
 

 

 

 

Designing Text Revision Strategies in Advanced User 

Interfaces 

 

 

by 

 

 

Yang LI 
 

 

Student ID Number: 1218006 
 

 

 

A dissertation submitted to the 

Engineering Course, Department of Engineering, 

Graduate School of Engineering, 

Kochi University of Technology, 

Kochi, Japan 

 

 

 

For the degree of 

Doctor of Philosophy 

 

 

 

 

Assessment Committee: 

Supervisor: Prof. Xiangshi REN 

Co-Supervisor: Associate Prof. Yoshiaki TAKATA, Kochi University of Technology 

Co-Supervisor: Associate Prof. Yukinobu HOSHINO, Kochi University of Technology 

Prof. Shinichi YOSHIDA, Kochi University of Technology 

Associate Prof. Toru KURIHARA, Kochi University of Technology 

 

 

 

March 2021 

  



   

i 

 

 

 

ABSTRACT 

 
Designing Text Revision Strategies in Advanced User Interfaces 

 

Text input methods are ubiquitous and vital when users attempt to enter text into digital devices for 

documentation and communication. Compared with typing on conventional user interfaces based on 

physical keyboards and mice, typing performance varies when users typing on advanced user interfaces 

(e.g., smartphones, tablets, virtual reality, and mixed reality) due to their diverse limitations and 

characteristics. With the popularity of mobile devices (e.g., smartphones and tablets) and commercial 

Virtual Reality (VR) systems, there exists the need of efficient text input methods that are suitable 

designed for satisfying typing performance. 

 

Keyboards are dominant and default input tools. On smartphones, keyboards are virtualized and 

customized (with various layouts) in the limited size on the touchscreen. For VR systems, keyboards are 

often shown virtually in the intangible space without essential haptic feedback. Although those 

keyboards could help users to finish the basic text input task, efficiency and satisfaction during the text 

input, however, cannot be guaranteed. The main reason is that the keyboard layout, definition of keys, 

and related operation patterns are inherited from the physical QWERTY keyboard, which already 

existed for decades with few adjustments based on various platforms and scenarios. 

 

Generally, text input includes two main parts. The first part is text entry, which mainly focuses on 

generating text quickly into the computing system based on users’ input. The second part is text revision, 

which is responsible for ensuring that the input text is both typo-free and proper to express the intended 

meaning of the typist. As far as we know (from the literature), most current text input methods and 

research focus on enhancing users’ typing performance (e.g., faster typing speed). However, little 

attention was paid to improve text revision efficiency, which is essential to ensure the expression 

accuracy of the input text. It should be noted, again, that the main target of text input is for 

documentation (e.g., taking notes) and communication (e.g., discussion with friends via instant 

messaging or emails) rather than just entering some characters and show them on the screen. 

 



   

ii 

 

Current text input methods can handle typos and grammar issues easily with auto-correction techniques. 

Whereas, for more general revision conditions (e.g., revising the word with right spelling but with 

improper meaning or adding missing words into the sentence), those methods cannot achieve the 

satisfying text revision experience, especially for smartphones and VR systems. 

 

This dissertation mainly focuses on facilitating text revision on mobile devices and in VR applications. 

A systematic review was conducted first to summarize the text revision attempts applied in current 

smartphone and VR text input methods. With the review, we further analyze their commonalities and 

flaws. It revealed that, for typing with virtual keyboards, most text revision attempts still followed the 

operation process using the backspace and cursor control, which already existed for decades. 

 

To improve the text revision efficiency on mobile devices, we revisited the existing text revision process 

and proposed Swap, a replacement-based text revision paradigm, to enhance the text revision 

performance by minimizing the use of backspace and cursor control. In detail, Swap regards all 

characters and words as replaceable and independent units. When observing the revision target, users 

can enter the revised content first and then use it to replace the target. To change the processes for 

various revision conditions (e.g., inserting, substituting, or deleting a word) into the unified replacement 

operation, Swap also visualizes some specific functions (e.g., deletion) and allows them to appear in the 

input string just as regular characters. 

 

Based on the paradigm, we implemented a text revision technique (named Swap) and evaluated its 

feasibility on smartphones via conducting a comparative user study. Results showed that, compared with 

the repetitive backspace pressing and imprecise cursor control, Swap simplifies the steps and the number 

of the potential mode switch process (i.e., from regular typing to revision or from revision to regular 

typing). Moreover, Swap enables users to keep their regular typing speed during the revision process on 

smartphones. 

 

In the context of VR environments, a series of techniques have been designed and proposed to enhance 

the text input performance. However, few researchers put their eyes on the enhancement of text revision. 

To deeply understand the research status of the current VR text entry, we first did a systematic review 

and revealed that there lacks the essential consideration on the problem of text revision. Even worse, 

most current proposed techniques did not include the tools and solutions to handle the need for text 

revision in VR. Then, we proposed a design space based on caret and backspace to explore the design 

solutions for enhancing text revision performance in VR applications. With the design space, we further 

implemented four text revision techniques and evaluated them using a comparative user study. 

Outcomes of the design space and proposed techniques not only provided a fundamental understanding 



   

iii 

 

of VR text revision solutions (with the backspace and caret) but also a comparable basis for evaluating 

future VR text revision techniques. 

 

During the review of current VR text entry research, we also found that, during text entry, although 

characters are selected in sequence, there lacks smooth transition among every two selections, which (to 

some extent) influence the typing speed. Therefore, apart from text revision, an additional study was 

conducted to enhance the text input efficiency by proposing SewTyping, a novel technique that fully 

leverages the penetrable feature of the intangible interface and the daily-life sewing metaphor to achieve 

the fluid and successive text entry behavior just like sewing with a needle on the fabric. We got inspiring 

results that SewTyping not only improves the typing speed in VR applications but also changes the VR 

text input as engaging gameplay. 

 

This dissertation shows contributions as follows: 

 

First, the literature review reveals the insufficient attention of current text revision research when 

designing useful and efficient text input methods. For researchers who are interested in this field, this 

dissertation can also serve as a systematic overview of text revision. 

 

Second, instead of the conventional text revision paradigm (based on backspace and cursor control), 

Swap shows an overturning perspective for designers to consider and design text revision techniques on 

mobile devices and in VR applications at both the process level and practice level. 

 

Third, for VR text input techniques, we point out the lacking of essential considerations of text revision 

in the previous existing research. Our proposed design space and text revision techniques can both 

provide a perspective to face this practical problem (text revision in VR) and available options that 

attempted to enhance users’ text revision performance when entering text with virtual keyboards in VR.  

 

Fourth, SewTyping provides a novel way to consider the penetrable feature of the intangible interface 

and convert it as an advantage when designing the fluid text input operation. Additionally, SewTyping 

also proposes a new interaction approach (sewing interaction), which sheds light on the novel interface 

design for VR applications. 

 

Overall, methodologies and results reported in this dissertation will be beneficial for both researchers 

and practitioners when exploring and implementing text revision techniques to achieve a more satisfying 

typing performance on mobile devices and in VR applications. 

 



   

iv 

 

 

TABLE OF CONTENTS  

 
Chapter 1 INTRODUCTION ................................................................................................... 1 

1.1. Background .................................................................................................................. 1 

1.2. Motivation and Objectives ........................................................................................... 2 

1.3. Dissertation Overview ................................................................................................. 3 

Chapter 2 LITERATURE REVIEW ....................................................................................... 4 

2.1. Evolution of Keyboard ................................................................................................ 4 

2.2. Error and Error Correction .......................................................................................... 7 

2.3. Text Revision and Text Revision Tools ...................................................................... 8 

Chapter 3 SWAP-BASED TEXT REVISION TECHNIQUE ON MOBILE DEVICES .... 9 

3.1 Introduction ................................................................................................................. 9 

3.2 Related Work ............................................................................................................. 11 

3.2.1 Text Revision Procedure on Mobile Devices ..................................................... 11 

3.2.2 Improvement of the Backspace .......................................................................... 12 

3.2.3 Caret Control Enhancement ............................................................................... 12 

3.2.4 Error Correction ................................................................................................. 13 

3.2.5 Summary ............................................................................................................ 13 

3.3 Pre-Study: How Do Users Do Text Revision ............................................................ 13 

3.4 The Design of Swap .................................................................................................. 14 

3.4.1 Interaction Logic ................................................................................................ 15 

3.4.2 Symbolized Backspace ....................................................................................... 15 

3.5 Dot Swap ................................................................................................................... 16 

3.6 Study 1 – Feasibility Evaluation of Dot Swap .......................................................... 17 

3.6.1 Apparatus ........................................................................................................... 17 

3.6.2 Participants ......................................................................................................... 17 

3.6.3 Procedure and Task ............................................................................................ 17 

3.6.4 IVs and DVs ....................................................................................................... 19 



   

v 

 

3.6.5 Results ................................................................................................................ 19 

3.6.6 Discussion .......................................................................................................... 20 

3.7 Improved Swap .......................................................................................................... 21 

3.8 Study 2 - Comparative User Study ............................................................................ 22 

3.8.1 Apparatus ........................................................................................................... 22 

3.8.2 Participants ......................................................................................................... 22 

3.8.3 Procedure and Task ............................................................................................ 23 

3.8.4 IVs and DVs ....................................................................................................... 24 

3.8.5 Results ................................................................................................................ 25 

3.8.6 Discussion .......................................................................................................... 30 

3.9 Conclusion ................................................................................................................. 32 

Chapter 4 DESIGN SPACE EXPLORATION ON TEXT REVISION IN VR 

APPLICATIONS .................................................................................................................... 33 

4.1 Introduction ............................................................................................................... 33 

4.2 Related Work ............................................................................................................. 35 

4.2.1 Error correction and text revision ....................................................................... 35 

4.2.2 Text revision with physical devices in VR ......................................................... 35 

4.2.3 Text revision with virtual keyboards in VR ....................................................... 36 

4.2.4 Summary ............................................................................................................ 38 

4.3 Design Space ............................................................................................................. 38 

4.3.1 Backspace granularity ........................................................................................ 39 

4.3.2 Caret control continuity ...................................................................................... 39 

4.3.3 Functionality of the design space ....................................................................... 41 

4.4 Text Revision Techniques ......................................................................................... 41 

4.4.1 CBs-DCc ............................................................................................................ 41 

4.4.2 CBs-CCc ............................................................................................................. 42 

4.4.3 WBs-DCc ........................................................................................................... 42 

4.4.4 WBs-CCc ........................................................................................................... 42 

4.4.5 Features of proposed techniques ........................................................................ 43 

4.5 Comparative Evaluation ............................................................................................ 43 

4.5.1 Participants ......................................................................................................... 43 

4.5.2 Apparatus ........................................................................................................... 44 

4.5.3 Corpus and revision targets ................................................................................ 44 



   

vi 

 

4.5.4 Design and procedure ......................................................................................... 45 

4.5.5 Results ................................................................................................................ 46 

4.6 Discussion .................................................................................................................. 50 

4.7 Conclusion ................................................................................................................. 51 

Chapter 5 FACILITATING VR TEXT ENTRY WITH DAILY-LIFE METAPHOR .... 53 

5.1 Introduction ............................................................................................................... 53 

5.2 Related Work ............................................................................................................. 55 

5.2.1 Hand, Head, and Eye-based Text Entry Techniques .......................................... 55 

5.2.2 Controller-based Text Entry Techniques ........................................................... 56 

5.2.3 Summary ............................................................................................................ 57 

5.3 Sewing-like Interaction .............................................................................................. 57 

5.3.1 Interaction Pattern .............................................................................................. 58 

5.3.2 Features .............................................................................................................. 58 

5.4 SewTyping and Empirical Evaluation ....................................................................... 59 

5.5.1 Participants and Apparatus ................................................................................. 60 

5.5.2 Task and Corpus ................................................................................................. 60 

5.5.3 Design and Procedure ......................................................................................... 60 

5.5.4 Results ................................................................................................................ 62 

5.5 Discussion .................................................................................................................. 65 

5.6 Conclusion ................................................................................................................. 67 

Chapter 6 GENERAL DISCUSSION .................................................................................... 68 

6.1 Replacement-based text revision ............................................................................... 68 

6.2 Design space exploration for VR text revision .......................................................... 69 

6.3 Sewing-like interaction and SewTyping .................................................................... 70 

Chapter 7 LIMITATION AND FUTURE WORK ............................................................... 72 

Chapter 8 CONCLUSION ...................................................................................................... 74 

Appendix 1 NASA-TLX .......................................................................................................... 75 

Appendix 2 7-POINT LIKERT-SCALE FOR SWAP ......................................................... 77 

Appendix 3 SYSTEM USABILITY SCALE (SUS) ............................................................. 78 

Appendix 4 5-POINT LIKERT-SCALE FOR SEWTYPING ............................................ 79 



   

vii 

 

BIBLIOGRAPHY .................................................................................................................... 80 

ACKNOWLEDGMENT .......................................................................................................... 88 

LIST OF ACHIEVEMENTS ................................................................................................... 90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

viii 

 

 

 

 

TABLE OF FIGURES  

Figure 2.1 A feature phone with a 12-key keyboard. Arrow keys and the backspace key 

are put above the keyboard. ........................................................................................ 5 

Figure 2.2 A shrinked-size QWERTY keyboard on the feature phone. ............................ 5 

Figure 2.3 Mode switching between QWERTY keyboard and arrow keys on a smartphone 

virtual keyboard. ......................................................................................................... 6 

Figure 3.1 Operation sequences (shown with enclosed numbers) for different techniques 

when revising the sentence. Swap minimizes the use of backspace and caret by first 

entering the revised content and then using it to replace the target. ........................ 10 

Figure 3.2 The use of Dot Swap under three revision conditions. Participants first enter the 

content at the end of the sentence, then use that content to revise the target. .......... 16 

Figure 3.3 The experimental interfaces used for study 1. (a) 1st phase of the trial. (b) 2nd 

phase of the trial. ...................................................................................................... 18 

Figure 3.4 The schematic of using the improved Swap. The enclosed numbers refer to the 

operation steps. ......................................................................................................... 22 

Figure 3.5 The experiment interfaces for Study 2. (a) is the interface before the experiment. 

(b) is the interface for the experiment. The symbolized backspace key is on the left 

side of the “Enter” key. When participants enter the symbolized backspace, a red 

cross appears on the screen. ..................................................................................... 24 

Figure 3.6 Average pre-action time for different error types. .......................................... 26 

Figure 3.7 Average action time for different error types. ................................................ 27 

Figure 3.8 Average navigation time and input time for two text revision techniques. .... 27 

Figure 3.9 Average number of caret control operations for different error types. ........... 28 

Figure 3.10 Average caret control time for different error types. .................................... 29 

Figure 3.11 Average Likert Scale scores for each factor. ................................................ 30 

Figure 4.1 Different options for backspace granularity and caret control continuity. ..... 39 

Figure 4.2 Operation per character for targets far from or near the end of the sentence. 46 



   

ix 

 

Figure 4.3 Correction time for targets far from or near the end of the sentence. ............. 47 

Figure 4.4 Backspace frequency for targets far from or near the end of the sentence. .... 48 

Figure 4.5 Caret frequency for targets far from or near the end of the sentence. ............ 48 

Figure 4.6 Caret control time for targets far from or near the end of the sentence. ......... 49 

Figure 4.7 Backspace time for targets far from or near the end of the sentence. ............. 49 

Figure 5.1 Text entry with SewTyping. Characters can be selected with the handheld 

controller (with a virtual mallet on the top) successively by penetrating alternately on 

either the top or bottom side of virtual keys. E.g., to enter “ACT”, “A” and “T” are 

selected from the top side, while “C” is selected from the bottom side. .................. 54 

Figure 5.2 Two successive target selection methods: (a) up-and-down “pressing” and (b) 

sewing-like interaction. Sewing-like interaction leverages the penetrable feature in 

VR to achieve the successive target selection by penetrating targets as sewing with a 

needle on the fabric. ................................................................................................. 59 

Figure 5.3 A participant in the VR text entry task with handheld controllers and the virtual 

keyboard floating in the head-mounted display. In this picture, there was an angle of 

30 degrees between the virtual keyboard and the ground. ....................................... 62 

Figure 5.4 The average typing speed for three techniques in five sessions. Error bars 

represent the standard error. ..................................................................................... 63 

Figure 5.5 The average IKI for three techniques in five sessions. Error bars represent the 

standard error. ........................................................................................................... 64 

Figure 5.6 Participants’ feedback regarding six evaluation perspectives (1 for bad, 5 for 

good). Error bars represent the standard error. ......................................................... 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

x 

 

 

 

 

 

TABLE OF TABLES  

Table 3.1 Proportions for various types of errors inserted during the experiment ........... 18 

Table 4.1 Physical VR text input techniques and their design details ............................. 37 

Table 4.2 Virtual VR text input techniques and their design details ................................ 40 

Table 4.3 Number of different types of revision targets for every 30 sentences ............. 45 

  



   

1 

 

 

 

 

 

 

 

 

CHAPTER 1  

INTRODUCTION 

 

 

1.1. Background 
 

Since 1955, physical keyboards appeared officially with computers and allowed users to enter text 

with them. Till now, although various fast input methods such as voice input and pen-based input 

appear and provide users with various choices, typing with keyboards is still the mainstream and 

vital part when users interacting with computers in different forms. Nowadays, the increasing 

popularity of mobile devices (e.g., smartphones and tablets) and consumer-affordable VR devices 

not only brings requirements of the more satisfying interaction experience from users but also raises 

tons of challenges that designers need to solve.  

 

Compared with typing with physical keyboards and mice, typing with smartphones and VR systems 

is error-prone and time-consuming due to the lack of haptic feedback, limited target size, and/or 

users’ poor capacities when interacting with intangible interfaces. In this situation, the existed 

interaction design (inherited from physical keyboards) can only feed the basic need of text input 

without the requirement of efficiency and satisfaction. Moreover, through the literature review and 

the investigation of current commercial text input solutions, we found that most of the attempts try 

to enhance the typing speed and accuracy. Here the accuracy mainly focuses on errors that refer to 

typos and grammar issues. With smart-aid techniques based on Artificial Intelligence (AI) and other 

algorithms, it is easy to solve the errors mentioned above. However, when all typos and grammar 

issues are corrected, there still exists the need of revising text content because that the input text 

cannot express the proper meaning from the typist. For instance, when composing a business email 



   

2 

 

on smartphones or in a VR office software, one can ensure that all the text typo-free and grammar 

correct, but s/he found that s/he uses a word with a reversed meaning or makes an ambiguous 

statement. In this situation, based on the current tools (mainly with backspace and cursor control), 

revising the text will be unnecessarily complex, error-prone, and time-consuming when navigating 

the cursor and pressing the backspace key. 

 

One may argue that “AI can solve them all”. However, there exist two problems hard to avoid. First, 

with the technique so far, AI cannot accurately understand what users mean when they enter the text. 

Thus, AI may give some wrong operations, which cause more efforts to recover from it (e.g., auto-

completion). Second, when AI and algorithms finish the error correction and regard all text “ok” 

according to their perspectives, they may not provide help when users revise the text from the context 

level. In that case, there will be no more choices for users except backspace and cursor. 

 

1.2. Motivation and Objectives 
 

There are four points that motivate the studies in this dissertation. First, as far as we know from the 

literature, most researchers only focus on chasing for faster typing speed with less attention on text 

revision. Second, although some researchers attempt to improve the text error correction (typos and 

grammar issues correction) efficiency, most of them conduct their research without consideration of 

more general revision conditions. Third, there lacks the attempt to challenge or clarify the rationale 

and responsibilities of backspace and cursor in error correction and text revision in mobile devices 

and VR systems. Last but not least, with the increasing trend of VR systems, there exists a strong 

need to enhance users’ text input performance (both text entry and text revision) as the basement to 

build more effective and engaging experience in VR. 

 

Thus, the objects of this dissertation are: 

 

• To provide a thorough overview about the state-of-art of current text revision research (in both 

mobile devices and VR systems) 

• To propose a new text revision process and tools that can both simplify the interaction process 

and avoids the potential errors during the revision 

• To clarify and extend the design space of VR text revision 

• To propose an effective and fluid text entry technique to enhance the typing speed in VR 

applications 

 



   

3 

 

1.3. Dissertation Overview 
 

The details of this dissertation are organized as follows. Chapter 2 shows the holistic overview about 

the development of keyboards, mice, text error and error types, and error correction vs. text revision. 

Chapter 3 illustrates the challenges we found about text revision and proposes the new text revision 

paradigm (named Swap), related techniques, and validation process (through iterative design and a 

series of user studies). Chapter 4 focuses on investigating text revision in VR systems. The main 

work is to investigate the design space of VR text revision and proposed a series of techniques to 

improve user’s text revision performance in VR applications. Chapter 5 focuses on facilitating text 

entry efficiency and fluidity in VR applications by proposing SewTyping, a novel technique that 

combines the daily-life sewing metaphor with the penetrable feature of intangible displays. Chapter 

6 illustrates the in-depth discussions based on the finding of Chapter 3, 4, and 5. Chapter 7 lists the 

limitation of the current studies and the future work based on current research conditions. Finally, 

chapter 8 summarizes the work and highlights the contributions of this dissertation. 

 

 



   

4 

 

 

 

 

 

 

 

 

CHAPTER 2  

LITERATURE REVIEW 

 

 

This chapter first describes the history and the development of keyboards and text revision tools. 

Then, this chapter illustrates errors and error correction tools used during text input. Finally, we 

describe the differences between error correction and text revision and current solutions for text 

revision.  

 

2.1. Evolution of Keyboard 
 

People started to use machines to impress characters on paper since 1575 with scrittura tattile, the 

machine invented by Francesco Rampazzetto (Keyboard - History of the Modern Computer 

Keyboard, 2019). With the existence of the first commercially successful typewriter in 1873 

(Naskar, 2019), the keyboard with a QWERTY layout became mainstream and allowed users to 

transcribe text with it. On the keyboard, functions (e.g., shift and backspace), punctuations, and 

characters are designed as individual buttons and arranged in a rectangular layout.  

 

With the existence of personal computers, keyboards also serve as default input devices to receive 

users’ commands and transcription. The design (e.g., the definition of keys, and the way to transcribe 

and edit characters) of computer keyboards was inherited from the keyboards on typewriters. 

Interestingly, computer keyboards also inherited the QWERTY layout, which is previously designed 

to address the mechanical problems on typewriters. Based on this layout, computer keyboards also 

include arrow keys to control the caret among input text.  

 



   

5 

 

In the 1990s, feature phones became popular and wide-spread to users. Compared with the physical 

keyboard used in desktops and laptops, the interactive area of feature phones is not sufficient. Thus, 

designers first integrated characters and numbers into a 12-key physical keyboard and put arrow 

keys and backspace into a separate area (see Figure 2.1). 

 

 

Figure 2.1 A feature phone with a 12-key keyboard. Arrow keys and the backspace key are put 

above the keyboard. 

 

There were also designers who attempted to shrink the size of the physical QWERTY keyboard and 

transplant it to feature phones (see Figure 2.2) with essential adjustments. Although this keyboard 

kept the QWERTY layout, it limited the size of buttons and thus influence the typing speed (Arif, 

2015). 

 

 

Figure 2.2 A shrinked-size QWERTY keyboard on the feature phone. 

 

With the development of modern mobile operating systems (Android and iOS) and the popularity 

of touch screens, less space was left for keyboards in a physical form on smartphones and devices 

with larger screens (e.g., Microsoft Surface and iPad). Thus, virtual keyboards became dominant 

tools (as an alternative of physical keyboards) for text input. It is feasible to carry a physical 

keyboard to support users’ text input. However, it requires users to bring additional devices (with 



   

6 

 

the loss of mobility and the increased carry weight) with them. To avoid the extra workload of 

learning to type with a new keyboard, virtual keyboards inherited a similar design of physical 

keyboards with essential adaptive simplification such as cutting down arrow keys and using the 

multi-layer design with mode-switch mechanisms.  

 

With the similar layout, users can easily learn from their typing experience with physical keyboards 

(including the memory of key positions) and adapt it to new devices easily. However, there exist 

challenges when users typing with the virtual keyboard on touch screens. First, the limited size of 

keys and the finger occlusion make it difficult to press keys precisely. Second, compared with the 

mouse (with the scroll wheel and two physical buttons), controlling the caret with finger touch 

cannot provide satisfying accuracy and various functions directly. Third, although users can call out 

arrow keys to simulate similar functions, it requires extra time and steps to switch the layout between 

the QWERTY keyboard and arrow keys (see Figure 2.3).  

 

 

Figure 2.3 Mode switching between QWERTY keyboard and arrow keys on a smartphone 

virtual keyboard. 

  

In VR applications, the situation got worse than that on mobile devices when typing with virtual 

keyboards. A review about VR text input (Dube & Arif, 2019) revealed that typing with virtual 

keyboards cannot achieve satisfying typing performance as that with physical keyboards. There are 

two reasons for that. First, users need to use bare hands or handheld controllers to contact with keys 

without haptic feedback (the force resistance from the physical surface when pressing down keys) 

and few visual and audio feedback for confirming the key pressing during the text input, which both 

influence the typing fluidity and increase the possibility of mis-operation and typos. Second, for 

interaction with intangible interfaces, users have the poor capability of sensing the depth information 



   

7 

 

(Chan et al., 2010) of virtual objects, which leads to uncertainty, mis-operation during the 

interaction, and relatively low typing speed.  

 

2.2. Error and Error Correction  
 

It is inevitable to commit errors when users interacting with computers. In the context of text input. 

It is common to observe that users make typos when composing text with keyboards. According to 

the research (Gentner et al., 1983), all typos can be summarized as three main types: insertion, 

substitution, and omission. Insertion is the error where include one more letter in the input string 

(e.g., “helllo” to “hello”). Substitution is the error where one wrong character was entered to the 

position that the right character should be (e.g., “hrllo” to “hello”). Omission is the error where one 

character is missing (“helo” to “hello”). For errors with multiple characters redundant, mis-input, or 

missing, they can also be deconstructed to the three error types mentioned above. 

 

To correct errors during typing, error correction tools and mechanisms are essential and vital parts. 

Date back to the time of typewriter, erasers and ribbon are the main tools to correct typos with the 

assistance of backspace key, forward key, and the scroll roll (to move up or down the line). When 

the typist found the typo, they need to press the backspace key to make the typing position go back 

to the position where the mistaken character was. Then s/he uses the eraser to clean or the ribbon to 

cover the mistaken character. After the correction, the typist cannot continue typing until the typing 

position was moved to the end of the input string.  

 

On PC physical keyboards, the function of the backspace key was updated. When pressing the 

backspace key, two functions will be conducted at the same time: the caret will go backward with 

the distance of one letter with the letter after the caret is deleted. With arrow keys and mouse, users 

can navigate caret to the typo position, finish the correction, and move the caret back for further 

input. Furthermore, with a mouse, a series of characters can be selected by pressing and holding the 

button on the mouse, which increases the efficiency of error correction. 

 

For error correction with virtual keyboards on mobile devices and VR systems, it shares a similar 

operation as that with PC physical keyboards. However, users need to face a series of usability issues 

to correct typos (as mentioned in Chapter 2.2).  

 

Fortunately, based on the powerful corpus (Grammarly, 2019), algorithms (Levenshtein, 1966), and 

artificial intelligence methods, typos and grammar issues can be easily detected during the text input 

process and corrected automatically (e.g., auto-completion) or semi-automatically (e.g., technique 



   

8 

 

labels the typos, users choose the item in a prediction list to correct). With the techniques above, 

most typos and grammar issues could be addressed with limited attempts from users. 

 

2.3. Text Revision and Text Revision Tools 
 

Apart from correcting typos and grammar issues, there also exist conditions that need typists to 

revise. For instance, when composing an email on a smartphone, the user can make sure all text is 

typo-free and grammar correct with auto-correction techniques. However, s/he found that there are 

some words and sentences that cannot express the intended meaning. In that case, the user must 

revise them to make sure its expression accuracy.  

 

To finish the revision, backspace and caret are the only tools available. Usually, backspace is 

effective to finish the correction when the typo is just 3-5 characters away from the caret (Komninos 

et al., 2018). Beyond that, backspace would lose its effectiveness. Due to the difficulty of controlling 

the caret and the function limitation of backspace (backspace can only delete one character per 

pressing), text revision becomes time-consuming and error-prone on mobile devices and VR 

systems. Even worse, the repetitive use of backspace and imprecise control of caret may lead to 

cascade mistakes (e.g., multiple attempts to locate the caret) and unexpected time consumption (e.g., 

deleting the content unnecessarily with backspace). 

  



   

9 

 

 

 

 

 

 

 

 

CHAPTER 3  

SWAP-BASED TEXT REVISION TECHNIQUE ON MOBILE 

DEVICES 

 

 

This chapter illustrates the design and validation of the novel text revision technique on mobile 

devices. In detail, we present Swap, a novel replacement-based technique to facilitate text revision 

on mobile devices. We conducted two user studies to validate the feasibility and the effectiveness 

of Swap compared to traditional text revision techniques. Results showed that Swap reduced efforts 

in caret control and repetitive backspace pressing during the text revision process. Most participants 

preferred to use the replacement-based technique rather than backspace and caret. They also 

commented that the new technique is easy to learn, and it makes text revision rapid and intuitive. 

 

3.1 Introduction 
 

Text revision is a ubiquitous and vital process for text-related tasks such as email composition and 

instant messaging on mobile devices. Typo-free contents contribute in both formal and informal 

scenarios to help the reader convey information accurately. Currently, virtual keyboard interfaces 

offer backspace and caret control tools for erasing characters and navigating the caret. With the help 

of automatic techniques (e.g., spell checker (Alharbi et al., 2019; Android, 2017) and input guidance 

(Hagiya et al., 2016)) and writing assistant software (e.g., Grammarly (Grammarly, 2019)), users 

can also avoid, detect, and/or correct typos and grammar mistakes. 

 



   

10 

 

Despite many existing techniques, users still face significant usability issues when revising text on 

mobile devices. First, navigating the caret with the finger is error-prone and time-consuming, due to 

finger occlusion (Siek et al., 2005) and small target size (Brewster, 2002; Colle & Hiszem, 2004). 

Second, auto-correction sometimes introduces confusing, embarrassing, and hard-to-observe errors 

(Alharbi et al., 2019; Arbesman, 2017; Arif & Stuerzlinger, 2013; Microsoft, 2019), that diminish 

the benefits of those techniques and introduce extra revision workload to users (Buschek et al., 

2018). Third, the character-level backspace makes the revision process time-consuming and error-

prone when the revision contains multiple characters and/or happens in the middle of an input string 

(Arif & Stuerzlinger, 2010). Except for the backspace and caret, there lack efficient tools (and 

methods) when revising the sentence itself (e.g., modifying the meaning of the sentence by inserting, 

deleting, or substituting word(s)). 

 

 

Figure 3.1 Operation sequences (shown with enclosed numbers) for different techniques when 

revising the sentence. Swap minimizes the use of backspace and caret by first entering the 

revised content and then using it to replace the target. 

 

 



   

11 

 

We present Swap, a novel technique that is designed to facilitate text revision on mobile devices by 

using a unified replacement-based process to address various text revision tasks (e.g., 

substituting/deleting/inserting a word). Instead of using backspace and caret repetitively, Swap 

allows users to do the revision by first entering the correct content, and then using it to replace the 

target (see Figure 3.1). Swap 1) reduces the time consumption and the workload when using the 

backspace, and 2) avoids moving the caret in order to ensure the quick recovery from revision to the 

regular text entry process. With Swap, users can focus on the revision itself rather than spending 

time on auxiliary steps. 

 

This part of the work is organized as follows. First, we conducted a workshop to investigate the pain 

points of the current text revision interaction on mobile devices. After that, we illustrate the design 

of Swap. Then, we make the first implementation (Dot Swap) to validate the feasibility of Swap 

with a user study. Based on that study, we further improve the design, propose an iterative 

implementation (improved Swap), and evaluated its effectiveness through a user study compared 

with the conventional backspace and caret. Finally, we discuss Swap technique insights and future 

work. 

 

3.2 Related Work 
 

In this section, we first review previous research on text error correction, including the tool 

(backspace and caret) improvement, and current solutions (techniques, algorithms, and commercial 

products) for enhancing users’ error correction performance. Then, we make a summary based on 

the review to reveal the gap between error correction and text revision. 

 

3.2.1 Text Revision Procedure on Mobile Devices 
 

Generally, the design of text revision on current mobile devices obeys the Object-Action model 

(Card et al., 1983; Norman, 1995): First, users need to navigate the caret to the target position, and 

then finish the revision with repetitive backspace pressings (and extra caret control). As text revision 

often happens during a text entry process, users usually have to relocate the caret for other operations 

(another text revision or the following text entry). As a result, we summarize the current text revision 

procedure as “navigate the caret, revise the target, and navigate the caret”. 

 

 



   

12 

 

3.2.2 Improvement of the Backspace 
 

The conventional backspace serves users with the character-level function of both deleting a 

character and moving the caret backward (Wikipedia, 2019). Researchers attempt to use hotkeys 

(Raymond, 2007) and touch pressure (Ali, 2017) to extend deletion granularity of the backspace and 

decrease repetitive use of the backspace. 

 

Gestures are often used to facilitate error correction in both research (Fuccella et al., 2013) and the 

industry field (Fleksy, 2019). Smart-restorable backspace (Arif et al., 2016) allows users to quickly 

delete and store the text after the typo position by swiping left on the backspace key. A similar 

solution also occurs in (Alharbi et al., 2019). Instead of only having one backspace key on the 

keyboard, Arif et al. (Arif et al., 2014) removed the backspace key and integrate its function into the 

whole keyboard. Users can swipe left on any key on the keyboard to trigger the deletion. 

 

3.2.3 Caret Control Enhancement 
 

Caret control on mobile devices has been well investigated by researchers. Caret is an indicator for 

both mobile devices and users to remind them where interactions may happen. The trackpad mode 

on a virtual keyboard  (idownloadblog, 2018), magnifier (Google, 2018a) widget, and selection 

handle (Google, 2018b) can help users navigate the caret with flexibility and precision. iOS 13 

(Apple, 2019) uses the mouse to navigate the caret on tablets. However, those tools introduce extra 

interaction steps, cognitive load, and the possibility of increased errors. 

 

Users can navigate the caret in both direct and indirect ways. Widgets such as virtual sticks (Scheibel 

et al., 2013) and arrow keys (Google, 2019; Microsoft, 2019) are integrated into virtual keyboards 

to simulate the caret control on physical keyboards. By holding one key on the keyboard, Ando et 

al. leveraged the device tilt (Ando et al., 2018) and slide gesture (Ando et al., 2019) to complete the 

caret control, target selection, and a particular command (e.g., copy) at the same time. Eady et al. 

(Eady & Girouard, 2015) built a deformable interface and proposed a bend gesture on the corner of 

the device to control the caret. Sindhwani et al. (Sindhwani et al., 2019) used a matching algorithm 

to highlight potential correction position(s) based on users’ input. Then, eye movement was used to 

identify the intended correction position. Instead of moving the caret, Suzuki et al. (Suzuki et al., 

2015) attempted to move the caret by moving the background text. 

 

 



   

13 

 

3.2.4 Error Correction 
 

Algorithms and AI-based methods (e.g., natural language processing) are widely used in current 

typing applications: 1) to detect typos and grammar mistakes and 2) to prevent those issues from 

appearing in the final text (Arnold et al., 2016). Arif et al. (Arif et al., 2016) used Levenshtein 

distance (Levenshtein, 1966) to calculate the nearest position for their smart error correction 

technique. Retype (Sindhwani et al., 2019) used a simple string matching method to filter the 

potential correction positions by entering a few characters. Variants of visual feedback were used to 

inform users of detected problems. Maxie Keyboard (Komninos et al., 2015) and Wisetype (Alharbi 

et al., 2019) used colored shades to highlight typos. Grammarly (Grammarly, 2019) used underlines 

to remind users of detected errors. Users can do a quick correction by tapping on the error and select 

a required option provided by the system. Additionally, applications such as Microsoft Word and 

Gmail also provide auto-correction functions. These systems automatically correct typos as the users 

tap the space key after entering a word. 

 

3.2.5 Summary 
 

To date, extensive research mentioned above were focused on addressing typos and grammar 

mistakes. Most of those errors can be solved (semi-)automatically with corpora, machine learning, 

and auto-correction techniques. However, it may be noted that typos and grammar mistakes are not 

the only targets for text revision. Except for backspace and caret, there lack efficient tools to deal 

with conditions such as revising words with unintended meaning, or changing unintended and/or 

confusing words inserted by incorrect auto-correction (Arif et al., 2016). Furthermore, through 

relevant literature, we found that most research was focused on only one part (e.g., caret control) of 

the text revision procedure rather than questioning the text revision procedure itself as well as the 

rationality of the current procedure and tools used in mobile devices. 

 

3.3 Pre-Study: How Do Users Do Text Revision 
 

Before designing the new text revision technique, we conducted a workshop to investigate strategies 

of using the backspace and caret in daily text revision scenarios and to explore the challenges when 

revising text content on mobile devices. The workshop involved 20 participants (age ranged from 

24 to 32, 10 females), all of whom have used smartphones for over six years. All participants used 

instant messaging applications (e.g., Line and WhatsApp) every day. Eight of them compose emails 

daily on their smartphones. We designed several text revision scenarios (e.g., changing a word in 

the middle of a sentence when composing an email) and asked them to simulate them on their 



   

14 

 

smartphones. After that, we organized a free discussion with participants to collect their feedback 

on the use of backspace and caret with a view of improving our design. 

 

Most (18 of 20) participants preferred to use two thumbs for typing on the virtual keyboard. All 

participants used the backspace (only) for quick revisions if there were only a few characters away 

from the caret. When editing was required in the middle of the sentence, three participants tended to 

use backspace only, while the others navigated the caret, executed the correction, and then navigated 

the caret again to other positions for further actions. When navigating the caret, ten participants used 

assistive techniques (e.g., selection handles and the magnifier). All participants reported that it is 

difficult to navigate the caret with their fingers due to the occlusion. 

 

In the free discussion session, most participants regarded the text revision process as “using the 

proper content to replace the improper one”. They commented that it was simple but cumbersome 

to perform that on mobile devices. They felt it “simple” because they had used backspace and caret 

for years. Participants subconsciously turned the intention to revise into a sequence of steps. They 

felt the process “cumbersome” because of the limitations of backspace and caret. Participants must 

spend time on extra but essential steps (e.g., caret control and consecutive deletion) to revise the 

text. All participants commented that frequent caret control interrupted their typing flow. They must 

stop typing, move their fingers out of the virtual keyboard to navigate the caret, finish the correction, 

and restart typing after that (with navigating the caret once more). This situation became worse if 

participants have multiple words to correct. 

 

3.4 The Design of Swap 
 

Based on the pre-study, we regarded “replacement” as the core design principle to simplify the 

mobile text revision process. There are two ways to implement the replacement process. One is “type 

and then select”, while the other is “select and then type”. We chose the first one to enable 

participants to enter revision content quickly without the obvious interruption caused by the selection 

process. 

 

“Replacement” can happen not only between words (e.g., replace “John” with “Sam” in “John will 

come and visit Bob”) but also between functions and words (e.g., deleting “almost” by using a 

symbol (representing the delete function) to replace “almost” in “I am almost ready to go there”). 

 

In the current situation, it is difficult to realize “replacement” in an intuitive way. There are two 

reasons: 1) with current backspace and the caret control method, there lacks a unified procedure to 



   

15 

 

deal with different revision conditions (e.g., inserting/deleting/substituting a word); 2) the current 

backspace function cannot appear on the touch screen as a regular character. Thus, we design the 

replacement-based text revision process and symbolize the backspace as a character to make it 

visible on the screen. 

 

3.4.1 Interaction Logic 
 

Swap changes the revision into two steps: Content Preparation and Replacement Execution. With 

them, Swap unifies various revision procedures into one: enter the content and then replace the target 

with it. 

 

Content Preparation: The first step of revision is to enter the content for the following replacement. 

The content includes characters and the symbolized backspace. For instance, if participants want to: 

1) insert “mobile” between “in” and “text” or 2) change “tools” to “methods” in “… text revision 

tools show vital importance in text entry tasks.”, they can enter the text (“mobile” and “methods”) 

at the end of the sentence. If the goal is to remove the first “text”, participants can enter a symbolized 

backspace (this will be elaborated later in the following part) representing the command of deleting 

“text”. 

 

Replacement Execution: After the content preparation, the following step is to use the entered content 

to finish the revision. Specifically, participants can navigate the content and finish the replacement 

by tapping the target. After the replacement, the caret remains at the end of the input string and ready 

for further input actions. When revising “… text edition tools show importance in mobile text entry 

tasks…”, participants can: 1) replace “edition” with “revision”; 2) replace the space between “show” 

and “importance” with “vital”; and 3) use a symbolized backspace to replace “mobile”. 

 

3.4.2 Symbolized Backspace 
 

Compared with the conventional backspace, we visualize the function of deletion on the screen with 

the symbolized backspace. The symbolized backspace represents the function of “deleting multiple 

characters”. When participants want to delete one word, they can enter a symbolized backspace, and 

then use it to replace the word. It may be noted that the symbolized backspace will disappear after 

the replacement and it will not appear in the final text. 

 

 



   

16 

 

 

3.5 Dot Swap 
 

Two issues are needed to solve before implementation. First, we need a suitable symbol to represent 

the function of “deleting multiple characters”. Second, we need an approach that helps identify 

different revision intentions (e.g., inserting or deleting a word) during the revision process. It should 

also be noted that, when entering the symbol, it should not bring much extra cost to participants 

(e.g., mode switch, visual search). We addressed those issues by redesigning the use of the dot (“.”) 

because it is the common symbol directly shown on the default virtual keyboard. To 1) validate the 

feasibility of the new text revision process and the symbolized backspace and 2) improve the design 

of Swap, we implemented Dot Swap and evaluated it with a user study. 

 

Dot Swap used a dot as both the symbolized backspace and the identifier. As shown in Figure 3.2, 

when participants observed the target for revision, they would first enter the content at the end of 

the sentence. If participants entered only one dot, this dot would be regarded as the symbolized 

backspace. If the entered content didn’t contain any dot at the beginning, it can be used to substitute 

the target word. Content marked with two dots as a prefix meant that the content will be inserted 

into the sentence. After entering, participants tapped the intended target (when inserting a word, Dot 

Swap calculated the nearest space to the touch point) to finish the revision. 

 

 

Figure 3.2 The use of Dot Swap under three revision conditions. Participants first enter the 

content at the end of the sentence, then use that content to revise the target. 

 

 

 



   

17 

 

 

3.6 Study 1 – Feasibility Evaluation of Dot Swap 
 

We conducted a user study to 1) examine the feasibility of the replacement-based process for text 

revision and 2) compare the text revision efficiency of Dot Swap with the conventional backspace 

& caret and magnifier.  

 

3.6.1 Apparatus 
 

A custom application was designed to implement the text revision techniques with Android P (SDK 

version 28) in Java on a Huawei P20 smartphone (5.8 inches, 2244 × 1080 pixel, 149.1 × 70.8 × 

7.65mm). The smartphone also recorded participants’ key pressing and caret control events during 

the experiment. We disabled assistive functions such as auto-correction and auto-completion. 

 

3.6.2 Participants 
 

We recruited nine participants (average age 24.67, SE = 1.15, three females) for this study. One 

participant is left-handed. All participants had experience over three years of using mobile devices 

and preferred to use two thumbs when typing on the touch screen. 

 

3.6.3 Procedure and Task 
 

The study used a within-subjects design to compare text revision performance of conventional 

backspace & caret (as the baseline), magnifier (Google, 2018a) (when participants move the caret, 

a virtual lens appears and follows the finger position with the content below the fingertip), and Dot 

Swap. We used the memorable test set from the Enron Mobile Email Dataset (Vertanen & 

Kristensson, 2011). 

 

We set two phases for each trial to simulate the revision behavior during the text entry process (e.g., 

sending short messages). In the first phase, part of the target sentence appeared on the screen (see 

Figure 3.3a). Participants were requested to read and enter the sentence part as fast and accurate as 

possible. Error correction in the first phase was mandatory. Then, participants pressed the “enter” 

key on the keyboard to trigger the second phase. 

 

 



   

18 

 

 

Figure 3.3 The experimental interfaces used for study 1. (a) 1st phase of the trial. (b) 2nd phase 

of the trial. 

 

In the second phase, the system showed the rest part of the target sentence (see Figure 3b). As 

instructed in (Arif et al., 2016), we injected an error randomly in the front, middle, or end of the 

participant’s transcription (in real-life scenarios, text revision usually happens unexpectedly during 

typing). Participants were requested to correct the error and finish the transcription as fast and 

accurate as possible. After that, participants submitted the input by pressing the enter button (and 

then started a new trial). The injected error had two main types: character-level and word-level. Each 

included the following subtypes: insertion, substitution, and omission. The distribution of each type 

of error is shown in Table 3.1 (distribution of character-level errors followed the statistical results 

from (Dhakal et al., 2018)). 

 

Table 3.1 Proportions for various types of errors inserted during the experiment 

 

 Character-level  Word-level 

Insertion 21% 33% 

Substitution 53% 33% 

Omission 26% 33% 

 

We counterbalanced the order of the techniques across participants using the Latin Square. For 

investigating the potential learning effect, three blocks of trials were completed by each participant 

over three consecutive days (with an approximate time gap of more than 24 hours). Every day, 

participants needed to finish one block of trials for each technique (3 blocks a day). Each block 

consisted of 24 target sentences randomly chosen from the corpus. 

 

Participants practiced sufficiently with all techniques. During the study, participants were seated in 

front of the desk in comfortable postures. All participants used two hands to hold the smartphone 



   

19 

 

and typed on the virtual keyboard. Participants got 5-minute rest between blocks. As the result, the 

total number of trials was: 

 

9 participants × 3 techniques (conventional backspace & caret, magnifier, Dot Swap) × 24 sentences 

× 1 block/day × 3 days = 1944. 

 

3.6.4 IVs and DVs 
 

The independent variables in this study were technique and error type (character-level, word-level). 

We evaluated text revision performance with the following dependent variables: 1) correction time 

(duration between the first action and the final action when revising the target), 2) number of caret 

control operations (for Dot Swap, content navigation was regarded as the caret control operation), 

3) caret control time (duration of the finger navigating the caret or the content), 4) number of 

backspace keystrokes, and 5) backspace time (duration between the previous keystroke and the 

backspace keystroke). For Dot Swap, the behavior of navigating the content for replacement was 

also calculated as the number of caret control operations and caret control time. 

 

3.6.5 Results 
 

We did the log-transformation operation and validated the data normality of correction time, caret 

control time, and backspace time. Further, we performed the repeated measures ANOVA on those 

DVs (α = 0.05, post-hoc tests with Bonferroni correction). For the number of caret control operations 

and the number of backspace keystrokes, data did not satisfy the normality, thus we performed the 

Friedman test and Wilcoxon Signed-Rank test. 

 

The average correction time for conventional backspace & caret, magnifier, and Dot Swap (same 

order hereinafter) were 7158.28ms (SE = 323.45), 7068.61ms (SE = 313.38), and 6440.65ms (SE = 

381.81), respectively. An ANOVA showed a significant effect of technique (F2,16 = 8.21, p<.001, 

ηp
2 = 0.03), error type (F1,8 = 81.63, p<.001, ηp

2 = 0.21) and technique × error type (F2,16 = 5.18, 

p<.01,ηp
2 = 0.02) on the average correction time. Post-hoc analysis revealed that Dot Swap showed 

a significant difference (p<.01) from the other two techniques. 

 

For the average number of caret control operations, participants navigated the caret most times with 

the conventional backspace & caret (2.62, SE = 0.12), then with the magnifier (2.27, SE = 0.08). Dot 

Swap navigated the caret with the least number (1.29, SE = 0.05). The Friedman test showed a larger 



   

20 

 

effect of technique (χ2(2) = 536.05, p<.001) for the number of caret control operations. A post-hoc 

test using the Wilcoxon Signed-rank tests with Bonferroni correction showed significant differences 

between the three techniques (p<.001). 

 

The average caret control time for three techniques were 1813.29ms (SE = 103.72), 1754.12ms (SE 

= 122.8), and 1100.08ms (SE = 86.16), respectively. An ANOVA showed a significant effect of 

technique (F2,16 = 186.72, p<.001, ηp
2 = 0.37) and error type (F1,8 = 15.88, p<.001, ηp

2 = 0.05) on 

the average caret control time. Post-hoc analysis revealed that Dot Swap showed a significant 

difference (p<.001) from the other two techniques. The interaction effect of technique× error type 

(F2,16 = 2.84, p = 0.06,ηp
2 = 0.01) was not significant. 

 

For the average number of backspace keystrokes, the conventional backspace & caret used the most 

4.19 (SE = 0.17), then the magnifier 4.02 (SE = 0.17). Dot Swap used the least number of backspace 

keystrokes 2.44 (SE = 0.66) during the revision. The Friedman test showed a larger effect of 

technique (χ2(2) = 190.14, p<.001) for the number of backspace keystrokes. A post-hoc test using 

the Wilcoxon Signed-rank tests with Bonferroni correction showed significant differences between 

the three techniques (p<.01). 

 

The average backspace time for three techniques were 542.60ms (SE = 38.59), 773.11ms (SE = 

76.1), and 692.82ms (SE = 163.8), respectively. An ANOVA showed a significant effect of 

technique (F2,16 = 9.67, p<.001, ηp
2 = 0.03), error type (F1,8 = 84.7, p<.001, ηp

2 = 0.21) and 

technique × error type (F2,16 = 51.05, p<.001, ηp
2 = 0.14) on the average backspace time. Post-hoc 

analysis revealed that Dot Swap showed a significant difference (p<.001) from the other two 

techniques. 

 

3.6.6 Discussion 
 

Based on the results, Magnifier can help participants to decrease the effort when using backspace 

and caret. However, it mainly focused on improving the controllability of the caret instead of 

changing the text revision procedure. When revising character-level errors, all participants 

commented that instead of navigating the caret, they preferred to enter the whole word. 

 

Though Dot Swap showed an overall reduction in the average correction time, it didn’t achieve the 

improvement we expected. There were three reasons for that. First, participants needed time to 

memorize and adapt to the rules of using Dot Swap. Therefore, more cognitive effort was taken to 



   

21 

 

decide the correction strategy and following procedures during revisions. Three participants 

commented that sometimes there were confusions when entering the dot as the dot was often 

regarded as the ‘period’ symbol indicating the end of a sentence. Second, the text in the text area 

was small. Thus, due to the finger occlusion, it was difficult to navigate the content for correction 

towards small targets (1 or 2 characters) with their fingertips. Third, when participants made an 

unintended correction (to the wrong place) or the intended correction was misspelled, extra time and 

steps were required to recover from the compounded mistakes. This can lead to cascading errors. 

 

3.7 Improved Swap 
 

Based on results and concerns revealed in study 1, we made the following improvements in the 

iterative technique (named improved Swap). 

 

First, we used a text buffer (Microsoft, 2018) to remove the ambiguity caused by the identifier in 

the Dot Swap and make the entered content available for revision. The text buffer is the widget 

holding the pronunciation spellings in Chinese text entry methods (Microsoft, 2018). The content 

just entered first goes to the text buffer (see Figure 4). One can either press the “enter” button to 

make the content appear at the end of the input string or use it for revision. Meanwhile, the text 

buffer will be emptied for further input. During the implementation, we set the text buffer size as 

150 characters to satisfy most of the conditions (on average 70-100 characters for one sentence 

(Cutts, 2013)). 

 

Second, we designed an expanded layout to make all words and spaces visible and easy to select. In 

detail, after entering the content for revision, participants can tap the input string to trigger an 

expanded layout (see Figure 3.4). In the expanded layout, we turned words and spaces near the tap 

position into buttons. One can press the corresponding button to finish the replacement with the 

content in the text buffer. After that, the expanded layout disappeared with the caret remained at the 

end of the input string and the text buffer emptied. If participants triggered the expanded layout in 

the wrong place, they can press the “CANCEL” button (see Figure 3.4) to revoke the expanded 

layout. If there was no content in the text buffer when tapping the input string, the expanded layout 

would not be triggered. 

 

Last, we integrated the symbolized backspace on the virtual keyboard as a button. When participants 

pressed the symbolized backspace, an emoji (a red cross, see Figure 3.5b) appeared at the end of the 

text. 

 



   

22 

 

In summary, when using improved Swap, participants first entered the content at the end of the text, 

tapped the target position to trigger the expanded layout, and then pressed the target button in the 

expanded layout to finish the revision (replacement). 

 

 

Figure 3.4 The schematic of using the improved Swap. The enclosed numbers refer to the 

operation steps. 

 

3.8 Study 2 - Comparative User Study 
 

We conducted a user study to examine the performance of improved Swap and compared its text 

revision efficiency with the conventional backspace & caret. In this study, participants were 

requested to revise paragraphs, which contained multiple words to correct. In addition to the number 

and time consumption when using the backspace and navigating the caret, we also explored 

participants’ entry speed with different text revision techniques. Furthermore, we collected 

participants’ feedback and preferences regarding those techniques. 

 

3.8.1 Apparatus 
 

We used the same apparatus in Study 1 (with a custom application for the paragraph revision task). 

Similarly, we also disabled auto-correction and auto-completion. 

 

3.8.2 Participants 
 

Eighteen participants (eight females, age ranged from 21 to 32 years, average 26.33, SE = 0.9, one 

left-handed) participated in the study. Before the experiment, we asked all participants to do simple 

typing speed tests on their smartphones (https://10fastfingers.com/). The average typing speed was 



   

23 

 

23.94 WPM (SE = 1.79). No participants had physical problems with their hands or eyes. All 

participants had at least 3 years of experience in using mobile devices. None of the participants was 

a native English speaker. And, none of them knew the replacement-based text revision techniques 

before. Each participant received a voucher equivalent to $10 as compensation. 

 

3.8.3 Procedure and Task 
 

To further validate the capacity of the replacement-based text revision process in case of heavy 

revision conditions, we used a paragraph revision task in this study. For each technique, participants 

were given six paragraphs (with eight revision targets in each paragraph) to revise. All paragraphs 

were selected from Wikipedia. The error types and their distribution are shown in Table 3.1. 

 

The study lasted about 70 minutes for each participant. Participants first signed the informed consent 

form. Then we demonstrated two techniques to participants and asked them to adjust themselves 

into a comfortable sitting position in front of the desk. Then, participants can get sufficient practice 

to ensure that they were familiar with the techniques. After that, participants were requested to revise 

each paragraph with the assigned technique as fast and accurate as possible with two thumbs. 

 

When revising the paragraph, we provided the corresponding printout with all revision targets 

marked on it to the participant, because 1) it is difficult for them to detect word-level errors (e.g., a 

word without typos but fails to express the participants’ intention) and 2) we mainly focus on 

investigating the revision efficiency of different techniques, not the participants’ text comprehension 

ability. With marked targets on the printout, participants could reduce the effort of observing targets 

during text revision. 

 

The experiment began when the participant pressed the “START” button (see Figure 3.5a). Then the 

paragraph (with revision targets) appeared on the touch screen (see Figure 3.5b). We requested 

participants to revise all targets. For each target, when the participant observed it and prepared to 

revise, s/he needed to press the “READY TO REVISE” button and then start the revision. When all 

targets were corrected, s/he pressed the “FINISH” button to finish the revision of the given 

paragraph. No help was provided by the experimenter during the experiment. 

 

Participants could get enough rest between paragraphs. After revising all paragraphs, we asked 

participants to fill in the NASA-TLX (see Appendix 1) and a 7-point Likert Scale questionnaire (1 

for the less, 7 for the most, the lower, the better, see Appendix 2) for subjective evaluations on 

factors including complexity, fatigue, difficulty, and the dislike for the two techniques. 



   

24 

 

 

We used the within-subjects design in this study. The order of the paragraphs and the techniques for 

each participant was totally randomized. The total number of revisions in this study was: 

 

18 participants × 2 techniques (conventional backspace & caret, improved Swap) × 6 paragraphs × 

8 revision targets per paragraph = 1728. 

 

 

Figure 3.5 The experiment interfaces for Study 2. (a) is the interface before the experiment. (b) 

is the interface for the experiment. The symbolized backspace key is on the left side of the 

“Enter” key. When participants enter the symbolized backspace, a red cross appears on the 

screen. 

 

3.8.4 IVs and DVs 
 

The independent variables in this study were technique (conventional backspace & caret, improved 

Swap) and error type. Error type included character-level (“C”) and word-level (“W”). Each had 

three subtypes: insertion (“i”), substitution (“s”), and omission (“o”). 

 

Except for calculating the number of caret control operations, caret control time, number of 

backspace keystrokes, and backspace time as in Study 1, we also calculated the following metrics: 

 



   

25 

 

1) Keystroke per minute: the number of keystrokes during the revision process divided by the input 

time. 

 

2) Pre-action time: the time taken to detect the revision target and plan the sequence of actions. It is 

calculated as the time from the moment that the previous target is revised to the moment the 

“READY TO REVISE” button is pressed. 

 

3) Action time: the time taken to do the actual revision (after pressing the “READY TO REVISE” 

button). It is the duration between the first and the last action required for the actual revision of the 

target. 

 

4) Navigation time: for improved Swap, it is the total time taken to trigger the expanded layout, press 

the corresponding button for replacement, and press the “CANCEL” button if the participant mis-

triggered the layout; for conventional backspace & caret, it is calculated as the total time taken to 

control the caret. 

 

5) Input time: the time taken to enter characters (including the symbolized backspace). 

 

3.8.5 Results 
 

Sixty-seven (3.88%, sixty-four outliers and three missing data) revision data was removed before 

the quantitative analysis. We did the log-transformation operation and validated the data normality 

for DVs in Study 2. Further, we performed the repeated measures ANOVA (α = 0.05, post-hoc tests 

with Bonferroni correction). For the number of caret control operations and the number of backspace 

keystrokes, data did not satisfy the normality, thus we performed the Wilcoxon Signed-Rank test 

(also for the subjective evaluation) and Friedman test. 

 

Keystroke per Minute. For each correction, the average keystroke per minute for conventional 

backspace & caret and improved Swap were 87.43 (SE = 1.39) and 124.55 (SE = 2.91), respectively. 

An ANOVA identified a significant effect of technique (F1,17 = 116.07, p<.001, ηp
2 = 0.55), error 

type (F5,85 = 6.79, p<.001, ηp
2 = 0.07), and their interaction (F5,85 = 76.15, p<.001, ηp

2 = 0.44) on 

average keystroke per minute. 

 

Time Consumption During Correction. For each correction, the average pre-action time for 

conventional backspace & caret and improved Swap were 3616.31 (SE = 125.77) and 3041.51 (SE 



   

26 

 

= 154.66) ms, respectively. An ANOVA identified a significant effect of technique (F1,17 = 18.16, 

p<.001, ηp
2 = 0.16) on the average pre-action time. The effect of error type (F5,85 = 2.08, p = 0.07, 

ηp
2 = 0.02) and technique × error type (F5,85 = 1.17, p = 0.32, ηp

2 = 0.01) was not significant. 

Figure 3.6 illustrates the details. 

 

 

Figure 3.6 Average pre-action time for different error types. 

 

For each correction, the average action time for conventional backspace & caret and improved Swap 

were 7419.79 (SE = 143.4) and 6342.55 (SE = 145.99) ms, respectively. An ANOVA identified a 

significant effect of technique (F1,17 = 27.53, p<.001, ηp
2 = 0.22), error type (F5,85 = 24.44, p<.001, 

ηp
2 = 0.2) and their interaction (F5,85 = 21.47, p<.001, ηp

2 = 0.18) on the average action time. 

Pairwise comparison revealed that all three word-level errors were different from each other (all 

p<.001). There was no significant difference among three character-level errors. Ws also showed 

significant differences from all other error types (all p<.001). See Figure 3.7 for details. 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ci Co Cs Wi Wo Ws

A
v
e

ra
g

e
 p

re
-a

c
ti

o
n

 t
im

e
 p

e
r 

c
o

rr
e

c
ti

o
n

 (
m

s
)

Error type

conventional backspace & caret

improved Swap



   

27 

 

 

Figure 3.7 Average action time for different error types. 

 

For each correction, the average navigation time and input time for conventional backspace & caret 

and improved Swap are shown in Figure 3.8. No significant effect of technique was found on average 

navigation time (F1,17 = 2.21, p = 0.14, ηp
2 = 0.02). An ANOVA found a significant effect for error 

type on average navigation time (F5,85 = 8.13, p<.001, ηp
2 = 0.08). For average input time, an 

ANOVA identified a significant effect of technique (F1,17 = 125.63, p<.001, ηp
2 = 0.57), error type 

(F5,85 = 43.4, p<.001, ηp
2 = 0.31) and their interaction (F5,85 = 37.64, p<.001, ηp

2 = 0.28) on the 

average input time. Correcting the Ws targets with conventional backspace & caret took the longest 

average input time (M = 6677.75ms, SE = 196.5), and while correcting the Wi targets, the improved 

Swap took the shortest average input time (M = 1289.4ms, SE = 83.27). 

 

 

Figure 3.8 Average navigation time and input time for two text revision techniques. 

 

Caret Control. For each correction, the average number of caret control operations for conventional 

backspace & caret and improved Swap were 2.61 (SE = 0.1) and 1.04 (SE = 0.01). Figure 3.9 shows 

0

2000

4000

6000

8000

10000

12000

Ci Co Cs Wi Wo Ws

A
v
e

ra
g

e
 a

c
ti

o
n

 t
im

e
 p

e
r

c
o

rr
e

c
ti

o
n

 (
m

s
)

Error type

conventional backspace & caret

improved Swap

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

navigation time input time

A
v
e

ra
g

e
 t

im
e

 c
o

n
s

u
m

p
ti

o
n

 p
e

r 
c
o

rr
e

c
ti

o
n

 (
m

s
)

Time consumption type

conventional backspace & caret

improved Swap



   

28 

 

the average number of caret control operations per correction for each error type. The Wilcoxon 

Signed-rank test showed a significant effect among techniques (W = 16, Z = -18.65, p<.001, r = 

0.46). The Friedman test showed a significant effect among error types (χ2(5) = 34.01, p<.001) for 

the number of caret control operations. A post-hoc test using the Wilcoxon Signed-rank tests with 

Bonferroni correction showed significant differences between Ci and Cs, Co and Cs, and Cs and Ws 

(p<.001). 

 

 

Figure 3.9 Average number of caret control operations for different error types. 

 

For each correction, the average caret control time for conventional backspace & caret and improved 

Swap were 3297 (SE = 102.09) and 2345.62 (SE = 75.66) ms. Figure 3.10 shows average caret 

control time when correcting different types of errors. An ANOVA identified a significant effect of 

technique (F1,17 = 56.49, p<.001, ηp
2 = 0.37) and error type (F5,85 = 6.21, p<.001, ηp

2 = 0.06) on 

the average caret control time. However, the interaction effect was not significant (F5,85 = 1.65, p = 

0.15, ηp
2 = 0.02). Pairwise comparisons identified the significant difference between Co and Ci 

(p<.05), Wi (p<.05), Wo (p<.001), and Ws (p<.01). 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

Ci Co Cs Wi Wo Ws

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
c

a
re

t 
c

o
n

tr
o

l 
o

p
e

ra
ti

o
n

s
 p

e
r 

c
o

rr
e

c
ti

o
n

Error type

conventional backspace & caret

improved Swap



   

29 

 

 

Figure 3.10 Average caret control time for different error types. 

 

The Use of Backspace. For each correction, the average number of backspace keystrokes for 

conventional backspace & caret and improved Swap were 3.24 (SE = 0.08) and 0.08 (SE = 0.02) 

respectively. The Wilcoxon Signed-rank test showed a significant effect among techniques (W = 17, 

Z = -21.75, p<.001, r = 0.54). The Friedman test showed a significant effect among error types (χ2(5) 

= 445.46, p<.001) for the number of backspace keystrokes. A post-hoc test using the Wilcoxon 

Signed-rank tests with Bonferroni correction showed significant differences between all error type 

pairs (p<.01).  

 

The average backspace time for each correction with conventional backspace & caret and improved 

Swap were 1993.17 (SE = 41.73) and 76.83 (SE = 16.75) ms respectively. It indicated that 

participants used fewer backspace keystrokes when entering the content at the end of the paragraph. 

Pairwise comparison identified a significant difference among word-level errors (all p<.001). 

 

Subjective Evaluations. For the weighted NASA-TLX rating scores (the lower, the better), 

improved Swap (M = 45.3, SE = 2.7) scored lower than the conventional backspace & caret (M = 

53.37, SE = 3.84). However, a Wilcoxon Signed-Rank test did not find the significant difference 

between two techniques (W = 6, Z = 6, p = .05, r = 0.33). For all factors measured in the Likert Scale 

(see Figure 3.11), improved Swap got lower scores than conventional backspace & caret. A 

Wilcoxon Signed-Rank test revealed that, for improved Swap, the score for fatigue (W = 2, Z = -

2.99, p <.01, r = 0.5), difficulty (W = 1, Z = -3.22, p<.01, r = 0.54), and dislike (W = 1, Z = -3.03, 

p<.01, r = 0.51) was significantly lower than conventional backspace & caret. 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ci Co Cs Wi Wo Ws

A
ve

ra
ge

 c
ar

et
 c

o
n

tr
o

l t
im

e 
p

er
 

co
rr

ec
ti

o
n

 (
m

s)

Error type

conventional backspace & caret

improved Swap



   

30 

 

 

Figure 3.11 Average Likert Scale scores for each factor. 

 

Overall, most participants gave positive responses to improved Swap (P3: “It is easy to understand 

the logic of the new technique and to get used to it quickly.”, P5: “I prefer to use the new technique 

because it frees me from using the backspace multiple times.”). Eight participants described the 

experience of using improved Swap with the word “intuitive” (P11: “The new technique liberates 

me from controlling the small caret. I can quickly type the content, locate, and finish the revision.”). 

Five participants pointed out that improved Swap showed advantages, especially when revising 

word-level targets in long paragraphs. Six participants commented that, in a short period of time, it 

was hard to change to the new technique due to the years of experience with backspace and caret. 

Participants regarded that a long-term use of improved Swap would change their habits of using 

backspace and caret. All participants agreed that improved Swap could decrease the effort required 

by navigating the caret and pressing the backspace repetitively. Six participants expect to integrate 

improved Swap into their smartphones. 

 

3.8.6 Discussion 
 

Based on results, improved Swap took less action time when correcting word-level errors, whereas 

it didn’t show advantages when correcting character-level errors. The reason is that improved Swap 

did the replacement only in word-level. Thus, participants needed to type the whole word and then 

replace the target. Participants expressed their attitudes towards the character-level revision 

performance with improved Swap: “For character-level errors, if the word length is within 5 

characters, it would be fine to type the whole word and do the replacement. If the length exceeds 

that, it might cost extra time for revision. Despite that, I still tend to type because it is easier than 

navigating the caret.” 

 

1

2

3

4

5

6

7

Complexity Fatigue Difficulty Dislike

A
v
e

ra
g

e
 s

c
o

re

Factor

conventional backspace & caret

improved Swap



   

31 

 

In Study 2, we found that participants adapted two strategies to navigate the caret. One strategy was 

to persevere in locating the caret with repetitive caret control attempts until it arrived at the intended 

position. The other strategy was that when the caret was located before the intended position, the 

participant would re-navigate the caret; if the caret was located 2-3 characters after the intended 

position, the participant would use the backspace multiple times to delete to the intended place and 

then perform the revision. One participant gave a reason for adapting the second strategy: “I usually 

avoid navigating the caret on the smartphone as the caret is too difficult to locate. Therefore, I would 

rather spend time deleting and retyping the content than control the caret multiple times.” The 

expanded layout made it easier for participants to replace the word as 1) it enlarged the target size 

for easier selection and 2) it made the replacement intuitive and easy to understand. 

 

Figure 3.8 showed that improved Swap took longer navigation time than the conventional backspace 

& caret. There are two reasons for that: 1) after typing the content for replacement, it still needs 

some time for participants to locate the target; 2) it is challenging for participants to fully accept a 

new technique in a short period of time. Though participants reported that they did sufficient 

practice, they still need time and effort to get used to the replacement operation. 

 

With improved Swap, participants can type faster than the conventional backspace & caret during 

the text revision. The average keystroke per minute for improved Swap was similar to the average 

typing speed for all participants measured before the study. This indicated that improved Swap could 

leverage participants’ regular typing speed to finish the text entry quickly during the revision. 

 

We calculated the total time (sum of pre-action time and action time) to evaluate the time 

consumption when revising a target. Results proved that, improved Swap took less total time (M = 

9195.47ms, SE = 133.71) than the conventional backspace & caret (M = 10654.01ms, SE = 114.38). 

For word-level errors, it took on average 9248ms (SE = 189.85) to finish the revision, while on 

average 11688.42ms (SE = 152.05) for the conventional backspace & caret. The reason for the 

difference was that imporved Swap minimized the use of backspace and caret, and thus decreased 

the time consumption. 

 

Figure 3.9 revealed that participants were more likely to navigate the caret multiple times when 

using conventional backspace & caret for revision compared with improved Swap. Through the data, 

we found 499 revisions navigated the caret more than once with the conventional backspace & caret. 

For improved Swap, only 35 revisions were found to trigger the expanded layout more than once. It 

indicated that selecting a target in the expanded layout was easier than navigating the small caret. 

 



   

32 

 

3.9 Conclusion 
 

In this chapter, we have presented Swap, a replacement-based technique to facilitate text revision on 

mobile devices. To simplify the text revision interaction, Swap designed the symbolized backspace 

and the replacement-based revision process. Swap allowed users to input the content first and then 

use it for revision. We implemented two techniques (Dot Swap and improved Swap) and compared 

their text revision efficiency with the conventional text revision techniques through user studies. 

Results revealed that Swap improves revision efficiency and fluency by significantly reducing the 

use of backspace and caret during the text revision. Most participants showed their preference for 

Swap as it is easy to learn, and it is more efficient. Some participants expect to integrate Swap with 

their own mobile devices for long-term use. 

 

 

 

 

 

  



   

33 

 

 

 

 

 

 

 

 

CHAPTER 4  

DESIGN SPACE EXPLORATION ON TEXT REVISION IN 

VR APPLICATIONS 

 

 

Current VR systems provide various text input methods that enable users to enter text efficiently 

with virtual keyboards. However, little attention has been paid to facilitate text revision during the 

VR text input process. We first summarized existing text revision solutions in current VR text input 

research and found that backspace is the only tool available for text revision with virtual keyboards 

with few mentioning designs for caret control. To systematically explore VR text revision designs, 

we presented a design space for VR text revision based on backspace and caret. With the proposed 

design space, we further analyzed the feasibility of the combined usage of backspace and caret by 

proposing and evaluating four VR text revision techniques. Outcomes of this research can provide a 

fundamental understanding of VR text revision solutions (with backspace and caret) and a 

comparable basis for evaluating future VR text revision techniques. 

4.1 Introduction 
 

The consumer-affordable and increasingly popular VR devices not only offer users the immersive 

and engaging experience but also provide a solid hardware basis for the development of productive 

working environments such as virtual office work (Grubert, Ofek, et al., 2018; Guo et al., 2019) and 

remote classrooms (C. Ma et al., 2009). In such scenarios, users often need to deal with text content 

(e.g., sending emails, composing reports, taking class notes). Thus, effective text input methods play 

a vital role to ensure both quality and satisfaction when users interact in such immersive virtual 

environments. These text input methods, besides providing rapid typing speed, should also be 



   

34 

 

capable of handling various conditions such as typo (and grammar) correction and content 

rephrasing. 

 

Compared to physical keyboards, virtual keyboards are more suitable (Speicher et al., 2018) and 

portable (Dube & Arif, 2019) to deploy in VR applications with less environmental requirements 

(e.g., stable and flat surface to place the physical keyboard). Numerous studies have endeavored to 

enhance typing speed and typo correction with virtual keyboards by proposing novel typing methods 

and auto-correction algorithms. However, although text revision is a vital subtask to ensure the 

accuracy of the input content (Li et al., 2020), it has not yet received sufficient attention in the current 

VR text input research. As an example, we can imagine a scenario of composing an email in a VR 

system: after quickly entering (typo-free) text, the user still needs to revise the content (e.g., deleting, 

adding, or substituting words) to make sure that it can express the intention accurately and 

meaningfully. Currently, backspace on the virtual keyboard is the dominant tool for revision. 

However, we found that most backspace functions mentioned in current VR text input research can 

only be activated at the end of the input stream. In practical typing scenarios, revision targets can 

appear anywhere in the input content, which means that current VR text revision solutions cannot 

handle comprehensive revision requirements effectively. 

 

To further understand the status quo of the VR text revision, we investigated existing text revision 

tools applied in current VR typing techniques and found two issues: 1) most researchers intend to 

facilitate typing speed with higher accuracy (typo-free) but with little consideration on how to 

improve text revision efficiency, and 2) caret control is not included in current VR virtual keyboard-

based text input designs; backspace is the only tool available to satisfy the basic need of text revision 

without considering efficiency. To better leverage backspace and caret in VR text revision, we first 

provide a design space to explore the possibilities of applying various backspace-caret designs. 

Based on the proposed design space, we then implemented four VR text revision techniques with 

virtual keyboards and handheld controllers. We evaluated their text revision performance through a 

comparative user study. Results show that combining word-level deletion and continuous caret 

control achieves better text revision performance in VR. Finally, we further discuss findings and 

summarize them into general guidelines for the future design of VR text revision tools and 

techniques. 

 

The contributions of this work are as follows. First, we reveal the gap in the VR text revision area 

with an extensive overview of the current VR text input designs. Second, we provide a design space 

for better exploration of VR text revision designs based on the backspace and caret. Third, we 

propose and evaluate four VR text revision techniques with a comparative study. Fourth, we provide 



   

35 

 

design guidelines based on the experiment results and findings in order to enable researchers to 

explore novel tools (and techniques) beyond backspace and caret or to introduce solutions applied 

in other platforms (e.g., smartphones) into VR text revision designs. 

 

4.2 Related Work 
 

Text revision is a ubiquitous and vital subtask during text input activities (Li et al., 2020). To 

accomplish text revision, users need to use various tools such as caret and backspace to insert, delete, 

or substitute words to revise part(s) of the content. In this section, we reviewed VR text input 

techniques and summarized their attempts to facilitate text revision (see Table 4.1 and Table 4.2 as 

the overview). 

 

4.2.1 Error correction and text revision 
 

Numerous researchers have endeavored to eliminate typos and grammar issues with en/decoders 

(Levenshtein, 1966; C. Yu et al., 2017), auto-prediction, and auto-completion algorithms. Those 

techniques help users to ensure the typing quality at the level of spelling and grammar. Their work 

provides us with a solid foundation to discuss more general text input scenarios in the wild. 

Compared with transcription in lab studies, typing in real-life conditions not only needs to consider 

the spelling and grammar accuracy but also needs to make sure that the text users type expresses 

their intention accurately and clearly (Li et al., 2020). Beyond the “mothering” of (semi-) automatic 

error correction techniques, there still exist requirements to revise text. Generally, when composing 

emails (whether formal or informal), typo-free is just the basic criterion. More importantly, users 

need to make sure all items written in the email accurately express nuanced information with an 

appropriate expression for stakeholders. In some cases (e.g., business email), it requires minor 

modifications through rounds of proofreading and adjustment. However, for such conditions, there 

lack efficient tools for text revision beyond error (typo) correction. 

 

4.2.2 Text revision with physical devices in VR 
 

Physical keyboards (with QWERTY layout) are powerful devices used for VR text input. Due to the 

occlusion of Head-Mounted Displays (HMDs), typing with physical keyboards in VR cannot 

achieve equivalent performance as that in the real world. Thus, a series of research was conducted 

to investigate factors such as hand representation (Grubert, Witzani, et al., 2018a; Knierim et al., 

2018), keyboard representation (Mcgill et al., 2015), and blending of reality in VR (Lin et al., 2017) 



   

36 

 

and their influence on users’ typing performance. As the default components of physical keyboards, 

backspace and arrow keys are available to accomplish text revision (including error correction). 

Although arrow keys were referred to in previous designs (Bovet et al., 2018; Grubert, Witzani, et 

al., 2018b; Hoppe et al., 2018; Knierim et al., 2020; Menzner et al., 2019; Otte, Menzner, et al., 

2019; Otte, Schneider, et al., 2019; Pham & Stuerzlinger, 2019), no mention is made regarding their 

use during the typing task or how the use of arrow keys may potentially influence users’ VR typing 

(and revision) performance. Walker et al. (Walker et al., 2017) disabled the backspace key and 

provided an auto-correction algorithm as an alternative in order to avoid the influence of user 

differences on data quality. 

 

Other devices such as data gloves and custom hardware are also used for VR text entry. Pinch 

Keyboard (D. A Bowman et al., 2001; Doug A. Bowman et al., 2002; González et al., 2009) allows 

users to enter text via hand rotation and pinches while wearing data gloves. Pinch Keyboard allows 

users to perform a backspace with a pinch gesture using two ring fingers. However, there is no caret 

control design in their technique. KITTY (Kuester et al., 2006; Mehring et al., 2004) maps keys to 

finger joints. Users enter text by pinching different parts of the finger with the thumb. KITTY did 

not include caret control in its design neither. While they mentioned the existence of the delete key, 

no clear statement was found regarding how to correct typos. Wu et al. (Wu et al., 2017) used data 

gloves to provide haptic feedback when pressing the VR keyboard. Their design allowed users to 

use backspace and arrow keys to revise text. K3 (Brun et al., 2019) is a cubic object that allows 

designers to integrate buttons on it for various interactions (including text input). As it is mainly for 

developing a new interaction platform, K3 did not mention the details of its VR text input design. 

 

4.2.3 Text revision with virtual keyboards in VR 
 

Compared with physical keyboards, virtual keyboards in VR merely exploit backspace as the 

dominant tool for revising text content. Surprisingly, to the best of our knowledge (according to the 

summary of Table 2), no current virtual keyboards include caret control solutions in their designs, 

and no research proactively discusses caret control with virtual keyboards in VR. Basically, 

backspace in the majority of virtual keyboards (Boletsis & Kongsvik, 2019; Boustila et al., 2019; 

Chen et al., 2019; Choi et al., 2019; Dash, 2017; Fashimpaur et al., 2020; Gugenheimer et al., 2016; 

Ishii et al., 2017; Jiang & Weng, 2020; Jimenez & Schulze, 2018; Kim & Kim, 2017; Lu et al., 2019; 

Min, 2011; Ogitani et al., 2018; Prätorius et al., 2014, 2015; Rajanna & Hansen, 2018; Son et al., 

2019; Speicher et al., 2018; Wilson & Agrawala, 2006; Yanagihara & Shizuki, 2018; D. Yu et al., 

2018) follows the function inherited from physical keyboards: erase one character before the caret 

and move the caret backward (Wikipedia, 2019). Backspace can be effective for quick corrections 



   

37 

 

(Komninos et al., 2018) (e.g., delete/change the typo character near the caret (Li et al., 2020)). 

However, for targets far from the caret, it is challenging to finish the revision in VR due to the 

limitation of character-level backspace and the lack of caret control. 

 

To finish the revision, users need to trigger the backspace multiple times. During the deletion, part 

of the correct text will also be deleted, which requires more time and effort to recover. Arif et al. 

(Arif et al., 2016) addressed this issue in the context of error correction on smartphones by leveraging 

the Levenshtein distance (Levenshtein, 1966) (to locate the error position) and gestures (swiping left 

or right on the backspace key to cut off or recover the content after the error position). However, for 

typo-free content, Levenshtein distance does not function well, making it difficult to find the error 

position. 

 

Researchers also updated the backspace function to achieve word-level deletion. RotoSwype (Gupta 

et al., 2019) and GestureType (C. Yu et al., 2017) allow users to delete the word just entered. 

RingText (Xu et al., 2019), DwellType (C. Yu et al., 2017), and TapType (C. Yu et al., 2017) enable 

flexible deletion (at the character-level when entering and at the word-level when editing) according 

to the content just entered. The effort mentioned above improves the deletion efficiency of 

backspace. Without caret control solutions, however, flexible backspace may only show satisfying 

revision performance at the end of the input stream. 

 

Table 4.1 Physical VR text input techniques and their design details 

 

Keyboard and Layout Brief Description Backspace 
Caret 

Control 
Text 

Revision 
Physical_Qwertz (Grubert, Witzani, 
et al., 2018b) 

Type on a physical keyboard/touch screen 
with/without a positioned view 

Yes Arrow keys CBsb 

Physical_Qwerty (Pham & Stuerzlinger, 
2019) 

Type on a physical keyboard placed on a 
hawker tray 

Yes Disabled CBsb 

Physical_Qwerty (Otte, Menzner, et al., 
2019) 

Type on a touch-sensitive physical 
keyboard 

Yes Arrow keys CBsb 

Physical_Qwerty (Knierim et al., 2020) Type on a wireless keyboard with a 
portable VR HMD on the users’ head 

Yes Arrow keys NM 

Physical_Qwerty (Hoppe et al., 2018) Type on a physical keyboard with a real-
world representation in the HMD 

Yes Arrow keys NM 

Physical_Qwerty (Bovet et al., 2018) Type on a physical keyboard with a 3D 
keyboard model shown in HMD 

Yes Arrow keys NM 

Physical_Qwerty (Walker et al., 2017) Type on a physical keyboard with key 
pressing visual feedback in HMD 

Disabled NM NM 

DataGlove_Qwerty (D. A Bowman et 
al., 2001; Doug A. Bowman et al., 2002; 
González et al., 2009) 

Users select characters with hand rotation 
and confirm with a pinch 

Yes No NM 

DataGlove_Qwerty (Wu et al., 2017) 
Users press virtual keys by bending the 
finger over the angle threshold 

Yes Arrow keys NM 

DataGlove_Qwerty (Kuester et al., 
2006; Mehring et al., 2004) 

Users select characters by pinching thumb 
with joints on other fingers 

Yes No NM 

Cubic_NMa (Brun et al., 2019) 
Users hold the cube and press buttons on 
it to enter characters 

NM NM NM 

a NM represents “not mentioned”. b CBs represents “character-level backspace”. 

 



   

38 

 

4.2.4 Summary 
 

As one of the practical activities in everyday life, text input is not a simple task to press multiple 

buttons on keyboards but usually to record ideas, reach agreements, or express emotions. Typing 

speed and accuracy are indeed key factors to contribute to better typing behavior, but they are not 

decisive factors (Dube & Arif, 2019). Currently, text input techniques can help users to enter text 

quickly into computers with few typos and grammar issues. It should be noted that text input has 

two parts: entering text into the computer system and taking care of the text already in the system. 

However, for current VR text input techniques with virtual keyboards, backspace is the only tool to 

feed the basic need for text revision (without discussing efficiency and satisfaction). Backspace and 

arrow keys can be easily implemented in VR scenarios, and users can transfer their experience using 

physical backspace and arrow keys to VR scenarios (Hoppe et al., 2018). However, there is a lack 

of essential consideration regarding text revision and adjusted solutions in current VR text input 

designs with virtual keyboards. 

 

4.3 Design Space 
 

To fill the gap of text revision in current VR text input designs, we propose a design space for a 

structural understanding and exploration of VR text revision solutions. Such a design space can 

assist practitioners and researchers in proposing text input techniques that aim more at practical use 

in VR scenarios. Two parameters that constitute the design space are backspace granularity and caret 

control continuity (as shown in Figure 4.1). Each parameter has two values: backspace granularity 

(character-level or word-level) and caret control continuity (discrete or continuous). In this 2 x 2 

matrix, each combination represents a design solution using various types of backspace and caret 

control for VR text revision. 

 



   

39 

 

 

Figure 4.1 Different options for backspace granularity and caret control continuity. 

 

4.3.1 Backspace granularity 
 

Backspace granularity is divided into character-level and word-level. We choose these two values 

based on the summary of current VR text input techniques (see Table 4.1 and Table 4.2 for details). 

Although few references clearly stated the use of backspace for text revision (most mentioned it for 

typo corrections), it is reasonable to infer that backspace is capable of handling both typo correction 

and text revision. Character-level is the default granularity for backspace which means that only one 

character will be deleted when users press/select the backspace key once. Word-level implies that 

one press of the backspace key can erase multiple characters. 

 

4.3.2 Caret control continuity 
 

Caret control continuity is divided into discrete and continuous. This division is inspired by the 

descriptions of various approaches to navigate the cursor to select keys in selection-based VR text 

input techniques (Speicher et al., 2018) and users’ movements when performing actions (Janzen et 

al., 2014). Discrete caret control means that when users control the caret, one single operation (e.g., 

button pressing) can move the caret once. If users need to move the caret away (e.g., by a distance 

of five characters), they have to repeat the operation multiple times. For continuous caret control, 

users can navigate the caret with a single smooth movement rather than by repetitive keystrokes or 

gestures. 

 

 

 

backspace granularity caret control continuity

Character-level

Word-level

Discrete

Continuous

i am out of town now i am out of town now

i am out of town now i am out of town now



   

40 

 

Table 4.2 Virtual VR text input techniques and their design details 

 

Keyboard and Layout Brief Description Backspace 
Caret 

Control 
Text 

Revision 
Virtual_Qwerty (Rajanna & Hansen, 
2018) 

Users gaze at the character and confirm it with dwell or 
button click 

Yes No NMa 

Virtual_ Qwerty (C. Yu et al., 2017) 

(TapType and DwellType) Users rotate head to point at 
a letter and dwell/press button to confirm  
(GestureType) Users use eye-movement to perform a 
word-level gesture on the keyboard  

Yes No 
CBsb, 
WBsc 

Virtual_ Qwerty (Speicher et al., 2018) 

(Head Pointing) Users point at the letter with head and 
confirm with a button click  
(Controller Pointing) Users point at the letter with 
handheld controllers and confirm with a button click 
(Controller Tapping) Users use the handheld controller 
to poke letters 
(Freehand) Users use a finger to poke letters 
(Discrete Cursor) Users press the touchpad to move 
the cursor and select letters via trigger  
(Continous Cursor) Users swipe on the touchpad to 
move the cursor and select letters via trigger 

Yes No NM 

Virtual_ Qwerty (Ishii et al., 2017) 
Users move a thumb-up hand to point at a letter and 
select it with fist posture 

Yes No NM 

Virtual_3x3 layout (Min, 2011) 
Users press the key with the intended character 
multiple times to finish the input 

Yes No NM 

Virtual_ Qwerty (Gugenheimer et al., 
2016) 

Users press the letter on a touchscreen on HMD and 
confirm it with finger liftoff  

Yes No NM 

Virtual_ Qwerty (Kim & Kim, 2017) 
Users hover the finger on the letter and select it by 
pressing down 

Yes No NM 

Virtual_A~Z layout (X. Ma et al., 2018) 
Users select letter through the analysis of gaze data 
and EEG signals from the brain  

No No NM 

Virtual_ Qwerty (Jimenez & Schulze, 
2018) 

Users move the cursor via head/pointer finger 
movement and interact with keys via hand gestures 

Yes No NM 

Virtual_Sector (D. Yu et al., 2018) 
Users use the left joystick to choose the intended slice 
and the right joystick to choose the letter 

Yes No NM 

Virtual_ Qwerty (Wilson & Agrawala, 
2006) 

Users select the letter with the left/right thumbstick and 
confirm it with trigger buttons 

Yes No NM 

Virtual_3x3x3 spatial layout 
(Yanagihara & Shizuki, 2018) 

Users select characters by drawing a stroke among 
spatial buttons with trigger pressing on a controller and 
confirm them with a trigger release 

Yes No NM 

Virtual_A~Z layout (Dash, 2017) 
Users select the character by pinching between the 
thumb and parts of other fingers 

Yes No NM 

Virtual_12-Key (Prätorius et al., 2014, 
2015) 

Users select a character by pinching between the 
thumb and the part of other fingers multiple times 

Yes No NM 

Virtual_12-Key (Ogitani et al., 2018) 
Users select a character by first pressing the button 
and then swipe the direction of the intended character 

Yes No NM 

Virtual_ Qwerty (Boustila et al., 2019) 
Users control the cursor to the letter with the finger on 
the touchscreen and release the finger to confirm 

Yes No NM 

Virtual_ Qwerty (J. Dudley et al., 
2019) 

Users type on a virtual keyboard in the mid-air with 
bare hands with tracking markers 

No No NM 

Virtual_ Qwerty (Chen et al., 2019) 
Users select characters by performing word-level 
gestures with controllers or on touchscreens 

Yes No NM 

Virtual_ Qwerty (Choi et al., 2019) 
Users type on a virtual keyboard on a surface with bare 
hands with tracking markers 

Yes No NM 

Virtual_ Qwerty (Gupta et al., 2019) 
Users select characters by performing word-level 
gestures with a ring worn on the index finger 

Yes No WBs 

Virtual_ Qwerty (Boletsis & Kongsvik, 
2019) 

(Raycasting) Users use rays emitted from controllers to 
point at the letter and confirm it with button pressing 
(Drum-like keyboard) Users use virtual mallets to strike 
the virtual keys to input characters 
(Head-directed input) Users rotate head to point at the 
letter and confirm it with button pressing 
(Split keyboard) Users move fingers on controllers’ 
touchpad to move cursors and press the touchpad for 
selection  

Yes No NM 

Virtual_Circular layout (Xu et al., 
2019) 

Users select characters with head rotations among 
characters and auto-prediction word candidates 

Yes No CBs, WBs 

Virtual_Circular layout (Jiang & Weng, 
2020) 

Users press keys on the outer part of the controller 
touchpad. Then press the center touchpad to select the 
intended word   

Yes No CBs 

Virtual_ Qwerty (Lu et al., 2019) 
Users rotate the head to point at the letter and confirm 
it by moving the head forward and backward 

Yes No NM 

Virtual_ Qwerty (Son et al., 2019) 
Users do slide-and-click or fly-and-touch on two 
touchpads to enter the character 

Yes No NM 

Virtual_ Qwerty (Fashimpaur et al., 
2020) 

Users enter characters by the thumb to fingertip 
pinches 

Yes No NM 

a NM represents “not mentioned”.  b CBs represents “character-level backspace”.  c WBs represents “word-level backspace”. 

 



   

41 

 

4.3.3 Functionality of the design space 
 

The proposed design space provides combinations that integrate values selected from both 

backspace granularity and caret control continuity. Inspired by Hirzle et al. (Hirzle et al., 2019), we 

discuss the effects and applicability of the proposed design space for VR text revision solutions. 

 

Currently, most physical VR text input techniques follow the conventional character-level backspace 

and caret control solution that is already applied on physical keyboards. However, current techniques 

with virtual keyboards cannot be included in this design space as they do not incorporate caret 

control into their designs. Without caret control, revision can only happen at the end of the input 

stream with 1) repetitive backspace selections and 2) extra deletion and cascade recovery input (for 

revisions far from the caret). For text revision with virtual keyboards, the proposed design space 

brings caret control back into design considerations. This also allows us to combine backspace and 

caret control features and properties to achieve better VR text revision performance. 

 

4.4 Text Revision Techniques 
 

To further investigate how users manipulate the backspace and caret to finish text revision, this 

section illustrates four VR text revision design combinations and the techniques that exploit each of 

them. Among various input devices (e.g., data gloves, eye trackers, stylus, or bare hands) used in 

VR systems, we choose the handheld controller to implement VR text revision techniques for the 

following reasons. First, handheld controllers provide a highly portable platform with rich 

interaction diversities. Second, using handheld controllers (gesture-based interaction excluded) can 

imply less cognitive and motor load to users compared with bare-hand gestures and head-based 

movement. Last but not least, it is a cost-friendly option for broad deployment. For concise 

descriptions, we mention the combinations of various types of backspace and caret (see Figure 4.1) 

with the following abbreviations: CBs-DCc for character-level backspace & discrete caret control, 

CBs-CCc for character-level backspace & continuous caret control, WBs-DCc for word-level 

backspace & discrete caret control, and WBs-CCc for word-level backspace & continuous caret 

control. 

 

4.4.1 CBs-DCc 
 

CBs-DCc is the most fundamental combination inherited from the backspace key and arrow keys on 

physical keyboards. In previous designs, backspace can be selected by either poking (Speicher et al., 

2018), striking (Boletsis & Kongsvik, 2019), or pressing buttons on handheld controllers (Jiang & 



   

42 

 

Weng, 2020). Although there is no reference mentioning the caret control, we got inspiration from 

(Speicher et al., 2018), which mentioned that directional pads or thumbsticks could be used to move 

the cursor discretely. In the technique of CBs-DCc, users can navigate the caret by pressing four 

directions of the touchpad. To delete text, users can perform the character-level deletion by pressing 

the button on handheld controllers. 

 

4.4.2 CBs-CCc 
 

CBs-CCc shares the same idea with the combined-use of the physical keyboard and touchpad on a 

laptop. With the finger sliding on the touchpad, users can move the cursor in a smooth and 

continuous way. Compared with discrete caret control, the continuous operation allows users to 

navigate the caret with one single movement instead of repetitive operations. In the technique of 

CBs-CCc, we use the same character-level deletion as in CBs-DCc. For caret control, we leverage 

touchpads on HTC Vive (HTC Corporation, 2015) handheld controllers to achieve continuous caret 

control. Users can perform the sliding movement on the touchpad to navigate the caret. Real-time 

visual feedback was provided to track the caret position while sliding on the touchpad. When the 

finger is lifted to disengage from the touchpad, the caret remains at the last finger contact position. 

 

4.4.3 WBs-DCc 
 

WBs-DCc extends the function of conventional backspace to multi-character deletion. For revision 

scenarios where there is a need to delete word(s) with improper meaning (Li et al., 2020), word-

level backspace could, to some extent, show more efficiency than character-level backspace. In the 

technique of WBs-DCc, users can press the button on the handheld controller to delete multiple 

characters according to the caret position in the text. WBs-DCc follows the design of CBs-DCc for 

caret control by pressing directional parts of the touchpad. 

 

4.4.4 WBs-CCc 
 

WBs-CCc combines multi-character deletion and continuous caret control for text revision. When 

using the WBs-CCc technique to revise the text, users can first navigate the caret to the position of 

the revision target by sliding the finger on the touchpad. Users can then execute the revision with 

multi-character deletion by pressing the button on the handheld controllers. 

 



   

43 

 

4.4.5 Features of proposed techniques 
 

Here we discuss characteristics of those text revision techniques before conducting the comparative 

study for further evaluations. First, all proposed text revision techniques depend on a virtual 

keyboard with the Qwerty layout as the text revision also includes the text entry process (e.g., 

substituting or inserting words). Second, compared with conventional VR text input techniques, four 

proposed VR text revision techniques enable the controllability of the textbox widget for caret 

manipulation. Third, all techniques use handheld controllers (mainly with the touchpad and buttons) 

to realize the deletion and caret control. In fact, the orientation of the controller itself can also be 

leveraged for caret control. For instance, using the virtual ray emitted from the controller head to 

navigate the caret among characters. However, due to users’ poor depth perception towards targets 

in VR (Chan et al., 2010), it is challenging for users to perform ray-casting target selection and 

control, especially for targets with limited size (Rizzo, 2019; Susu et al., 2019), let alone the caret 

with the width of a few pixels. To implement ray-casting interaction in practical VR text revision 

designs, various factors (e.g., target size and distance) should be further confirmed and investigated 

via a series of systematic empirical studies, which are beyond the scope of this study. 

 

4.5 Comparative Evaluation 
 

To further evaluate VR text revision performance with the four text revision techniques based on 

virtual keyboards and handheld controllers, we conducted a within-subjects experiment with 16 

participants to compare the proposed VR text revision techniques: CBs-DCc, CBs-CCc, WBs-DCc, 

and WBs-CCc. 

 

4.5.1 Participants 
 

16 participants (9 female, 7 male) aged between 22 and 28 years (M = 24.81, SD = 2.4) volunteered 

for this study. All participants are physically healthy with either normal vision or corrected to normal 

vision with glasses. Only one participant reported the dominant hand as the left hand. None of the 

participants had prior VR text input experience. As reported by participants, all of them are familiar 

with the Qwerty keyboard and can read and comprehend English sentences. 

 

 

 



   

44 

 

4.5.2 Apparatus 
 

We built an experimental system using the HTC Vive (including the HMD, two optical trackers, and 

two default handheld controllers) and a desktop computer with an intel i7-3770 CPU, 16GB RAM, 

and NVIDIA Quadro K4000 graphic card. Optical trackers are set 2 meters above ground to detect 

the motion that happened in an area of 2.5m × 2.5m. We chose to use Drum-like keyboard 

(GoogleDaydream, 2016) as the text input technique in the experiment because it showed reasonable 

typing speed with less error, less frustration, and high user preferences, as reported in the literature 

(Boletsis & Kongsvik, 2019). Drum-like keyboard allows users to enter text by striking keys on the 

virtual keyboard with virtual mallets stretching from the head of handheld controllers. Drum-like 

keyboard and handheld controllers also helped us to focus on the text revision analysis with less 

adverse influence from other input methods (e.g., mid-air virtual keyboard with bare hands). The 

experiment system was implemented based on Cutie keys (Cutiekeys, 2017) and ran on the Windows 

10 operating system with Unity 5.6. We learned from the word deletion solution (Raymond, 2007) 

applied in current computer operating systems to implement the word-level backspace. 

 

4.5.3 Corpus and revision targets 
 

We chose 120 sentences (with an average length of 6.56 words (31.1 characters) per sentence) from 

the Enron Mobile Email Dataset (Vertanen & Kristensson, 2011) to build the experimental corpus 

because, 1) all sentences are easy to remember and easy to comprehend as they are all selected from 

daily life use, 2) its validity has been examined in prior VR text input studies (J. Dudley et al., 2019; 

Speicher et al., 2018), and 3) compared with the phrase set from MacKenzie and Soukoreff 

(MacKenzie & Soukoreff, 2003), sentences in the Enron Dataset are longer, which is easy for us to 

arrange revision targets. All chosen sentences do not contain any uppercase letters, numbers, or 

punctuations. 

 

We included only one revision target for each sentence. We learned from the categorization of 

character-level error types (Gentner et al., 1983) and extended it to word-level text revision: 

omission (a word is missing), insertion (there is an extra word), and substitution (a wrong word 

appears in place of the intended one), as in (Li et al., 2020). For evaluating the text revision capability 

of those techniques towards targets in different positions, we also defined half of the targets for each 

type that are within the last three words away from the end of the sentence, while the other half of 

targets far from the end of sentences, as in (Zhang et al., 2019). On average, each target contains 

5.08 characters (SD = 1.79).  

 



   

45 

 

4.5.4 Design and procedure 
 

The experiment used a within-subjects design to evaluate participants’ VR text revision performance 

using the four proposed techniques. The independent variable was text revision technique with four 

values (CBs-DCc, CBs-CCc, WBs-DCc, and WBs-CCc). Every participant needed to use four text 

revision techniques to finish the sentence revision task (30 revisions for each technique). We 

counterbalanced the order of text revision techniques among participants with a Latin Square. As a 

result, the total number of revision targets was: 16 participants × 4 text revision techniques × 30 

sentences per technique = 1920. We randomly chose every 30 sentences from the corpus and ensured 

that those sentences did not appear in other sentences. For every 30 sentences, the appearance order 

of all types of targets was randomized (see Table 4.3 for the detailed distribution). 

 

Table 4.3 Number of different types of revision targets for every 30 sentences 

 
Target type Omission Insertion Substitution Total 

Far 5 5 5 15 

Near 5 5 5 15 

Total 10 10 10 30 

 

We first introduced the purpose of the study and demonstrated the four text revision techniques and 

various types of revision targets to all participants. Then, we guided participants to sit on a chair in 

the middle of the tracking area and helped them to put on the HMD and hold the two controllers. 

After adjusting the height and orientation of the virtual keyboard, all participants had a 15-minute 

practice to get used to the Drum-like keyboard and various text revision techniques with demo 

sentences before the formal experiment. Participants were recommended to use the touchpad and 

buttons on the controller in their dominant hand for revision. Revision trials were designed as 

follows. Two sentences (one is the standard sentence, the other is the sentence with a revision target) 

first appeared in the experimental system. Participants then used the assigned technique to revise the 

target and pressed the grip button on the tail part of the controller to submit the revision and to start 

the next trial. One trial can be submitted successfully only if two sentences were matched after the 

revision. 

 

The formal experiment lasted around 60 minutes. Participants were requested to finish the text 

revision task with the assigned technique as fast and accurate as possible. After revising 30 

sentences, participants could have a 5-min break before the next 30 sentences with another text 

revision technique. After all revisions, we asked participants to fill the NASA-TLX (Hart & 

Staveland, 1988) and System Usability Scale (SUS, see Appendix 3) (Brooke, 2013) to evaluate 

workload and subjective preferences towards all four techniques. 



   

46 

 

 

4.5.5 Results 
 

To simulate the real-life text revision scenario, we mixed various types of revision targets and 

showed them to participants in random order, which is different from lab studies that artificially 

provide targets with the same type multiple times. Therefore, we mainly investigated and reported 

the influence of technique on participants’ VR text revision performance. We removed 92 items of 

data (4.79%, including outliers and trials interrupted by the occasional trigger of the VR system 

menu) from the dataset. As the dataset did not pass the normality check, we used the Friedman test 

and the post-hoc using Wilcoxon signed-rank test with Bonferroni correction. For subjective 

evaluation, we reported weighted TLX scores (Hart, 2006) and analyzed SUS scores using the 

Friedman test. Error bars shown in the following figures represent the standard error, and data labels 

represent the mean values. 

 

Operation per character stands for the average number of operations (including character, backspace 

and caret control) required to revise one character during the revision. The operations per character 

of four proposed techniques (in ascending order) were WBs-CCc (M = 1.52, SE = 0.33), CBs-CCc 

(M = 2.06, SE = 0.32), WBs-DCc (M = 4.26, SE = 0.82) and CBs-DCc (M = 4.81, SE = 0.89). A 

Friedman test revealed a significant effect of technique on the operation per character (χ2(3) = 682.68, 

p < .001). The post-hoc showed the significant effect of technique between all technique pairs (all p 

< .001). Figure 4.2 shows the operation per character when participants revised targets with different 

distances. 

 

 

Figure 4.2 Operation per character for targets far from or near the end of the sentence. 

 

6.71

2.86
2.24

1.89

6.19

2.34
1.65

1.39

0

1

2

3

4

5

6

7

8

9

far near

O
p

e
ra

ti
o

n
 p

e
r 

C
h

ar
ac

te
r

Distance from the End of the Sentence

CBs-DCc CBs-CCc WBs-DCc WBs-CCc



   

47 

 

Correction time denotes the average duration required to revise the given targets. It is calculated as 

the interval between the start of a trial and the moment when participants submit the revision. The 

correction time of the four proposed techniques (in ascending order) were WBs-CCc (M = 7978.19 

ms, SE = 726.22), CBs-CCc (M = 8771.53 ms, SE = 730.62), WBs-DCc (M = 9062.8 ms, SE = 

719.85) and CBs-DCc (M = 9269.94 ms, SE = 702.99). A Friedman test revealed a significant effect 

of technique on the correction time (χ2(3) = 335.9, p < .001). The post-hoc showed the significant 

effect of technique between all technique pairs (all p < .001). Figure 4.3 shows the correction time 

when participants revised targets with different distances. 

 

Backspace frequency and Caret frequency count the average number of performing the backspace 

and caret navigation operation for each revision. WBs-CCc (M = 1.04, SE = 0.21) used the least 

number of backspace while CBs-CCc (M = 3.59, SE = 0.7) used the most. A Friedman test revealed 

a significant effect of technique on the backspace frequency (χ2(3) = 252.08, p < .001). The post-

hoc did not find the significant effect of technique between two CBs-based techniques (p = 0.61, ns) 

or between two WBs-based techniques (p = 0.53, ns). Figure 4.4 shows the backspace frequency 

when participants revised targets with different distances. 

 

 

Figure 4.3 Correction time for targets far from or near the end of the sentence. 

10852.03

7653.30

9783.89

7768.01

10825.77

7307.52

9071.07

6932.62

0

2000

4000

6000

8000

10000

12000

14000

far near

C
o

rr
e

ct
io

n
 T

im
e

 (
m

s)

Distance from the End of the Sentence

CBs-DCc CBs-CCc WBs-DCc WBs-CCc



   

48 

 

 

Figure 4.4 Backspace frequency for targets far from or near the end of the sentence. 

 

For caret control, CBs-CCc (M = 2.32, SE = 0.54) used the least number of caret control while CBs-

DCc (M = 13.59, SE = 1.86) used the most. A Friedman test revealed a significant effect of technique 

on the caret frequency (χ2(3) = 1013.75, p < .001). The post-hoc did not find the significant effect 

of technique between two DCc-based techniques (p = 0.2, ns) or between two CCc-based techniques 

(p = 0.62, ns). Figure 4.5 shows the caret frequency when participants revised targets with different 

distances. 

 

 

Figure 4.5 Caret frequency for targets far from or near the end of the sentence. 

 

Caret control time stands for the total time spent navigating the caret in each revision. WBs-CCc (M 

= 2120.62 ms, SE = 315.85) showed the least caret control time followed with CBs-CCc (M = 

2194.47 ms, SE = 325.67), CBs-DCc (M = 5118.88 ms, SE = 540.56), and WBs-DCc (M = 5361.48, 

SE = 539.48). A Friedman test revealed a significant effect of technique on the caret control time 

(χ2(3) = 755.29, p < .001). The post-hoc showed a significant effect (all p < .05) of technique between 

3.32 3.693.41 3.77

1.12 1.051.03 1.06

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

far near

B
ac

ks
p

ac
e

 F
re

q
u

e
n

cy

Distance from the End of the Sentence

CBs-DCc CBs-CCc WBs-DCc WBs-CCc

20.18

6.86

2.49 2.15

20.22

6.72

2.46 2.31

0

5

10

15

20

25

far near

C
ar

et
 F

re
q

u
e

n
cy

Distance from the End of the Sentence

CBs-DCc CBs-CCc WBs-DCc WBs-CCc



   

49 

 

all technique pairs except between CBs-CCc and WBs-CCc (p = 0.68, ns). Figure 4.6 shows the caret 

control time when participants revised targets with different distances. 

 

 

Figure 4.6 Caret control time for targets far from or near the end of the sentence. 

 

Backspace time denotes the average total time spent pressing the backspace when revising each 

target. It is calculated as the total duration between the previous keystroke and the backspace. WBs-

CCc (M = 775.11 ms, SE = 166.11) showed the least backspace time followed with WBs-DCc (M = 

940.61 ms, SE = 192.89), CBs-CCc (M = 1622.54 ms, SE = 327.78) and CBs-DCc (M = 1630.81 ms, 

SE = 320.54). A Friedman test revealed a significant effect of technique on the backspace time (χ2(3) 

= 196.14, p < .001). The post-hoc showed a significant effect (all p < .001) of technique between all 

technique pairs except between CBs-DCc and CBs-CCc (p = 0.74, ns). Figure 4.7 shows the 

backspace time when participants revised targets with different distances. 

 

 

Figure 4.7 Backspace time for targets far from or near the end of the sentence. 

 

6768.27

3433.48
3166.78

1230.66

7087.08

3643.41

3103.39

1180.39

0

1000

2000

3000

4000

5000

6000

7000

8000

far near

C
aa

re
t 

C
o

n
tr

o
l T

im
e

 (
m

s)

Distance from the End of the Sentence

CBs-DCc CBs-CCc WBs-DCc WBs-CCc

1589.73 1672.79
1558.48

1686.03

986.17
895.25

753.91
795.39

0

500

1000

1500

2000

2500

far near

B
ac

ks
p

ac
e

 T
im

e
 (

m
s)

Distance from the End of the Sentence

CBs-DCc CBs-CCc WBs-DCc WBs-CCc



   

50 

 

In the paired-scale weighting process of NASA-TLX, the top three scales participants scored were 

Effort (63), Performance (57) and Physical demand (46). WBs-CCc got the lowest (M = 41.89) 

weighted scores (lower score means less load to finish the task) followed with WBs-DCc (M = 

52.06), CBs-CCc (M = 56.23) and CBs-DCc (M = 70.89). For SUS, WBs-CCc got the highest score 

(M = 71.41, SE = 1.84) while CBs-DCc got the lowest (M = 64.69, SE = 1.84). A Friedman test 

revealed a significant effect of technique on the SUS score (χ2(3) = 15.53, p < .01). The post-hoc 

showed the significant effect of technique between CBs-DCc and WBs-DCc (Z = -2.93, p <.01, r = 

0.74), CBs-DCc and WBs-CCc (Z = -2.9, p <.01, r = 0.73), and between CBs-CCc and WBs-CCc (Z 

= -2.39, p <.05, r = 0.6). 

 

4.6 Discussion 
 
In this section, we first discuss findings according to the quantitative results and participants’ 

feedback. Then, we summarize and propose a series of design guidelines for the future development 

and implementation of VR text revision tools and techniques. Finally, we list a series of future work 

for in-depth research on text revision in VR environments. 

 

We re-introduced caret control to VR text revision in this study and evaluated participants’ text 

revision performance with four backspace-caret techniques. Overall, results showed that WBs-CCc 

outperformed other proposed techniques with the least operation number per character during 

revision, the shortest correction time, including the lowest number of operations for caret control 

and backspace. Participants also regarded that using WBs-CCc can finish the revision with less 

workload and high usability. 

 

Results from the backspace frequency and backspace time analysis indicated that word-level 

backspace frees participants from repetitive backspace pressing operations during revision. We did 

not include the recovery function in the word-level backspace design. It should be noted that if 

participants unintentionally delete multiple words or mis-delete other words, extra time and effort 

would be required to recover from the mis-operation. Participants also commented that they needed 

extra effort to re-evaluate the sentence after larger changes were made (e.g., deleting a whole word). 

Moreover, it is inevitable to enter typo characters during revision. In that case, there are two 

solutions. One is to use the word-level deletion to delete multiple characters and re-enter them. The 

other is to use the character-level backspace on the virtual keyboard (we did not disable the 

backspace function on the virtual keyboard). It was interesting to observe from the log files that if 

the typo was observed immediately (usually 1-2 characters away from the caret), participants 

attempted to use the backspace on the virtual keyboard for quick character-level deletions, or they 



   

51 

 

chose to use the word-level backspace. From the considerations above, we inferred that 1) assistive 

mechanisms should be included to deal with exceptions using word-level backspace, and 2) 

character-level backspace is still needed for quick deletion. After the formal experiment, we asked 

five participants to continue the revision task with another 30 sentences using only virtual keyboards 

(without caret control). After the revision, we asked them about their preferences between the 

backspace on the controller and the backspace on the virtual keyboard. They showed their preference 

towards backspace on the controller. This is because pressing the physical button only uses muscles 

around the thumb while striking the backspace on the virtual keyboard uses the fore-arm with a 

higher physical workload. 

 

In contrast with conventional non-caret designs, caret control made it flexible to navigate the caret 

to the revision target and thus saved time and avoided extra effort for massive deletions and re-entry 

(due to the fixed caret position at the end of the input string). Results (Figure 4.2 and Figure 4.5) 

showed that using continuous caret control can decrease the number of operations during revisions, 

especially for targets far from the end of the sentence. However, it is a double-edged sword. Ideally, 

participants can perform the continuous caret control once, and then the caret would be located as 

intended. However, Figure 5 did not support such an idealized condition. The reason is that when 

sliding on the touchpad, the caret moves quickly towards the revision target and participants need to 

track the position and lift their thumbs to finish the caret control. Sometimes the caret would stop 

before or after the intended position (inconsistent with expectations) after a long-time caret 

movement. Moreover, there exist possibilities of the subtle finger sliding offset when lifting the 

thumb from the touchpad. 

 

NASA-TLX results show Effort, Performance, and Physical demand as the top three scales. Such 

three scales provide us with the design criterion from users’ perspectives. In detail, to finish VR text 

revision tasks with satisfying performance, the technique should have the capacity to handle various 

exceptions and make sure the revision can be completed successfully with the less physical and 

mental workload. 

 

4.7 Conclusion 
 

Efficient VR text input techniques provide the potential to move real-life typing activities into the 

virtual world. However, there would still be far from practical use if text input techniques are 

designed merely around typing speed and accuracy. After entering text into the systems with few 

typos, users also need to revise them for expression and description accuracy. In this section, we 

first conducted a thorough literature review and summary to reveal the status quo of current VR text 



   

52 

 

input designs regarding text revision. The summary revealed a lack of essential considerations on 

enhancing users’ text revision performance in current VR text input designs. Especially for text input 

with virtual keyboards, only the backspace is available for text revision without mentioning the 

efficiency. To fill this gap, we provided a design space in VR text input for further exploration of 

the combined use of backspace and caret control in VR text revision. Based on the design space, we 

implemented four text revision techniques with virtual keyboards and handheld controllers and 

evaluated their performance with a comparative study. Results of the study could serve as the 

groundwork and reference for the future design of VR text revision techniques. We make the initial 

step to fill the gap of text revision facilitation in VR text input. We believe this work will also raise 

awareness and interest towards text revision improvements when designing VR text input techniques 

for practical use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

53 

 

 

 

 

 

 

 

 

CHAPTER 5  

FACILITATING VR TEXT ENTRY WITH DAILY-LIFE 

METAPHOR 

 

 

This chapter introduces the design and validation of the novel VR text entry technique. In detail, we 

present SewTyping, a novel technique to facilitate controller-based text entry performance in virtual 

reality (VR) applications. We learned from real-life sewing behavior and achieved successive 

character selection during the text entry process. We make all buttons on the virtual keyboard 

interactive on both the top and bottom sides. When entering text with the handheld controller, 

characters can be selected alternately by penetrating down from one key and up to another. 

SewTyping enhances the fluidity of text entry with successive sewing-like movements to reduce 

pauses among character button selections. We ran a comparative user study to evaluate SewTyping 

with Controller Pointing and Drum-like Keyboard. Results revealed that: 1) SewTyping achieved 

25.94 words per minute (WPM) with a total error rate of 4.19% and 2) users adapted to the sewing-

like movement easily and achieved steady performance with essential practice. 

 

5.1 Introduction 
 

Recent market trends show that VR techniques have become popular and affordable among 

consumers (360marketupdates, 2019). VR also shows great capabilities and potential in applications 

such as education (C. Ma et al., 2009), remote collaboration (Nguyen et al., 2017), and office work 

(Grubert, Ofek, et al., 2018; Guo et al., 2019). Efficient and effective text entry methods play a vital 

role in those applications (Dube & Arif, 2019). Although virtual keyboards and related techniques 



   

54 

 

can satisfy the essential need of text entry in VR, these tend to be slow and error-prone (Dube & 

Arif, 2019) due to 1) the penetrable feature (Chan et al., 2010) of intangible displays (e.g., handheld 

controllers penetrate the virtual surface inevitably when hitting the virtual target or walking through 

a wall unexpectedly in VR games (Ogawa et al., 2020)) and 2) the user’s insufficient capacity to 

determine the z-coordinate of a target in VR (Chan et al., 2010). 

 

When entering text in VR with virtual keyboards, most VR text entry methods require two steps to 

enter a character. Users first locate the intended key and then finish the selection with a confirmation 

mechanism such as dwell (C. Yu et al., 2017), button pressing on controllers (Speicher et al., 2018), 

or direct touch (J. J. Dudley et al., 2018). To enter multiple characters, users need to finish the 

aforementioned process repetitively, which leads to pauses between characters and influences the 

fluidity of text entry. 

 

We propose SewTyping, a technique to enhance text entry performance with virtual keyboards and 

handheld controllers in VR applications. SewTyping leverages the penetrable feature in VR to 

improve the fluidity of text entry. This feature makes all keys (on the virtual keyboard) selectable 

from both the top and bottom sides. With this change, when users select one key, the extra penetrated 

movement can be leveraged directly for selecting the following letter. As shown in Figure 5.1, with 

the handheld controller (and a virtual mallet extended from the head of the controller), users can 

enter multiple characters with a single and fluid movement on the virtual keyboard, just like sewing 

fabric with a needle in daily life. 

 

 

Figure 5.1 Text entry with SewTyping. Characters can be selected with the handheld controller 

(with a virtual mallet on the top) successively by penetrating alternately on either the top or 

bottom side of virtual keys. E.g., to enter “ACT”, “A” and “T” are selected from the top side, 

while “C” is selected from the bottom side. 



   

55 

 

In the following parts of this chapter, we first summarize current VR text entry methods with virtual 

keyboards. Then we illustrate the design of SewTyping followed by describing a conducted text 

entry task in VR to explore and validate the feasibility of SewTyping. Results revealed that, with 

SewTyping, users can achieve 25.94 WPM with an error rate of 4.19%. Users adapted to the sewing-

like movement easily by associating it with the sewing metaphor. They also agreed that SewTyping 

makes VR text entry interesting and engaging. 

 

5.2 Related Work 
 

Physical and virtual keyboards are widely used for text entry in VR. Compared with physical 

keyboards, virtual keyboards can be deployed flexibly with fewer spatial limitations. Generally, 

virtual keyboards could not achieve satisfying typing speed as with physical keyboards (Dube & 

Arif, 2019). Thus, in this section, we mainly review existing VR text entry techniques based on 

virtual keyboards and identify their design divergences and similarities. 

 

5.2.1 Hand, Head, and Eye-based Text Entry Techniques 
 

A considerable number of studies focused on proposing VR text entry techniques with users’ hands. 

FistPointer (Ishii et al., 2017) allows users to perform a thumb-up gesture to move the cursor and a 

fist gesture to select a particular character. Speicher et al (Speicher et al., 2018) proposed a technique 

that allows users to poke the virtual keyboard directly with their fingers (detected by Leap Motion). 

Ogitani et al. (Ogitani et al., 2018) made a 12-key keyboard based on the Japanese smartphone 

keyboard and projected it on either the palm or in mid-air. Users point the button and swipe towards 

the intended character. DigiTap (Prätorius et al., 2014) provides a 12-key keyboard and maps keys 

on knuckles and finger tips. Similarly, BlueTap (GooglePatent, 2017) maps all letters on knuckles 

and fingertips singly in alphabetical order. Users tap the button once (GooglePatent, 2017; Prätorius 

et al., 2014) or multiple times (Prätorius et al., 2014) with the thumb to select the intended letter. 

Time and effort are required to learn and master these techniques (including new layouts). 

Evaluations reveal that they cannot provide promising typing speed (no faster than 10 WPM (Dube 

& Arif, 2019)). 

 

Yu et al. (C. Yu et al., 2017) used head movement to navigate the cursor and select the character by 

either dwelling on it or pressing a physical button (similar to (Speicher et al., 2018)). Yu et al. (C. 

Yu et al., 2017) also designed a word-level technique (named GestureType). Users perform a gesture 

with their head movement (while pressing and holding the button) to select characters and finish the 



   

56 

 

selection by releasing the button. Although GestureType achieved 24.7 WPM, its frequent head 

movement also brings high physical load to users and may cause discomfort (e.g., dizziness) and 

therefore limit the potential for its wide and long-term use. Rajanna and Hansen (Rajanna & Hansen, 

2018) used eye-tracking data to point at the character (on the virtual keyboard) which is then selected 

by either a button click or dwelling. Ma et al. (X. Ma et al., 2018) navigated the cursor and selected 

characters by analyzing real-time eye-tracking data and brain signals collected from the user. 

However, these gaze-based techniques cannot achieve promising typing speed. 

 

5.2.2 Controller-based Text Entry Techniques 
 

Current VR products (e.g., HTC Vive and Oculus) are equipped with handheld controllers as the 

default input devices. Cubic keyboard (Yanagihara & Shizuki, 2018) arranges all the letters into a 3 

× 3 × 3 spatial layout. Users first press and hold a button on the controller to trigger the keyboard; 

they then select characters by navigating the controller to reach each of the characters; and finally, 

they finish the selection by releasing the button. Speicher et al. (Speicher et al., 2018) proposed four 

techniques with the handheld controller: the first one uses the controller tail to poke the key directly; 

the second one moves the controller (with the ray that is emitted from it) to point at the key and 

confirms the selection by pressing the trigger button; the third and the fourth navigate the cursor by 

either pressing or sliding on the controller trackpad and then confirming the selection by pressing 

the trigger button. 

 

Some techniques used handheld controllers based on real-life metaphors. Drum keys 

(GoogleDaydream, 2016) regard the keyboard as a drum and use controllers as virtual mallets to 

select characters by striking the keys. Boletsis and Kongsvik (Boletsis & Kongsvik, 2019) conducted 

a comparative study among four VR text entry techniques (Raycasting, Drum-like Keyboard, Head-

directed input, and Split keyboard). Results showed that the Drum-like Keyboard outperformed 

other techniques with 21.01 WPM on average. 

 

Min et al. (Min, 2011) integrated all letters and other characters into the 3 × 3 layout. Users point at 

the key with a pointing device and then select the character by pressing the button once or multiple 

times. PizzaText (D. Yu et al., 2018) arranges all characters into a 7-slice circle layout. One uses the 

left thumbstick of a game controller to select the slice and the right thumbstick to select the intended 

character. Wilson and Agrawala (Wilson & Agrawala, 2006) moved the joystick on the game 

controller to highlight the character and finished the selection by pressing the trigger button on the 

controller. Chen et al. (Chen et al., 2019) implemented a smartphone keyboard in the VR 



   

57 

 

environment. Similar to (C. Yu et al., 2017), users can perform a word-level gesture with either the 

beam emitted from the handheld controller or the finger on the smartphone screen. 

 

5.2.3 Summary 
 

Overall, current VR text entry techniques with virtual keyboards (and handheld controllers) cannot 

match the typing speed of physical keyboards (as reported in (Dube & Arif, 2019), mainly between 

24.3 and 68.5 WPM). There are three reasons for that: 1) due to the inadequate ability to determine 

the z-coordinate of the target (Chan et al., 2010), users may inevitably penetrate the keyboard and 

consume extra time and effort recovering after selecting each character; 2) many text entry 

techniques (Ishii et al., 2017; Kim & Kim, 2017; Min, 2011; Rajanna & Hansen, 2018; Speicher et 

al., 2018; Wilson & Agrawala, 2006; C. Yu et al., 2017; D. Yu et al., 2018) require extra steps to 

confirm the selection after navigating the cursor to the intended character, and this tends to consume 

excessive time and movement; 3) most techniques regard characters as the basic input unit. Users 

need to input characters individually and repetitively according to their character selection method 

which may cause pauses among characters and thus reduce the fluidity of text entry. Although some 

gesture-based (word-level) techniques could promote typing speed, they either add extra physical 

burden (Dube & Arif, 2019) or influence the flexibility of handling independent characters (e.g., 

error correction) while performing gestures. In fact, speech recognition can achieve much faster 

typing performance than keyboard-based typing when sending short messages (Ruan et al., 2018) 

and this can be easily implemented in VR scenarios. Whereas, compared with keyboard-based typing, 

voice input techniques encounter the contradiction that it requires a quieter environment and may 

bring disturbance to others when using it in a quiet environment. Although voice input techniques 

also use virtual keyboards to enter text (e.g., revising text), most of the text entry work is finished 

by speech recognition algorithms rather than the keyboard. Therefore, we didn’t include voice input 

in our considerations.    

 

5.3 Sewing-like Interaction 
 

Inspired by the real-life sewing metaphor, we designed the sewing-like interaction, which more 

efficiently achieves successive target selection in VR environments. Based on the sewing-like 

interaction, we design SewTyping to facilitate VR text entry performance using virtual keyboards 

and handheld controllers. 

 



   

58 

 

5.3.1 Interaction Pattern 
 

To simulate the real-life sewing movement in VR, we first make all virtual targets interactive from 

both the top and the bottom sides of virtual targets. Users navigate the handheld controller towards 

the virtual target and finish the selection by hitting either the top or the bottom side of them. 

Selections will be confirmed as the penetration occurs. 

 

Then, learning from the Drum-like Keyboard (Boletsis & Kongsvik, 2019), we extend a virtual 

mallet (with a small sphere on the tip) from the top of the controller because it is difficult to select 

the target (especially in the limited size) using the whole body of the handheld controller. Users 

move the handheld controller and use the virtual mallet to perform target penetration. 

 

Double-side interactive targets and the handheld controller with a virtual mallet make it possible to 

realize the sewing-like interaction. After hitting one target, there is no need for a backward 

movement (see the dashed part in Figure 5.2a). Instead, as shown in Figure 5.2b, users can move the 

controller directly to the following target and finish the selection. In this case, all targets will be 

“sewed” together with a single and fluid movement rather than repetitive up-and-down movements. 

 

5.3.2 Features 

 
Generally, existing target selection methods in VR are variants of those methods applied in the 

physical world. For instance, hitting virtual targets for selection simulates the pressing process on 

physical buttons; using the ray (e.g., emitted from the handheld controller) to navigate the cursor 

and confirming the selection by button pressing simulate the use of a mouse in graphical user 

interfaces. They are, indeed, feasible to select multiple targets. During the selection with the 

aforementioned methods, all intended targets will be treated independently and selected by loops 

operations of “hitting down and up” or “aim and confirm”. In those cases, there exist pauses among 

each loop of selection. For hitting virtual targets for selection, especially, the extra time and 

movement would be required to recover (i.e., from beneath to above the target) after hitting the 

target. This situation further enlarges the pause among target selections.  

 

Sewing-like interaction attempts to enhance the fluidity of target selections from the following 

aspects. First, sewing-like interaction uses the immediate confirmation to avoid the time 

consumption from the confirmation mechanism (e.g., dwell or pressing a button) and the potential 

mode-switching between navigation and confirmation. Second, the sewing-like interaction regards 

the penetrated movement when hitting the target as a natural advantage to head for the following 



   

59 

 

target. Compared with bouncing on each virtual target, sewing-like interaction allows users to move 

directly towards the following target, thus the time and movement for the hitting down recovery will 

be saved, which improves the selection fluidity. 

 

5.4 SewTyping and Empirical Evaluation 
 

Based on the sewing-like interaction, SewTyping renders the virtual keyboard double-side 

interactive. Users can use the handheld controller (with the virtual mallet on the top) to perform 

sewing-like movements among character keys. For instance, users enter the word “ACT” (shown in 

Figure 5.1) by penetrating down through “A”, up through “C”, down through “T”. For words with 

repetitive characters (e.g., “WOOD”), users can penetrate through “W”, up through “O”, down 

through “O”, and up through “D”. 

 

The goal of this experiment was to evaluate whether SewTyping can improve VR text entry 

efficiency. Therefore, we conducted a between-subjects experiment with 18 participants comparing 

three techniques: Controller Pointing, Drum-like Keyboard, and SewTyping. 

 

 

 

Figure 5.2 Two successive target selection methods: (a) up-and-down “pressing” and (b) 

sewing-like interaction. Sewing-like interaction leverages the penetrable feature in VR to 

achieve the successive target selection by penetrating targets as sewing with a needle on the 

fabric. 

 

 
 

 



   

60 

 

5.5.1 Participants and Apparatus 
 

We recruited 18 participants for the experiment (6 males and 12 females, aged between 22 and 46 

years, M = 26.56, SD = 5.55, all right-handed, none of them being native English speakers). All 

participants had normal vision without color blindness (14 of them wore glasses for short sight 

correction). None of them had VR text entry experience before the experiment. All participants were 

able to comprehend English sentences and were familiar with the QWERTY keyboard according to 

their self-report. 

 

The experiment system was implemented based on the Cutie keys (Cutiekeys, 2017) in Unity 5.6 

with HTC Vive and its handheld controllers. We set up a spatial area of 2.5m (length) × 2.5m (width) 

× 2m (height) tracking space with two HTC Vive optical trackers. We used a virtual keyboard 

following the QWERTY layout. We also ran a pilot study and confirmed the key size 10cm × 10cm, 

a 3cm gap between keys, 32cm length for the virtual mallet, 1.5cm radius of the sphere on the top 

of the virtual mallet forming a balance between the detection quality of the system and the 

participants’ typing experience. The system ran on a desktop computer with i7-3770 CPU, 16 GB 

RAM, NVIDIA Quadro K4000 graphics card, and Windows 10 operating system. Intelligent-aid 

techniques such as auto-correction and auto-implementation functions were disabled to avoid the 

distraction of incorrect or unexpected auto-entry conditions. 

 

5.5.2 Task and Corpus 
 

In the experiment, all participants were requested to transcribe sentences in the experiment system 

with the assigned technique as fast and accurate as possible. If any typo was detected during the text 

entry process, participants had to correct it with the backspace on the virtual keyboard. 

 

We used a subset of the Enron Mobile Email Dataset (Vertanen & Kristensson, 2011) (107 

sentences, with 20-40 characters each, all in lowercase without any punctuations or numbers) as the 

corpus because 1) all sentences are used on a daily basis and they are easy to memorize (Kristensson 

& Vertanen, 2012) and 2) it shows its validity for evaluating text entry techniques (Speicher et al., 

2018). 

 

5.5.3 Design and Procedure 
 

According to the literature, we choose Controller Pointing and Drum-like Keyboard as the 

comparative techniques for VR text entry techniques (especially with virtual keyboards and 



   

61 

 

handheld controllers) because of their promising text entry rates and error rates, as reported in 

(Speicher et al., 2018) and (Boletsis & Kongsvik, 2019). To be consistent with the evaluation designs 

in (Speicher et al., 2018) and (Boletsis & Kongsvik, 2019), we asked participants to finish the text 

entry in the two-hand condition. Here we describe the operational procedures of the three evaluated 

VR text entry techniques: 

 

• Controller Pointing: participants navigate the ray emitted from the handheld controller to 

point at the intended key and confirm the selection by pressing the trigger button on the 

controller. 

 

• Drum-like Keyboard: participants use the virtual mallet extended from the head of the 

handheld controller to select the character by hitting the character button from the top side 

of it. 

 

• SewTyping: participants use the virtual mallet extended from the head of the handheld 

controller to penetrate down or up through buttons to select the intended characters. 

 

The ray emitted from the handheld controller (for Controller Pointing) and the virtual mallet (for 

Drum-like Keyboard and SewTyping) were visible during the experiment. When the button was 

irradiated by the ray or hit by the virtual mallet, it would be highlighted in light red. Haptic feedback 

was provided as the participant pressed the trigger of the handheld controller (for Controller 

Pointing) or as the button was hit (for Drum-like Keyboard and SewTyping). 

 

To avoid potential interference from the various operation methods of the three techniques 

(especially for Drum-like Keyboard and SewTyping) on data quality, we chose a between-subjects 

design in the experiment. The independent variable was the technique. We randomly and evenly 

arranged 18 participants into three groups. For each group, participants were instructed with only 

one text entry technique and they were requested to transcribe 50 sentences (in five sessions, similar 

to the design of (C. Yu et al., 2017)) randomly chosen from the corpus. In total, the design was: 3 

techniques × 6 participants per technique × 50 sentences = 900 transcriptions. 

 

We first informed participants about the purpose of this study. After participants signed the informed 

consent, we gave a tutorial on the text entry technique assigned to them (due to the between-subjects 

design). Then we instructed participants on how to wear the head-mounted display, hold controllers 

with their left and right hands and sit on the chair in the experiment area where their movement 

could be detected by the HTC Vive optical trackers (see Figure 5.3). Participants had enough time 

(around 7-10 minutes) to practice the assigned technique before the formal experiment. During the 



   

62 

 

practice, we also helped participants to adjust the height and orientation of the virtual keyboard and 

the distance between participants and the virtual keyboard according to participants’ feedback. 

 

The target sentence first appeared on the experiment interface. Then participants were required to 

transcribe the sentence and submit the input by pressing the button on the handheld controller. 

Participants could have a 2-minute rest after every 10 sentences. 

 

 

Figure 5.3 A participant in the VR text entry task with handheld controllers and the virtual 

keyboard floating in the head-mounted display. In this picture, there was an angle of 30 

degrees between the virtual keyboard and the ground. 

 

After the experiment, we used the questionnaire deployed in (C. Yu et al., 2017) (five-scale, one for 

bad, five for good, see Appendix 4) to collect participants’ perceived ratings on speed, accuracy, 

fluidity, fatigue, learnability, and preference. System Usability Scale (SUS) (Brooke, 2013) was also 

used to collect participants’ subjective feedback and comments. 

 

5.5.4 Results 
 

We filtered the data with 3 times the standard deviation of the backspace number and removed 37 

(4.11%) outliers. As the data didn’t pass the normality check, we analyzed the data with the Kruskal-

Wallis test and the post-hoc test using Mann-Whitney tests with Bonferroni correction. 

 

Word per Minute (WPM). For every transcribed sentence, the typing speed is calculated as the 

number of words (every five characters) divided by the transcription time (in minutes) (Feit et al., 



   

63 

 

2016). Overall, SewTyping got the highest WPM (M = 25.94, SD = 6.02). Drum-like Keyboard got 

a higher WPM (M = 22.88, SD = 4.38) than Controller Pointing (M = 18.22, SD = 4.55). A Kruskal-

Wallis test revealed a significant effect of technique on the typing speed (χ2(2) = 239.19, p < .001). 

The post-hoc testing using Mann-Whitney tests with Bonferroni correction showed significant 

differences among the three techniques (all p<.001). Figure 5.4 shows the typing speed of the three 

techniques among five sessions. 

 

 

Figure 5.4 The average typing speed for three techniques in five sessions. Error bars represent 

the standard error. 

 

Inter-key Interval (IKI). IKI is the duration (in milliseconds) between two button selections 

(Terzuolo & Viviani, 1980) (including space and backspace key). We used IKI to evaluate the 

fluidity of text entry. SewTyping got the shortest IKI (M = 440.48, SD = 89.86). Drum-like Keyboard 

got less IKI (M = 493.51, SD = 72.88) than Controller Pointing (M = 621.37, SD = 143.96). A 

Kruskal-Wallis test revealed a significant effect of technique on the IKI (χ2(2) = 317.81, p < .001). 

Post-hoc testing using Mann-Whitney tests with Bonferroni correction showed significant 

differences among the three techniques (all p<.001). Figure 5.5 shows the IKI of three techniques 

among five sessions. 

 

Total Error Rate. As the experiment forced participants to correct typos before submitting the 

transcription, thus we only evaluated the total error rate (equal to the corrected error rate). Total 

error rate is calculated as the number of incorrect-but-corrected characters divided by the sum of 

correct and incorrect-but-corrected characters (Soukoreff & MacKenzie, 2003). The order of the 

average total error rate for the three techniques was: Controller Pointing (4.86%) > SewTyping 

(4.19%) > Drum-like Keyboard (3.9%). A Kruskal-Wallis test did not find a significant difference 

of technique on the total error rate (p = 0.31). 

10

15

20

25

30

35

1 2 3 4 5

A
v
e

ra
g

e
 t

y
p

in
g

 s
p

e
e

d
 /
 W

P
M

Session

Controller Pointing

Drum-like Keyboard

SewTyping



   

64 

 

 

 

 

Figure 5.5 The average IKI for three techniques in five sessions. Error bars represent the 

standard error. 

 

Subjective Evaluations. SUS results showed that Controller Pointing got the lowest score (M = 69.6, 

SD = 10.66, calculated by the SUS protocol (Brooke, 2013)), Drum-like Keyboard with an average 

of 77.5 (SD = 14.05), SewTyping with an average of 77.9 (SD = 6.79). All three techniques got high 

ratings (the higher, the better) on question No. 7: “I would imagine that most people would learn to 

use this system very quickly”).  

 

Evaluations according to the participants’ subjective perceptions were obtained via a 5-scale 

questionnaire (see Figure 5.6). Results showed that SewTyping got the highest scores on speed (M 

= 4.67, SD = 0.52), fluidity (M = 4.5, SD = 0.55), and learnability (M = 4.83, SD = 0.41). A Kruskal-

Wallis test revealed a significant effect of technique on the speed (χ2(2) = 6.09, p < .05). A post-hoc 

testing using Mann-Whitney tests with Bonferroni correction revealed the significant differences 

between Controller Pointing and SewTyping (p < .05, r = 0.58). 

 

350

400

450

500

550

600

650

700

750

800

1 2 3 4 5

A
v
e

ra
g

e
 I

K
I 
/ 

m
s

Session

Controller Pointing

Drum-like Keyboard

SewTyping



   

65 

 

 

Figure 5.6 Participants’ feedback regarding six evaluation perspectives (1 for bad, 5 for good). 

Error bars represent the standard error. 

 

5.5 Discussion 
 

We facilitated VR text entry performance with SewTyping based on sewing-like interaction. In this 

section, we discuss the design of sewing-like interaction and interesting findings we got from the 

empirical study. 

 

From the interaction perspective, sewing-like interaction shares similarities with crossing-based 

(Accot & Zhai, 2002) target selection in VR (Tu et al., 2019) that: 

• They both perform a movement starting from one side to another side of the object. 

• Both of them consider the continuous movement as a solution for successive selections. 

 

Whereas, there are also differences between these two methods:  

• Sewing-like interaction used a virtual mallet (as a needle) to stimulate the sewing movement 

(i.e., penetrating the surface of a 3D virtual object); crossing is the operation that behaves 

more like cutting an object with a beam (i.e., crossing the boundary of the object).  

• Sewing-like interaction focuses on the interaction depth from the target perspective (i.e., the 

thickness of the target), while crossing focuses more on the depth from the VR environment 

perspective (i.e., the distance between targets and users). 

• Sewing-like interaction focuses more on the fluidity enhancement when selecting multiple 

targets while crossing focuses more on the target selection method itself (crossing-based vs. 

ray-based). 

1

2

3

4

5

Speed Accuracy Fluidity Fatigue Learnability Preference

A
v
e
ra

g
e

 s
c

o
re

Evaluation perspective

Controller Pointing Drum-like Keyboard SewTyping



   

66 

 

• Sewing-like interaction allows virtual objects not only interactive from only one side, which 

provides more flexibilities when managing the penetration path (i.e., not mandatory to 

execute penetrations from the same side). By considering the penetration depth, various 

interaction possibilities can be possible when penetrating virtual objects (e.g., rebounding 

after half-penetration means the selection revoke). 

 

Compared with Controller Pointing and Drum-like Keyboard, SewTyping got the shortest IKI, 

which implies that SewTyping could reduce the duration of key selections and enhance the fluidity 

of text entry. The reason is that, because of the participants’ familiarity with the keyboard layout, 

we could leverage the momentum of the penetration movement and save the time and movement by 

allowing them to move directly through to the next key for subsequent selections (based on the 

double-side interactive keyboard). Controller Pointing showed longer IKI for character selection 

because it requires time to complete the confirmation (by pressing the trigger button), release the 

trigger button, and search for the next key. 

 

From the design perspective, SewTyping avoids the repetitive up-and-down character selection 

movement (with sudden acceleration changes), which may cause neuromuscular fatigue (Gates & 

Dingwell, 2008). Although Drum-like Keyboard got increasing typing speed as the session 

proceeded, participants also encountered extra fatigue during the speed-up. One participant using 

Drum-like Keyboard commented that: “I usually strike down keys quickly and hard, thus it brings 

more fatigue (and it consumes more effort) to stop the strike and start the next one, especially when 

I attempted to improve my typing speed”. During the practice, it was interesting to observe that 

participants developed a similar strategy to mitigate the fatigue brought from the technique assigned 

to the participant. All participants chose to keep elbows close to the bodies during text entry. This 

strategy reduced the chance of moving the whole arm when using the assigned technique. Similarly, 

all participants chose to adjust the virtual keyboard in front of them, especially in the area where 

they could mainly move their forearms instead of the whole arm.   

 

The high learnability rating inferred that SewTyping is easy for participants to use. There are two 

reasons for this. First, SewTyping maintains the QWERTY layout, which mitigates the burden of 

learning a new keyboard. Second, the familiarity inspired by the sewing metaphor assists participants 

to understand the way to interact and adapt to the new technique. Additionally, the sewing metaphor 

changes the VR text entry from a task to engaging virtual sewing gameplay with needles (handheld 

controllers) on the fabric (intangible virtual keyboard). 

 



   

67 

 

SewTyping enters text with a flexible input unit. In detail, SewTyping can arrange characters (with 

any length), even the text revision process (i.e., the use of backspace) into a single and fluid 

movement. Compared with character-level techniques (e.g., Controller Pointing and Drum-like 

Keyboard), SewTyping enhances the fluidity of text entry with fewer pauses between characters. As 

for word-level techniques (e.g., GestureType from (C. Yu et al., 2017)), SewTyping allows revision 

while participants are observing typos or improper content (e.g., misused word) rather than after 

performing a word-level gesture. It is surprising that SewTyping achieved a higher typing speed 

(25.94 WPM) than GestureType (24.73 WPM, as reported in (C. Yu et al., 2017)) without the risk 

of dizziness caused by the frequent head-shaking movement. When typing with two hands, 

SewTyping also enables the sewing-like movement to shift between hands. This means that 

participants can avoid long-distance stretching (e.g., from “z” to “o”) and thus improve the typing 

speed and fluidity. 

 

In the design of VR text entry techniques, SewTyping provides an interesting perspective to consider 

the influence of the penetrable feature of intangible displays. Instead of merely tolerating the 

negative effects of the penetration movement, we exploit it as a potential and turn it into an advantage 

by producing fluid text entry performance. 

 

5.6 Conclusion 
 

In this chapter, we present and validate SewTyping, a novel technique for facilitating efficient VR 

text entry performance on virtual keyboards with handheld controllers. We take advantage of the 

penetrable feature of intangible displays to realize the sewing-like interaction. Users can enter 

multiple characters successively by penetrating up through and down through among keys on the 

virtual keyboard with the handheld controller. We illustrate the design of SewTyping and validate it 

with a user study. Results show that participants can quickly get used to SewTyping and reach 25.94 

WPM with essential training. Participants regarded SewTyping as easy to learn. Furthermore, 

SewTyping is easy to implement in VR applications since the keyboard layout remains unchanged. 

This also avoids extra cognitive load caused by learning and adapting to a new layout. 

  



   

68 

 

 

 

 

 

 

 

 

CHAPTER 6  

GENERAL DISCUSSION 

 

 

6.1 Replacement-based text revision 
 

Swap simplifies the caret control when redesigning the text revision interaction on mobile devices 

to focus on the revision task itself. This produces the following benefits to text revision efficiency. 

First, Swap allows participants to enter content for revision as they observe the revision target (with 

entry speed similar to that of regular text input). This is less disruptive to the flow of mind and input 

because participants can quickly turn their revision intention into real actions without breaking their 

focus in order to navigate the caret. Second, Swap turns high-precision caret control between 

characters into target selection with the expanded layout, which reduces the accuracy requirements 

of the caret control. 

 

Swap provides a new perspective (“replacement”) to interpret the text revision task and to unify 

various text revision conditions into “type first and then replace”. With the symbolized backspace 

and the expanded layout, Swap visualizes all contents (words, spaces between words, and the 

symbolized backspace) during the revision and making the replacement intuitive and easy to 

understand by participants. 

 

Swap improves the deletion efficiency with the symbolized backspace. This diminishes the time 

consumption and the number of repetitive backspace keystrokes when deleting multiple characters 

(e.g., correcting Wi errors). In addition, with the symbolized backspace, the conventional backspace 



   

69 

 

could also reveal advantages in quick corrections (e.g. correcting the typo near the caret (Komninos 

et al., 2018)). 

 

Two user studies showed that Swap can handle both light (e.g., revision in one sentence) and heavy-

load (e.g., revising a paragraph) revision conditions. It indicated that Swap could handle most daily 

text-related conditions, such as instant messaging and long text composition (e.g., email, online 

notes, blogs, etc.). The concept of replacement and the symbolized backspace also shed light on 

symbolizing (or visualizing) more commands for various text revision requirements (e.g., 

bold/italic/underline words, change font size/color, etc.). 

 

To gather more user feedback after studies, we removed most control settings in the user study and 

asked participants to revise a paragraph with improved Swap. All participants commented that 

improved Swap could enhance efficiency and fluency when revising multiple targets. Five 

participants showed their expectations about integrating improved Swap with their own mobile 

devices such as iPads and laptops with multi-touch screens (e.g., Microsoft Surface). 

 

6.2 Design space exploration for VR text revision 
 

Findings of the study on design space exploration for VR text revision not only provide a basic 

understanding on how to use backspace and caret for VR text revision but also show considerations 

and suggestions for the design of future VR text revision tools and techniques. Therefore, here we 

present a set of general design guidelines for text revision in VR environments, highlighting the 

findings and discussions mentioned regarding the design space exploration process and experimental 

results. It should be mentioned again that, although text revision is one of the subtasks in VR text 

input, it is vital for practitioners to realize the importance of text revision when designing novel VR 

text input techniques for practical use. Below are the general guidelines: 

 

1) When designing VR text revision solutions, the following factors should be considered and 

satisfied with high priorities: ease of use, less physical and mental load, and robustness of 

handling various revision conditions. 

 

2) Mix-granularity deletion mechanisms should be used to make sure the flexibility and 

efficiency of both word-level deletion and character-level quick correction. Meanwhile, 

assistive techniques are necessary to enhance the exception handling capacities during 

revision. For instance, providing proper visual feedback to indicate the word-level changes 



   

70 

 

or using recovery functions such as undo and prediction list to minimize the cost of mis-

deletion. 

 

3) Caret control mechanisms should be involved in VR text revision design to provide the 

flexibility of controlling the caret or other similar widgets. Position correction algorithms 

should also be considered for better caret control smoothness and accuracy. 

 

4) As backspace and caret control can be frequently used in conditions with heavy revision 

loads (e.g., editing articles), these two should be implemented with less and subtle 

movement to avoid physical fatigue (e.g., controller button pressing vs. striking the 

backspace with fore-arm movement). 

 

6.3 Sewing-like interaction and SewTyping 
 

Our evaluation validated the feasibility of the sewing-like interaction in the context of VR text entry. 

Besides that, we also found great potentials to apply the sewing-like interaction in more practical 

scenarios: 

 

Spatial gesture design for gaming: Sewing-like interaction sheds light on extending input channels 

(e.g., the spatial orientation or the amplitude when performing the gesture) for current gesture 

designs. For instance, in a VR wizard game, users can perform a vertical “N” gesture (with the 

handheld controller) for the magic spell with normal power. They can also perform a horizontal 

larger “N” gesture for the same spell, but with enhanced power to strike the enemy. 

 

Spatial menu design: 1) We can implement a spatial multi-layer menu and use the sewing-like 

interaction to realize the fluid process of calling out the menu, selecting the category, and selecting 

the intended item under the selected category with a single controller movement. 2) We can also 

arrange various functions into categories and integrate them into only one virtual button. Users can 

trigger different categories by penetrating the button at different angles and then penetrate the 

intended item for selection. 

 

Non-visual text entry: Similar to (Yi et al., 2015), with trajectory detection and machine learning 

algorithms, sewing-like interaction and users’ familiarity with the QWERTY layout can be 

leveraged to achieve freehand text entry in VR without showing the virtual keyboard. 

 



   

71 

 

Surgical training: As users can use the handheld controller to simulate the real-life sewing behavior 

(penetration movement) in VR environments, a series of applications can be implemented based on 

the sewing-like interaction to imitate medical training such as surgical wound closure and 

venipuncture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

72 

 

 

 

 

 

 

 

 

CHAPTER 7  

LIMITATION AND FUTURE WORK 

 

For Swap, our current study mainly focused on the tool design and interaction design for text revision 

on mobile devices. Therefore, it encountered several limitations which inspire us to perform further 

evaluations and development. First, quantitative results and subjective evaluations validated the 

feasibility and the advantages of the replacement-based text revision techniques, whereas a long-

term in-the-wild study is still needed to investigate text revision efficiency and changes in user 

behaviors and how to facilitate them efficiently. 

 

Second, to make the replacement-based text revision technique compatible with real-life scenarios, 

more factors could be considered in the following research, such as mobility (e.g., walking), 

workload (e.g., one-hand occupied), keyboard layout, and the size of the touchscreen. 

 

Moreover, it should be noted that multiple intelligent text entry aid techniques and algorithms have 

been embedded into current text input methods. These can also be integrated with Swap for quick 

and seamless text revision operations. 

 

For the text revision exploration in VR, our current work mainly focuses on the design space 

exploration of VR text revision based on backspace and caret. However, it should be noted that, in 

practical use, text revision is often mixed with regular text entry processes, and users often need to 

revise multiple targets. Therefore, one of the future work is to conduct long-term research to 

investigate further on how the proposed techniques could help users to enhance VR typing (and text 

revision) performance in real-world situations. Due to the variety of input devices (e.g., stylus or 

joysticks) applied in VR systems, further implementations and evaluations will be scheduled to 

determine which device is more capable of handling real-life VR text-related tasks. Additionally, 



   

73 

 

further studies will also examine the influence of different caret shapes and various conditions (e.g., 

sitting or standing) on users’ VR text revision performance. 

 

For SewTyping, there are the following aspects for future work. First, as we didn’t evaluate 

SewTyping in the one-hand condition, further study will be conducted to investigate typing 

performance of SewTyping under both unimanual and bimanual conditions. Second, as some text 

entry techniques may include intelligent aids (e.g., auto-correction), we will investigate the influence 

of those techniques on SewTyping performance in a future study. Third, to further understand the 

sewing-like interaction, a series of studies will be conducted to evaluate the influence of factors 

(e.g., the orientation of the target, target size, target shape, the gap between targets, visual and haptic 

feedback, length of the virtual mallet, etc.) on users’ interaction performance. Last but not least, with 

the popularity of auto-aid techniques (e.g., autocorrection algorithms), we will also integrate those 

smart features into the design of SewTyping and make it as a practical and powerful tool to facilitate 

users’ VR typing performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

74 

 

 

 

 

 

 

 

 

CHAPTER 8  

CONCLUSION 

 

 

In the foreseeable future, text input will still be essential and vital when users interacting with mobile 

devices and VR systems. In that caser, effective and well-designed (according to the scenario) text 

input methods could bring more benefits and satisfaction to users when they type. Our target is to 

re-design the mobile and VR text entry and text revision tools and processes to make them more 

adaptive to the applied scenarios. 

 

Instead of using the existed text input solutions (that applied on physical keyboards), we present two 

improvement designs. First, we propose a novel interaction paradigm (Swap) and related techniques 

for effective text revision with less use of backspace and caret control. Compared with the 

conventional text revision process (based on the caret and backspace), Swap uses the replacement 

operation to unify the text revision process regarding various text revision conditions. By allowing 

users to enter the revision content first, Swap can either leverage users’ regular typing speed during 

text revision or decrease the potential of committing cascading mis-operations. We validate the 

feasibility of Swap by conducting a series of comparative user studies between Swap-based and 

conventional text revision techniques. Apart from improving users’ text revision performance, we 

also combine the daily-life sewing metaphor with the penetrable feature of intangible displays to 

enhance text entry efficiency and fluidity in VR systems.  

 

Our work provides new perspectives to criticize current text input solutions applied in mobile 

devices and to seek opportunities to improve users’ text input satisfaction and efficiency. We hope 

that, through our attempts, users could focus on the real tasks rather than text input itself when typing 

on mobile devices and VR applications. 



   

75 

 

 

 

APPENDIX 1 

NASA-TLX 

 

 

NASA-TLX is a subjective assessment tool to measure users’ workload in a certain task from the 

following perspectives: mental demand, physical demand, temporal demand, performance, effort, 

and frustration. Details are illustrated in the webpage from NASA 

(https://humansystems.arc.nasa.gov/groups/TLX/).  

 

Instruction. After the user finished the task, the user will receive the NASA-TLX questionnaire. 

Then the user needs to recall and self-evaluate his/her performance in the task. Finally, the user will 

be required to mark their load on the 21-scale axis for each of five perspectives. 

 

Physical Demand                   How mentally demanding was the task? 

 

 

Very low                                                        Very high 

 

Physical Demand                   How physically demanding was the task? 

 

 

Very low                                                        Very high 

 

 

Temporal Demand                  How hurried or rushed was the pace of the task? 

 

 

Very low                                                        Very high 

 

 

 

https://humansystems.arc.nasa.gov/groups/TLX/


   

76 

 

Performance   How successful were you in accomplishing what you were asked to do? 

 

 

Very low                                                        Very high 

 

Effort       How hard did you have to work to accomplish your level of performance? 

 

 

Very low                                                        Very high 

 

Frustration    How insecure, discouraged, irritated, stressed, and annoyed were you? 

 

 

Very low                                                        Very high 

 

  



   

77 

 

 

 

APPENDIX 2 

7-POINT LIKERT-SCALE FOR SWAP 

 

 

This 7-point Likert-scale is used to evaluate users’ subject attitudes towards our proposed text 

revision technique on mobile devices. We ask the user to rank on the complexity, fatigue, difficulty, 

dislike, and frustration when using the technique (1 for the lowest, 7 for the highest).  

 

 

Perspective  

Complexity 1 2 3 4 5 6 7 

Fatigue 1 2 3 4 5 6 7 

Difficulty 1 2 3 4 5 6 7 

Dislike 1 2 3 4 5 6 7 

Frustration 1 2 3 4 5 6 7 

 

  



   

78 

 

 

 

APPENDIX 3 

SYSTEM USABILITY SCALE (SUS) 

 

 

Here list the 10 questions in the SUS we used for gathering users’ feedback. Users were requested 

to give scores on those 10 questions with the scale of 1-5 (1 for strongly disagree, 5 for strongly 

agree). 

 

Questions: 

1. I think that I would like to use this system frequently. 

2. I found the system unnecessarily complex. 

3. I thought the system was easy to use. 

4. I think that I would need the support of a technical person to be able to use this system. 

5. I found the various functions in this system were well integrated. 

6. I thought there was too much inconsistency in this system. 

7. I would imagine that most people would learn to use this system very quickly. 

8. I found the system very cumbersome/awkward to use. 

9. I felt very confident using the system. 

10. I needed to learn a lot of things before I could get going with this system. 

  



   

79 

 

 

 

APPENDIX 4 

5-POINT LIKERT-SCALE FOR SEWTYPING 

 

 

This 5-point Likert-scale is used to evaluate users’ subject attitudes towards our proposed VR text 

entry technique. We ask the user to rank on the speed, accuracy, fluidity, fatigue, learnability, and 

preference when using the assigned technique (1 for bad, 5 for good). 

 

 

Perspective  

Speed 1 2 3 4 5 

Accuracy 1 2 3 4 5 

Fluidity 1 2 3 4 5 

Fatigue 1 2 3 4 5 

Learnability 1 2 3 4 5 

Preference 1 2 3 4 5 

 
  



   

80 

 

 

 

BIBLIOGRAPHY 

360marketupdates. (2019). 2019-2024 Global and Regional Augmented Reality and Virtual Reality Industry 

Production, Sales and Consumption Status and Prospects Professional Market Research Report. 

https://www.360marketupdates.com/2019-2024-global-and-regional-augmented-reality-and-virtual-

reality-industry-production-sales-and-consumption-status-and-prospects-professional-market-research-

report-13733991 

Accot, J., & Zhai, S. (2002). More than dotting the i’s- Foundations for crossing-based interfaces. Conference 

on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/503376.503390 

Alharbi, O., Arif, A. S., Stuerzlinger, W., Dunlop, M. D., & Komninos, A. (2019). WiseType: A Tablet 

Keyboard with Color-Coded Visualization and Various Editing Options for Error Correction. 

Proceedings of Graphics Interface 2019. https://doi.org/10.20380/GI2019.04 

Ali, Z. (2017). Increase Text Delete Speed On Stock iOS Keyboard With 3D Touch. 

https://ioshacker.com/how-to/adjust-text-delete-speed-stock-ios-keyboard-3d-touch 

Ando, T., Isomoto, T., Shizuki, B., & Takahashi, S. (2019). One-handed Rapid Text Selection and Command 

Execution Method for Smartphones. Extended Abstracts of the 2019 CHI Conference on Human Factors 

in Computing Systems, LBW0224:1--LBW0224:6. https://doi.org/10.1145/3290607.3312850 

Ando, T., Isomoto, T., Shizuki, B., & Takahashi, S. (2018). Press &#38; Tilt: One-handed Text Selection and 

Command Execution on Smartphone. Proceedings of the 30th Australian Conference on Computer-

Human Interaction, 401–405. https://doi.org/10.1145/3292147.3292178 

Android. (2017). Spell checker framework. https://developer.android.com/guide/topics/text/spell-checker-

framework 

Apple. (2019). Caret navigation features in iOS 13. https://www.apple.com/ios/ios-13-preview/features 

Arbesman, S. (2017). Overcomplicated: Technology at the Limits of Comprehension. Portfolio. 

https://www.amazon.com/Overcomplicated-Technology-at-Limits-

Comprehension/dp/0143131303?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-

20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0143131303 

Arif, A. S. (2015). Predicting and Reducing the Impact of Errors in Character-Based Text Entry. York 

University. 

Arif, A. S., Kim, S., Stuerzlinger, W., Lee, G., & Mazalek, A. (2016). Evaluation of a Smart-Restorable 

Backspace Technique to Facilitate Text Entry Error Correction. Proceedings of the 2016 CHI 

Conference on Human Factors in Computing Systems, 5151–5162. 

https://doi.org/10.1145/2858036.2858407 

Arif, A. S., Pahud, M., Hinckley, K., & Buxton, B. (2014). Experimental Study of Stroke Shortcuts for a 

Touchscreen Keyboard with Gesture-redundant Keys Removed. Proceedings of Graphics Interface 

2014, 43–50. http://dl.acm.org/citation.cfm?id=2619648.2619657 

Arif, A. S., & Stuerzlinger, W. (2010). Predicting the Cost of Error Correction in Character-based Text Entry 

Technologies. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 5–14. 

https://doi.org/10.1145/1753326.1753329 



   

81 

 

Arif, A. S., & Stuerzlinger, W. (2013). Pseudo-pressure Detection and Its Use in Predictive Text Entry on 

Touchscreens. Proceedings of the 25th Australian Computer-Human Interaction Conference: 

Augmentation, Application, Innovation, Collaboration, 383–392. 

https://doi.org/10.1145/2541016.2541024 

Arnold, K. C., Gajos, K. Z., & Kalai, A. T. (2016). On Suggesting Phrases vs. Predicting Words for Mobile 

Text Composition. Proceedings of the 29th Annual Symposium on User Interface Software and 

Technology, 603–608. https://doi.org/10.1145/2984511.2984584 

Boletsis, C., & Kongsvik, S. (2019). Controller-based Text-input Techniques for Virtual Reality: An Empirical 

Comparison. International Journal of Virtual Reality. https://doi.org/10.20870/ijvr.2019.19.3.2917 

Boustila, S., Guegan, T., Takashima, K., & Kitamura, Y. (2019). Text typing in VR using smartphones 

touchscreen and HMD. 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 - 

Proceedings. https://doi.org/10.1109/VR.2019.8798238 

Bovet, S., Kehoe, A., Crowley, K., Curran, N., Gutierrez, M., Meisser, M., Sullivan, D. O., & Rouvinez, T. 

(2018). Using Traditional Keyboards in VR: SteamVR Developer Kit and Pilot Game User Study. 2018 

IEEE Games, Entertainment, Media Conference, GEM 2018. 

https://doi.org/10.1109/GEM.2018.8516449 

Bowman, D. A, Ly, V. Q., & Campbell, J. M. (2001). Pinch keyboard: Natural text input for immersive virtual 

environments. Virginia Tech Dept. of Computer Science, Technical Report. 

Bowman, Doug A., Rhoton, C. J., & Pinho, M. S. (2002). Text Input Techniques for Immersive Virtual 

Environments: An Empirical Comparison. Proceedings of the Human Factors and Ergonomics Society 

Annual Meeting. https://doi.org/10.1177/154193120204602611 

Brewster, S. (2002). Overcoming the Lack of Screen Space on Mobile Computers. Personal Ubiquitous 

Comput., 6(3), 188–205. https://doi.org/10.1007/s007790200019 

Brooke, J. (2013). SUS: a retrospective. Journal of Usability Studies. 

Brun, D., George, S., & Gouin-Vallerand, C. (2019). Keycube is a kind of keyboard (K3). Conference on 

Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3290607.3313258 

Buschek, D., Bisinger, B., & Alt, F. (2018). ResearchIME: A mobile keyboard application for studying free 

typing behaviour in the wild. Conference on Human Factors in Computing Systems - Proceedings. 

https://doi.org/10.1145/3173574.3173829 

Card, S. K., Newell, A., & Moran, T. P. (1983). The Psychology of Human-Computer Interaction. L. Erlbaum 

Associates Inc. 

Chan, L. W., Kao, H. S., Chen, M. Y., Lee, M. S., Hsu, J., & Hung, Y. P. (2010). Touching the void: Direct-

touch interaction for intangible displays. Conference on Human Factors in Computing Systems - 

Proceedings. https://doi.org/10.1145/1753326.1753725 

Chen, S., Wang, J., Guerra, S., Mittal, N., & Prakkamakul, S. (2019). Exploring word-gesture text entry 

techniques in virtual reality. Conference on Human Factors in Computing Systems - Proceedings. 

https://doi.org/10.1145/3290607.3312762 

Choi, D., Cho, H., Seo, K., Lee, S., Lee, J., & Ko, J. (2019). Designing Hand Pose Aware Virtual Keyboard 

with Hand Drift Tolerance. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2929310 

Colle, H. A., & Hiszem, K. J. (2004). Standing at a kiosk: Effects of key size and spacing on touch screen 

numeric keypad performance and user preference. Ergonomics, 47(13), 1406–1423. 

https://doi.org/10.1080/00140130410001724228 



   

82 

 

Cutiekeys. (2017). NormalVR/CutieKeys. https://github.com/NormalVR/CutieKeys/ 

Cutts, M. (2013). Oxford Guide to Plain English (Oxford Paperback Reference). OUP Oxford. 

https://www.xarg.org/ref/a/B00FZSX76G/ 

Dash, S. (2017). BlueTap - The Ultimate Virtual-Reality (VR) Keyboard. In Medium. Eunoia.i/o. 

https://medium.com/eunoia-i-o/bluetap-the-ultimate-virtual-reality-vr-keyboard-77f1e3d57d6f 

Dhakal, V., Feit, A. M., Kristensson, P. O., & Oulasvirta, A. (2018). Observations on Typing from 136 Million 

Keystrokes. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 646:1-

-646:12. https://doi.org/10.1145/3173574.3174220 

Dube, T. J., & Arif, A. S. (2019). Text Entry in Virtual Reality: A Comprehensive Review of the Literature. 

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-030-22643-5_33 

Dudley, J., Benko, H., Wigdor, D., & Kristensson, P. O. (2019). Performance envelopes of virtual keyboard 

text input strategies in virtual reality. Proceedings - 2019 IEEE International Symposium on Mixed and 

Augmented Reality, ISMAR 2019. https://doi.org/10.1109/ISMAR.2019.00027 

Dudley, J. J., Vertanen, K., & Ola Kristensson, P. (2018). Fast and precise touch-based text entry for head-

mounted augmented reality with variable occlusion. ACM Transactions on Computer-Human 

Interaction. https://doi.org/10.1145/3232163 

Eady, A. K., & Girouard, A. (2015). Caret Manipulation Using Deformable Input in Mobile Devices. 

Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, 

587–591. https://doi.org/10.1145/2677199.2687916 

Fashimpaur, J., Kin, K., & Longest, M. (2020). PinchType: Text Entry for Virtual and Augmented Reality 

Using Comfortable Thumb to Fingertip Pinches. https://doi.org/10.1145/3334480.3382888 

Feit, A. M., Weir, D., & Oulasvirta, A. (2016). How we type: Movement strategies and performance in 

everyday typing. Conference on Human Factors in Computing Systems - Proceedings. 

https://doi.org/10.1145/2858036.2858233 

Fleksy. (2019). Fleksy keyboard. https://www.fleksy.com 

Fuccella, V., Isokoski, P., & Martin, B. (2013). Gestures and Widgets: Performance in Text Editing on Multi-

touch Capable Mobile Devices. Proceedings of the SIGCHI Conference on Human Factors in 

Computing Systems, 2785–2794. https://doi.org/10.1145/2470654.2481385 

Gates, D. H., & Dingwell, J. B. (2008). The effects of neuromuscular fatigue on task performance during 

repetitive goal-directed movements. Experimental Brain Research. https://doi.org/10.1007/s00221-008-

1326-8 

Gentner, D. R., Grudin, J. T., Larochelle, S., Norman, D. A., & Rumelhart, D. E. (1983). A Glossary of Terms 

Including a Classification of Typing Errors. In Cognitive Aspects of Skilled Typewriting. 

https://doi.org/10.1007/978-1-4612-5470-6_2 

González, G., Molina, J. P., García, A. S., Martínez, D., & González, P. (2009). Evaluation of text input 

techniques in immersive virtual environments. In New Trends on Human-Computer Interaction: 

Research, Development, New Tools and Methods. https://doi.org/10.1007/978-1-84882-352-5_11 

Google. (2018a). Magnifier widget. https://developer.android.com/guide/topics/text/magnifier 

Google. (2018b). Selection handle for Android Textview. 

https://developer.android.com/reference/android/widget/TextView.html#getTextSelectHandle() 



   

83 

 

Google. (2019). Gboard. 

https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin 

GoogleDaydream. (2016). Daydream Labs: exploring and sharing VR’s possibilities. 

https://blog.google/products/daydream/daydream-labs-exploring-and-sharing-vrs 

GooglePatent. (2017). Input device interaction-US20170090747A1. 

https://patents.google.com/patent/US20170090747A1/en?oq=20170090747 

Grammarly. (2019). Grammarly: free writing assistant. https://www.grammarly.com 

Grubert, J., Ofek, E., Pahud, M., & Kristensson, P. O. (2018). The Office of the Future: Virtual, Portable, and 

Global. IEEE Computer Graphics and Applications. https://doi.org/10.1109/MCG.2018.2875609 

Grubert, J., Witzani, L., Ofek, E., Pahud, M., Kranz, M., & Kristensson, P. O. (2018a). Effects of Hand 

Representations for Typing in Virtual Reality. 25th IEEE Conference on Virtual Reality and 3D User 

Interfaces, VR 2018 - Proceedings. https://doi.org/10.1109/VR.2018.8446250 

Grubert, J., Witzani, L., Ofek, E., Pahud, M., Kranz, M., & Kristensson, P. O. (2018b). Text Entry in 

Immersive Head-Mounted Display-Based Virtual Reality Using Standard Keyboards. 25th IEEE 

Conference on Virtual Reality and 3D User Interfaces, VR 2018 - Proceedings. 

https://doi.org/10.1109/VR.2018.8446059 

Gugenheimer, J., Dobbelstein, D., Winkler, C., Haas, G., & Rukzio, E. (2016). Facetouch: Enabling touch 

interaction in display fixed uis for mobile virtual reality. UIST 2016 - Proceedings of the 29th Annual 

Symposium on User Interface Software and Technology. https://doi.org/10.1145/2984511.2984576 

Guo, J., Weng, D., Zhang, Z., Liu, Y., & Wang, Y. (2019). Evaluation of maslows hierarchy of needs on long-

term use of HMDs - A case study of office environment. 26th IEEE Conference on Virtual Reality and 

3D User Interfaces, VR 2019 - Proceedings. https://doi.org/10.1109/VR.2019.8797972 

Gupta, A., Ji, C., Yeo, H. S., Quigley, A., & Vogel, D. (2019). Rotoswype: Word-Gesture Typing using a 

Ring. Conference on Human Factors in Computing Systems - Proceedings. 

https://doi.org/10.1145/3290605.3300244 

Hagiya, T., Horiuchi, T., & Yazaki, T. (2016). Typing Tutor: Individualized Tutoring in Text Entry for Older 

Adults Based on Input Stumble Detection. Proceedings of the 2016 CHI Conference on Human Factors 

in Computing Systems - CHI ’16, 733–744. https://doi.org/10.1145/2858036.2858455 

Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. Proceedings of the Human Factors 

and Ergonomics Society. 

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical 

and Theoretical Research. Advances in Psychology. https://doi.org/10.1016/S0166-4115(08)62386-9 

Hirzle, T., Gugenheimer, J., Geiselhart, F., Bulling, A., & Rukzio, E. (2019). A design space for gaze 

interaction on head-mounted displays. Conference on Human Factors in Computing Systems - 

Proceedings. https://doi.org/10.1145/3290605.3300855 

Hoppe, A. H., Otto, L., van de Camp, F., Stiefelhagen, R., & Unmüßig, G. (2018). qVRty: Virtual keyboard 

with a haptic, real-world representation. Communications in Computer and Information Science. 

https://doi.org/10.1007/978-3-319-92279-9_36 

HTC Corporation. (2015). HTC Vive. Vive.Com. 

idownloadblog. (2018). How to use iOS 12 virtual keyboard in trackpad mode on iPhones without 3D Touch. 

https://www.idownloadblog.com/2018/08/22/howto-iphone-keyboard-trackpad-mode/ 



   

84 

 

Ishii, A., Adachi, T., Shima, K., Nakamae, S., Shizuki, B., & Takahashi, S. (2017). FistPointer: Target 

Selection Technique Using Mid-air Interaction for Mobile VR Environment. Proceedings of the 2017 

CHI Conference Extended Abstracts on Human Factors in Computing Systems. 

https://doi.org/10.1145/3027063.3049795 

Janzen, T. B., Thompson, W. F., Ammirante, P., & Ranvaud, R. (2014). Timing skills and expertise: Discrete 

and continuous timed movements among musicians and athletes. Frontiers in Psychology. 

https://doi.org/10.3389/fpsyg.2014.01482 

Jiang, H., & Weng, D. (2020). HiPad: Text entry for Head-Mounted Displays Using Circular Touchpad. 

Proceedings - 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2020. 

https://doi.org/10.1109/VR46266.2020.1581236395562 

Jimenez, J. G., & Schulze, J. P. (2018). Continuous-motion text input in virtual reality. IS and T International 

Symposium on Electronic Imaging Science and Technology. https://doi.org/10.2352/ISSN.2470-

1173.2018.03.ERVR-450 

Keyboard - History of the Modern Computer Keyboard. (2019). https://history-

computer.com/ModernComputer/Basis/keyboard.html 

Kim, Y. R., & Kim, G. J. (2017). HoVR-Type: Smartphone as a typing interface in VR using hovering. 2017 

IEEE International Conference on Consumer Electronics, ICCE 2017. 

https://doi.org/10.1109/ICCE.2017.7889285 

Knierim, P., Kosch, T., Groschopp, J., & Schmidt, A. (2020). Opportunities and Challenges of Text Input in 

Portable Virtual Reality. https://doi.org/10.1145/3334480.3382920 

Knierim, P., Schwind, V., Feit, A. M., Nieuwenhuizen, F., & Henze, N. (2018). Physical keyboards in Virtual 

reality: Analysis of typing performance and effects of avatar hands. Conference on Human Factors in 

Computing Systems - Proceedings. https://doi.org/10.1145/3173574.3173919 

Komninos, A., Dunlop, M., Katsaris, K., & Garofalakis, J. (2018). A Glimpse of Mobile Text Entry Errors 

and Corrective Behaviour in the Wild. Proceedings of the 20th International Conference on Human-

Computer Interaction with Mobile Devices and Services Adjunct, 221–228. 

https://doi.org/10.1145/3236112.3236143 

Komninos, A., Nicol, E., & Dunlop, M. D. (2015). Designed with Older Adults to SupportBetter Error 

Correction in SmartPhone Text Entry: The MaxieKeyboard. Proceedings of the 17th International 

Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, 797–802. 

https://doi.org/10.1145/2786567.2793703 

Kristensson, P. O., & Vertanen, K. (2012). Performance comparisons of phrase sets and presentation styles 

for text entry evaluations. International Conference on Intelligent User Interfaces, Proceedings IUI. 

https://doi.org/10.1145/2166966.2166972 

Kuester, F., Chen, M., Phair, M. E., & Mehring, C. (2006). Towards keyboard independent touch typing in 

VR. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST. 

https://doi.org/10.1145/1101616.1101635 

Levenshtein, V. I. (1966). Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet 

Physics Doklady, 10, 707. 

Li, Y., Sarcar, S., Kim, S., & Ren, X. (2020). Swap: A Replacement-based Text Revision Technique for 

Mobile Devices. CHI ’20. https://doi.org/10.1145/3313831.3376217 

Lin, J. W., Han, P. H., Lee, J. Y., Chen, Y. S., Chang, T. W., Chen, K. W., & Hung, Y. P. (2017). Visualizing 

the keyboard in virtual reality for enhancing immersive experience. ACM SIGGRAPH 2017 Posters, 

SIGGRAPH 2017. https://doi.org/10.1145/3102163.3102175 



   

85 

 

Lu, X., Yu, D., Liang, H. N., Feng, X., & Xu, W. (2019). DepthText: Leveraging head movements towards 

the depth dimension for hands-free text entry in mobile virtual reality systems. 26th IEEE Conference 

on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings. 

https://doi.org/10.1109/VR.2019.8797901 

Ma, C., Du, Y., Teng, D., Chen, J., Wang, H., & Dai, G. (2009). An adaptive sketching user interface for 

education system in virtual reality. ITME2009 - Proceedings 2009 IEEE International Symposium on IT 

in Medicine and Education. https://doi.org/10.1109/ITIME.2009.5236314 

Ma, X., Yao, Z., Wang, Y., Pei, W., & Chen, H. (2018). Combining brain-computer interface and eye tracking 

for high-speed text entry in virtual reality. International Conference on Intelligent User Interfaces, 

Proceedings IUI. https://doi.org/10.1145/3172944.3172988 

MacKenzie, I. S., & Soukoreff, R. W. (2003). Phrase sets for evaluating text entry techniques. Conference on 

Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/765891.765971 

Mcgill, M., Boland, D., Murray-Smith, R., & Brewster, S. (2015). A dose of reality: Overcoming usability 

challenges in VR head-mounted displays. Conference on Human Factors in Computing Systems - 

Proceedings. https://doi.org/10.1145/2702123.2702382 

Mehring, C., Kuester, F., Singh, K. D., & Chen, M. (2004). KITTY: Keyboard independent touch typing in 

VR. Proceedings - Virtual Reality Annual International Symposium. 

https://doi.org/10.1109/VR.2004.1310090 

Menzner, T., Otte, A., Gesslein, T., Grubert, J., Gagel, P., & Schneider, D. (2019). A capacitive-sensing 

physical keyboard for VR text entry. 26th IEEE Conference on Virtual Reality and 3D User Interfaces, 

VR 2019 - Proceedings. https://doi.org/10.1109/VR.2019.8797754 

Microsoft. (2018). Using an Input Method Editor in a Game. https://docs.microsoft.com/en-

us/windows/win32/dxtecharts/using-an-input-method-editor-in-a-game 

Microsoft. (2019). SwiftKey: The Smart Keyboard. https://www.microsoft.com/en-us/swiftkey 

Min, K. (2011). Text input tool for immersive VR based on 3 x 3 screen cells. Lecture Notes in Computer 

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics). https://doi.org/10.1007/978-3-642-24082-9_94 

Naskar, A. (2019). The history of the invention of the typewriter. In Online typing. Online Typing. 

https://onlinetyping.org/blog/invention-of-the-typewriter.php 

Nguyen, C., DiVerdi, S., Hertzmann, A., & Liu, F. (2017). CollaVR: Collaborative in-headset review for VR 

video. UIST 2017 - Proceedings of the 30th Annual ACM Symposium on User Interface Software and 

Technology. https://doi.org/10.1145/3126594.3126659 

Norman, D. A. (1995). The Psychopathology of Everyday Things. Elsevier. 

Ogawa, N., Narumi, T., Kuzuoka, H., & Hirose, M. (2020). Do You Feel Like Passing Through Walls?: Effect 

of Self-Avatar Appearance on Facilitating Realistic Behavior in Virtual Environments. Proceedings of 

the 2020 CHI Conference on Human Factors in Computing Systems, 1–14. 

https://doi.org/10.1145/3313831.3376562 

Ogitani, T., Arahori, Y., Shinyama, Y., & Gondow, K. (2018). Space saving text input method for head 

mounted display with virtual 12-key keyboard. Proceedings - International Conference on Advanced 

Information Networking and Applications, AINA. https://doi.org/10.1109/AINA.2018.00059 

Otte, A., Menzner, T., Gesslein, T., Gagel, P., Schneider, D., & Grubert, J. (2019). Towards utilizing touch-

sensitive physical keyboards for text entry in virtual reality. 26th IEEE Conference on Virtual Reality 

and 3D User Interfaces, VR 2019 - Proceedings. https://doi.org/10.1109/VR.2019.8797740 



   

86 

 

Otte, A., Schneider, D., Menzner, T., Gesslein, T., Gagel, P., & Grubert, J. (2019). Evaluating text entry in 

virtual reality using a touch-sensitive physical keyboard. Adjunct Proceedings of the 2019 IEEE 

International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2019. 

https://doi.org/10.1109/ISMAR-Adjunct.2019.000-4 

Pham, D. M., & Stuerzlinger, W. (2019). HawKEY: Efficient and versatile text entry for virtual reality. 

Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST. 

https://doi.org/10.1145/3359996.3364265 

Prätorius, M., Burgbacher, U., Valkov, D., & Hinrichs, K. (2015). Sensing Thumb-to-Finger Taps for 

Symbolic Input in VR/AR Environments. IEEE Computer Graphics and Applications. 

https://doi.org/10.1109/MCG.2015.106 

Prätorius, M., Valkov, D., Burgbacher, U., & Hinrichs, K. (2014). DigiTap: An eyes-free VR/AR symbolic 

input device. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST. 

https://doi.org/10.1145/2671015.2671029 

Rajanna, V., & Hansen, J. P. (2018). Gaze typing in virtual reality: Impact of keyboard design, selection 

method, and motion. Eye Tracking Research and Applications Symposium (ETRA). 

https://doi.org/10.1145/3204493.3204541 

Raymond. (2007). Whose idea was it to make Ctrl+Backspace delete the previous word. 

https://devblogs.microsoft.com/oldnewthing/20071011-00/?p=24823 

Rizzo, A. (2019). Virtual reality for psychological and neurocognitive interventions. Springer. 

Ruan, S., Wobbrock, J. O., Liou, K., Ng, A., & Landay, J. A. (2018). Comparing Speech and Keyboard Text 

Entry for Short Messages in Two Languages on Touchscreen Phones. Proceedings of the ACM on 

Interactive, Mobile, Wearable and Ubiquitous Technologies. https://doi.org/10.1145/3161187 

Scheibel, J.-B., Pierson, C., Martin, B., Godard, N., Fuccella, V., & Isokoski, P. (2013). Virtual Stick in Caret 

Positioning on Touch Screens. Proceedings of the 25th Conference on L’Interaction Homme-Machine, 

107:107--107:114. https://doi.org/10.1145/2534903.2534918 

Siek, K. A., Rogers, Y., & Connelly, K. H. (2005). Fat Finger Worries: How Older and Younger Users 

Physically Interact with PDAs. Proceedings of the 2005 IFIP TC13 International Conference on 

Human-Computer Interaction, 267–280. https://doi.org/10.1007/11555261_24 

Sindhwani, S., Lutteroth, C., & Weber, G. (2019). ReType: Quick Text Editing with Keyboard and Gaze. 

Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 203:1--203:13. 

https://doi.org/10.1145/3290605.3300433 

Son, J., Ahn, S., Kim, S., & Lee, G. (2019). Improving two-thumb touchpad typing in virtual reality. 

Conference on Human Factors in Computing Systems - Proceedings. 

https://doi.org/10.1145/3290607.3312926 

Soukoreff, R. W., & MacKenzie, I. S. (2003). Metrics for text entry research: An evaluation of MSD and 

KSPC, and a new unified error metric. Conference on Human Factors in Computing Systems - 

Proceedings. 

Speicher, M., Feit, A. M., Ziegler, P., & Krüger, A. (2018). Selection-based text entry In Virtual Reality. 

Conference on Human Factors in Computing Systems - Proceedings. 

https://doi.org/10.1145/3173574.3174221 

Susu, H., Daqing, Q., Jiabin, Y., & Huawei, T. (2019). Review of studies on target acquisition in virtual reality 

based on the crossing paradigm. Virtual Reality & Intelligent Hardware. 

https://doi.org/10.3724/sp.j.2096-5796.2019.0006 



   

87 

 

Suzuki, K., Okabe, K., Sakamoto, R., & Sakamoto, D. (2015). Fix and Slide: Caret Navigation with Movable 

Background. Adjunct Proceedings of the 28th Annual ACM Symposium on User Interface Software & 

Technology, 79–80. https://doi.org/10.1145/2815585.2815728 

Terzuolo, C. A., & Viviani, P. (1980). Determinants and characteristics of motor patterns used for typing. 

Neuroscience. https://doi.org/10.1016/0306-4522(80)90188-8 

Tu, H., Huang, S., Yuan, J., Ren, X., & Tian, F. (2019). Crossing-based selection with virtual reality head-

mounted displays. Conference on Human Factors in Computing Systems - Proceedings. 

https://doi.org/10.1145/3290605.3300848 

Vertanen, K., & Kristensson, P. O. (2011). A Versatile Dataset for Text Entry Evaluations Based on Genuine 

Mobile Emails. Proceedings of the 13th International Conference on Human Computer Interaction with 

Mobile Devices and Services, 295–298. https://doi.org/10.1145/2037373.2037418 

Walker, J., Li, B., Vertanen, K., & Kuhl, S. (2017). Efficient typing on a visually occluded physical keyboard. 

Conference on Human Factors in Computing Systems - Proceedings. 

https://doi.org/10.1145/3025453.3025783 

Wikipedia. (2019). Backspace. https://en.wikipedia.org/wiki/Backspace 

Wilson, A. D., & Agrawala, M. (2006). Text entry using a dual joystick game controller. Conference on 

Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/1124772.1124844 

Wu, C. M., Hsu, C. W., Lee, T. K., & Smith, S. (2017). A virtual reality keyboard with realistic haptic feedback 

in a fully immersive virtual environment. Virtual Reality. https://doi.org/10.1007/s10055-016-0296-6 

Xu, W., Liang, H. N., Zhao, Y., Zhang, T., Yu, Di., & Monteiro, Di. (2019). RingText: Dwell-free and hands-

free Text Entry for Mobile Head-Mounted Displays using Head Motions. IEEE Transactions on 

Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2019.2898736 

Yanagihara, N., & Shizuki, B. (2018). Cubic keyboard for virtual reality. SUI 2018 - Proceedings of the 

Symposium on Spatial User Interaction. https://doi.org/10.1145/3267782.3274687 

Yi, X., Yu, C., Zhang, M., Gao, S., Sun, K., & Shi, Y. (2015). ATK: Enabling ten-finger freehand typing in 

air based on3D hand tracking data. UIST 2015 - Proceedings of the 28th Annual ACM Symposium on 

User Interface Software and Technology. https://doi.org/10.1145/2807442.2807504 

Yu, C., Gu, Y., Yang, Z., Yi, X., Luo, H., & Shi, Y. (2017). Tap, dwell or gesture?: Exploring head-based text 

entry techniques for HMDs. Conference on Human Factors in Computing Systems - Proceedings. 

https://doi.org/10.1145/3025453.3025964 

Yu, D., Fan, K., Zhang, H., Monteiro, D., Xu, W., & Liang, H. N. (2018). PizzaText: Text entry for virtual 

reality systems using dual thumbsticks. IEEE Transactions on Visualization and Computer Graphics. 

https://doi.org/10.1109/TVCG.2018.2868581 

Zhang, M., Wen, H., & Wobbrock, J. O. (2019). Type, then correct: Intelligent text correction techniques for 

mobile text entry using neural networks. UIST 2019 - Proceedings of the 32nd Annual ACM Symposium 

on User Interface Software and Technology. https://doi.org/10.1145/3332165.3347924 

 

 

 

 



   

88 

 

 

 

ACKNOWLEDGMENT 

 

Time passes, all memorable moments seem just like yesterday. For the past three years, I would say 

nothing but appreciations to those who helped me a lot during the journey of getting my doctor 

degree. 

 

Sincere gratitude goes to the Kochi University of Technology and its Special Scholarship Program 

(SSP) for supporting both my research activities and living.  

 

Great appreciation goes to my supervisor, Prof. Xiangshi Ren in the Center for Human-Engaged 

Computing (CHEC) for the insightful suggestions, high-level guidance, and the platform he built for 

better research opportunities and global collaborations in the field of Human-Computer Interaction. 

 

I would like to thank my co-supervisors Associate Prof. Yoshiaki Takada, Associate Prof. Yokinobu 

Hoshino and committee members Associate Prof. Toru Kurihara, Associate Prof. Yoshida Shinichi 

for their considerate and insightful suggestions on my research. 

 

Special thanks and gratitude go to Assistant Professor Sayan Sarcar for his selfless guidance and 

suggestions. I cannot forget the days and nights we discussed during the CHI submission. He taught 

me a lot about how to be an experienced researcher. “Never give up.” is the most valuable spirit that 

I learned from him. 

 

I would thank Prof. Antti Oulasvirta for providing me the chance of visiting Aalto University, 

Finland. I would also thank Dr. Sunjun Kim for the insightful discussions and Viet Ba Hirvola for 

the great assistance on my projects during the research period in Finland. 

 

Special thanks to my 10-year friend, Xinhui Jiang. It is precious for me to have such a friend with 

such a long time discussing, working, and fighting for the future together.  

 

I would like to thank Kyoko Hatakenaka for her considerate assistance in CHEC. With her selfless 

help, we could put 100% of our power and passion into the HCI research field. Great appreciations 

also go to John Cahill for his expert-level proofreading and comments on my work during paper 



   

89 

 

submissions. I would express my thanks to all staff in the International Relations Center for the well 

and considerate arrangement of my research life in the foreign land. 

 

I would thank all students who worked with me during the study, Shuang Wang, Yilin Zheng, 

Chunyuan Lan, Xiaoxuan Li, Zengyi Han, Yanyin Zhou, Takaaki Kubo, Yoshida Kentarou, and 

Naoki Higashi. I would also thank other members of CHEC for their great support. 

 

I appreciate my parents, Weixun Li and Fengping Dong for their support and the deepest love. I 

thank my wife Mingfan Ma who gives me the heart-melt warmth and supports in my life.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

90 

 

 

 

LIST OF ACHIEVEMENTS 

 

International Conferences 

1. Li, Y., Sarcar, S., Zheng, Y., & Ren, X. (2021). Exploring Text Revision with Backspace 

and Caret in Virtual Reality. Proceedings of the 2021 CHI conference on Human Factors 

in Computing Systems. (Accepted, to be published) 

2. Li, Y., Sarcar, S., Kim, S., & Ren, X. (2020). Swap: A Replacement-based Text Revision 

Technique for Mobile Devices. Proceedings of the 2020 CHI conference on Human Factors 

in Computing Systems. https://doi.org/10.1145/3313831.3376217 (Orally presented at CHI 

2020 Japan Chapter) 

3. Jiang, X., Li, Y., Jokinen, J. P., Hirvola, V. B., Oulasvirta, A., & Ren, X. (2020). How 

We Type: Eye and Finger Movement Strategies in Mobile Typing. Proceedings of the 2020 

CHI conference on Human Factors in Computing Systems. 

https://doi.org/10.1145/3313831.3376711 (Orally presented at CHI 2020 Japan Chapter and 

CHI Nordic 2020) 

Posters 

1. Li, Y., Kim, K., Zheng, Y., Kubo, T., & Ren, X. (2020). Enhancing Text Input Efficiency 

in VR Applications. International Workshop on Human-Engaged Computing (IWHEC 

2020). (Honorable Mention) 

2. Li, Y., Ono, K., & Ren, X. (2020). Investigating Cognitive Strategies when Correcting 

Errors: From the Eye - Hand Movement Perspective. International Workshop on Human-

Engaged Computing (IWHEC 2020). 

3. Yoshida, K., Li, Y., & Ren, X. (2019). Eye-Hand Coordination in Error Correction 

Process during Typing on Smartphones. International Workshop on Human-Engaged 

Computing (IWHEC 2019).  

4. Li, Y. (2017). Emergent Pen: Use Smartphones as Styluses. International Workshop on 

Human-Engaged Computing (IWHEC 2017).  

Grant 

International Exchange Grant (100,000 JPY) from Marubun Zaidan for ACM CHI 

Conference on Human Factors in Computing Systems (ACM CHI 2020). 


