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Inverse scattering problem for quantum graph vertices
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We demonstrate how the inverse scattering problem of a quantum star graph can be solved by means of
diagonalization of the Hermitian unitary matrix when the vertex coupling is of the scale-invariant (or Fülöp-
Tsutsui) form. This enables the construction of quantum graphs with desired properties in a tailor-made fashion.
The procedure is illustrated on the example of quantum vertices with equal transmission probabilities.
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Interest in the inverse scattering problem for quantum
graphs [1–3] is twofold: These graphs are a prime example of
solvable systems possessing nontrivial physical properties [4].
At the same time, the problem is also important because
of its relevance to the design principle of nanowire-based
single-electron devices.

In this paper, we consider the inverse scattering problem
on a star graph with scale-invariant vertex coupling [5], which
is an important subset among all the couplings preserving the
probability current [6]; we note that the corresponding scatter-
ing matrix is energy independent. A star graph with a number
of half-line edges connected at a single point is the elementary
building block of a generic graph. In general, the inverse prob-
lem for star graphs is easy to solve [7] but the solution does not
give much insight into the physical meaning of the coupling.

Here we present an alternative approach for star graphs with
scale-invariant coupling. We shall give the solution to the cor-
responding inverse scattering problem in the form of an eigen-
value problem of a Hermitian unitary matrix. In particular, we
consider quantum vertices with equal transmission probabili-
ties, a subclass of the scale-invariant case, and we show that
the problem reduces to a search for a special class of Hermitian
unitary matrices which can be regarded as a generalization of
complex Hadamard matrices. Intriguing designs emerge for
the realization of quantum devices with such properties.

Note that any quantum-graph vertex coupling behaves
effectively as a scale-invariant one in both the high- and
low-energy limits [8], which gives a hint that our analysis
might have an extension to the general case.

Consider thus a star graph vertex of degree n, with n half-
line edges sticking out of a pointlike node. The scale-invariant
subfamily of the general coupling conditions is characterized
by a complex matrix T of size (n − m) × m, where m can take
an integer value m = 1,2, . . . ,n − 1, being given by(

I (m) T

0 0

)
� ′ =

(
0 0

−T † I (n−m)

)
�, (1)

where I (l) signifies the identity matrix of size l × l, and the
boundary-value vectors � and � ′ are defined by

� =

⎛
⎜⎜⎝

ψ1(0)
...

ψn(0)

⎞
⎟⎟⎠, � ′ =

⎛
⎜⎜⎝

ψ ′
1(0)
...

ψ ′
n(0)

⎞
⎟⎟⎠, (2)

with ψi(xi) and ψ ′
i (xi) being the wave function and its

derivative on the ith edge [9]. The coordinates xi on the
ith half-line are labeled outwardly from the vertex, which
corresponds to xi = 0 for all i. To cast the coupling into
the form (1) one has, in general, to suitably renumber the
edges. The quantum particle coming in from the j th edge and
scattered off the vertex is described by the scattering wave
function on the ith line, ψ

(j )
i (x), which is of the form

ψ
(j )
i (x) = δi,j e

−ikx + Si,j e
ikx . (3)

Let us express S in terms of T . From (3) we have

�(0) = I + S and � ′(0) = k(−I + S);

we substitute into (1), which leads to the equation

(
I (m) T

T † −I (n−m)

)
S =

(
I (m) T

−T † I (n−m)

)
. (4)

It is easy to observe from (4) that

S = X−1
m ZmXm, (5)

with the matrices Xm,Zm defined by

Xm =
(

I (m) T

T † −I (n−m)

)
, Zm =

(
I (m) 0

0 −I (n−m)

)
. (6)

We see that (5) can be viewed as a diagonalization formula
of the Hermitian unitary matrix S with a diagonalizing matrix
of specific block diagonal form, Xm, which gives a prescription
to obtain T that defines the boundary condition from the
scattering matrix S. In other words, solution of the our inverse
scattering problem is given in terms of a diagonalization.

In practice, the procedure of obtaining T by a diagonal-
ization of S can be cumbersome for large n, and there is an
alternative simpler way. A calculation shows that (5) can be
rewritten in the form

S = −I (n) + 2

(
I (m)

T †

)
(I (m) + T T †)−1( I (m) T ). (7)
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Let us divide S into four submatrices S11, S12, S21 and S22 of
size m × m, m × (n − m), (n − m) × m, and (n − m) × (n −
m), respectively, as follows:

S =
(S11 S12

S21 S22

)
. (8)

The block matrices Sij are expressed in terms of T as
S11 = −I (m) + 2(I (m) + T T †)−1, S12 = 2(I (m) + T T †)−1T ,
and S22 = I (n−m) − 2(I (n−m) + T †T )−1. From here, one gets
easily

T = (I (m) + S11)−1S12 = S†
21(I (n−m) − S22)−1. (9)

Hence, the algorithm to obtain the matrix T characterizing the
vertex is the following:

(1) Take the scattering matrixS and set m = rank(S + I (n)).
(2) Decompose S according to (8). If necessary, change the

numbering of the incoming edges so that I (m) + S11 is regular
(i.e., it is always possible).

(3) Calculate T using (9).
We remark that the matrix T obtained by the algorithm

above naturally depends on the numbering of the edges we
choose.

In the rest of the paper we demonstrate how the matrix T

is used for understanding the meaning of the coupling and
for the construction of the vertex with prescribed scattering
properties.

Recall that a star-shaped network with a potential at the
node can tend in the zero-diameter limit to the star graph with
δ coupling [10]. More complicated couplings can be obtained
by using δ vertices as building blocks, applying localized
magnetic fields to achieve a phase change if necessary; the
aim is to devise a design principle to construct an arbitrary
coupling condition. Here the matrix T derived above plays an
important role. In the scale-invariant case (1) with the elements
of T = {tij }, i = 1, . . . ,m and j = m + 1, . . . ,n, given, the
scheme works as follows [11]:

(i) Take the endpoints of the n edges, numbered by
j = 1,2, . . . ,n, and connect them in pairs (i,j ) by internal
edges of length d/rij , except when rij = 0 in which case the
pair remains unconnected. Apply a vector potential Aij on
the segment (i,j ) to produce extra phase shift χij between the
endpoints when its value is nonzero. Place the δ potential of
strength vi at each endpoint i.

(ii) The length ratio rij used above and the phase shift χij

are determined from the nondiagonal elements of the matrix
Q defined by

Q =
(

T

I (n−m)

)
( −T † I (m) ) =

(
−T T † T

−T † I (m)

)
(10)

using the relation rij e
iχij = Qij (i �= j ). This means that we

have rij e
iχij = tij for i � m,j > m, and rij e

iχij = ∑
l>m til t

∗
j l

for i,j � m; for i,j > m we have rij = 0 and naturally also
χij = 0.

(iii) The δ coupling strength vi is given by the diagonal
elements of the matrix V defined by

V = 1

d
(2I (n) − J (n))R, (11)

where R is the matrix whose elements equal the absolute
values of the matrix elements of Q, i.e., R = {rij } = {|Qij |};
the n × n matrix J (n) has all its elements equal to one. This
means that we have vi = 1

d
(1 − ∑

l�m rli) for i > m, and vi =
1
d

(
∑

l>m[r2
il − ril] − ∑

l(�=i)�mril) for i � m. The described
way to fine-tuning the lengths and δ coupling strengths is
devised to counter the generic opaqueness brought in with
every addition of a vertex or a connecting edge into the graph.

The wave function φ(x) = φi,j (x) on any internal edge with
indices (i,j ) has to satisfy the relation(

φ′(0)

eiχφ′( d
r
)

)
= − r

d

(
F ( d

r
) −G( d

r
)

G( d
r
) −F ( d

r
)

)(
φ(0)

eiχφ( d
r
)

)
,

(12)

with F (x) = x cot x and G(x) = x csc x. Combining (12) with
the condition at the ith endpoint where we have the δ potential
of strength vi ,

ψ ′
i (0) +

∑
j �=i

φ′
ij (0) = viψi(0), (13)

we obtain the relations between the boundary values ψi =
ψi(0) and ψ ′

i = ψ ′
i (0) in the form

dψ ′
i =

⎛
⎝vid +

∑
l �=i

rilFil

⎞
⎠ ψi −

∑
l �=i

eiχij rilGilψl, (14)

where the obvious notations Fij = d
ril

cot d
ril

and Gij =
d
ril

csc d
ril

have been adopted. Note that Eq. (14) is exact
and does not involve any approximation. For small values
of the length parameter d we have Fij = 1 + O(d2) and
Gij = 1 + O(d2); then we can show by a straightforward
computation in the manner of [9] that the shrinking limit d →
0 gives the desired coupling condition for the scale-invariant
vertex (1).

With the procedure described above, it is possible to
construct a star graph from any given scattering matrix of the
considered class. Our previous result detailed in [11], which
provides a reconstruction of the “free-like” scattering, is one
such example, and it could be achieved more easily by the
current method. Here, we will illustrate the application of the
procedure on the following exemplary problem. Let us look at
this question: Can one construct a quantum vertex for which
the particle incoming from any line is transmitted to all other
lines with equal probability? At first, we should ask about the
existence condition for the scattering matrix of the form

S = 1√
d2 + n − 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d eiφ12 · · · eiφ1n

eiφ21 d · · · eiφ1n

...
. . .

...

eiφn−11 · · · −d eiφn−1n

eiφn1 · · · eiφnn−1 −d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

with a non-negative real parameter d.
These matrices have been recently examined in [13]. It

has been proved that the parameter d is always bounded from
above by n

2 − 1 (except for n � 2) and, moreover, that for most
values of d ∈ [0, n

2 − 1], the existence of the corresponding
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matrix (15) is impossible if the order n is odd. By contrast, if n

is even, then one can construct an S for infinitely many values
of d, in particular for any d from the interval [ n

2 − 3, n
2 − 1],

or, under certain extra conditions, for all d ∈ [0,1]; for further
details and explicit matrix constructions we refer to [13].

With a matrix of the type (15) in hand, we can proceed to the
construction of the finite approximation. We will demonstrate
it on two examples. We first look at the case of reflectionless
scattering with uniform transmission to all the other edges.
In other words, we ask whether there is a graph with the
scattering matrix (15) with d = 0. Vertices yielding such
scattering matrices are known to be useful in investigation
of semiclassical properties of quantum-graph spectra [12]. Let
us adopt a result from [13] which says that such an S can exist
only for even n. We limit ourselves for simplicity to real S; we
remark that a real matrix of the type (15) with zero diagonal is
called a symmetric conference matrix, and it is known to exist
for n = 2,6,10,14,18,26,30,38, . . . .

Here we inspect the example of n = 6 when S is given by

S = 1√
5

(
I (3) − J (3) −2I (3) + J (3)

−2I (3) + J (3) −I (3) + J (3)

)
. (16)

By applying (9), the corresponding T is easily calculated,

T = −γ I (3) + (1 + γ )J (3), (17)

where γ = (
√

5 − 1)/2 is the golden mean. Our finite
approximation is specified by the following parameters:
r12 = r23 = r13 = 4 + 3γ, r14 = r25 = r36 = 1, r15 = r16 =
r26 = r24 = r31 = r32 = 1 + γ , r45 = r46 = r56 = 0, eiχ12 =
eiχ23 = eiχ13 = −1, eiχij = 1 for all others, and v1 = v2 =
v3 = −6 γ+1

d
, v4 = v5 = v6 = −2 γ+1

d
. The finite graph ap-

proximation is schematically illustrated in the left side of
Fig. 1. Our second example is the equal-scattering graph, in
which the scattering is uniform to all the edges including
the one of the incoming particle. Such a matrix, called a
symmetric Hadamard matrix, is known to exist for n =
2,4,8,12,16,20,24, . . . . An example of such S for n = 8 is
given by

S = 1√
8

(
2I (4) − J (4) −2I (4) + J (4)

−2I (4) + J (4) −2I (4) + J (4)

)
. (18)
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FIG. 1. (Color online) Finite approximation to the reflectionless
scale-invariant vertices corresponding to (16) (left) and (18) (right)
constructed according to (10) and (11). The dotted line indicates the
presence of a nonzero phase shift χij .

FIG. 2. (Color online) Scattering probabilities as functions of
incoming momentum k (in units of 1/d) of a finite quantum
graph approximating the equal-transmitting reflectionless vertex
represented in the left side of Fig. 1.

The matrix T specifying the vertex coupling is found to be
equal to

T = σ − 1

σ + 1
I (4) + 1

σ + 1
J (4), (19)

where σ = √
2 − 1 is the silver mean. Our finite ap-

proximation is specified by the following parameter val-
ues: r12 = r13 = r14 = r23 = r24 = r34 = 1 + σ , r15 = r26 =
r37 = r48 = σ

1+σ
, r16 = r17 = r18 = r27 = r28 = r25 = r38 =

r35 = r36 = r45 = r46 = r47 = 1
1+σ

, r56 = r57 = r58 = r67 =
r68 = r78 = 0, eiχ12 = eiχ13 = eiχ14 = eiχ23 = eiχ35= eiφ28 =
eiχ46 = −1, eiχij = 1 for all others, and v1 = v2 = v3 = v4 =
− 5σ+3

d
, v5 = v6 = v7 = v8 = − σ+1

d
. The finite graph approx-

imation is schematically illustrated in the right side of Fig. 1.
Finally, let us discuss the convergence of the described

finite-size graph approximation. In Fig. 2, we display scat-
tering matrix elements of the finite graph constructed to
approximate the equal-scattering reflectionless matrix (16).
They are calculated directly from (14). The scale of the
wavelength k is given by 1/d. The approximation can be
seen to be quite good below kd < 0.2. Numerical analysis
of other examples of different graphs gives essentially the
same conclusion, namely that the described construction
does represent a physical realization of scale-invariant vertex
couplings.

Thus the problem of finding the desired property of scale
invariance is turned into a mathematical question about a
Hermitian unitary matrix, and the search for systems with
S having interesting specifications other than those exam-
ined here should follow. Also, a study of the bound-state
spectra is one thing we have completely neglected here;
applications to nonquantum waves, including particularly elec-
tromagnetic and water waves, should be another interesting
subject.

In our finite approximation of a star graph with no internal
edges, we have actually studied the low-energy properties
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of graphs with internal edges all of which are connected to
the external ones, which we might term depth-one graphs.
The examination of depth-two graphs and beyond seems to
be a natural future direction. Our result showing the full
solution to the inverse scattering problem is, in a sense, a
partial fulfillment of the hope that a quantum graph somehow
could be a solvable model and useful design tool at the same
time.
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