is 3⇥ 3, then k = 1,

• ⇤ denotes the convolution operation.

This specific structure enables CNNs to learn spatial hierarchies of features, making

them widely used in image classification, object detection, and image segmentation tasks

[17].

Sloth

Not Sloth

Pooling layerReLU layerConvolution layerInput image Output classes

CNN

Figure 2.1: The architecture of CNN.
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2.1.3 Recurrent Neural Networks and Long Short-Term Memory

For sequential data and video analysis, DNNs incorporate temporal dimensions to model

dependencies and dynamics over time. This allows the network to capture not only

spatial features but also the temporal evolution of those features (Fig. 2.2).

As a classical model in DNNs for temporal characteristics, Recurrent Neural Net-

works (RNNs) are designed to handle sequential data by maintaining a hidden state

that captures information from previous time steps. The hidden state ht at time step t

is updated as:

ht = �(Whht�1 +Wxxt + b) (2.3)

where:

• � is an activation function,

• Wh and Wx are weight matrices,

• b is a bias term.

As for LSTMs [7], a type of RNN, address the vanishing gradient problem by in-

corporating memory cells and gating mechanisms. The cell state ct and hidden state ht

are updated through gates that control the flow of information:

it = �(Wixt + Uiht�1 + bi) (2.4)

ft = �(Wfxt + Ufht�1 + bf ) (2.5)

ot = �(Woxt + Uoht�1 + bo) (2.6)

ct = ft � ct�1 + it � tanh(Wcxt + Ucht�1 + bc) (2.7)

ht = ot � tanh(ct) (2.8)

where:

• it is the input gate,

• ft is the forget gate,

• ot is the output gate,

• � denotes element-wise multiplication.
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Figure 2.2: The architecture of RNN and LSTM.

2.1.4 3DCNN

3D CNNs extend traditional CNNs to spatiotemporal data by applying 3D convolutions,

capturing features across both spatial and temporal dimensions [18, 19] (Fig. 2.3). The

output of a 3D convolutional layer is given by:

(f ⇤ g)(t, x, y) =
1X

a=�1

1X

b=�1

1X

c=�1
f(a, b, c)g(ta, xb, yc) (2.9)

where:

• f(t, x, y) is the input feature map at time t and spatial position (x, y),

• g(a, b, c) is the 3D convolution kernel at position (a, b, c),

• (t, x, y) denotes the coordinates of the output feature map,

• k is the radius of the convolution kernel in each dimension, which determines the

size of the kernel. For example, if the kernel size is 3⇥ 3⇥ 3, then k = 1,

• ⇤ denotes the convolution operation.
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Convolutions + subsampling + fully connectedInput Output

Task

3D-CNN

Figure 2.3: The architecture of 3D-CNN.

2.1.5 PredNet

PredNet is a type of DNN designed for predictive coding in video sequences [20] (Fig.

2.4). It consists of layers that predict the input at the next time step and then calculate

the prediction error. The prediction error is used to update the model, enabling it to

learn temporal dependencies in the data.

The model operates by minimizing the prediction error:

Et = kxtx̂tk2 (2.10)

where xt is the actual input at time t and x̂t is the predicted input.

t = 0

t = 1

t = 2

EtRt

At

Åt

PredNet

Figure 2.4: The architecture of PredNet.
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2.1.6 Transformers

Transformers, initially designed for natural language processing, have been adapted for

various applications, including image and video analysis [8]. They rely on self-attention

mechanisms to capture long-range dependencies in the data (Fig. 2.5).

The self-attention mechanism computes the output as:

Attention(Q,K, V ) = softmax

✓
QKT

p
dk

◆
V (2.11)

where Q (query), K (key), and V (value) are matrices derived from the input, and

dk is the dimensionality of the key vectors.

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Input
Embedding

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head

Attention

Input
Embedding

Linear

Softmax

Inputs Outputs
(Shirt right)

Positional
Encoding

Positional
Encoding

Output Porbablities

Encoder

Decoder

Transformer

Figure 2.5: The architecture of Transformer.
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2.1.7 Applications of Deep Neural Networks

DNNs have found applications across various domains:

• Computer Vision: Image classification, object detection, and segmentation.

• Natural Language Processing: Machine translation, sentiment analysis, and text

generation.

• Video Analysis: Action recognition, video summarization, and anomaly detection.

2.2 Optical Illusion

2.2.1 Types of Optical Illusion

Optical illusions can be broadly categorized into three types: literal illusions, physiologi-

cal illusions, and cognitive illusions [12, 21, 22] (Fig. 2.6). Literal illusions create images

that di↵er from the objects that make them, physiological illusions are the e↵ects on the

eyes or brain of excessive stimulation of a specific type (e.g., brightness, tilt, color), and

cognitive illusions are the result of unconscious inferences. Each type provides unique

insights into how our brain processes visual information. The three specific categories

of optical illusions are as follows:

• Literal Illusions: These illusions create images that are di↵erent from the objects

that make them. A classic example is the Necker cube, a wireframe drawing that

can be perceived in two di↵erent orientations. This type of illusion highlights the

brain’s ability to switch between di↵erent interpretations of an image.

• Physiological Illusions: These arise due to the physiological responses of the eyes

or brain to certain stimuli. Examples include the Hermann grid illusion, where

ghostly grey blobs appear at the intersections of a white grid on a black back-

ground, and the Mach bands, where exaggerated contrast between edges of slightly

di↵ering shades of gray is perceived. These illusions shed light on the way our vi-

sual system enhances contrast and edges to improve object detection.

• Cognitive Illusions: These illusions occur because of the brain’s unconscious infer-

ences about the world. The Müller-Lyer illusion is a well-known example, where

lines of equal length appear unequal due to the orientation of arrowheads at their

ends. Another example is the Ames room illusion, where the distorted shape of
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the room causes people to appear to change size as they move through it. Cogni-

tive illusions demonstrate the brain’s reliance on contextual information and prior

knowledge to interpret sensory input.

Optical 
illusion

Physiological Illusions Cognitive Illusions

Not equal?

Real equal

Outward

Inward

Outward

Inward

Müller-Lyer illusionrabbit–duck illusion

Kanizsa triangle

Necker cube

Duck or Rabbit?

Literal Illusions

Hermann Grid illusion

Wait, is it flashing 
some dot?

Which way is this 
cube facing?

Can you see a
inverted triangle？

Color Assimilation Zöllner illusion

Are they same color？ Do these two 
lines parallel?

Poggendorff illusion

This is complete 
line, do you know?

Stripes Illusion

Motion？

Real cognition

Figure 2.6: What is optical illusion? The main types of optical illusion.

2.2.2 Mechanisms Behind Optical Illusion

The study of optical illusions provides valuable insights into the cognitive and neural

mechanisms of vision. Cognitive theories suggest that illusions occur because the brain

interprets sensory input based on past experiences and expectations. The Gestalt prin-

ciples of perception, such as similarity, proximity, and continuity, explain how we group

visual elements and perceive patterns [23].
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From a neural perspective, illusions are studied by examining the activity in various

parts of the brain. Neuroimaging studies have shown that di↵erent types of illusions

activate specific regions of the visual cortex and other related areas [24]. For example,

the primary visual cortex (V1) processes basic visual features, while higher-level areas

like the lateral occipital cortex (LOC) are involved in shape and object recognition [25].

The brain often prioritizes contextual information over raw sensory input, leading to

perceptual discrepancies [26].

2.2.3 Implications of Optical Illusion

Optical illusions have significant implications for various fields, including neuroscience,

psychology, and artificial intelligence. In neuroscience and psychology, illusions are used

to probe the complexities of visual perception and the brain’s interpretative processes

[27]. They help researchers understand how the brain constructs a coherent representa-

tion of the world from ambiguous and often incomplete sensory information [28].

In artificial intelligence, particularly in the development of deep neural networks

(DNNs), studying optical illusions can provide insights into the limitations and capabil-

ities of these models [29]. DNNs, especially convolutional neural networks (CNNs), are

designed to mimic human visual processing by learning hierarchical representations of

visual data. However, similar to humans, these models can also be susceptible to optical

illusions, revealing their interpretative strategies and potential areas for improvement

[30].

2.3 Interdisciplinary Study

2.3.1 Ventral Pathway

The ventral pathway, often referred to as the ”what pathway,” is a crucial part of the

human visual system responsible for object recognition and form representation [31, 32].

It extends from the primary visual cortex (V1) to the inferior temporal cortex (IT),

passing through areas such as V2 and V4. Main introduction as follows:

• Primary Visual Cortex (V1): The initial stage of visual processing, where basic

features such as edges and orientations are detected.

• Secondary Visual Cortex (V2): Processes information from V1, including more

complex features and patterns.
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• Ventral Stream (V4): Involved in processing color and simple geometric shapes.

• Inferior Temporal Cortex (IT): Responsible for high-level object recognition and

visual memory.

Generally, there are two visual pathway influence each other then generate the cog-

nition and motion, Fig. 2.7 is the example of hypothesis of double-pathway on explaining

the activity. When we see a cup, then want to do the ”pouring” this motivation, first

we recognize the object ”cup” and know catch the handle and do the ”pouring” [32].

Temporal visual areas

V3
dynamic
shape

V4
shapes and

colors

V2
edges and 
orientation

V1
contour and 

depth perception

Parietal visual

V5
movements

V3A
shapes

Ventral pathway Dorsal pathway

Retinotopy

Cup Pouring

Figure 2.7: An example of recognition and motion through two visual pathway.

2.3.2 Mapping DNNs to Ventral Pathway

Deep neural networks (DNNs), particularly convolutional neural networks (CNNs), have

shown remarkable parallels to the ventral stream [33, 34]. Various layers of CNNs have

been found to correspond to di↵erent stages of the ventral pathway (Fig. 2.8):
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• Early Layers: Analogous to V1 and V2, detecting basic features such as edges and

textures.

• Intermediate Layers: Correspond to V4, processing more complex features and

shapes.

• Deep Layers: Similar to IT, responsible for high-level object and scene recognition

[34].

Understanding the mapping relationship between DNNs and the ventral pathway

enhances the interpretability of these models and provides insights into biological vision

mechanisms.

V1 V2 V4 IT

Brain

Brain
measures

Ventral
pathway

Neural
networks

Behavior

Classicification

V1 V2
V4

IT

Figure 2.8: Mapping relationship between DNNs and ventral pathway.

2.4 Why DNNs with Optical Illusion?

Currently, most research on deep neural networks (DNNs) focuses on improving task

performance, thereby enhancing test rates. This overlooks inherent issues with the
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models: they perform poorly in terms of real-world robustness and often struggle to

model and understand subjective and abstract concepts [2, 35]. Particularly, DNNs rely

on statistical pattern recognition from large-scale data, primarily using methods like

supervised and reinforcement learning, which require extensive labeled data or learning

through interaction with the environment. However, deeper issues such as emotions,

consciousness, and motivations often lack clear labels or are hard to learn through simple

reward signals [36, 37].

More attention needs to be given to the inherent modeling and interpretability of

DNNs rather than solely focusing on enhancing model performance. As a branch of this

direction, exploring the visual pathway mappings exhibited by DNNs, as well as their ex-

ceptional performance in various visual tasks, is a viable method. In essence, by utilizing

the limitations and characteristics of the human visual perception system in processing

visual information, we can infer whether DNNs exhibit similar behaviors. This comple-

mentary relationship can be described as follows: DNNs learn and simulate the human

brain’s processing methods through multi-level complex connections, while the cogni-

tive understanding and behavioral patterns of the human brain guide and improve the

design of deep neural networks [38]. This inspiration and influence are manifestations of

the integration and development in neuroscience and artificial intelligence, bringing new

understanding and innovative possibilities to both fields (Fig. 2.9). Nevertheless, DNNs

also face many controversies, particularly regarding their biological relevance. Kubilius

et al., (2016) [39] has found that DNN models trained for image classification can explain

some aspects of biological vision well. But some researchs also found the important di-

vergences between DNNs and biological vision [40, 41]. The greatest strength of DNNs

as visual learning models lies in their exploratory nature [33, 42, 43]. Moreover, some

studies indicate that there are corresponding relationships between the layered visual

areas and DNN layers in terms of visual feature representation, with deeper stages of

DNNs showing similar perceptual levels to the brain [33, 44]. Therefore, in our research,

we are inclined to use DNNs to seek and compare the di↵erences and collaborative rela-

tionships in human visual aspects and explore the possibilities of their mechanisms. In

other words, DNNs and the brain should be considered as two similar biological entities.
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2.4.1 Related Research and Identification of Gaps

In the illusion research on DNNs, some relevant progress has already been made. As

early as 2018, Watabave et al., (2018) [45] discovered through the PredNet test of ro-

tating snake illusions that DNNs might exhibit motion illusions. Also, Benjamin et

al., (2020) [46] found that lower-level modules are more prone to color illusions, such

as color assimilation. Additionally, DNNs have shown the presence of visual illusions

in phenomena like the Hermann Grid and the Müller-Lyer illusion [47, 48]. Generally,

such studies use human subjects’ perceptual data as a benchmark to design related vi-

sual illusion tasks and infer and test the responses of DNNs. However, this approach

overlooks an important issue: relying solely on perceptual data to test is insu�cient to

explain the relationship between DNNs and visual pathways. A deeper exploration of

the internal mechanisms and broader consideration of diversity issues are required. This

involves interpretability AI, DNNs themselves, and the types of visual illusions. In terms

of visual illusions, a single illusion cannot explain the widespread phenomenon of visual

illusions in DNNs, and more types of visual illusions need to be considered. Previous

related studies have all considered single visual illusions, neglecting the universality issue

of di↵erent visual illusions. As for DNNs themselves, it is necessary to consider models

with di↵erent architectures and the training of the models themselves, while current re-

search only tests single or a few models. More brain-like DNNs need to be considered for

training and testing. Furthermore, merely testing is far from enough to understand why

DNNs exhibit visual illusions and how decisions are made when illusions occur. This

requires the use of interpretability AI methods [49] to explain the potential mechanisms

more intuitively.
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Figure 2.9: Interdisciplinary study between DNNs and Neuroscience
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2.4.2 How do DNNs Respond to Di↵erent Types of Visual Illusions?

We focuses on evaluating the performance of various DNN models in simulating multi-

ple visual illusions. By examining responses to illusions such as the Müller-Lyer, color

assimilation, Hermann grid, Zöllner, and Poggendor↵ illusions and Ske’s Oblique Grat-

ing illusion, we aim to determine the extent to which these models replicate human

perceptual experiences.

2.4.3 What Are the Similarities and Di↵erences Between Human and

DNN Perceptions of Visual Illusions?

By comparing human perceptual data with DNN responses, we seek to identify both

commonalities and discrepancies. This comparison will help us understand how closely

DNNs mimic human visual processing and where they diverge.

2.4.4 How Do Di↵erent DNN Architectures Compare in Their Ability

to Simulate Visual Illusions?

This question involves benchmarking various DNN models to assess their e↵ectiveness

in replicating visual illusions. By evaluating models with di↵erent architectures, we

aim to identify which types of networks are more adept at simulating human-like visual

perception.

2.4.5 What Are the Computational Principles Underlying the DNNs’

Ability to Simulate Visual Illusions?

Through in-depth analysis, we aim to uncover the computational strategies that DNNs

use to process and respond to visual illusions. Understanding these principles can pro-

vide insights into the fundamental mechanisms of visual cognition in both artificial and

biological systems.

2.4.6 Can the Findings From DNN Simulations of Visual Illusions In-

form the Development of More Advanced AI Systems?

By leveraging insights gained from studying DNN responses to visual illusions, we aim

to contribute to the development of AI systems with enhanced visual processing capa-

bilities. This includes improving the interpretability, robustness, and accuracy of these

systems in complex visual tasks.



2.5 Proposed Method 21

2.4.7 Meaning and Contribution

These questions guide our investigation into the intersection of human visual perception

and artificial neural networks, aiming to bridge the gap between biological and artificial

vision systems. By addressing these questions, we seek to advance our understanding of

both the potential and limitations of DNNs in simulating complex visual phenomena.

2.5 Proposed Method

2.5.1 Human Perceptual Data on Optical Illusion

Human perceptual data is crucial for studying optical illusions and understanding how

visual information is processed and interpreted. This data can be collected through

psychophysical experiments where participants are asked to judge and report their per-

ceptions of various visual stimuli. The main procedure can be set as follows (Fig. 2.10):

• Experimental Setup: Participants view images or videos containing optical illusions

and provide responses regarding their perceptions.

• Measurement: Quantitative data on perceived lengths, angles, and shapes are

recorded.

• Analysis: Statistical methods are used to analyze the perceptual data, identifying

patterns and biases in human perception.

Longer？

Illusion
stimulus

Dark room

Absolute average value

Illusion Strength

Figure 2.10: Human subject experiment
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2.5.2 Representational Similarity Analysis

Representational similarity analysis (RSA) [50] is a method used to compare the sim-

ilarity of representations between di↵erent systems, such as human brain activity and

DNN activations.

Feature Extraction: Extract feature vectors from DNNs and human perceptual

data. For DNNs, the activations from a specific layer are used as feature vectors. For

human perceptual data, behavioral responses or neuroimaging data can be used.

Let fi represent the feature vector of the i-th stimulus from DNNs, and pi represent

the feature vector from human perceptual data.

RDM Construction: Construct Representational Dissimilarity Matrices (RDMs)

for both DNNs and human perceptual data. The RDMs are typically constructed by

calculating pairwise dissimilarities (e.g., Euclidean distance) between feature vectors

(Fig. 2.11).

For DNNs:

RDMDNN (i, j) = kfifjk (2.12)

For human perceptual data:

RDMhuman(i, j) = kpipjk (2.13)

Similarity Measures: Compare the RDMs using similarity measures such as distance

metrics like Euclidean distance [51].

⇢ =
cov(RDMDNN , RDMhuman)

�RDMDNN�RDMhuman

(2.14)

where:

• ⇢ is the correlation coe�cient between the two RDMs,

• cov(RDMDNN , RDMhuman) is the covariance between the RDMs of the DNN and

human perceptual data,

• �RDMDNN is the standard deviation of the RDM for the DNN,

• �RDMhuman is the standard deviation of the RDM for the human perceptual data.
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By applying RSA, researchers can determine how well DNNs replicate human per-

ceptual patterns when viewing optical illusions. This helps in understanding the mech-

anisms underlying both artificial and biological vision systems.
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Figure 2.11: RDM

2.5.3 Class Activation Mapping

Class Activation Mapping (CAM) [52] is a technique used to visualize which regions of

an input image are important for a neural network’s classification decision. The main

equation can be expressed as follows:

Sc =
X

k

wc
k

X

x,y

Ak(x, y) (2.15)

Here, Ak(x, y) represents the activation of unit k at spatial location (x, y) in the

activation map, and wc
k are the weights corresponding to class c.

To generate heatmaps, the Class Activation Map CAMc for class c is given by:

CAMc(x, y) =
X

k

wc
kA

k(x, y) (2.16)

The heatmap is then normalized and superimposed on the input image to visualize

the important regions. The main idea and process can be shown in Fig. 2.12
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Totally, CAM can be used to identify which parts of an optical illusion image

influence the network’s perception. This provides insights into the network’s decision-

making process and helps in understanding how DNNs interpret complex visual stimuli.
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Figure 2.12: Grad-CAM

2.5.4 The Main Purpose, Idea and Method

Generally, our approach is also based on perceptual data from human subjects, which

is a benchmark for studies, obtained from the most direct behavioral data processed

by the brain. We proposed interpretative visualization methods based on RDM and

CAM to elucidate the internal mechanisms of DNNs and the reasons for their decision

dependencies and tendencies. Here is proposed visualization framework:

We present a novel framework to investigate how Deep Neural Networks (DNNs)

process visual illusions, utilizing the combined strengths of Grad-CAM and the Rep-

resentational Dissimilarity Matrix (RDM). This framework is designed to provide a

comprehensive understanding of DNN responses to visual illusions, expressed in the

following equation:
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SDNN = F (Gc(I), RL2(Iperceived, Ireal)) (2.17)

The components are defined as follows:

• SDNN represents the sensitivity or response measure of DNNs to visual illusions.

• F is a synthesis function that combines the feature region visualization from Grad-

CAM and the representational di↵erences from RDM.

• Gc(I) denotes the Grad-CAM heatmap for class c for a given image I, highlighting

how the DNN focuses on specific areas of the image for decision-making.

• RL2(Iperceived, Ireal) quantifies the representational di↵erence between human per-

ceived images and real images using the Euclidean (L2) distance, as derived from

RDM.

This framework enables the analysis of DNN responses to visual illusions by quan-

tifying both internal representations and external responses to illusion images. Through

Gc(I), we can explore the di↵erences in attention distribution in DNNs between illusion

images and human perceptual images. The RL2 calculation quantifies perceptual di↵er-

ences, indicating how DNNs di↵erentiate between actual physical attributes and human

perception. The function F integrates these analyses, o↵ering a comprehensive view of

DNN processing of visual illusions.

Based on this framwork, then we referenced and extensively used various types of

DNNs, including training strategies under pre-training and specific training, to compre-

hensively explore visual illusions in DNNs research, providing more potent ideas and

insights for future brain-like modeling of neural networks, as well as potential directions

for improvement. The research mainly consists of the following steps:

1. First, explore whether there are visual illusions in DNNs [47, 48, 53].

2. Then, investigate the impact of specific visual illusion datasets and training on

visual illusions [54].

3. Next, deeply consider various types of DNNs, especially the performance of visual

illusions in DNN models under the characteristics of both temporal and static.
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4. Based on the popular mapping relationships and findings from previous steps,

explore the relevance of mapping relationships through designing fMRI studies

based on visual illusions.

5. Discussion and Conclusion.

Optical illusion

Human Perception Deep Neural Networks

Similarity

Mechanism

Visualization

Cam Visualization Representational
Dissimilarity Matrix

Figure 2.13: Main research processes



Chapter 3

Do the Illusion Performed in

DNNs?

This chapter mainly introduces the universality of optical illusion, which set by two

steps:

1. The testing of the Müller-Lyer illusion in DNNs. Around the perceived lengths of

human subjects, it preliminarily explores and verifies whether DNNs exhibit visual

illusions [47, 53].

2. Exploring the performance of Muilti-type illusion on DNNs [48].

3.1 Step1 :Müller-Lyer Illusion on Vgg19 and ResNet101

3.1.1 Human Experiment on Müller-Lyer Illusion

The Müller-Lyer illusion is a classic visual illusion that demonstrates how the perception

of line length can be influenced by changing the direction of arrows at the ends of the

lines. When the ends of the line have outward-facing arrows, the line appears shorter

than its actual length; when the ends have inward-facing arrows, the line appears longer

than its actual length. This illusion reveals that the surrounding contextual information

significantly influences the perception of length in the visual system’s processing of

geometric shapes [12]

Studies have shown that the Müller-Lyer illusion is not only related to the visual

processing of geometric shapes but also involves the brain’s interpretation of three-

dimensional space. Gillam (1998) [55] pointed out that this illusion may originate from

27
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our understanding of spatial depth and perspective, where the shape of arrows provides

clues about distance and spatial layout, thus a↵ecting the perception of length.

To collect data on length perception, we designed ten length levels ranging from

200 to 380 pixels, with intervals of 20 pixels. In the experiments, a line without arrows

randomly appeared at the top or bottom of the screen, while a line with arrows of random

length appeared in the center (Fig. 3.1). Participants adjusted the length of the arrowed

line to make it appear equal to the line without arrows, using the AS and KL keys on

the keyboard for fine adjustments (±1 pixel) and larger adjustments (±10 pixels). Each

experimental group included 40 trails, and the entire experiment was conducted in four

rounds. The collected data covered lengths from 200 to 380 pixels, including perceived

lengths for both arrow directions. The experiments were conducted in a dark room using

a Pixio PX248 Prime monitor (resolution 1920 × 1080) with stimuli generated through

Python’s Psychopy software. The distance between participants and the monitor was

maintained at 64 centimeters.

Then we averaged the collected perceptual length data to obtain mean perceived

lengths, which will be used in pictorial form for subsequent testing phases. We set

up a perceptual group and a control group for testing in these 10 length label(200 to

380), where the perceptual group was based on the adjusted perceived lengths, while the

actual lengths of the lines in the control group were the same, only the arrow directions

were added.

A total of 12 male volunteers participated in this study, with an average age of

24.58 years (standard deviation 2.72 years), all participants were free from color vision

anomalies or other visual defects and had normal vision. This study and later all were

approved by the Human Research Ethics Committee of Kochi University of Technology

and conducted with written informed consent from all participants, strictly followed

relevant ethical guidelines and regulations.
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Human experiment of Müller-Lyer Illusion

KL：±10 pixel
AS：±1 pixel

• Experimental design
• Random straight lines

• Length：200 - 380
• 10 categories
• No arrow

• Random arrow-lines
• Length：Random Generation
• Inward
• Outward
• Random left/right position

Figure 3.1: The main subject experiment on Müller-Lyer Illusion

3.1.2 Brain-like DNNs

DNNs are diverse, and Schrimpf et al. (2020) [44, 56] has explored the brain-like perfor-

mance of DNNs based on mapping relationships, proposing the concept and ranking of

Brain-Score. Brain-Score is used to evaluate the performance of deep neural networks

in simulating brain information processing, ranking and comparing models based on

di↵erent tasks and datasets. Based on this ranking, we first selected two classic models

for testing: Vgg19 [57] and ResNet101 [9].

• Vgg19 is a deep convolutional neural network consisting of 19 layers, mainly com-

posed of 16 convolutional layers and 3 fully connected layers. It has shown re-

markable e↵ects on the ImageNet dataset [58]. Studies have indicated that the

activation patterns of certain intermediate layers of Vgg19 have high similarities

with the neural activities of the human visual system, particularly sensitive to

details and local features in images when processing visual tasks, similar to the

human visual system’s reliance on these processes for object recognition.

• ResNet101 is a deep neural network with residual modules, comprising 101 layers.

Its introduced residual blocks solve the problems of gradient vanishing and explo-

sion in deep network training, allowing for deeper network structures. ResNet101

performs excellently in visual tasks such as object recognition and scene classi-

fication, and its information processing methods have been found similar to the

brain’s, particularly in understanding complex scenes and extracting global fea-

tures, simulating the human brain’s mechanisms in processing high-level visual

tasks .
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Evidence suggests that Vgg19 and ResNet101 display distinct brain-like character-

istics in di↵erent visual tasks [39, 59]. Vgg19 is better at simulating the human visual

system’s processing methods when recognizing objects in complex scenes. This is evi-

dent in its higher sensitivity to details and local features within images, which are crucial

for the human visual system when recognizing objects. On the other hand, due to its

deep structure, ResNet101 excels in understanding complex scenes and extracting global

features, similar to how the human brain processes high-level visual tasks.

3.1.3 The Preliminary Test on Two DNNs Models

Both models use pretrained weights, specifically those trained on the ImageNet dataset.

Using pretrained models, especially those trained on large datasets like ImageNet, has

proven to perform excellently in simulating human brain processing of visual information

[4, 60]. These models have undergone extensive training on a wide range of visual tasks,

enabling them to exhibit activity patterns similar to those of the human visual cortex

when processing new, unseen visual data. By utilizing these pretrained models, we

can directly leverage their existing learning achievements to accelerate the validation

of their performance in new brain-like studies. Moreover, because these models have

been trained on a wide variety of images, they have better generalization capabilities

for various visual features, allowing for minimal adjustments to achieve good results in

specific tasks.

3.1.4 The Distribution of Human Perceptual Length

The average perceived lengths adjusted by participants for outward and inward facing

arrows are shown in Fig. 3.2. From the figure, adjustments for outward-facing arrows are

positive, while those for inward-facing arrows are negative, consistent with the principles

displayed by the Müller-Lyer illusion. Outward-facing arrows appear shorter, while

inward-facing arrows appear longer.

Essentially, participants exhibited a visual illusion of length changes: the line with

outward-facing arrows (light blue) required a greater adjustment in length than the ac-

tual corresponding line length to appear visually equal in length. Similarly, the line

with inward-facing arrows (orange) required a shorter adjustment than the actual corre-

sponding length. Additionally, the average changes for both directions are inconsistent,
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with the average sensory length change for inward-facing arrows around 10 pixels, while

for outward-facing arrows, it is around 15 pixels.

Based on this distribution, the corresponding perceived lengths are used as the

dataset for the perception group. In contrast, the actual lengths of the lines (same

length, just arrows added) are used as the dataset for the control group. Both groups

correspond to ten length labels.

Figure 3.2: The perceptual length on Müller-Lyer Illusion

3.1.5 Representational Dissimilarity Matrix

Before testing the visual illusion performance of Vgg19 and ResNet101, we mainly based

our assessment on constructing dissimilarity matrices. Specifically, we extracted feature

vectors of lines with outward-facing and inward-facing arrows from the perception group

at the last convolutional layer before the decision module of the models, constructing

the dissimilarity matrix by calculating the Euclidean distance. The RDM size is 10x10,

corresponding to ten length labels. RDMs are displayed as heatmaps; the darker the

color, the higher the similarity.

From the RDM heatmaps (Fig. 3.3 ”Perceived length”), both models show a sim-

ilar distribution: the RDM heatmaps of the two models exhibit high similarity along

the diagonal. This indicates that for the same length labels, lines with inward-facing
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arrows and lines with outward-facing arrows are consistent in both models. The per-

ception group represents the visual length adjustments of human subjects, and the high

representational similarity displayed by the models shows that the models exhibit visual

illusions similar to humans.

Moreover, we also constructed RDMs using images from the control group for both

models (Fig. 3.3 ”Real length”). Compared to the high similarity along the diagonal

in the perception group, the control group’s high similarity distribution appears shifted

upwards from the diagonal. In the control group, the line lengths under the same

length labels are consistent with the line lengths corresponding to the length labels.

Interestingly, the lengths of the lines with outward-facing and inward-facing arrows are

the same. The upward-shifted high representational similarity shows that the models

consider the lines with outward-facing arrows to be di↵erent from those with inward-

facing arrows, need to be longer to match the inward-facing arrows. This is consistent

with the Müller-Lyer illusion: lines with outward-facing arrows appear shorter, and lines

with inward-facing arrows appear longer.

The RDMs for the perception group and control group demonstrate that Vgg19 and

ResNet101 exhibit visual illusions similar to those observed in humans.
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Resnet-101
Perceived length
with arrow

Real length with
arrow

Feature1 Layer1 Layer2 Layer3 Layer4

VGG19
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length

Real length 
with arrow
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Figure 3.3: The RDM between perceped group and control group on VGG19 and
ResNet101

3.1.6 The Illusion Response Changing of Di↵erent Model Depth

We then continued to explore within the models the specifics under di↵erent network

depths. Figure 3.4 shows the distribution of the L2 distances for the two orientations of

lines in Vgg19 and ResNet101 across both groups. The distribution trends are generally

consistent between the two groups, which indicates the models’ understanding of length

and the real representation of visual illusions. Furthermore, the shallower the depth

of the model, i.e., the lower layers, the more pronounced the visual illusion(lower L2

distances). This may suggest the potential areas in DNNs where visual illusions occur.
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Figure 3.4: The illusion response about model depth of Vgg19 and ResNet101
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3.2 Step1 :Müller-Lyer Illusion on More DNNs Models

Although the two classic DNN models exhibited human-like visual illusion responses,

relying on these two models is insu�cient to represent the brain-like characteristics and

universality of visual illusions in DNNs. Therefore, we expanded our testing to include

other models such as DenseNet201 [61], AlexNet [16], E�cientNet-b3 [62], ResNeXt101

[63], Vision Transformer [64], and Swin Transformer [65] for further testing.

• DenseNet201: This is a densely connected convolutional network characterized by

obtaining feature information from all previous layers at each layer. This structure

helps solve the problem of vanishing gradients in deep networks and enhances the

reusability of features, keeping good performance with fewer parameters.

• AlexNet: It was the first deep convolutional network to successfully use ReLU as

the activation function, accelerating the training process with GPUs, and intro-

duced local response normalization and dropout to improve training e�ciency and

generalization ability.

• E�cientNet-b3: E�cientNet is a series of models where the b3 version achieves

e�cient performance optimization through compound scaling (simultaneously ex-

panding the network’s width, depth, and resolution). These models achieve excep-

tional accuracy and e�ciency with lower computational costs.

• ResNeXt101: As an extension of ResNet, ResNeXt introduces the concept of

grouped convolution, increasing the model’s diversity by varying the pathways

of convolution kernels. ResNeXt101 o↵ers a way to enhance network capabilities

through parameter reuse, improving the model’s ability to handle complex data.

• Vision Transformer (ViT): ViT is a Transformer model that applies the self-

attention mechanism, originally designed for natural language processing but later

adapted for image classification tasks. ViT processes images by dividing them

into multiple patches and treating them as a sequence, demonstrating competitive

abilities in visual tasks against traditional convolutional networks.

• Swin Transformer: Swin Transformer is a hierarchical Transformer whose design

allows it to scale more e↵ectively to images of various sizes and handle more

complex visual tasks. It achieves a balance between computational e�ciency and

model performance by using a moving window self-attention mechanism.
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3.2.1 The RDM on Eight Models

Similar to previous work, the Euclidean distance of the feature vectors of lines with

di↵erent arrow directions in the perception group and the control group was used to

observe the performance of visual illusions. From the figure 3.5, di↵erences can be seen

between the models. Vgg19, AlexNet, and ResNet101 all show high similarity along the

diagonal, while DenseNet201 shows high similarity near the diagonal area. The other

models exhibit irregular distributions, especially models with Transformer architecture.

The RDM of the control group shows an upward shift of high similarity within Vgg19,

AlexNet, and ResNet101, which is also consistent with previous performances. The

similar change also can be seen in DenseNet201. However, the other four models still

exhibit chaotic distributions, revealing their lack of visual illusion performance.

3.2.2 The L2 Distance Changes on Eight Models

Then we also displayed the internal visual illusion performances of these eight models

(Fig. 3.6). The trend of changes in the two image groups across all eight models was

similar, further proving that the models’ performances were not accidental. Generally,

models that exhibited illusion responses showed decreasing representational dissimilar-

ity with increasing network depth. However, DenseNet201 showed a trend of decreasing

and then increasing to high representational dissimilarity. ViT showed relatively low

representational dissimilarity but exhibited irregular representational similarity in the

RDM. This may be related to ViT and Swin using a global modeling approach with

self-attention mechanisms to process images. This processing is not confined to local

receptive fields and spatial hierarchies and may di↵er from the biological visual system’s

processing methods. Similar behaviors were observed in ResNeXt101 32×8d and E�-

cientNet b3, which might because they focus more on global features and lack e↵ective

feature capture.
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Figure 3.5: The RDMs of eight models on arrow outward and inward
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Figure 3.6: The L2 distance trend of two group on eight models

3.2.3 Grad-CAM Visualization on Eight Models

Based on the di↵erences in model representations, we also used Grad-CAM [66] anal-

ysis to examine the feature preferences of di↵erent models to visually interpret the

occurrence of illusion responses. As shown in the Fig. 3.7, we found that each model fo-

cuses on di↵erent features when handling illusion tasks. Transformer-based models and

E�cientNet-b3 paid more attention to the arrows themselves, while VGG19 focused on

the length of the lines. The illusion response seems to involve attention to the arrows

and, to some extent, the lines between the arrows. These preferences might lead to

illusion judgments or cause neural networks to make biased length judgments.



3.3 Step 2: Five Optical Illusions 39

Figure 3.7: The heatmap of feature attention on eight models

3.3 Step 2: Five Optical Illusions

After exploring optical illusions in multiple DNN models, we further expanded the types

of optical illusions to supplement the investigation and explanation of whether DNNs

truly exhibit human-like optical illusions.

3.3.1 The Human Experiment on Five Optical Illusions

In this experiment, we used five classic optical illusions: color assimilation, the Hermann

grid illusion, the Müller-Lyer illusion, the Zöllner illusion, and the Poggendor↵ illusion

(Fig. 3.8). The specific experimental steps and settings are as follows:

• Color assimilation illusion: This illusion shows how visual perception is influenced

by surrounding colors. In this illusion, the color of rectangles against backgrounds

of di↵erent striped colors shows three di↵erent depths of color. We used twelve

colors based on the RGB color wheel, with backgrounds consisting of alternating

black, gray, and white stripes. The rectangles corresponded to three di↵erent

depths, totaling twelve color combinations (36 stimuli). Each round displayed a

group of colored rectangles and corresponding three di↵erent depths against black,

gray, and white striped backgrounds, labeled as ASD on the display (Fig. 3.8 A).

Participants observed the similarity between the color of the rectangle from ASD

(corresponding to depth1 to 3) and the original color on the far right, ranking

them by perceptual color similarity. After completing, they pressed the space bar

to proceed to the next group.
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• Hermann grid illusion: It is a pattern of grids and white dots creates flashing dots

at grid intersections, revealing characteristics of the visual system in processing

light contrast and edge detection. We set up five size ranges (6 10) and five

grayscale levels from white to black (µ = 1 ⇠ 5), with grid colors in red, green,

blue, and gray, totaling 100 stimuli (Fig. 3.8 B). The experimental steps involved

randomly displaying 100 stimulus images, with ASD corresponding to ”Clear”,

”Weak”, and ”None” options. Participants selected based on their perception of

the flashing points and proceeded directly to the next round.

• Müller-Lyer illusion: It includes two lines with di↵erent arrow shapes, illustrating

how contextual cues a↵ect our perception of length; the straight lines with di↵erent

arrows make the lengths appear altered. We set lines ranging from 200 to 380

pixels in length, each paired with inward and outward arrows, totaling 20 stimuli

(Fig. 3.8 C). The experimental steps involved randomly displaying lines from 200

to 380 pixels in length at the top of the screen, with lines with random arrow

directions shown at the bottom. Participants adjusted the length of the arrowed

lines using the WASD keys. AD for major adjustments (±10 pixels) and WS for

minor adjustments (±1 pixel), and after completion, they pressed the space bar to

proceed to the next round.

• Zöllner illusion: This kind of illusion shows how a straight line appears misaligned

when partially occluded by rectangles, highlighting the limitations of the visual

system in interpreting line directions and parallel relationships. We set seven

rectangle width sizes (120 ⇠ 240, in 20 pixel increments) and five angles between

the line and rectangle (15°, 30°, 45°, 60°, 75°), totaling 35 stimuli (Fig. 3.8 D).

The experimental steps involved randomly displaying 35 stimuli in the center of the

screen. Each round, a line parallel to the rectangle’s top line and at the same angle

appeared randomly below the rectangle. Participants adjusted the position of the

lower line until it visually aligned with the upper line. AD for major adjustments

and WS for minor adjustments, and after adjusting, they pressed the space bar to

proceed to the next round.

• Poggendor↵ illusion: The lines at specific arrow positions create the sensation of

a change in line angle, demonstrating how our visual system processes spatial po-

sitions and line alignment. We set six angles (30°, 40°, 45°, 55°, 60°, 75°), three
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arrow spacings (15, 25, 35), and lines in three regions of the arrows (1/3, 1/2,

2/3), totaling 54 stimuli (Fig. 3.8 E). The experimental steps involved randomly

displaying 54 stimuli at the top of the screen, with two parallel horizontal lines be-

low. Participants adjusted the angle of the lower line based on the stimulus above.

The default adjusted the first line, pressing Enter to switch line control. AD for

major adjustments (±0.1°) and WS for minor adjustments (±0.02°). Adjustments

were optional, and they pressed the space bar to proceed to the next round.

Depth1 Depth2 Depth3Color

Color Wheel

Parameter：12 Colors

A. Color assimilation 

E. Poggendorff illusion

B. Hermann grid illusion

Parameter：4 Colors
• Dot size
• Dot gradient depth
• White to Black

C. Müller-Lyer illusion

Line

Arrow Inward

Arrow Outward

Parameter：
• Line Length
• 200 to 380
• Interval 20

D. Zöllner illusion

Position 1 Position 2 Position 3

Parameter：
• Arrow angle 
• Spacing between arrows
• Line Position

Parameter：
• The angle of intersection 

between  line and rectangle
• The height of rectangle 

Keys：ASD/Space

Color assimilation: Ranking
• ASD relative to depth 123)

Hermann grid illusion: Option
• A. Clear / S. Weak / D. None

Keys：WASD/Space/Enter

Müller-Lyer illusion: Adjustment
• AD: Larger line changes
• WS: Smaller line changes

Zöllner illusion: Adjustment
• AD: Larger line angle changes
• WS: Smaller line angle changes

Poggendorff illusion: Adjustment
• AD: Larger line moving changes
• WS: Smaller line moving 

changes

Figure 3.8: Five optical illusions and their human subject experiment configuration

The experiments were conducted in a dark room using an HP P244 monitor (23.8

inches, refresh rate: 60Hz, resolution: 1920×1080) for stimulus presentation. Partici-

pants stabilized their head position using a chin rest (Tobii Pro AB) to ensure that all

participants viewed from the same angle and distance. The screen was 65 centimeters

away from the participants. Before the formal experiment, all participants underwent

practice and testing, and were informed to only observe and make adjustments based

on their visual perception. The experiments were conducted using Matlab based on

Psychotoolbox. Depending on the setting of total research, we collect participants’ per-

ceptual data as perceptual images for various visual tests comparing with optical illusion

images.
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3.3.2 Models and Processes

Before testing, we selected some models with single-path sequential feedforward architec-

tures and extensive spatial integration features, including the Inception series [67] (Incep-

tion v1, Inception v3), AlexNet, and the VGG series (VGG16, VGG19). Additionally,

to provide a more comprehensive perspective in our assessment, we also considered the

ResNet and DenseNet series, which rank high on the Brain-Score, such as ResNet50,

ResNet101, ResNet152, ResNet152 v2, DenseNet169, and DenseNet201.These models

are loaded and used via Pytorch’s torchvision and timm packages. We continue to use

pretrained methods to load the models, and Table 3.1 displays the pretrained weights

and total parameters of each model.

Table 3.1: The main configuration and parameters of various DNNs Models

Model SOURCE Package Parameters (Millions)

AlexNet IMAGENET1K Torchvision 61.10
Vgg16 IMAGENET1K Torchvision 138.36
Vgg19 IMAGENET1K Torchvision 143.67
ResNetv2 50 IMAGENET1K Timm 25.55
ResNetv2 101 IMAGENET1K Timm 44.54
ResNet152 IMAGENET1K Torchvision 60.19
ResNext101 IMAGENET1K Torchvision 88.79
Inception v3 IMAGENET1K Timm 23.83
Inception v4 IMAGENET1K Timm 42.68
DenNet121 IMAGENET1K Torchvision 7.98
DenNet169 IMAGENET1K Torchvision 14.15
DenNet201 IMAGENET1K Torchvision 20.01

The experiment also used Euclidean distance to construct a Representational Dis-

similarity Matrix (RDM), extracting the feature vectors from the last layer before the

classification layer and calculating the Euclidean distances (L2 distance) between di↵er-

ent feature vectors to construct the matrix. Considering the experimental di↵erences of

the five visual illusions, apart from color assimilation and the Hermann grid illusion, the

remaining three visual illusions constructed unconventional RDMs, namely by extract-

ing feature vectors of stimulus images and adjusted perceptual images. The horizontal

and vertical axes correspond to the stimulus images and the perceptual images adjusted

by human subjects respectively.

The construction of specific RDMs is as follows:

• Color Assimilation: A 48×48 RDM composed of 12 colors.

• Hermann Grid Illusion: A 25×25 RDM for each color with di↵erent parameters.
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• Müller-Lyer Illusion: A 10×10 RDM, based on perceptual data of arrow direction.

• Zöllner Illusion: A 54×54 RDM, based on stimulus images and adjusted perceptual

images.

• Poggendor↵ Illusion: A 35×35 RDM, also based on stimulus images and adjusted

perceptual images.

To further understand the internal mechanisms of the network, especially in cases

where it exhibits human-like perception, we used Class Activation Mapping (CAM)

visualization techniques, including Grad-CAM [66] and Grad-CAM++ [68], to interpret

the internal decision-making processes of DNNs in processing visual information.

3.3.3 Color Assimilation

In this study, we investigated subjects’ ranking perceptions of three di↵erent color depths

(Fig. 3.9A). Through average frequency, we found that the second depth (depth2) of

all colors received the highest ranking, displaying the highest visual similarity to the

original colors (Fig. 3.9A). Totally, two main ranking were observed: depth (231) and

depth (213), showing consistency in perception of these specific color depths.

After testing the color similarity rankings of these 12 models, as seen in Fig. 3.9B,

Vgg16 and ResNetv2 101 exhibited the highest frequencies in the rankings for color

depth at depths (231) and (213). Furthermore, we analyzed the depth variations of 12

colors across 12 models, extracted the feature vectors from the last convolutional layer,

and calculated the L2 distance to assess similarity (Fig. 3.9C). All models almost show

a trend of color ranking change in the last module, but from the ranking distribution,

the shallower module does not have ranking on ”231” and ”213” until the depth6. It

conflicts with the finding that DNNs early layer has the highest color sensitivity and

decreases when depth improves [69].

Based on the RDM heatmap of 12 colors across all models (Fig. 3.10), there are

significant di↵erences among the models. The two models that most closely approximate

human color perception rankings, ResNetv2 101 and Vgg16, do not exhibit consistent

similarity distributions, whereas other models display varying degrees of similarity distri-

butions. The RDM results further suggest that the models are not particularly sensitive

to color or have a weaker understanding of color.
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Regarding the models’ responses to di↵erent color depths, we found that the rank-

ing of green color frequently appeared in ”231” and ”213” in all models. Thus, we

utilized CAM visualization method on green color stimulus (Fig. 3.11). From the fig-

ure, most networks focused within the color blocks, but Vgg16 and Vgg19 had fewer

focal points. This suggests that DNNs are relatively sensitive to physical attributes but

lack an understanding of color.

Figure 3.9: Human color ranking and models color test on 12 colors. A: Human
subjects’ color ranking on three depth of each color. B: The color depth ranking from

12 DNNs models. C: The color depth ranking on di↵erent model depth.
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Figure 3.10: The RDMs of 12 colors within 12 models
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Figure 3.11: The CAM heatmap of green color on 12 models
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3.3.4 Hermann Grid Illusion

We asked participants to evaluate the perception of flashing dots in the grid illusion

images, classifying them into three levels: clear, weak, and none (see Fig. 3.12A). The

results indicated that as the gradient depth increased from µ(1) to µ(3), the intensity

of the perceived flashing dots decreased, especially in the green grids.

We tested 12 DNN models, evaluating their responses to grid images in four colors

(Fig. 3.12B). We selected four colors (µ(1), dot size=6) as the baseline condition and

calculated the L2 distance of feature vectors for other gradient depths and dot size

combinations in the same color. As shown in Figure 7B, with the increase in gradient

depth from white to black, the 12 models initially showed a rising trend in similarity,

but then almost all models exhibited a declining trend in the gray grids. Typically,

as the gradient depth increases, similarity should monotonically decrease, i.e., the L2

distance should increase. However, the actual results showed a complex trend, and this

declining trend suggests that models exhibit judgments similar to flashing dots under

certain conditions, where the declining slope of the curve might reflect the strength of

the flashing dots.

Also, Figure 3.12B shows that the flashing dots in the gray grids were the most

pronounced, with green and red grids also showing similar but less frequent e↵ects, and

blue grids almost showing no flashing dot e↵ects. Moreover, Inception v4 exhibited a

trend of decreasing and then increasing in the green grids, which might reflect a weak

perception of flashing dots similar to ”Clear.” Similarly, DenseNet121 at dot sizes of 7

and 8 and ResNetv2 101 in the gray grids also showed this trend. Under di↵erent dot

sizes, the performance of flashing dots generally showed a positive correlation, i.e., the

larger the dot size, the weaker the flashing dot e↵ects. Overall, the 12 models varied in

their perception of flashing dots across the four colored grids, with most models showing

weak performance (low slopes). The three networks in the DenseNet series showed more

pronounced flashing dot e↵ects in gray, red, and green grids.

We further analyzed the performance of di↵erent colored grids in RDMs (see Fig.

3.13A). The RDMs of the four colors were overall similar, but there were significant

di↵erences between di↵erent gradient depths. Especially in gray grids, the deeper µ(3)

and µ(4) showed higher similarity.

When analyzing the models with GradCAM, we found that di↵erent models focused

on di↵erent features in the grid illusion images (Fig. 3.13B). The Vgg series mainly
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focused on each dot, while the DenseNet series and the Inception series paid more

attention to the grid edges, showing a weak feature preference for points in the middle

areas.

Finally, we evaluated the performance of flashing dots at di↵erent network depths

(see Fig. 3.14). The results showed that the response of the models was not monotonous

with increasing network depth, possibly reflecting the complexity of human-like percep-

tion of flashing dots.
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Figure 3.12: The response of grid illusion from human subjects and DNNs illusion
test. A: The distribution of four colors gird illusion from subjects. B: The DNNs test

on four colors gird illusion.
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Figure 3.13: The visualization heatmap of Hermann Grid Illusion on 12 DNNs. A:
RDMs of four color on DNNs. B: The feature attention focus from 12 DNNs.
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Figure 3.14: The illusion trend on di↵erent model depth.
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3.3.5 Müller-Lyer Illusion

As for the Müller-Lyer Illusion, we averaged the data on participants’ perceived lengths

and compared it with the standard actual lengths to quantify the degree of visual illusion.

The degree of visual illusion refers to the di↵erence between the perceived and actual

lengths. As shown in Fig. 3.15A, under di↵erent length baselines, the inward-pointing

arrows (light green bar graph) and outward-pointing arrows (pink bar graph) produced

di↵erent changes in length. The visual illusion for outward-pointing arrows tended

to present as positive values, while inward-pointing arrows showed negative values in

illusion strength. This means that lines with outward-pointing arrows appeared shorter,

while those with inward-pointing arrows appeared longer.

We then calculated the Euclidean distance between the feature vectors of perceived

lines with inward and outward-pointing arrows after adjustments and constructed an

RDM (Fig. 3.16A). As seen in the figure, DenseNet169/201, Vgg19, and ResNetv2 50

showed high similarity at the diagonal, indicating that these networks highly similarly

represented the perceived lines with inward and outward arrows, reflecting model per-

formances similar to human visual illusions. In Fig. 3.16B, the control group showed

a diagonal upward shift after adding arrows in opposite directions to lines of the same

length, except for ResNetv2 50. This further validated the human-like perception shown

by the models at the diagonal in Figure 3.16A.

In the visualized CAM methods, models with visual illusion manifestations showed

feature focus on lines and arrows in both GradCAM and GradCAM++, while models

without visual illusion manifestations mostly focused only on the arrows or lines (Fig.

3.15B). This di↵erence may lead to the models’ visual illusion performance in the Müller-

Lyer illusion. Also, from the Fig. 3.15C, we can see that two group showed highly similar

trend which indicate the illusion performance exist in DNNs.
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Figure 3.15: The perceptual length of Müller-Lyer Illusion and illusion test of DNNs.
A: Human subject perceptual length between arrow outward and inward. B: The
heatmap of feature attention focus on 12 DNNs. C: The L2 distance of di↵erent model

depth on two groups.
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A B
Figure 3.16: The RDMs on Müller-Lyer Illusion within perceptual gourp and control

group in the DNNs.

3.3.6 Poggendor↵ Illusion

In the experiments on the Poggendor↵ illusion, we recorded the subject’s data on ad-

justing the position of lines under varying angles and widths of rectangular overlays,

and calculated the average positional deviation. Figure 3.17A shows that the larger

the angle between the line and the rectangular overlay, the lower the deviation, and

as the width of the rectangular overlay increases, the actual distance deviation fluctu-

ates around a RectHeight of 120. Also, Figure 3.17B show that all models possibly has

illusion response expect for ResNet v2 structure.

We considered the average deviation of the positions as the perceptual image ad-

justed by the users, and constructed an RDM with the actual line images (Figure 3.17C).

All models exhibited high similarity along the diagonal, with several models showing

multiple parallel lines of similarity near the diagonal. Combined with the heatmaps

visualized using the CAM method (Fig. 3.18), models focusing on line features in the

RDM showed several clear parallel lines besides the diagonal, while models with fewer

feature focuses on the lines showed similarity across many areas. Although the high sim-

ilarity along the diagonal in all models indicates human-like visual illusion judgments,
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these di↵erences reflect whether the models truly focus on and understand the images

and the manifestation of visual illusions.

A B

C

Figure 3.17: Human subject perceptual illusion and DNNs testing. A: The visual
bias of Poggendor↵ illusion. B: Di↵erent model depth’s L2 distance of illusion and

perceptual stimulus. C: The RDMs of 12 DNNs
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Figure 3.18: The heatmap of feature focus on Poggendor↵ Illusion from 12 DNNs.

3.3.7 Zöllner Illusion

Participants made angle adjustments after observing the Zöllner illusion to reflect the

perceived tilt angle, indicating the strength of the visual illusion. Figure 3.19A shows

the average perceived angles under di↵erent arrow spacings and angles. The perceived

angles were larger at arrow angles of 30 and 44 degrees, while the other angles showed

very small perceived angles, considered as no illusion. Generally, the line positions were

relatively larger when centered by the arrows.

We prepared images of the averaged perceived angles for comparison with the stim-

ulus images in constructing the RDM (Fig. 3.19C). The 12 models also showed high

similarity along the diagonal. In the visualization with CAM (Fig. 3.20), nearly all

models showed a high degree of feature focus on the overall combination of arrows and

lines, without a greater feature bias towards the lines. In the Zöllner illusion, it does not

indicate that DNNs exhibit visual illusions. Under di↵erent network depths, the main

trends were similar to those in the Zöllner illusion (Fig. 3.19B, Fig. 3.17B), suggesting

that DNNs are sensitive to the physical distances of lines rather than angles.
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A

B

C

Figure 3.19: The huamn subject perceptual angles and model test. A:The average
perceptual angle on Zöllner illusion. B: The L2 distance of di↵erent model depth. C:

The RDMs of 12 DNNs.

Figure 3.20: The CAM visulization of 12 DNNs on Zöllner illusion.



Chapter 4

Illusion Performance in DNNs by

Specific Designed Dataset

This chapter primarily explores the performance of deep neural networks (DNNs) on a

specific visual illusion dataset without pre-trained models. Additionally, it delves into

the mechanisms underlying visual illusions and their potential brain-like guidance [54].

4.1 Oblique Illusion and Human Subject Experiment

Considering that pre-trained models cannot fully grasp physical attributes, particularly

angles, such as inclination, we explored the performance of DNNs using a more complex

and parameter-rich visual illusion, the Skye’s Oblique Grating Illusion (Fig. 4.1). This

illusion, a variant of the café wall illusion [70], consists of multiple parallel and horizontal

bars combined with black-and-white alternating cubes. The cubes form patterns that

create either a clockwise or counterclockwise appearance.

We designed an experiment to collect participants’ responses to perceived inclination

angles. During the experiment, participants need to observed 144 di↵erent visual stimuli

combinations and adjusted the angle of colorless bar to match their perceived angle of

stimulus bar above. Simply, the display shows two types of bars set at 0°(Fig. 4.2A).

Participants used a keyboard to adjust the angle of the black bar below to align with

their perception of the illusion stimulus above.

The experiment included options for large and small angle adjustments (±0.5°,

±0.1°). Before the main experiment, participants completed a practice session with 30

trials to familiarize themselves with the process. After the practice, participants could

58
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start the formal experiment by pressing any key. They moved to the next trial by clicking

a mouse after adjusting four angles and took a five-minute break between each of the

four sets of 36 trials.

The visual illusion stimuli consisted of four bars of the same color and alternating

black-and-white diamonds on a background of black and blue stripes (see Fig. 4.1B).

The bars were 64 pixels long, and the black-and-white diamond edges ranged randomly

from 5 to 10 pixels in width. The bars’ colors were randomly generated from an RGB

color wheel, totaling 12 colors (Fig. 4.2B). The positions of the black and white areas

in the diamonds were also randomly switched, resulting in 144 combinations.

All participants had taken a color blindness test before the experiment to ensure

they could correctly identify colors.
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Figure 4.1: The main components of the Skye’s Oblique Grating Illusion.
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Figure 4.2: The preparation of the Skye’s Oblique Grating Illusion.
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4.2 Training Approach and Testing

4.2.1 Model Selection and Training Strategy

According to Brain-Score [44, 56], DNNs correspond to di↵erent regions of the visual

cortex (Fig 2.8), simulating the hierarchical structure of the brain. But Nonaka et

al.,(2021) [71] found that some DNNs show a negative correlation between image recog-

nition performance and brain hierarchy scores, while simpler traditional models exhibit

high similarity. Therefore, we selected four top-performing and four traditional DNN

models from Brain-score.

Then we categorized participants’ adjusted angle data into eight illusion strength

levels. Based on the interval of 0.1 degree, these eight categories were further divided

into two main categories: With-illusion (C2) and No-illusion (C1) (Fig. 4.3). We gener-

ated training datasets (3,000 images per category) based on the distribution of illusion

strength shifts. The models were evaluated using k-fold cross-validation with the 144

stimulus images as the test set. Training was conducted using PyTorch with a learning

rate decay strategy. The training focused on a binary classification task with the labels

C2 and C1 to ensure the models accurately understood the concept of “inclination”

before testing them on illusion images.

1

3

5

7

2

4

6

8

C1
No-illusion

C2
With-illusion

Illusion Strength Illusion Strength

1

3

5

7

2

4

6

8

Illusion Strength Illusion Strength

Corresponding

Corresponding

Training dataset：24000 Testing dataset：144

Human Perceptual adjustment Illusion

Figure 4.3: The eight illusion strength of optical illusion and dataset preparation.
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4.2.2 Permutation Test

To validate the model testing’s rationality, we employed permutation tests, which create

”null distributions” by shu✏ing data and determining whether a test statistic is signif-

icantly di↵erent from random noise. In machine learning, significance tests can prove

the reliability and validity of test results. We trained and predicted using the original

data-labels, calculated the correlation (r-value) and p-value between predicted and orig-

inal labels, and noted the accuracy as the r-value. Then, we shu✏ed the original labels

to create per labels, reassigned them to the data, and repeated the training and pre-

diction. The correlation between per predict labels and labels was recalculated. Each

model underwent 1,000 significance tests. We conducted similar tests during the testing

phase to ensure accuracy.

4.2.3 The Visualization on RDMs

To evaluate and compare DNNs’ representations under di↵erent stimuli, we constructed

representational dissimilarity matrices (RDMs) to compare the di↵erences between illu-

sion and non-illusion images in the networks. RDMs still used Euclidean distance (L2

distance) as the measure of similarity. Here we chose the best illusion performance model

as RDM visualization. Through ResNet101’s various depth modules, we calculated the

feature vectors of the stimulus and perception data. Each tensor was sized 280x160x1,

generating 8x8 RDMs. We also extracted features from the module before the fully

connected layers of the network for a comprehensive comparison of all eight models.

4.2.4 The Visualization on Grad-CAM

To visualize the regions responsible for the networks’ responses to visual illusions, we

utilized Grad-CAM after model training and testing. Grad-CAM creates heatmaps to

explain the DNN’s classification decisions by highlighting image pixels contributing to a

specific class. We compared the di↵erences between images with and without inclination

illusions using the most responsive network (ResNet101).
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4.3 Results

4.3.1 Perceived Angles

After obtaining the perceptual angles, we averaged the perception data and took the

absolute values to reflect the illusion strength uniformly (Fig. 4.4). The x-axis in

the figure corresponds to the 12 RGB colors, with each color group showing di↵erent

cube widths, totaling 72 groups. Eight colors exhibited significant illusion deviations.

Participants’ feedback indicated that the other weaker colors were adjusted without

bias. The perceived angle deviation increased and then decreased with the diamond

edge width, with a width of 10 showing minimal deviation, similar to the colors that

close to 0°.

Figure 4.4: The human subjects’ perceptual degree on 12 colors.

4.3.2 Model Performance

Before testing the eight models with visual illusion stimuli, we conducted 1,000 permuta-

tion tests. Fig. 4.5 shows the permutation test performance distribution for each model,

displayed as light blue histograms and probability density curves in a 2x4 subplot layout.

The actual test scores of the models are represented by orange dashed lines, and the 95%

percentile of the permutation test by red dashed lines. Except for Vgg19, the actual test

scores of the other seven models were significantly higher than their 95% permutation

test percentiles. This is evident in the histograms where the orange dashed lines are

typically to the right of the red dashed lines (p = 0.05), indicating that these models’
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success in visual illusion image tests is not random and reflects an inherent ”visual illu-

sion” mechanism. Conversely, Vgg19’s actual test score aligns with its 95% permutation

test percentile, suggesting it lacks the capability to correctly recognize visual illusions.

As shown in Figure 4.6, the classification accuracy of the models varied significantly,

with no clear correlation between the number of parameters and visual illusion classi-

fication performance. Among all models, ResNet101 performed the best, achieving a

classification accuracy of 90.28%. In addition to accuracy, this model also excelled in re-

call and F1 scores, further confirming its advantage in visual illusion classification tasks.

Although ResNet101 ranked mediocre or lower in Brain Score, its strong response to vi-

sual illusions highlights the complexity of neural and computational mechanisms in visual

perception. In contrast, Vgg19, considered a good model for human visual perception,

performed poorly in visual illusions, with an accuracy of only 61.81%. Other models,

such as E�cientNet-B1, E�cientNet-B6, ResNeXt101 32×8d, ResNet152, DenseNet201,

and PNASNet 5 Large, showed varying classification accuracies ranging from 74.31% to

88.20%. DenseNet201 performed slightly better in recall with a score of 0.99, compared

to ResNet101’s 0.97, and also had fewer parameters.

Figure 4.5: The permutation test result of 12 DNNs.

Additionally, Figure 4.7 shows the performance of the eight models across twelve

colors and eight strength levels. From a color recognition perspective, most models

performed exceptionally well on certain colors, such as ”green,” ”spring green,” ”cyan,”

and ”yellow,” with many achieving 100% accuracy. However, performance was poorer

on colors like ”blue,” ”magenta,” and ”purple,” indicating that some models are more
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Figure 4.6: The models testing of C1 and C2.

adept at specific color ranges. Notably, E�cientNet-B1 and ResNet101 showed higher

accuracy across most colors, reflecting their potential advantage in handling natural

tones, while E�cientNet-B6 and Vgg19 showed lower accuracy, particularly on ”orange”

and ”purple,” indicating a sensitivity gap for certain hues. Almost all models showed

low accuracy on ”royal blue,” suggesting a common recognition challenge for this color.

In terms of strength recognition, most models were more accurate at medium

strength (e.g., 4 or 5), while accuracy generally dropped at extreme strength (e.g., 1

or 8), indicating challenges in handling subtle or very pronounced strength changes.

ResNet152 and DenseNet201 performed well across most strength levels, especially be-

tween medium to high strength, while ResNet101 also performed well at medium strength

(e.g., 3 to 6), demonstrating balanced capabilities in handling medium-level visual varia-

tions. On the other hand, Vgg19 and PNASLarge performed poorly at extreme strength,

reflecting a lack of sensitivity to subtle or very strong visual e↵ects. E�cientNet-B6 also

performed poorly at low strength, indicating limitations in handling fine visual changes.
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Figure 4.7: The result of color and illusion strength on DNNs.
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4.3.3 Visualization Interpretations and Di↵erences

To further explore how visual illusions manifest in deep neural networks (DNNs), we

employed various visualization techniques to analyze DNN responses to illusion stimuli.

Using Grad-CAM, we tested images with and without illusions separately, extracting

and visualizing features to distinguish the DNNs’ classification bases.

For No-illusion stimuli, DNNs exhibited multiple feature trends related to the col-

ors of the bars. Di↵erent colors of non-illusion stimuli showed four distinct feature

preferences. In contrast, With-illusion stimuli exhibited overall bending trends in their

features, as shown in Figures 4.8and 4.9. These trends sharply contrasted with the

features of non-illusion stimuli.

Figure 4.8: The feature attention focus of C1 and C2 on DNNs.

Figure 4.9: The feature attention focus of ResNet101.
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In the classification of ”With-illusion” (C2) and ”No-illusion” (C1), we calculated

the L2 distances for correctly and incorrectly recognized instances to further reveal the

performance di↵erences among various deep learning models in visual illusion recognition

tasks (Fig. 4.10). By combining overall model accuracy with the average L2 distance

per layer, we identified the strengths and weaknesses of each model in extracting and

classifying illusion features. By combining the average L2 distances and overall clas-

sification accuracy of di↵erent models, we found significant di↵erences in how models

processed visual illusion features. E�cientNet-B1 and E�cientNet-B6 showed greater

L2 distance variation in shallow layers but improved in deeper layers. ResNet101 and

ResNext101 performed well in processing visual illusion images, with high accuracy, de-

spite showing similarity in some layers for misclassified and correctly classified samples.

In contrast, Vgg19 had lower accuracy and higher L2 distances for misclassified samples

across all layers, indicating its inadequacy in recognizing illusion features. ResNet152,

DenseNet201, and PNASNet showed a balance between accuracy and L2 distance but

still had trend for improvement.

Figure 4.10: The average L2 distance on DNNs.

We focused on the ResNet101 model, which performed exceptionally well in recog-

nizing visual illusions. Figure 4.11 shows the RDM of ResNet101 at di↵erent network

depths, based on the L2 distance between human-perceived adjusted images and visual

illusion images. The strength of the color represents the degree of similarity, with lighter

colors indicating higher similarity.



4.3 Results 68

In terms of representational similarity (Fig. 4.11), ResNet101 showed high similarity

in shallow layers, which gradually decreased with depth. Similar patterns were observed

in untrained networks, though the changes more rapidly.

HigherLower

The RDM on Pretrained/Self-trained ResNet101

Self-data Trained

Pretrained

Model Depth 

Figure 4.11: The RDMs of pretrained and self-data trained ResNet101.

Interestingly, based on the RDMs of ResNet101 across di↵erent network depths,

we explored the e↵ect of the initial layers on visual illusions by training only the initial

module of ResNet101 separately. As shown in Figure 4.12, the RDM heatmap of the

separately trained initial module of ResNet101 is very similar to that of the full archi-

tecture of ResNet101, particularly in the high similarity distribution along the diagonal.

Given the mapping relationship between DNNs and the ventral stream, the visual illu-

sion performance of the initial layers may suggest the importance of V1 in responding

to visual illusions. This also implies that the high visual illusion performance of V1

potentially influences the IT cognitive layer through other mechanisms.
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Chapter 5

DNNs: Spatiotemporal vs Static

In this chapter, we continue to delve into whether video classification models and predic-

tive coding models exhibit more brain-like performance in visual illusions. Specifically,

we explore if DNNs can more realistically simulate the human visual mechanism in pro-

cessing visual illusions by combining self-supervised learning and training strategies that

consider spatiotemporal features.

5.1 Main idea

Although previous research focused on feedforward DNN architectures to discuss the

universality and potential issues of DNNs in visual illusions, it is crucial to fully consider

DNNs in all aspects, especially those with spatiotemporal characteristics. This involves

considering the dynamic and complex context-dependent aspects of visual processing.

Recent studies indicate that considering spatiotemporal characteristics and adopt-

ing self-supervised learning methods can approximate the human brain’s approach in

some visual tasks. For example, visual transformers and convolutional neural networks

demonstrate a hierarchical similarity to the human visual cortex when dealing with dy-

namic stimuli [72]. Multimodal and temporal networks perform better in interpreting

neural activities of the visual cortex [73]. Recurrent generative networks trained to pre-

dict future video frames can capture complex perceptual motion illusions, highlighting

the importance of recursion in the neural encoding of dynamic visual scenes [74].

Thus, we use the Müller-Lyer illusion as a case study for model training and testing

on spatiotemporal characteristics. The human perceptual lengths from previous Müller-

Lyer illusion experiments serve as the perceptual data for this experiment, specifically,
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the average perceived lengths with arrows pointing outward and inward in Figure 3.2

as the perceptual group images for testing. Besides, we also keep the control group

setting, which includes lines of the same length but with di↵erently oriented arrows.

After completing the relevant model training, the testing phase involves comparing and

analyzing static classic DNN models with video models.

5.2 Video Models and Training Strategies

5.2.1 Video Dataset

During the preparation of the Müller-Lyer line video dataset, based on the attributes

of lines and arrows, we set up two types of datasets (as shown in Figure 5.1(c) and

Table 5.1): Type A and Type B. Type A includes videos with varying line lengths and

fixed arrow attributes, totaling 2160 videos; Type B includes videos with varying arrow

attributes and fixed line lengths, totaling 5616 videos, mainly involving changes in arrow

color, angle, and length (Table 5.1).

The specific types of videos in Categories A and B are as follows:

• Line Length Variation (Type A): The line length is set from 110 to 210 pixels, at

intervals of 20 pixels, with arrow attributes (such as arrow length, angle, and color)

remaining constant. This allows for studying the impact of line length variation

on illusions.

• Arrow Length Variation (Type B): The arrow length is set from 10 to 60 pixels,

at intervals of 10 pixels, with line length remaining fixed. This helps explore the

impact of arrow length on the Müller-Lyer illusion.

• Arrow Angle Variation (Type B): Di↵erent arrow angles are set (such as 60°,

80°, 100°, and 120°), with line length remaining constant. These changes help

understand the impact of di↵erent arrow angles on illusions.

• Arrow Color Variation (Type B): Di↵erent arrow colors are selected (such as red,

green, blue, yellow, magenta, and cyan), with line length remaining constant.

These changes help study the impact of arrow color on line length perception.

As shown in Table 5.1, the dataset parameters are set considering the models’

limitations in understanding lines and avoiding catastrophic forgetting. Videos from
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Types A and B are used for model training siperately. For Type A (line length variation),

we use the pretrained weight on Kinetics-400 video dataset for training, where the line

length varies over time, with labels representing the average of the starting and ending

lengths. For Type B (arrow attribute variation), same as Type A training setting, but

with arrow attributes (such as length, angle, color) varying over time, with labels for

the fixed line length.

Video dataset

Arrow : Type B (total: 5616)

Line : Type A (total: 2160)

Type A

Type B

Arrow line color Arrow line length Arrow included angle

Line length

Figure 5.1: The video dataset of Müller-Lyer illusion (Type A and B).
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Table 5.1: Müller-Lyer Illusion Video Dataset Overview

Attribute Type A Type B

Number of Videos 2160 5616
Variable Attributes Line Length Arrow Attributes
Fixed Attributes Arrow Attributes Line Length
Length Details 110-210 pixels 10-60 pixels

Arrow Details

Arrow colors: 6;
Angles: 60°, 80°, 100°,
120°;
Arrow line length: 10 to
60

Line length:110 to 210

5.2.2 Video Models

In this study, we have tested video models on Müller-Lyer illusion. Specifically, we have

employed four types of video classification models: R3D-18 [75], MViT-V1-B [76], S3D

[77], and Swin3D-T [78], along with the predictive coding model PredNet [20], to test

the performance of these five models in handling the Müller-Lyer illusion (as shown in

Figure 5.2). The details are as follows:

• R3D-18: A 3D convolutional neural network that extends the ResNet-18 architec-

ture to video data, e↵ectively capturing short-term spatiotemporal features.

• MViT-V1-B: A multi-scale visual transformer that utilizes a hierarchical attention

mechanism to capture long-range dependencies and multi-scale features, making

it suitable for complex video understanding tasks.

• S3D: Integrates separable convolution, maintaining the ability to learn spatial and

temporal features while reducing computational complexity, suitable for e�cient

video classification.

• Swin3D-T: Extends the Swin Transformer architecture to video tasks, using shift-

ing windows for attention allocation to enable scalable video analysis and capture

fine-grained spatiotemporal patterns.

• PredNet: A predictive coding model that processes video data through recurrent

prediction and error calculation, excelling in predicting the next video frame and

capturing dynamic changes.

The specific configurations of the five models are shown in Table 5.2.
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In our research, the five models can be understood as:

ŷ = f✓(X) (5.1)

whereX represents the input sequence of video frames, ŷ is the model’s predictive output

for the target (e.g., line length or visual illusion e↵ect), and f✓ is the nonlinear mapping

function defined by model parameters ✓. This mapping covers the entire processing chain

from video frames to prediction output, including feature extraction, spatiotemporal

analysis, and the final decision layer.

All models are implemented using the PyTorch framework, with the four video

classification models implemented using the torchvision library. Training is conducted

on NVIDIA A1000, with an initial learning rate of 0.001. We adjust hyperparameters

such as learning rate, batch size, and training epochs through cross-validation to achieve

optimal performance. Given the unique architecture and tasks of PredNet, we trained

PredNet separately and used it only for comparative testing. By using these di↵erent

models, we aim to utilize video models as brain-like models to comprehensively explore

the visual illusion performance of DNNs combining spatiotemporal characteristics and

self-supervised learning strategies, thereby further investigating the biological similarity

of neural networks in visual mechanisms, especially the universality of visual illusions in

DNNs.

Table 5.2: Video Model Configuration Parameters

Model Pretrained Dataset Number of Pa-

rameters

Package

R3D-18 Kinetics-400 33.2M Torchvision
MViT-V1-B Kinetics-400 36.5M Torchvision

S3D Kinetics-400 18.0M Torchvision
Swin3D-T Kinetics-400 27.6M Torchvision
PredNet Kinetics-400 6.9M Pytorch

5.2.3 Teacher-Student Self-Supervised Learning

In this section, we detail the two-stage training method adopted to optimize the per-

formance of video classification models on the Müller-Lyer illusion video dataset. As

shown in Figure 5.3, the first phase includes supervised training of the teacher model,

aiming to enable the model to accurately recognize line lengths. The second phase in-

volves teacher-student architecture-based self-supervised learning [79], where the student
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model self-optimizes under the guidance of the teacher model without labels, thereby

learning and understanding the characteristics of lines. Furthermore, considering that

neural networks based on spatiotemporal characteristics are closer to the way the human

brain processes information, we explore whether deep neural networks still exhibit visual

illusions in self-supervised learning.

The teacher model is trained using a supervised learning method, aiming to mini-

mize the mean squared error (MSE) between the predicted line lengths and the actual

lengths. We chose four video classification models—R3D-18, MViT-V1-B, S3D, and

Swin3D-T—and replaced their last layer to output a scalar value, the predicted line

length. During training with the preprocessed Müller-Lyer video dataset, the dataset

is divided into 80% training set and 20% validation set. The training process uses the

Adam optimizer, with an initial learning rate set at 0.001, combined with a StepLR

learning rate scheduler, reducing the learning rate by tenfold every 30 training cycles.

The models are fine-tuned after pre-training on the Kinetics 400 dataset to obtain richer

and more general feature expressions, thus achieving better performance in specific tasks.

In the self-supervised learning phase, the student model is trained using the same ar-

chitecture without preloaded pretrained weights. We designed a compound loss function

that includes regression loss and feature consistency loss, aiming to enable the student

model to not only estimate line lengths but also maintain feature-level consistency with

the teacher model in a label-free environment. The specific expression of the compound

loss function is:

L = ↵ ·MSE(ypred, teacher, ypred, student)+ (1�↵) · (1�CosineSimilarity(fteacher, fstudent))

(5.2)

Where ypred, teacher and ypred, student represent the predicted lengths by the teacher

and student models for the same video frame, respectively; MSE is used to measure the

error between their predictions; CosineSimilarity evaluates the similarity in feature level

between the teacher and student models; and ↵ is a weighting factor used to adjust the

proportion of the two types of losses.

Through the training strategy described above, we are able to e↵ectively train

video classification models, enhancing their performance on the Müller-Lyer illusion

video dataset, while also improving the models’ understanding of line lengths and their

visual illusions. This teacher-student training method not only increases the models’
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prediction accuracy but also enhances their understanding of complex visual illusions.

Teacher

model

Student

model

Step 1: supervised learning

Data Preparation

Loss_1 

(Cross Entropy)

Teacher 
Features

Step 2: Teacher student self-supervised learning

Loss_2

Combined Loss:  

(Regression +  Feature Consistency)

Testing Phase
Analysis 

(RDM, Grad-CAM) 

Figure 5.3: The main training strategy through two steps.

5.2.4 Representation Similarity Analysis (RSA)

Representation Similarity Analysis (RSA) is used to compare feature representations

extracted by models under di↵erent conditions, quantifying the behavioral di↵erences

of models when processing the Müller-Lyer illusion. By computing the Representation

Dissimilarity Matrix (RDM) from feature vectors, we can observe the models’ responses

to di↵erent visual inputs and analyze whether they exhibit human-like visual illusions.

After the student model completes its training, we extract feature vectors from

the model’s final module, which correspond to di↵erent perceived lengths (200 to 380

pixels) with arrows pointing outward and inward. We then calculate the Euclidean

distance between these feature vectors to construct a 10x10 RDM, visualized through a

heatmap. The presence of visual illusions is assessed by the distribution of the heatmap,

with the primary formula as follows:
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RDMi,j =

sX

k

(X(i)
out,k �X(j)

in,k)
2 (5.3)

where X(i)
out,k represents the k-th feature value for the i-th perceived length under

the condition of arrows pointing outward, and X(j)
in,k represents the k-th feature value

for the j-th perceived length under the condition of arrows pointing inward. Euclidean

distance measures the dissimilarity between two feature vectors.

The RDM calculated allows us to generate a heatmap that visualizes the similar-

ity di↵erences of feature vectors under di↵erent input conditions. The horizontal and

vertical axes of the heatmap represent di↵erent perceived lengths, and the color depth in-

dicates the degree of dissimilarity between feature vectors—darker colors indicate higher

dissimilarity, lighter colors indicate lower dissimilarity. This visualization method helps

explore and reveal the model’s focus on features of the Müller-Lyer illusion lines, thus

understanding its internal mechanisms.

5.2.5 Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) reveals the focal points of at-

tention of models when processing the Müller-Lyer illusion. By calculating the weighted

sum of gradients of the target category against the convolutional layer feature maps,

Grad-CAM generates a heatmap to visualize the areas of focus during the model’s

decision-making process. The main calculation steps are as follows:
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where Ak 2 Ru⇥v is the k-th feature map output by the convolutional layer, u and

v being the width and height of the feature map; ↵c
k represents the weight of category

c for the k-th feature map; Lc
Grad�CAM is the generated Grad-CAM heatmap. The final

heatmap is overlaid on the original image to intuitively show the model’s area of focus.

It should be noted that Grad-CAM is not applicable to PredNet, as PredNet is

a recurrent neural network used for video prediction, producing the next frame of the

video rather than a classification result. PredNet relies on pixel-level prediction errors for
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training, not category-based gradients, making it impossible for Grad-CAM to calculate

meaningful gradient information. Therefore, we only generate feature heatmaps for the

four video classification models.

5.2.6 Total Research Method

This study proposes an integrated framework by combining self-supervised learning and

a teacher-student architecture to address the Müller-Lyer illusion, exploring the capac-

ity of deep neural networks (DNNs) to simulate human visual mechanisms. Through

a composite training process, the study learns to understand line lengths from video

data and uses Representation Similarity Analysis (RSA) and Gradient-weighted Class

Activation Mapping (Grad-CAM) to assess the models’ performance in visual illusions

and explain the decision-making process.

Step One: Composite Training Process The composite training process combines

self-supervised learning and feature analysis. The target optimization function (loss

function) is defined as:

Lsupervised = SupervisedLoss(ytrue, ypred, teacher) (5.6)

Lself = � · Self Loss(ypred, teacher, ypred, student) + � · FeatureConsistency(fteacher, fstudent)

(5.7)

L = Lsupervised + Lself (5.8)

Where:

• SupervisedLoss is the mean squared error, used to measure the di↵erence between

the teacher model prediction and the true label.

• Self Loss the self-supervised learning loss of the student model using the teacher

model output as the pseudo label.

• FeatureConsistency represents the feature consistency between the teacher and

student models, usually measured by cosine similarity.
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• � and � are hyperparameters used to adjust the weights of di↵erent parts in the

loss function.

Step Two: Model Behavior Assessment By using RSA and Grad-CAM, we assess

and visualize model behavior, generating heatmaps and dissimilarity matrices that pro-

vide intuitive feedback and deep insights into how the models handle visual illusions.

Specifically, the comprehensive sensitivity or responsiveness of the models to visual

illusions, SDNN , is evaluated through the following formula:

SDNN = Analyze(Grad-CAM(I),RDM(Iperception out, Iperception in)) (5.9)

where:

• Grad-CAM(I) represents the heatmap generated by applying Grad-CAM to the

input image I, highlighting the areas of focus during the DNN’s decision-making

process.

• RDM(Iperception out, Iperception in) calculates the representational di↵erence between

lines with perceived lengths where the arrows point outward Iperception out and

inward Iperception in, measured using Euclidean distance.

• Analyze combines the visual attention heatmap generated by Grad-CAM and the

representational dissimilarity matrix calculated by RDM for analysis.

This comprehensive approach enables us to e↵ectively train video classification mod-

els, which perform excellently when processing the Müller-Lyer illusion video dataset,

and further explore the universality and spatiotemporal characteristics of visual illusions

to determine whether DNNs exhibit brain-like properties.

5.3 Results

5.3.1 Model Understanding of Line Length and Basis for Visual Illu-

sions

Compared to previous experiments, merely testing the L2 distance between the percep-

tion group and the control group to verify the presence of visual illusions is insu�cient.

We need to ensure that the model can indeed recognize and understand line lengths,

and then use the test situation of the perception group to corroborate the occurrence
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of visual illusions. Figure 5.4 shows the video model’s ability to understand line length

and its performance of visual illusions.

As shown in Figure 5.4A, we first calculate the Euclidean distance of feature vec-

tors for lines with the same arrow orientation and the same labeled length in both the

perception and control groups. This is to test whether the model can accurately un-

derstand line lengths, as the actual lengths of lines under the same labeled length in

the two groups are inconsistent. The length of the bars reflects the model’s ability to

understand line lengths, especially under two types of video datasets. On this basis,

calculating the Euclidean distance of feature vectors for lines with di↵erent arrow ori-

entations under the same labeled length within each group visually demonstrates the

model’s visual illusions (Figure 5.4B). Simply put, the greater the L2 distance values in

Figures 5.4A and the smaller the L2 values for the perception group in Figure 5.4B, the

higher the authenticity of the model’s visual illusions.
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Figure 5.4: L2 distance between same group and di↵erent group. A: The L2 distance
of 10 length label on same arrow orientation from perception group and control group.
B: The L2 distance of 10 length label on di↵erent arrow orientations within two groups.
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It is evident that under training with type A and type B datasets, the four models

exhibited di↵erent behaviors. From the left side, Figure 5.4(A) Type A, MViT-V1-B

shows the greatest dissimilarity among the four models, indicating a significant di↵erence

in the lengths of Müller-Lyer lines between the perception and control groups. Although

all four models show varying distributions of dissimilarity, S3D and R3D-18 exhibit a

trend of decreasing dissimilarity with increasing labeled line lengths. Similarly, on the

right side in Type B, MViT-V1-B still shows the greatest di↵erence, but the other three

models show higher dissimilarity compared to Type A, especially S3D and R3D-18, with

high dissimilarity. Compared to training with line length variations (Type A), the four

models under training with arrow attribute variations (Type B) are more sensitive to

line lengths. However, Swin3D-T performs worse in Type A when arrows point inward.

In Figure 5.4(B), MViT-V1-B shows high dissimilarity in both types, suggesting a lower

likelihood of visual illusion manifestation. Interestingly, Swin3D-T shows very small L2

distances within the perception group (Percep out/in), which might indicate a similar

display of visual illusions. In contrast, the other two models, S3D and R3D-18, show

lower L2 distances in Type B than in Type A, and the internal L2 distances of the

control group (Same out/in) are greater, potentially indicating a greater possibility of

visual illusions under arrow variation training in Type B. In addition, from the PredNet

situation (Fig. 5.4(C,D)), Type A and Type B show similar distributions and trends

in calculations within the same arrow orientation type and within groups with arrows

pointing inward and outward, with not much di↵erence.

5.3.2 Temporal vs. Static Characteristics on RDMs

To deepen our understanding of the display of visual illusions, we extracted feature

vectors from the last layer before the decision module to build a Representational Dis-

similarity Matrix (RDM), which visualizes whether the model exhibits visual illusions.

We calculated the Euclidean distances (L2) for the inward and outward arrow orienta-

tions within both the perception and control groups. Figures 5.5A and B display the

RDM heat maps under two training sets, while Figure 2.2C shows the RDM heat maps

of six pre-trained brain-like DNN models. In the heat maps, the darker the color, the

greater the similarity.

Figure 5.5 show that within the perception group, R3D-18, MViT-V1-B, and S3D
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exhibit high similarity on the diagonal in both Type A and Type B RDMs. This indi-

cates that under the same length labels, the models perceive the line lengths of arrows

pointing outward and inward as being the same. Conversely, the RDM for the control

group shifts slightly upward near the diagonal, suggesting that under the same length

labels, lines with arrows pointing outward appear longer than those with arrows pointing

inward. This means these models exhibit visual illusions similar to human perception.

PredNet also displays a similar pattern. However, the similarity distribution in Swin3D-

T’s RDM is irregular, possibly indicating that this model does not e↵ectively understand

the Müller-Lyer illusion and does not exhibit similar visual illusions.

Interestingly, some models used for static image classification tasks also exhibit sim-

ilar phenomena (Figure 5.5C). AlexNet, VGG19, and ResNet101 show higher similarity

at the diagonal, while the similarity in the control group shifts upward. The perfor-

mance of the other three models is less clear or irregular, which similar the Swin3D-T.

Compare these two di↵erent characteristic DNNs’ RDMs, video model presented more

clear high similarity on diagonal than statics DNNs.
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Figure 5.5: RDMs of perception group and control group on video model and statics
model.
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5.3.3 Temporal vs. Static Characteristics on Grad-CAM

To more visually illustrate the models’ feature attention on Müller-Lyer illusion , we

used Grad-CAM, a post-hoc explanation method. We visualized the feature heat maps

for four models under two types of datasets (Figure 5.6). The upper figure A displays

the Grad-CAM heat maps for four video classification models, and the lower figure B

shows the Grad-CAM heat maps for six static vision models.

In the Type A dataset, R3D-18 and S3D primarily focus on the overall features of

the line, showing consistent behavior. The other two models with transformer architec-

tures, MViT-V1-B, focus on the overall features of the line and arrows, while Swin3D-T

focuses on the entire picture, although it also pays attention to the line itself. In the

Type B dataset, the focus areas of R3D-18 and S3D di↵er, with R3D-18 focusing more

on the line itself and the left area, while S3D focuses on the line and the area below.

The focus points of MViT-V1-B and Swin3D-T are essentially consistent with those in

Type A.

Furthermore, the models exhibiting visual illusions, such as AlexNet, VGG19, and

ResNet101, focus on the arrows to varying degrees. DenseNet201’s feature focus is

similar to R3D-18 in Type A. The Vision Transformer only focuses on the line itself,

paying less attention to other areas. The Swin Transformer focuses on a small area

below the line, not showing a significant feature tendency towards the line or arrows.
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Figure 5.6: The heatmaps of feature focus from four video classification models and
statics DNNs



Chapter 6

Mapping relationship between

DNNs and visual pathway

through fMRI and optical illusion

This chapter mainly explores the relationship between deep neural networks and regions

along the visual pathway through visual illusion and fMRI study.

6.1 Experimental Introduction and Procedures

Previously, we found that the manifestation of visual illusions in the primary modules

of DNNs may suggest that V1 play an importran role on response of optical illusion.

Based on this, we have designed an fMRI experiment focusing on Skye’s Oblique Grat-

ing illusion to further investigate the correlations in the mapping relationship between

DNNs and the ventral stream. As shown in Figure 6.1, we designed three steps for the

experiment:

1. Using the previous average perceived angle, which was categorized into eight illu-

sion strength (Figgure 4.3) .

2. Six DNN models were selected for visual illusion testing, with preparations for

visualization using RSA and CAM methods.

3. Two types of visual illusion stimuli groups were designed for task-based fMRI

experiments, focusing on both collective and individual di↵erences.

87
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Figure 6.1: The main three step on exploring the mapping relationship between DNNs
and ventral pathway.

6.1.1 Visual Illusions and DNNs

Based on the prior distribution of perceived lengths as shown in Figure 4.3, eight levels

of visual illusion strength were set for the stimulus images. Considering the perfor-

mance of the pre-trained models, which was similar to that after training on separate

datasets, pre-trained models were used for testing visual illusions. Models selected for

the study included AlexNet, Vgg19, Inception-V3, ResNet101, ResNext101 32x8d, and

DenseNet169. Then RDM, GradCAM heatmaps, and fMRI correlation results were used

to analyze the potential mapping of DNNs and ventral pathway.

6.1.2 fMRI Experiments

To further investigate the similarities and di↵erences between human brains and deep

neural networks (DNNs) under visual illusion conditions, we employed functional mag-

netic resonance imaging (fMRI). Our focus was on regions of interest (ROIs) within V1,

V2, V4, and the inferotemporal cortex (IT), guided by the mapping relationships be-

tween DNNs and the ventral pathway. The experimental design included three types of

image stimuli: illusion images, non-illusion images (images without illusion elements),

and perceptual matching images, as depicted in Figure 6.1 C. The non-illusion and
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perceptual matching images corresponded to the illusion images, providing a basis for

comparison.

• Experimental stimuli: Participants viewed image stimuli inside an MRI scanner

through a ProPixx DLP LED projector, which projected images onto an internal

screen (size: 706mm wide x 397mm high) with a resolution of 1920x1080 and a

refresh rate of 60Hz. Participants viewed the screen through mirrors mounted on

the head coil from a distance of 132cm. The experiment included a pre-test and

two experimental phases, ”collective observation” and ”individual perception.”

During ”collective observation,” three types of images were randomly presented

across eight blocks in a mixed design, with 24 images per block; in ”individual

perception,” block design was used, with the strongest illusion intensity determined

by pre-testing, and each stimulus type divided into four blocks, each with eight

images. Each image was displayed for 1.5 seconds, followed by a rest of 0.5 seconds,

with a rest period of 8 seconds between blocks to minimize cross-interference.

• Data collection: The study was conducted at the Brain Communication Research

Center of Kochi University of Technology using a 3T Siemens Prisma MRI scanner

and a 24-channel head coil to collect structural and functional data. Structural

images were acquired using a T1-weighted MPRAGE sequence, and functional

images were collected through a 2D EPI sequence, ensuring image quality and

analytical accuracy.

• Preprocessing and analysis: Data preprocessing and analysis were performed using

fmriprep [80] and freesurfer [81], ensuring high-quality data. A general linear model

(GLM) was initialized using the nilearn [82] library, with appropriate settings

for repetition time (TR), slice timing reference, and Gaussian filtering. Masks

adapted to the resolution of the BOLD images were created for each ROI [83, 84],

and beta values were calculated for each condition, reflecting the activity level of

the respective areas. The Mann-Whitney U test [85] was used to assess activity

di↵erences under di↵erent conditions, with significant results highlighted in charts.

Bar charts of average beta values for each ROI under di↵erent conditions were

plotted for each participant, and data from all participants were combined to

provide an overview of brain responses under di↵erent task conditions.
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6.2 Result

6.2.1 Heatmaps of Visualization

From the RDM heatmaps (Fig. 6.2), all six models displayed a high similarity distri-

bution along the diagonals within their primary modules. As the depth of the models

increased, the similarity gradually decreased and eventually disappeared. This suggests

that visual illusions in the primary modules might influence the final decision-making

process, causing the models to still make biased judgments. Additionally, as shown in

Figure 6.3, the features focused on by the models are evident in the two CAM meth-

ods. VGG19 and ResNet101 both focused on features of the lines and also included the

areas between the lines. The other models showed varying degrees of focus on di↵erent

areas. Combined with earlier findings, focusing on the areas of the lines themselves

further demonstrates the potential for models to exhibit visual illusions. Interestingly,

the pretrained VGG19, unlike when trained solely on skewed datasets, also displayed

visual illusions, suggesting that training VGG19 on more general and expansive datasets

still have the potential to mimic brain-like processing. Furthermore, it hint that DNNs

easily influenced by dataset.



6.2 Result 91

Figure 6.2: The RDMs of six on C1 and C2.
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Figure 6.3: The attention heatmaps of six DNNs on illusion.

6.2.2 ROIs Response

In the ”collective observation” experiments, we systematically analyzed the responses

of specific brain regions of interest (ROIs) such as V1, V2, V4, and IT under conditions

of illusion, non-illusion, and subjective perception. The activation in the V2 region was

most prominent under illusion conditions, with an average beta value of 0.4658, high-

lighting its crucial role in deciphering visual illusions. Conversely, the strongest response

under non-illusion conditions was observed in the V1 region, with an average beta value

of 0.2586. This condition revealed significant di↵erences in activation levels between

V1 and V4, showing di↵erent modes of processing visual information. The subjective

perception condition showed relatively lower activation across all ROIs, especially a sig-

nificant decrease in activity in the IT region (average Beta: 0.0606), reflecting its minor

role in processing specific visual stimuli.

In a deeper study of individual perception, significant di↵erences were observed

in participants’ responses to illusions. For example, participant 01 had the strongest

response in the V2 region to illusions, with a beta value of 0.8075, while participant 03

showed a reduction in activity in the V1 region under subjective perception conditions
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(Beta: -0.0783), possibly indicating di↵erent perceptual processing mechanisms. These

individual di↵erences highlight the variability of the visual system among individuals

and personalized responses to visual stimuli.

By comparing ”collective observation” and ”individual perception,” we found that

significant activation in the V2 region under illusion conditions supports its important

role in decoding complex visual information. Meanwhile, enhanced activation in the V1

region under non-illusion conditions reflects its dominant role in processing basic visual

elements, particularly when the illusion e↵ects are weakened or removed. Additionally,

the generally low activation across all ROIs under subjective perception conditions,

particularly in the IT region, reveals adaptive adjustments of the visual system when

processing these specific visual stimuli. These findings, compared with the response

patterns of deep neural networks (DNNs), show some commonalities in visual processing

strategies between the human brain and DNNs, especially in the activities of primary

visual processing areas.

Individual perceptionCollective observation

Figure 6.4: Average response distribution under specific ROIs (V1/V2/V4/IT).



Chapter 7

Discussion

This study tests the performance of visual illusions by setting up various types of DNNs

and introduces visualization methods for interpreting the internal mechanisms of vi-

sual illusions: visual interpretations combining representational similarity analysis with

post-hoc interpretability of class activation maps. This elaborates on the potential and

limitations of DNNs as visual model through the testing of visual illusions. Particu-

larly, the results from our multiple experimental steps show that while DNNs exhibit

excellent performance in visual tasks, they possess unique advantages in brain-like fea-

tures. However, there remains a significant gap between them and actual visual mecha-

nisms. Certain regularities in visual illusions provide guidance for brain-like modeling,

yet DNNs themselves have many limitations and shortcomings, necessitating extensive

foundational visual research and support from advancements in neuroscience. Next, we

will discuss specific research questions based on the study findings.

7.1 How Do DNNs Respond to Di↵erent Types of Visual

Illusions?

The response of DNNs to di↵erent types of visual illusions is diverse, as reflected in their

sensitivity and decoding methods. For example, in our Chapter 3 testing on five types

of illusions—focusing on color, brightness contrast, length, angle, and perception—it is

discussed. Regarding color sensitivity, among 12 DNN models, only two align relatively

well with human perception of color depth rankings (Fig. 3.9B). There is no regular

pattern in the ranking distribution among the models, but an increase in network depth

(Fig. 3.9C) leads to changes in color ranking, indicating a change in color sensitivity,

94
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though this change is only apparent in the last module. In terms of feature focus visual-

ization (Fig. 3.10), DNNs also show significant di↵erences, with ResNext101 recognizing

the entire color rectangle and focusing on the whole area, while other models focus on

partial areas. This di↵ers from our understanding of vision; DNNs cannot comprehend

color and its resulting shapes, a↵ecting attention di↵erences in color depth rankings.

Moreover, ResNext101 does not exhibit a performance closer to the depth ranking of

human subjects.

It seems that DNNs clearly respond more to intuitive physical properties, especially

in illusions like the Müller-Lyer illusion, which involves a combination of straight lines

and arrows. From related studies, including those on static models under pre-training

and video models trained with a teacher-student self-supervised strategy, performances

similar to human perception have been observed. From the perceptual group’s RDM

(Fig. 3.5,3.16,5.5), high representational similarity along the diagonals indicates that

the model’s judgment of line lengths is close to human. In the GradCAM responses

(Fig. 3.7,3.15,5.6), it is generally found that similar to humans, there is a focus on

the arrows at both ends of the line, which are more prone to visual illusions, including

the areas near the arrows. Similar is the case with the Poggendor↵ illusion, another

perceptual visual illusion. However, once the composition of the illusion becomes more

complex or more integrated, it is di�cult for the model to demonstrate evidence of

visual illusions from RDM. From the feature focus heatmap of the Zöllner illusion in

Figure 3.20, although high diagonal similarity in RDM indicates potential visual illusion

performance, the heatmap shows all models considering the whole stimulus features,

indicating that DNNs still lack adequate response to angles or are easily ”attracted” by

the overall shape.

7.2 What Are the Similarities and Di↵erences Between

Human and DNN Perceptions of Visual Illusions?

By using representational similarity analysis (RDM) and class activation maps (Grad-

CAM) visualization techniques, we can initially explore the internal mechanisms of how

DNNs handle visual illusions. RDM analysis reveals that di↵erent levels of feature ex-

traction have varying sensitivities to visual illusions, with lower levels typically respond-

ing to simple visual information, while higher levels involve more complex integration

of visual information. GradCAM shows the image areas focused on by DNNs when
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making decisions, revealing key features that might be considered during the processing

of illusions. These methods help us understand the internal workings of DNNs when

dealing with visual illusions.

However, the di↵erence lies in the internal mechanisms of DNNs in processing these

illusions, which often rely on training data and optimization of network parameters,

rather than the biological logic and neuronal activity in the human visual system. We

found that under settings such as pre-training, the vast majority of models show obvious

flaws, or a preference for more intuitive physical features. For this, specific datasets

(Fig. 4.3) were used in Chapter 4 to train models to understand the concept of tilt. The

test accuracy of DNNs was not particularly high, with the best judgment on tilt angle

reaching about 90% with ResNet101. Di↵erently, Vgg19, which responded to several

visual illusions, did not react to the tilt illusion. This is inconsistent with findings that

closely mimic human visual processing, yet Vgg19 and ResNet101 both focused on the

stripes themselves, aligning with our observations of this illusion.

7.3 How Do Di↵erent DNNArchitectures Compare in Their

Ability to Simulate Visual Illusions?

Di↵erent DNN architectures show varying abilities to simulate visual illusions. Generally,

convolutional neural networks (CNNs) are more e↵ective in handling geometric illusions

in images due to their strong spatial capabilities. Recurrent neural networks (RNNs)

might be better at handling illusions that require analysis over time, such as motion

illusions. Choosing the appropriate network architecture is key as it determines the

model’s sensitivity and ability to process illusions. However, our experimental results

do not fully support this.

From the perspective of static characteristics, increasing network complexity does

not necessarily result in better performance on visual illusions. Notably, classic architec-

tures like DenseNet201, exhibit performance similar to simpler ResNet and Vgg series.

However, in terms of feature attention, they are relatively close to these models. As

for the currently popular Transformer architectures in DNNs, none of the model types

demonstrated visual illusions, particularly irregular performances in RDM.

Looking at DNNs with spatio-temporal characteristics, architectures based on con-

volutional neural networks (CNNs) like R3D 18 and S3D have certain advantages in

handling both static and dynamic visual information, while architectures based on
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self-attention mechanisms like Swin3D T perform better in managing complex spatio-

temporal information. Moreover, models that integrate multiple perspectives, such as

MVIT V1 B, demonstrate higher robustness and precision in simulating visual illusions.

Visualization results indicate that purely convolutional architectures like R3D 18 and

S3D somewhat exhibit visual illusions. Interestingly, the distribution of high similar-

ity in RDM compared to static models and other video models is clearer, suggesting

that models based on brain predictive coding principles might be closer to some brain

mechanism processes,

In terms of single architecture or static characteristics, DNNs in feature attention

are closer to human attention traits, such as the arrows on the Müller-Lyer lines. In

contrast, models with spatio-temporal characteristics still focus on the whole line and

arrows, although they also share similarities with some static characteristic DNNs, such

as ResNext101 (Fig. 3.7, 5.6). Overall, more advanced models with better visual task

performance do not broadly exhibit a visual illusion mechanism response similar to hu-

mans, although inspired by brain attention mechanisms. This also indicates the current

gap between neural networks and visual mechanisms.

7.4 What Are the Computational Principles Underlying

the DNNs’ Ability to Simulate Visual Illusions?

The computational principles behind DNNs’ ability to simulate visual illusions involve

multiple aspects, including feature extraction, hierarchical information processing, and

the model’s training strategies. In terms of feature extraction, DNNs capture spatial

and temporal characteristics of images through multiple layers of convolution, allowing

them to somewhat mimic human visual perception. Hierarchical information processing

involves lower network layers capturing simple edge and texture features, while higher

layers integrate these features into complex visual representations. Additionally, train-

ing strategies, including data augmentation and multitask learning, significantly impact

the ability of DNNs to simulate visual illusions. These computational principles provide

a theoretical basis for understanding and optimizing the performance of DNNs in sim-

ulating visual illusions based on their learning capabilities and adaptability. Networks

minimize prediction errors on specific tasks by adjusting their weights and parameters,



7.5 Can the Findings From DNN Simulations of Visual Illusions Inform the
Development of More Advanced AI Systems? 98

inadvertently learning to simulate illusions. Moreover, this capability may also be re-

lated to the network’s depth, type of layers, activation functions, and regularization

strategies during training.

Based on the BH-Score, architectures that are simpler and closer to brain-like.

Looking at two classic models, VGG19 and ResNet101, both perform well in six visual

illusions, and their feature attention is also quite close to human vision. Combined with

the similarity between VGG19 and ResNet and human visual processing mechanisms,

this may suggest that visual illusions typically involve a more singular early response in

the visual system.

7.5 Can the Findings From DNN Simulations of Visual

Illusions Inform the Development of More Advanced

AI Systems?

In this study, we discuss how deep neural networks (DNNs) simulating visual illusions

can inform the development of more advanced AI systems. Initially, through studies in

neuroscience and behavioral data, we find that DNNs exhibit behaviors in processing vi-

sual illusions similar to humans. For instance, research on the Müller-Lyer illusion shows

that the decision-making distribution in DNNs mirrors that of humans. These findings

suggest that DNNs can serve as e↵ective tools for studying human visual illusions.

However, although DNNs demonstrate potential in simulating visual illusions, their

performance and behaviors are significantly influenced by the model architecture and

training data. Our study indicate that di↵erent DNN architectures vary in their sen-

sitivity to visual illusions, which may relate to di↵erences in their internal mechanisms

and learned representations. For example, post-hoc interpretability analyses using Class

Activation Mapping (CAM) and Representational Similarity Analysis (RSA) provide in-

sights into the DNNs’ decision-making processes, but these methods struggle to capture

the underlying causes of these decisions.

Moreover, preliminary results from our fMRI experiments suggest that the genesis

of visual illusions may occur at the level of the retina and early visual areas such as

V1, aligning with the behaviors of DNNs’ primary modules, implying a similarity with

human visual pathways. This observation indicates that further research on DNNs

could enhance our understanding of visual processing mechanisms. Thus, emphasizing
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the study of these primary modules can help us gain deeper insights into how DNNs

handle complex visual tasks, especially in recognizing and interpreting visual illusions.

To improve DNNs’ capabilities and accuracy in simulating visual illusions, we need

to explore new architectural improvements. This includes developing models that can

more finely mimic human visual processing features, such as enhancing the network’s

spatiotemporal feature handling abilities, and optimizing the network’s architecture to

better reflect the flow of visual information processing. For example, introducing cross-

layer connections might help the model better integrate and process information from

various visual scenes, thus more precisely simulating complex visual illusions.

Furthermore, considering the unique demands of di↵erent visual illusions on visual

information processing, model design should include specialized processing modules for

specific types of illusions. For instance, designing di↵erent network modules for line

illusions and color illusions could enable DNNs to more e↵ectively learn and simulate

these illusion characteristics. This modular design approach not only improves the

adaptability and flexibility of the model but may also enhance its robustness in handling

unknown or complex visual information.

Nevertheless, there are limitations to the capabilities of DNNs in simulating visual

illusions. Inconsistencies in model performance and dependencies on specific instances

suggest that future research should consider a more diverse range of visual illusion types

and more complex datasets during model design [86]. Additionally, ongoing neuroscience

research and comparisons between DNNs and human visual processing methods are

crucial; they will help develop more precise models and enhance the simulation of human

visual perception.

Finally, multimodal models that integrate visual and linguistic information exhibit

capabilities closer to human cognitive levels. Future research should consider these

models to develop more advanced, human-like AI systems. These advancements will

propel us forward in understanding and simulating complex visual illusions, while also

continuing to inspire ideas for brain-like modeling.



Chapter 8

Conclusion

In this study, we compared and tested the brain-like characteristics of DNNs by integrat-

ing six classic visual illusions and proposed a comprehensive interpretive visualization

method to elucidate the underlying principles of these illusions. This approach explores

potential issues with DNNs as models for human visual learning, similarities to the visual

system, and directions for improvement. Based on the proposed comprehensive interpre-

tive visualization method, the study’s specific approach is divided into four steps: first,

verifying and testing the pre-trained DNNs’ performance on visual illusions, followed by

comparisons based on training with specific visual illusion datasets. Next, di↵erences

based on the models’ architectures are examined in detail, and finally, the findings are

used to explore potential brain-like characteristics through fMRI experiments.

In Chapter 3, several top-ranking DNNs on Brain-Score were selected to test the

Müller-Lyer illusion. The di↵erences among the models in terms of feature attention

distribution were significant. Advanced models with excellent performance in visual

tasks, such as the Transformer-based VIT and Swin-T, did not exhibit visual illusions. In

contrast, classic networks with single architectures like AlexNet and ResNet101 showed

the illusion of line length changes. This phenomenon emphasizes the di↵erences in brain-

like characteristics of DNNs, where high performance in visual tasks does not equate to

brain-like characteristics. Although some advanced DNNs perform well in visual tasks,

they may lack the ability to handle certain human visual illusions, whereas some simpler

traditional networks may more closely resemble human visual system characteristics in

certain aspects. Additionally, DNNs tend to focus more on overall features and cannot

understand more complex physical concepts, highlighting the gap between them and

human visual processing mechanisms.

100
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In Chapter 4, further training on multiple models with specific datasets showed

significant di↵erences among the models. Notably, VGG19 almost did not exhibit any

visual illusions during this training. The training with specific visual illusion datasets

mainly aimed to develop DNNs’ understanding of single physical attributes, followed by

related physical attribute visual illusion tests on these trained models, such as the tilt

illusion. The results showed that the performance of DNNs in visual illusions is indeed

influenced by the training datasets. Among them, ResNet101 performed the best in the

tests. Although VGG19’s feature attention distribution was similar to ResNet101, it did

not exhibit any visual illusions in the tests. Additionally, ResNet101’s representational

dissimilarity matrices (RDMs) indicated the highest representation similarity in its early

modules, suggesting the importance of visual illusion responses in early visual regions

(such as the V1 area).

Combining the temporal and static characteristics of the models, Chapter 5 ex-

plored the visual illusion performance of four video classification models and one pre-

dictive coding model. A new training strategy, teacher-student self-supervised learning,

was proposed to fully simulate human-like learning methods to enhance the brain-like

characteristics of DNNs. The results showed that the models exhibited visual illusion

responses in terms of representational similarity, particularly similar to the distribution

shown by previous static models. However, in GradCAM analysis, static models like

AlexNet, VGG19, and ResNet101 focused more on the arrows themselves in the feature

attention heatmaps, similar to the human visual system, which is strongly influenced

by the direction of the arrows when perceiving visual illusions. In contrast, the video

models only focused on the combination of arrows and lines as a whole. This significant

di↵erence in attention indicates that although video models have advantages in global

and spatiotemporal analysis, they may be less precise than static models in capturing

key visual cues directly related to visual illusions.

In Chapter 6, fMRI-based experiments further explored the correlation between

visual regions and visual illusions, based on the visual illusion data from Chapter 4.

The results showed that the response regions were closer to the early regions of the

ventral pathway, such as V1/V2, similar to the RDM distributions at di↵erent network

depths in Chapter 4. This result suggests a potential relationship between DNNs and

the ventral pathway in the human visual system, highlighting the importance of shallow

modules in brain-like modeling of DNNs.
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Totally, our experimental results indicate that the universality of visual illusions in

DNNs is not particularly apparent, especially across di↵erent architectures and task char-

acteristics, where model performance varies significantly. However, from the RDM and

feature attention heatmaps, models with single architectures like VGG19 and ResNet101

showed visual illusion phenomena closer to human perception. Greater depth and com-

plexity in model architecture do not necessarily lead to better visual illusion mechanisms.

The mechanisms of visual illusions still need to fully consider the limitations of models,

particularly in understanding complex physical attributes. This suggests that future

visual illusion research needs to cautiously consider the limitations of DNNs in handling

complex cognitive tasks.

Moreover, our findings emphasize the di↵erences in visual illusion performance be-

tween pre-trained and self-trained models, requiring comprehensive consideration of

these di↵erences’ impact on research results. Additionally, from the perspective of

changes in model depth, shallow modules typically outperform deeper modules in vi-

sual illusion performance. Finally, to enhance the brain-like characteristics of DNNs,

future work needs to further set specific visual illusion datasets and design models with

specific architectures, particularly focusing on the feature information of shallow mod-

ules for brain-like modeling. Through such optimizations, we can better simulate the

human visual system, thereby promoting the development and application of artificial

intelligence technology.
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