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Abstract

The Strategies of Text Revision in Virtual Reality

Environments

ZHENG Yilin

Extensive research and related techniques and algorithms enable users to type with

promising speed and accuracy in VR environments. However, there lacks essential

consideration on the facilitation of text revision quality and performance, especially for

the typing with virtual keyboards. In this study, we first did a broad and thorough

literature review to point out the pain-points about the lacking of text revision in

current VR text input research. We found that, for VR virtual keyboards, backspace

is the dominant tool available for text revision without considering the text revision

efficiency, cursor control is less deployed an developed in current VR virtual keyboards.

Facing this, we further explore the possibilities of text revision designs based on different

kinds of backspace and caret (cursor) control and implemented four VR text revision

techniques to enhance text revision performance when typing with virtual keyboards

and handheld controllers. We conducted a comparative user study to further evaluate

users’ text revision performance with our four text revision techniques. Results showed

that using the word-level backspace and the continuous cursor control can enhance

users’ capabilities when revising text with virtual keyboards. This study can contribute

the community of text entry with 1) a basic understanding on current research status

of text revision in VR text input designs, 2) a series of feasible text revision solutions

based on the backspace and cursor control, and 3) design guidelines and suggestions for
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future designers for the development of novel text revision tools and techniques.

key words text input, text revision, virtual reality
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Chapter 1

Introduction

The popularity of Virtual Reality (VR) provides the potential of applying daily

scenarios into VR environments. VR provides a solid hardware foundation for the

development of efficient working environments such as virtual office work[30, 28] and

remote classrooms [50]. In such cases, users need to deal with a heavy workload on text

input (e.g., sending emails, composing reports, taking class notes). Therefore, when

users interact in an immersive virtual environment, an effective text input method is

needed to ensure text quality and satisfaction. Text input methods for VR should not

only show fast typing speed but also their effectiveness handling various situations, such

as typos (and grammar) correction and content rephrasing.

The advantage of the virtual keyboard different from the the physical keyboard is

that it is more suitable [18] and portable [67] to deploy in VR applications with less

environmental requirements (e.g., stable and flat surface to place the physical keyboard).

Currently, to achieve better working quality in VR, numerous researches focused on

making new techniques and designs for improving the typing speed and typo correction

with virtual keyboards. However, these researches rarely mention that how users can

revise the text in a VR system using a given tool or technology.

In the current VR text input research, text revision has not received enough at-

tention, even if it is an important subtask to ensure content accuracy [45]. Imagine a

scenario of writing an email in a VR system: after entering the text quickly (typo-free),

the user still needs to revise the content (e.g., delete, insert or substitute) to ensure that
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the content is accurate and meaningful. Currently, the backspace key is the main tool

for text revision, and it is no exception to the virtual keyboard. However, we found that

in the practial typing scenarios, the revision target can appear anywhere in the input

content. In fact, in most related researches, the backspace key can only be activated at

the end of the input content.

Looking at the situation above, there are three research questions: (RQ1) Can

current VR text typing methods handle comprehensive text revision requirements effec-

tively? (RQ2) How to improve the efficiency of VR text revision based on existing tools

and designs to improve current VR text methods? (RQ3) What are the strategies of text

revision in VR environments?

To address these questions, we first investigated the existing text revision tools used

in the current VR typing technology and found three issues: 1) most researchers are more

inclined to improve the VR typing speed with higher accuracy (no typo), but they rarely

consider how to improve the efficiency of text revision;2) the current text input design

based on the VR virtual keyboard does not include cursor(caret) control; 3) backspace

is the only tool that can meet the basic needs of text revision without considering

efficiency. Facing the founded problems, we combine current available revision tools

to explore the VR text revision designs. Then, we further implemented four VR text

revision techniques using virtual keyboards and handheld controllers. We evaluated

their text revision performance through a comparative user study. Results show that

the combination of word-level deletion and continuous cursor control achieves better

text revision performance in VR. Finally, we further discuss the findings and summarize

them into the strategies of text revision in virtual reality environments.

To conclude, this dissertation proposes the concept of our strategies of VR text

revision may also explore novel tools and techniques beyond backspace and cursor, or

to introduce solutions applied in other platforms (e.g., smartphones) and it provides
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guidelines for the future VR typing method designers.

The writing of this thesis consists of six chapters, namely Chapter 1 Introduction,

Chapter 2 Related Work, Chapter 3 VR Text Revision Design and Implementation,

Chapter 4 Experiment, Chapter 5 Discussion and Chapter 6 Conclusion.

In Chapter 1 Introduction, a general description of the implementation of this thesis

consists of background and overview. In Chapter 2, related research is presented that

supports the theory of VR text revision. This chapter explains about current VR text

revision methods and summarizing their attempts to facilitate text revision. In chapter

3 analyzes the vr text revision design and implementation of this thesis. This chapter

explains the details of the design, and discuss the core technical challenges and related

solutions for better implementing the proposed text revision techniques. In Chapter

4 the procedure of implementing comparative user study is presented to validate the

design and evaluate VR performance with text revision techniques we proposed. In

Chapter 5 the discussion based on the results of our experiment is presented. Finally,

Chapter 6 provides our conclusion for our study.
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Chapter 2

Related Work

This chapter contains descriptions of related work to this thesis problem. We report

the development of VR technology and text input devices, then do a through analysis

on current text input methods in VR, and we close this chapter by summarizing their

attempts to facilitate text revision.

2.1 Development of VR Technology

2.1.1 A Brief History of VR

With the development of VR technology, all kinds of VR devices emerge endlessly.

In the 1950s, American photographer Morton Heilig invented the first VR device: Seno-

rama, was a huge, fixed device with 3D stereo, 3D display, vibrating seat and fan. It

is considered as one of the earliest VR devices [34]. In 1960, Heilig submitted a design

patent for the first VR glasses, which had a stereo display function. In 1968, American

computer scientist Ivan Sutherland invented the prototype of the first head-mounted

display that is the closest to the concept of modern VR devices. It realized the pre-

liminary posture detection function through ultrasonic and mechanical axis technology,

thus making the first VR system.

In the 1990s, VR ushered in the first craze, and major game companies rushed

to launch their own VR devices. However, at that time, the display technology, 3D

rendering technology, and motion detection technology were immature, so these VR
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2.1 Development of VR Technology

devices quickly disappeared from the market. Manufacturers were waiting for the further

development of VR technology. In 2012, VR technology has made a breakthrough and

Oculus Rift came out. In 2014, Google released its VR experience version solution:

CardBoard, which enables people to experience the effects of a new generation of VR

at a very low price. In 2015, HTC Vive was officially released at MWC. The following

year, Sony released PSVR. Subsequently, major manufacturers began to develop their

own VR devices.

With the development of portable PC and glasses display technology, more and

more industries that are closely related to human life need to use VR devices, such as

medicine, education, etc. Currently, the development of VR technology and devices is

in a stable stage and human-computer interaction in VR is also a problem that cannot

be ignored.

2.1.2 Interaction in VR

Virtual reality is generated by a computer and simulates a three-dimensional virtual

space with input and output interfaces. It provides users with the simulation of vision,

hearing and even touch to allow users to experience nature interaction in the virtual en-

vironment. Virtual reality technology provides a new way to view and manipulate three-

dimensional data, injecting new technical elements into the human-computer interaction

and equipment remote control system. Compared with the traditional human-computer

interaction system in the past, the virtual reality system has three basic characteristics

[81]:

1) Immersion: In the traditional interactive system, the results of the observation

and processing from the outside of the computer system are observed, while the virtual

reality system is immersed in the environment created by the computer system;

2) Interaction: In traditional interactive systems, the keyboard, mouse, and single-
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2.1 Development of VR Technology

dimensional digital information are used for interaction, while in virtual reality systems,

it interacts with the environment of multi-dimensional information by interactive de-

vices(such as multiple sensors).

3) Imagination: In traditional interaction, it is inspired by the results of quantita-

tive calculations to deepen the understanding of things. In the virtual reality system,

perception and rational understanding are obtained from the qualitative and quantita-

tive environment to deepen concepts and germinate new ideas.

With the rapid development of virtual reality technology in recent years, it has been

widely used in medical, transportation, education, entertainment, military, archeology

and other industries. With the optimization of input and output devices at the technical

level, virtual reality transforms the two-dimensional world into three-dimensional, and

the interactive paradigm of two-dimensional graphical interface is not enough to satisfy

more complex, more diverse, freer and broader interaction [81]. A new revolutionary way

of interaction has emerged. Virtual reality interaction has always been the focus and

hotspot of research, and there is still no unified consensus interaction paradigm. The

human-computer interaction methods in the virtual environment can be divided into two

categories, namely autonomously interactive actions and non-autonomously interactive

actions. Autonomously interactive actions refer to interactions by people themselves,

including hand interactions and somatosensory interactions. Non-autonomously inter-

active actions refer to interactive actions initiated by the machine and the environment.

Users do not need to make special actions, such as eye tracking, EEG electromyography,

head position tracking, facial expression recognition, etc.

The current human-computer interaction mainly relies on the WIMP interaction

paradigm [81], and the interaction in the real world is mainly carried out through the

five senses of humans (taste, sight, hearing, smell and touch). Virtual reality aims to

completely simulate the interaction of the real world. Virtual reality aims to completely
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2.1 Development of VR Technology

simulate the interaction of the real world. However, due to the limitation of technological

development, the current main interactive methods are still focused on autonomously

interactive methods-through virtual reality devices to obtain interactive information in

a metaphorical manner. The current mainstream virtual reality device includes two

positioners, two handles, and a head display. The positioner is used to capture the

position of the head display, the handle is used to capture the position of the hand,

and the head display is used to transmit 3D scenes and capture head positioning and

orientation.

2.1.3 Devices for VR

The common VR devices currently on the market include: hardware devices (such

as HTC Vive), software devices (such as Unity, UE, and personal computers), eye track-

ers (currently, manufacturers that provide eye trackers for helmets include AppleLabs,

Tobii, FOVE), headsets, etc. There are currently three mainstream forms of VR equip-

ment, as follows.

PC + head display + handle + positioning device completes the calculation

and rendering through the high-performance host, and then transmits the 3D image

information to the head display through the transmission line, and finally complete the

positioning of the head display and the handle of the positioning device. The advantage

of this configuration is that the image rendering platform is stable and efficient, and the

computing power is powerful; its disadvantage is that it is expensive and the mobility is

limited by the length of the transmission line. Both HTC Vive and Oculus Rift support

this configuration method, among which the Light-house technology used by HTC Vive

belongs to laser positioning technology, and the positioning technology used by Oculus

Rift is infrared active optical technology.

The mobile phone + helmet completes the calculation and image rendering
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2.1 Development of VR Technology

through the mobile phone and displays the image through the mobile phone screen,

while the helmet is only responsible for fixing the mobile phone and enhancing the effect.

The advantage of this configuration is that it is mobile and the price is relatively low.

Its disadvantage is that the VR effect is poor and cannot provide precise positioning.

Samsung Gear VR supports this configuration method.

The all-in-one PC directly integrates image rendering and calculation functions

into the helmet, and also integrates sensing devices such as gyroscopes and optical lenses.

The advantage of this configuration is that it has greater mobility and is reasonably

priced; its disadvantage is that it lacks computing power, cannot support large VR

systems, and has insufficient battery life. Storm Demon, etc. support this configuration

method.

By analyzing the market research report, it can be found that the current main-

stream VR devices in the market are HTC Vive and Oculus Rift [74]. Therefore, HTC

and Oculus are dominant in the future development direction of VR positioning tech-

nology.

2.1.4 The Development Trend of VR

In the past 30 years, virtual reality technology has developed relatively mature and

has a high degree of social acceptance. With the promotion of HTC, Facebook and other

technology companies, virtual reality hardware platforms and software development

platforms have begun to enter the market. At present, VR has become the next outlet

after the Internet and smart phones. Technology manufacturers around the world are

vying to enter the VR market, and VR-related research and applications are in full

swing. At the same time, with the popularization of 5G and the rapid development of

commercial GPUs, virtual reality technology is now being used in more and more fields.

In the near future, virtual reality may reshape human life.
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2.2 Input Devices for Text Input Tasks

In the entertainment industry, VR movies will surpass IMAX and 3D movies, bring

revolutionary changes to the movie industry, and make audiences feel immersive [70]. In

navigation, the 3D geographic information system combines traditional GIS with virtual

reality to form a realistic map scene to enhance the user’s navigation experience. The

current VR system lacks a unified standard in both software and hardware. Therefore, in

the future, there will be a unified worldwide standard. The future VR hardware design

will start from the human vision, hearing, smell and touch to collect the most basic

human sensory information, and design a new interactive paradigm that can replace

WIMP.

2.2 Input Devices for Text Input Tasks

With the increasing popularity of mobile electronic information management, the

diversity of text input devices has been greatly developed. Text input is one of the most

common and important tasks in human-computer interaction. Text input, especially

short text input, is an unavoidable problem. For example, enter the user name and

password in the game or software, enter and adjust the attribute parameters in the

building or design model, enter the file name to open and save, and make short tags

and comments. To solve the problem of text input, researchers draw on the simple so-

lutions of traditional desktops and make special hand-held text input devices. With the

advancement of algorithms, they have also developed text input through voice recog-

nition, gesture recognition, and character recognition technologies. To better complete

the text input tasks, it is necessary to select a set of appropriate input devices. There

are many different types of input devices [2, 17, 20, 25] to choose, and some devices are

more suitable for specific tasks than others.
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2.2 Input Devices for Text Input Tasks

2.2.1 Classification of Input Devices

With the development of human-computer interaction technology and mobile com-

puting technology, input devices have greatly improved in form and interaction methods.

For example, in the early mobile devices, keyboards were mostly used, and now it has

developed into recognition (including handwriting, voice, image input, etc.), sensing

(data gloves) and multi-channel human-computer interaction technology. As an input

device, the design of the keyboard considers the size, efficiency, the number of keys and

the size of the character. Due to the limitation of the number of keys and the size of

the character, in order to achieve a certain character coverage, the keyboard needs to

adopt different key combination modes. For example, the general mobile phone key-

board adopts a 3 × 4 keyboard layout, a total of 12 keys. Amal Sirisena [64] divided

input methods into three categories: keyboard-based input methods, pen-based input

methods, and advanced input devices.

In fact, input devices can be divided into different categories according to different

forms, methods, purposes:

1) According to the key input efficiency and mapping relationship: the keyboard

can be divided into one key and multiple characters, multiple keys and one character,

and one key and one character.

2) According to the form of the keyboard, the keyboard can be divided into virtual

keyboard and physical keyboard.

3) According to input mode and operation purpose, it can be divided into pointing

input device and text input device.
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2.2 Input Devices for Text Input Tasks

2.2.2 Common Text Input Devices

Based on the above classification, input devices can be divided into pointing input

devices, text input devices, and other input devices such as image capture. Here we

mainly introduce and analyze some common text input devices [63, 66].

The physical Keyboard is the most commonly used text input device for comput-

ers. It is a typewriter-style device which each button typically represents one character

and there are many different keyboard layouts available. From the earliest typewriter

to QWERTY layout [56], designed by Christopher Sholes, which was patented in 1869

[46], is a standard English keyboard layout for the physical keyboard (Fig. 2.1).

Fig. 2.1 An ISO standard layout for QWERTY Keyboard [14].

After that, although researchers also launched some competing products, such as

Dvorak Simplified Keyboard (Fig. 2.2)and Split Keyboard (Fig. 2.3). Stan J and

Stephen E examined the records of typing experiments in the ergonomics study, as well

as the records of comparison experiments between different keyboard designs in history,

and found that other layouts did not significantly improve typing efficiency compared

to the QWERTY standard keyboard [47]. Until now, the QWERTY keyboard is still

the most common and popular keyboard that people use on computers, mobile phones

and other smart devices.

A touchscreen is a both input and output device and normally layered on an

electronic visual display of an information processing system. A user can give input or
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2.2 Input Devices for Text Input Tasks

Fig. 2.2 Layout of Dvorak Simplified Keyboard [13].

Fig. 2.3 A common used split Keyboard [79].

control the information processing system through simple or multi-touch gestures by

touching the screen with a special stylus or one or more fingers [69].

The Soft keyboard is not a physical keyboard. It uses a touch screen technology

to simulate the shape of the keyboard on the screen and realize the input, which can be

operated like a normal keyboard (see Fig. 2.4). The size, shape and position of the soft

keyboard can be adjusted arbitrarily. A notable feature of the soft keyboard is that it

can be changed with the user’s personal preference. The soft keyboard has two problems

that have not been solved for a long time. First, due to the lack of tactile feedback,

users must always look at the display to confirm that they are typing correctly. Another

problem is that the soft keyboard occupies the limited display resources of the display
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2.2 Input Devices for Text Input Tasks

Fig. 2.4 An example of a soft keyboard.

screen, which affects the computer’s image output and user perception.

ITU-T text input (phone keyboard): With the popularity of text messaging ,

text input with mobile phones has gained use. Each key on the mobile phone keyboard

can contain multiple characters and can be accessed through multiple key presses. It is

usually used in conjunction with predictive text input. Although once very popular, with

the widespread use of touch screens on smart phones, this input method has gradually

been replaced.

Handwriting Recognition allows users to use a touch screen device, much like a

notepad on which they can write on the screen without a keyboard. Handwriting recog-

nition mainly uses either optical character recognition, which uses an optical scanner

to scan the words written by the user to determine the best suitable match, or uses a

pen-based computer interface to track the movement of the user’s pen tip to write.

As far as proficiency is concerned, handwriting recognition has significant charm in

text input. Ideally, a handwriting recognition system is as simple as writing on paper.

Anyone can use this device without additional learning, and the input speed is equivalent
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2.2 Input Devices for Text Input Tasks

to a QWERTY beginner. There are two input methods in the handwriting recognition

system. First is to write directly on the screen. Although this input method does not

take up a lot of space, the hand will cover part of the screen when writing, which is not

conducive to continuous interaction. The second way is to write on a special tablet. It

avoids the problem of hand obstructing the display when writing.

From the perspective of recognition rate, handwriting recognition is still not perfect.

It is generally agreed that handwriting recognition can be widely accepted only when

the accuracy of handwriting recognition reaches or exceeds 97%. The advantage of

the handwriting recognition system is that it has the function of real-time information

collection and processing. For example, because the system can monitor the writing

trajectory of the handwriting pen when writing, the system can distinguish between

very similar character such as v’s and w, which will help the handwriting recognition

system to achieve the desired accuracy. But for some special characters, such as artistic

characters, the handwriting recognition rate is only 87% to 93%, which is far lower than

the acceptable accuracy rate of 97%.

Voice recognition is a system that allows users to use their own voice to send

messages, make calls and so on. It requires the speaker to speak slowly, clearly and

to separate each word with a short pause, then it can work by analyzing sound and

converting it into text. This text input method can replace or supplement other input

devices to provide a fast text input method without a keyboard, and can help people

with various disabilities. Some of the most well-known systems are Apple Inc.’s Siri and

Cortana which are developed by Microsoft.

From some aspects, voice recognition input is an ideal text input method, it can

be used in almost any environment and occasion. However, voice recognition input

often limits the environment and requires a relatively quiet environment. In addition,

for meaningless characters, users need to pronounce them word by word. Another
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2.2 Input Devices for Text Input Tasks

problem with voice recognition systems is privacy. Privacy is a big problem in the

work environment. Users do not want to make a sound in certain situations, such as

entering a password. Therefore, voice interaction requires more research to adapt to real-

world use situations. At the same time, in the work environment, voice control is very

useful. Users can free their hands to do other things when working, such as accessing

information databases to help complete some tasks and other text input tasks. Voiced

text input is ideal in these situations.

At present, there are still many technical obstacles in the development of voice

recognition, such as low recognition accuracy and low input efficiency. Voice recognition

is mostly used in the following situations: 1) It can be used to support devices that are

too small and not suitable for other types of interfaces; 2) It can play a good role in

places where the keyboard is inconvenient to use; 3) In some public facilities(such as

ATMs), automated voice recognition can replace manual input; 4) It can make it easy

for untrained users to use the computer; 5) It is very beneficial to users with visual

impairment or other physical impairments.

Virtual Keyboard is similar to a mechanical keyboard that does not use physical

keys. It can be implemented in a virtual reality environment, where a virtual keyboard

that simulates a real keyboard is placed. To complete the input task, users need to

touch the characters on the virtual keyboard that they see. The virtual keyboard can

contain all standard keys including letters, numbers, symbols and system keys while

does not require the use of a physical keyboard. These keys can either be selected by a

mouse or other pointing devices, or can also be combined with VR devices. The virtual

keyboard most often uses the standard QWERTY layout, and it provide an alternative

mechanism for disabled users who cannot use a physical keyboard.

As a main text input method, using a virtual keyboard with QWERTY standard

layout to complete a text input task in a virtual reality environment consists of two
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steps. The first step is indexing, that is, to locate the key of the target character in a

certain way; the second step is to confirm, that is, to confirm that the key is entered by

a certain instruction, so it is also called hunt and peck [80].

At present, many virtual devices can assist users to use virtual keyboards. Oculus

Rift, HTCVive, and PS VR all tend to use their own controllers and headsets, because

users need to use them all the time in a virtual environment. Therefore, one of the most

common ways is to use a headset with a display to observe the virtual keyboard in the

virtual environment, use the controller to select letters one by one, and then press the

buttons on the virtual device to enter the virtual keys.

On this basis, many researchers and developers have made improvements. Google

Daydream Lab helped HTC Vive build a drumstick controller, a more rhythmic drum-

stick keyboard for input, which makes the input more natural like playing drums. Com-

pared with key clicks, the drumstick keyboard percussion action is a more direct oper-

ation [42].

The text input method based on the QWERTY virtual keyboard is still the main-

stream in the field of virtual text input today. Researchers have proposed a variety of

improvements: 1) Indexing by handles, rays, touchpads, or even bare hands, gaze, etc.;

2) Confirmation by keystrokes, hand movements such as pressing or gestures, etc.; 3)

Proposing predictive algorithms and increased tactile feedback to improve user interac-

tion experience and performance.

Nowadays, most VR devices lack an intuitive input mode, which cannot be com-

bined with a high input rate to provide users with complete control over their virtual

workspace. Therefore, in a virtual environment, it is important to design a good text

input experience for users.
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2.3 Physical Devices for Text Revision

Due to the popularity of VR devices, correspondingly, the requirements for text

input have also increased in the VR environments. Physical keyboards (with QWERTY

layout) are powerful devices used for VR text input. On the one hand, head-mounted

displays (HMD) are critical to creating an immersive experience, so users can no longer

see their hands or traditional input devices, such as keyboards and mice. On the other

hand, ordinary VR input devices such as motion-tracked handheld controllers cannot

provide the same level of haptic and tactile feedback as a keyboard. However, due to

the occlusion of HMDs, typing with physical keyboards in VR cannot achieve equivalent

performance as that in the real world.

To enhance the VR typing performance with physical devices, researchers at-

tempted to explore their understanding about the influence of factors, such as hand

representation [26, 40], keyboard representation [52], and blending of reality in VR [48]

etc., on users’ typing performance. Similar to the text revision behavior in our real-life

scenarios with physical keyboard, we can also use the backspace and arrow keys on it

to correct typos and revise unintended words. Although there exist previous designs

that include arrow keys in their designs [5, 27, 35, 39, 54, 58, 59], no further description

or discussion was founded on the use of arrow keys dealing with the scenarios such as

typing and revision. Instead of using arrow keys, Walker et al. [70] used auto-correction

features as the replacement of the backspace (they disabled the backspace key and

prevent participants from using it).

Except for physical keyboards, researchers also explore the feasibility of using other

devices such as data gloves, custom hardware, or IoT devices for text entry in VR

environments. By leveraging the rotation and the pinch gestures, Pinch Keyboard [6, 7,

23] enable users to enter text when wearing the data gloves on their hands. To perform
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the function of backspace, users can make a pinch gesture with two ring fingers to realize

the function. Cursor control, whereas, is not included in its design. KITTY [43, 53]

uses all finger joints to reflect different keys. Users can use their thumb to perform the

pinch operation on different joints on the hand and map it as the character input into

the system. Cursor control mechanism for KITTY is missing. Although the delete key

was included in their prototype, there lacks an essential description on how to use it

to correct typos. Wu et al. [73] used data gloves to provide and enhance the haptic

feedback when pressing the keys on the virtual keyboard. To finish the revision, Wu et

al. allowed users to revise text with the help of the backspace key and arrow keys. We

also found a prototype, named K3 [10], which serves more as an interaction integration

platform. Users can put different buttons on it to realize various forms of interactions.

In their paper, they also mentioned the potential of using K3 for text entry. However,

no further information or detailed description was founded for the text entry design.

2.4 Virtual Devices for Text Revision

Virtual keyboards are intangible ones that sometimes flow in the mid-air of the

virtual space, users can type on it with their hands or through controllers. Virtual

keyboards are regarded as suitable [18] and portable [67] to deploy in VR environments

because that users do not need to find a solid platform to put their physical devices.

Backspace is commonly included in the previous design to support the potential text

revision requirements. It is surprising that, through our summary of previous VR text

input research with virtual keyboards (see Table 2.1), no current text input research

with virtual keyboards considered cursor control mechanism, solutions, or techniques

in their designs. Even worse, most of researches did not mention or discuss about the

cursor control and its importance. In other words, backspace in existing research [3,
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4, 11, 12, 16, 36, 29, 21, 37, 38, 49, 55, 57, 60, 61, 65, 67, 72, 76, 78] can be regarded

as the main and the dominant tool available on the virtual keyboard for text revision.

When implementing the backspace, the function was inherited from the conventional

backspace on the physical keyboard. In detail, when pressing the backspace, the system

will both delete one character and move the cursor back to the distance of one character

[71]. Previous research [41] pointed out that backspace is available and effective for quick

corrections. For instance, delete the characters that are near the current cursor position

[45]. Without caret (cursor) control, it is difficult and time-consuming to deal with

the scenario where the target to revise or to delete is far away from the cursor. Users

need to repetitively use the character-level backspace and re-enter the characters (as

the victims of having no cursor control) that deleted unnecessarily during the revision

process.

There exists a previous research on enhancing the backspace functionality on smart-

phones without cursor control. Facing the error correction process during typing on

smartphones, Arif et al. [1] combine the Levenshtein distance [44] to locate the error

position and the swiping gesture to cut and store the right characters after the typo

position. After the regular correction, another swiping gesture can be used to recover

those cut characters back. However, this solution cannot be effective when facing con-

ditions where the Levenshtein distance algorithm did not find the error, especially for

text revision, the task that usually contains no typos but unintended meaning according

to users’ flexible intention.

Function of the backspace can also be upgraded from character-level to word-level

to achieve effective deletion performance. RotoSwype [31] and GestureType [77] allow

users to delete the word just entered. RingText [75], DwellType [77], and TapType

[77] enable flexible deletion (at the character-level when entering and at the word-level

when editing) according to the content just entered. Although the aforementioned
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research improves the power of backspace, its usefulness is still be limited without the

help of cursor control tool, especially when dealing with more sophisticated text editing

conditions.

2.5 Text Revision as More General “Correction”

Techniques such as en/decoders [44, 77], auto-prediction, and auto-completion al-

gorithms has been extensively proposed to help users to type text quickly without gram-

mar issues. Those work can ensure the text input accuracy in the spelling and grammar

level, which enables us to discuss the questions that are more complicated and more

commonly encountered. In our daily life with text, users typo-free and grammar correct

is only the basic requirement for all typist. Beyond that, it is more important to make

sure the entered text can accurately and properly express the intention of the typist [45].

After quickly entering the text, more time will be used to finish the proofreading such

as deleting redundant words, replace improper deceptions, etc. For such conditions, till

now, we do not have powerful tools except backspace and arrow keys (there even have

no arrow keys for VR text revision with virtual keyboards).

2.6 Summary

Text input is a task that helps users to communicate among others with the form

of text. Promising typing speed and accuracy are vital but not the decisive factors [18]

to determine whether one text input technique is useful. We summarized 41 research

articles (14 for physical devices, 27 for virtual keyboards) from the previous two decades

about text input research. Table 2.1 shows that there is still a long way to develop for

current text research in VR environments to achieve the equivalent usability as that

in other platforms. Especially when facing the text revision problem, current research
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Table 2.1 Summary of current text input research from the perspective of

backspace, cursor control, and text revision. We summarize 14 research for

physical devices and 27 for virtual keyboards in the last two decades.

Perspective Input Device Included Not Included Not Mentioned

Backspace
Physical Devices 12 1 1

Virtual Keyboards 25 2 0

Cursor Control
Physical Devices 6 6 2

Virtual Keyboards 0 27 0

Text Revision
Physical Devices 3 0 11

Virtual Keyboards 4 0 23

on virtual keyboards did not include cursor control, and text revision consideration is

seldom mentioned or discussed. This gap leaves us the opportunities to explore the

potential solutions and techniques to enhance users’ text revision performance in VR

with virtual keyboards.
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Chapter 3

VR Text Revision Design and

Implementation

In this chapter, we mainly discuss the following three points: 1) we illustrate the

design space we proposed for the systematic understanding and exploring the possibili-

ties of text revision solutions in VR, 2) based on the design space, we propose four VR

text revision technique candidates that combine different options of using backspace

and caret (cursor) based on handheld controllers, and 3) we will discuss the core techni-

cal challenges and related solutions for better implementing the proposed text revision

techniques.

3.1 Combining Current Available Revision Tools

In current VR systems, the most mature text revision tool is arrow keys and

backspace on the physical keyboard (this solution happens when users type on a physi-

cal keyboard in VR). However, for the conditions without available physical keyboards

(especially for virtual keyboards), we found that there is a lacking of those essential text

revision tools after we summarized through the current literatures. This situation make

us consider: whether we can use the caret (cursor) control mechanism (e.g., arrow key

is one of the representatives of cursor control mechanism) and backspace to enhance

text revision performance for the typing activities with virtual keyboards.
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In detail of VR text revision with virtual keyboards, we found that commonly

applied text-revision related tool is the backspace (some of the research even did not

include backspace in their design). Caret (cursor) control mechanism is missing in the

existing designs. Therefore, based on the current available tools, the first step is to re-

introduce the caret (cursor) control mechanism to the text revision design process for

virtual keyboards. If there is no caret (cursor) control mechanism involved, the cursor

would lose its flexibility of moving among characters and thus be fixed at the end of the

string. Users may have to use the backspace only but repetitively to finish the revision.

We also notice that there are different options and functionalities that already

applied on other platforms regarding the backspace and caret (cursor) control. There-

fore, through our further investigation on the possibility of combining different kinds of

backspace and caret (cursor) control mechanisms, we choose the two feasible options for

backspace and caret (cursor) control mechanism. For better understanding, we visualize

our choices and their combinations in the form of design space as shown in Fig. 3.1. We

put two axis into our consideration: backspace granularity and caret (cursor) control

continuity. We will explain in detail in the following subsections.

3.1.1 Character-level Backspace vs. Word-level Backspace

Backspace usually represents the function of removing character(s) from the

existing text content. Through literatures and current commercial products, we

choose character-level and word-level as two options to consider the efficiency of

the backspace for text revision. It should be noted that text revision is seldom

mentioned in the previous research and backspace is not directly mentioned for text

revision (it is more regarded as error/typo correction). However, in daily text-related

interactions, backspace is used to deal with both error correction and text revision. For

character-level backspace, it is the most common and default form of backspace that
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3.1 Combining Current Available Revision Tools

Fig. 3.1 All combinations and their abbreviations for different backspace and

caret (cursor) control functions for VR text revision with virtual keyboards.

already applied in almost all text input commercial products. When the character-level

backspace is triggered, one character/symbol before the caret (cursor) will be deleted

along with the backward of the caret (cursor). For word-level backspace, the granularity

of deletion changes from one character to multiple characters. Word-level backspace

is also a common function in current typing systems. For instance, in the Windows

operating system, users can perform the shortcut of Ctrl + backspace to realize

multi-character deletion.

3.1.2 Discrete vs. Continuous Cursor Control

Similar to backspace, we also have multiple choices when considering the function

of cursor control. Based on the consideration of various approaches to navigate the cur-
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sor to select keys in selection-based VR text input techniques [67] and users’ movements

when performing actions [8], we found that the most common forms of caret (cursor)

control contain two main types: discrete and continuous. The difference between dis-

crete and continuous cursor control is about the continuity of one single execution of

the manipulation. For instance, when facing the situation of moving the caret (cursor)

to the 10-character left from the current caret (cursor) position, users need to press 10

times of the left arrow key on the virtual keyboard for discrete caret (cursor) control,

or users can use their finger to directly control the caret (cursor) to the position for

continuous caret (cursor) control (with only one time of manipulation).

3.2 Four VR Text Revision Techniques

Based on the two kinds of backspace functions and two types of caret (cursor)

control mechanisms, we can combine them and therefore produce four combinations

(as shown in Fig. 3.1) as the potential candidate solutions to enhance users’ text

revision performance. For better validating their feasibility and understanding users’

performance differences using different solutions. We decide to implement the four

solutions. During the realization process, we choose to use the handheld controllers and

VR headsets to finish the implementation of four VR text revision techniques.

3.2.1 Handheld Controller as a Powerful Tool

Current commercial VR products equip portable handheld controllers as users’ de-

fault input devices. The lanyard on the controller makes it possible and flexible for users

to switch between free-hand and controller-based interaction by simply dropping and

grabbing controllers. Meanwhile, handheld controllers also provide various interaction

patterns through physical buttons, triggers, gyroscope sensors (for detecting controller

– 25 –



3.2 Four VR Text Revision Techniques

rotation) and touchpads. For VR text input, handheld controllers (and joysticks) are

mainly used to locate and select keys. Additionally, researchers also leverage the con-

troller swiping in the mid-air or the finger movement on touchpads to enter text with

word-level gestures.

Bare hand movement can be detected by motion tracking systems and leveraged to

implement free-hand typing with virtual keyboards. Although bare hand typing frees

hands from holding extra devices, users still need to face challenges during typing: 1)

Users’ forearms need to hover in the mid-air without sufficient support, which makes

users feel fatigue (especially for long-term use) and 2) To extend the functionality, users

perform gestures to trigger commands (e.g., copy, paste). Users need time and effort

to learn and remember multiple gesture-command mappings before mastering them.

Head-based and gaze-based typing allow users to type on keyboards with few limb

movement (which is especially beneficial for the impaired). Users need to drive their

heads and eyes to search among keys with higher requirement of precision. From the

perspective of ergonomics and neuromechanics, however, frequent and restricted head

and eye movement bring fatigue and potential discomfort (e.g., dizziness and dry eye

syndrome) that influence the interaction experience in VR.

3.2.2 Implementation Details

Generally, it is not possible to have independent text revision techniques because 1)

text revision depends on text entry techniques and tools, and 2) text revision also include

part of the process of entering text, such as replacing words or putting some missing

words into the sentence. Therefore, we also need to consider the use of VR text entry

tools that help us to finish the text revision study. We choose to implement our proposed

techniques based on a virtual keyboard with the standard English Qwerty layout. For

the flexibility of navigating the caret (cursor), we visualized the caret (cursor) and
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enable the function of allowing users to control the caret (cursor) on the textbox widget

(as most of previous research did not include caret (cursor) into their consideration).

Additionally, to both simplify the implementation process and to decrease the influence

from extra factors, we use the physical buttons, triggers, and the touchpads on handheld

controllers to develop all four techniques.

Character-level backspace and discrete cursor control(CBs-DCc) is the

most fundamental combination inherited from the backspace key and arrow keys on

physical keyboards. In the technique of CBs-DCc, users control the cursor by pressing

left or right part of the touchpad. Users can also use the physical button on the topside

of the handheld controller to delete one character per pressing.

Character-level backspace and continuous cursor control(CBs-CCc)

learns from the physical keyboard and the laptop touchpad. With CBs-CCc, users

can perform the sliding with their finger on the controller touchpad to move the caret

(cursor) left or right continuously before lifting up their finger. Similarly, users can

also use the physical button on the topside of the handheld controller to delete one

character per pressing.

Word-level backspace and discrete cursor control(WBs-DCc) allows users

to press the button on the handheld controller to delete multiple characters at one

pressing. Users control the cursor by pressing left or right part of the touchpad.

Word-level backspace and continuous cursor control(WBs-CCc) allows

users to navigate the cursor to the position of the revision target via sliding with their

finger on the touchpad. Users can execute the word-level (with multiple characters)

deletion by pressing the button on the topside of the handheld controller.
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3.3 Technical Challenges and Solutions

We choose Unity 3D environment with C sharp programming language to imple-

ment the four techniques and the experiment system in VR with the help of SteamVR,

a mature development kit for VR application development with HTC Vive. During

the development process, there were five main challenges need to solve to realize the

intended techniques and the system: 1) how to detect key pressing events from the con-

troller manipulation, 2) how to realize the button pressing behavior with virtual keys

and the virtual mallets, 3) how to record users’ behaviors during revisions, 4) how to

implement the word-level deletion, and 5) how to realize the continuous caret (cursor)

control with the sliding on the touchpad.

3.3.1 Event Detection

To detect the events when using the controller, such as pressing the buttons,

and sliding your finger on the touchpad, we need to bind the script (with the specific

event detection and treatment codes in it) to both controllers, as that shown in

Fig. 3.2. With the binding, all manipulation behaviors can be sent to the script for

further treatments. Then, from the code level, we need to get the tracking object

(the controller detected by the VR system) by using the function of GetComponent

<SteamVR TrackedObject>(). Then we can assign the VR tracked object (e.g.,

named device) to an instance of SteamVR Controller.Device object through device =

SteamVR Controller.Input((int)trackedObject.index). The purpose of this step is to

make sure that we can get well-prepared handheld controller object for us to handle

different controller-related events. After that, we can put various functions in the

default function of Update() to realize the real-time event detection. For examples,

1) using device.GetPressDown(SteamVR Controller.ButtonMask.ApplicationMenu) to
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handle the pressing of the button on the upper side of the touchpad, 2) using de-

vice.GetPressDown(SteamVR Controller.ButtonMask.Touchpad) to detect the pressing

of the touchpad, and 3) using device.GetTouch(SteamVR Controller.ButtonMask.Touch-

pad) to detect the touch behavior on the touchpad.

Fig. 3.2 The script named RightHand is binded to the handheld controller (as

shown in red frames).
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3.3.2 Button Pressing with Virtual Mallets

In the development, we chose to use a virtual mallet (extended from the top of the

handheld controller) and use it to strike the virtual keys for selection, just like hitting

the drum surface with a real mallet. To realize this, we consider the head of the virtual

mallet and the virtual key as a sphere and a cuboid. Then we give them with the collider

feature and make them available for detecting the collision of different objects. Then,

we code the script binded to the virtual mallet under the function of OnTriggerEnter

(COllider other), which we can get the specific object that makes collision with the

virtual mallet. The real-time position of the virtual mallet was detected and recorded

within the function of Update(), where functions in this Update() will be ran every

frame. After getting the object made collision with the mallet, we can further get the

label on the object (e.g., the letter shown on the button) and send it to the textbox to

show the selected key.

3.3.3 Data Recording

For better analysis of the text revision behavior, we need to make sure that all

available data and behaviors can be recorded timely and accurately into the computer

system. We chose to use the text log to record every single interaction that can be

detected by the experiment system. After getting the events such as physical button

pressing, character input, and touchpad sliding, those events will be transformed into

one line of text containing specific information (e.g., timestamp, event name, character,

cursor position, text in the textbox, etc.) according to the event types. Each line of

the text will be transformed into a byte array and wrote into a txt file in the computer

using the Filestream class and its Write (byte array, offset, count) function.
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3.3.4 Word-level Deletion

As we include cursor into our design, we need to consider the cursor position when

implementing the word-level deletion. In detail, the system will count the cursor position

to confirm which word is before the current location of the cursor, then perform the

multiple-character deletion function. In order to delete multiple characters, we used the

virtual keyboard API (in user32.dll with the entry point of keybd event) to simulate the

trigger of character level of backspace multiple times. In detail, Keybd event(8,0,0,0)

represents the behavior of pressing down the backspace key, while Keybd event(8,0,2,0)

represents the release of the backspace pressing.

3.3.5 Continuous Cursor Control with Sliding

If we want to use the finger sliding to control the caret (cursor), we need

to do the real time sliding movement detection on the touchpad with de-

vice.GetTouch(SteamVR Controller.ButtonMask,Touchpad) in the default function of

Update(). Using the GetTouch function is to get the real-time finger position on the

touchpad. However, the frequency of this function is very high, which makes it too

sensitive for users to control the cursor. Therefore, we set a time interval to periodically

get the finger position with a relatively longer period instead of every frame. Then we

can compare the position offset between the current position and the previous position

of the finger on the touchpad. With this information, we can further map this direction

change to the position adjustment of the caret (cursor).
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Chapter 4

Experiment

After the implementation of the experiment system, we need to investigate whether

our proposed techniques can be capable of handling VR text revision and enhance

users’ text revision performance in VR. Therefore, this section we illustrate details of

the comparative study we conducted for evaluating the four proposed text revision

techniques in VR environments with handheld controllers.

4.1 Participants

We got 16 volunteers to take part in our comparative user study. Nine of them are

female and seven of them are male. The average age of them was 24.81 years old with

the standard deviation of 2.4. All participants had no physical health problems. All

of them are with normal vision (or corrected-to-normal by wearing glasses). 15 of the

participants report themselves as right-handed and one as left-handed. All participants

had no previous experience to finish any text-related tasks or interactions in VR envi-

ronments. They are all familiar with the keyboard with the QWERTY layout. As for

their English capability, they reported themselves capable to read and write fluently in

English.
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4.2 Apparatus

We used HTC Vive (including the head-mounted display and handheld controllers)

to develop our experiment system. The experiment system was implemented and ran on

a desktop PC (running the Windows 10 operating system) with an intel i7-3770 CPU,

16GB RAM, and NVIDIA Quadro K4000 graphic card. We used two HTC Vive optical

trackers to set a 2.5m(length)×2.5m(width)×2m(height) spatial motion capture area.

In this area, all users’ motion can be detected, captured, and recorded by the experiment

system. We chose Drum-like keyboard [24] as the text input technique for our experi-

ment with the following reasons: 1) text revision techniques cannot exist individually

without a proper text input method and 2) compared with other VR text input tech-

niques, Drum-like keyboard performs better in the perspective of typing speed, typing

accuracy, as reported in the literature [3]. Drum-like keyboard applied the metaphor

of beating a drum in the scenario of VR text input. In detail, the intangible keyboard

floats in the spatial area, users can select the character by hitting the intended key

with a virtual mallet that extends from the top of the handheld controller. We chose

Cutie keys [15] to implement Drum-like keyboard because Cutie keys is open-source

and easy to deploy in VR environments. The experiment system was developed in the

environment of Unity with the version number of 5.6. For the word deletion function,

we got ideas from the existing attempts [62] that already applied in current computer

operating systems to delete multiple characters at a time.

4.3 Corpus and Revision Targets

We chose 120 sentences (with an average length of 6.56 words (31.1 characters)

per sentence) from the Enron Mobile Email Dataset [68] to build the experimental

corpus, because 1) all sentences are easy to remember and easy to comprehend as
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they are all selected from daily life use, 2) its validity has been examined in prior VR

text input studies [19, 67], and (3) compared with the phrase set from MacKenzie and

Soukoreff [51], sentences in the Enron Dataset are longer, which is easy for us to arrange

revision targets. All chosen sentences do not contain any uppercase letters, numbers,

or punctuations.

We put only one revision target for each sentence. We learned from the catego-

rization of character-level error types [22] and extended it to word-level text revision:

omission (a word is missing), insertion (there is an extra word), and substitution (a

wrong word appears in place of the intended one), as in [45]. For evaluating the text

revision capability of those techniques towards targets in different positions, we also

defined half of the targets for each type that are within the last three words away from

the end of the sentence, while the other half of targets far from the end of sentences, as

in [82]. Please see the example sentences in the Appendix A. On average, each target

contains 5.08 characters (SD = 1.79).

4.4 Design and Procedure

We use a within-subjects design in our experiment to investigate the four proposed

VR text revision techniques named CBs-DCc, CBs-CCc, WBs-DCc, and WBs-CCc

separately. Under the protocol of a within-subjects experiment, every participant is

requested to use each of the four proposed techniques to finish the text revision task. For

each techniques, the participants need to finish the text revision task with 30 sentences.

It means that every participant needs to revise 120 sentences during his/her experiment

period. The order of using four text revision techniques has been counterbalanced among

participants with a Latin Square. Based on the description above, the total number of

text revision behaviors was: 16 participants × 4 text revision techniques × 30 sentences
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per technique = 1920. We randomly chose every 30 sentences from the corpus for each

technique. We also made sure that the previously chosen sentences would not appear

in other techniques. In every 30 sentences, we put a certain number of various types of

revision targets (e.g., character-level and word-level insertion, omission, and substitution

targets) and randomized the order of their appearance during the revision process.

We first introduced the purpose of the experiment and demonstrated the four text

revision techniques and various types of revision targets to all participants. Then, we

guided participants to sit on a chair in the middle of the tracking area and helped

them to put on the HMD and hold the two controllers. After adjusting the height and

orientation of the virtual keyboard, all participants had a 15-minute practice to get used

to the Drum-like keyboard and various text revision techniques with demo sentences

before the formal experiment. Participants were recommended to use the touchpad

and buttons on the controller in their dominant hand for revision. Revision trials were

designed as follows. Two sentences (one is the standard sentence, the other is the

sentence with a revision target) first appeared in the experimental system. Participants

then used the assigned technique to revise the target and pressed the grip button on the

tail part of the controller to submit the revision and to start the next trial. One trial

can be submitted successfully only if two sentences were matched after the revision.

The formal experiment lasted around 60 minutes. Participants were requested to

finish the text revision task with the assigned technique as fast and accurate as possible.

After revising 30 sentences, participants could have a 5-min break before the next 30

sentences with another text revision technique. After all revisions, we asked participants

to fill the NASA-TLX [33] and System Usability Scale (SUS) [9] to evaluate workload

and subjective preferences towards all four techniques.

At the initial stage of the experiment, we described the aim and rough procedure of

the following experiment to our participants and then demonstrated the four proposed
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VR text revision techniques and different types of revision targets to them. After

that, we assisted participants to wear the head-mounted display and guided them to

sit in the chair (in the motion detective zone). We then helped the participants to

adjust the height and orientation of the virtual keyboard shown in the head-mounted

display. After the adjustment, all participants would have a 15-minute period of practice

to further learn and get used to the Drum-like keyboard and the four proposed text

revision techniques. Participants were allowed to practise all revision techniques on

demo sentences before the formal experiment. We recommended all participants to use

the physical button and the touchpad of the controller on his/her dominant hand.

For each trial of text revision, two sentences will appear on the head-mounted

display, one is the standard sentence and the other is the sentence with one revision

target in it. Participants are requested to revise the target as fast and accurate as

possible with the appointed technique. After the revision, the revised sentence can be

submitted by pressing the grip button on the controller. We use the strict protocol

to make sure that the new trial would not appear unless the participant successfully

revised the current sentence (two sentences should be matched before submission).

For each participant, the formal experiment would last about 1 hour. After revising

30 sentences, there would be a 5-minute break before next 30-sentences revision. After

revising 120 sentences, all participants are requested to fill the NASA-TLX [33] and Sys-

tem Usability Scale (SUS) [9] to evaluate workload and subjective preferences towards

all four techniques. All comments from participants during or after the experiment

would be noted for the following analysis.
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4.5 Results

Before the formal analysis, we removed 4.79% (92 items of data, including outliers

and trials that mis-interrupted by the mis-trigger of the VR system menu) percent of

data from the collected dataset. We then check the normality of the remaining data

and found that the data set did not obey the normal distribution. Therefore, we used

the Friedman test and the post-hoc using Wilcoxon signed-rank test with Bonferroni

correction. For subjective evaluation, we reported weighted TLX scores [32] and an-

alyzed SUS scores using the Friedman test. Error bars shown in the following figures

represent the standard error, and data labels represent the mean values. We mainly

investigated and reported the influence of four techniques on participants’ VR text revi-

sion performance in the perspectives of correction time, operation per character, number

of backspace, backspace time, number of caret (cursor) control, caret (cursor) control

time, and subjective preference (through SUS score and NASA-TLX).

Operation per character counts the average number of executions (e.g., character

selection, different kinds of backspace, and caret (cursor) control operations) that re-

quired to revise one character during the sentence revision process. Fig. 4.1 shows the

statistical results of operation per character for four proposed text revision techniques.

Results showed that CBs-DCc needs the largest number of operation to revise one char-

acters (with the mean of 4.81), while WBs-CCc uses the least (with the mean of 1.52).

We found a significant effect of technique on the operation per character with a Fried-

man test (χ2(3) = 682.68, p <.001). We also ran a post-hoc test and found significant

differences among all technique pairs (all p <.001). Fig. 4.2 shows the operation per

character when participants revised targets with different distances. Results showed

that techniques with continuous caret (cursor) control can decrease the operation per

character.
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Fig. 4.1 Operation per character for four VR text revision techniques.

Fig. 4.2 Operation per character for targets far from or near the end of the sentence.

Correction time is used to describe the average duration needed to revise the given

target in the sentence. In detail, it is the duration between the beginning of the trial and

the moment when participants successfully submit the revised sentence in the system.

Fig. 4.3 shows the statistical results of correction time for four proposed text revision

techniques. Results showed that WBs-CCc required the shortest time (with the mean

of 7978.19) to revise the target, while CBs-DCc cost the longest (with the mean of

9269.94). We found a significant effect of technique on the correction time with a Fried-
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man test (χ2(3) = 335.9, p <.001). We also ran a post-hoc test and found significant

differences among all technique pairs (all p <.001). Fig. 4.4 shows the correction time

when participants revised targets with different distances. Results showed that revising

targets that are far from the end of the sentence would spend more time. Meanwhile,

when revising targets far away, techniques with continuous caret (cursor) control took

less time to finish the revision.

Fig. 4.3 Correction time for four VR text revision techniques.

Fig. 4.4 Correction time for targets far from or near the end of the sentence.
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We also count the average number of using the backspace (see Fig. 4.5) and caret

(cursor) control (see Fig. 4.6) during the revision process. Results showed that the

word-level backspace and continuous caret (cursor) control can significantly decrease

the frequency of using the backspace and navigating the caret (cursor). WBs-CCc

got the least number of backspace (with the mean of 1.04) and CBs-CCc got the least

number of caret (cursor) control (with the mean of 2.32). We found a significant effect of

technique on the number of backspace with a Friedman test (χ2(3) = 252.08, p <.001).

For between two CBs-based techniques and between two WBs-based techniques, we did

not find any significant differences with the post-hoc test. For caret (cursor) control,

we found a significant effect of technique on the number of caret (cursor) control with

a Friedman test (χ2(3) = 1013.75, p <.001). For between two DCc-based techniques

and between two CCc-based techniques, we did not find any significant differences with

the post-hoc test. Fig. and Fig. shows the number of backspace (known as “backspace

frequency” in the figure) and caret (cursor) control (known as “caret (cursor) frequency”

in the figure) when revising targets with different distance from the end of the sentence.

Fig. 4.5 Number of backspace for four VR text revision techniques.

Caret (cursor) control time is calculated as the total time consumption of navigating
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Fig. 4.6 Number of caret (cursor) control for four VR text revision techniques.

Fig. 4.7 Backspace frequency for targets far from or near the end of the sentence.

the caret (cursor) in each of the revision trial. Fig. 4.9 shows the statistical results of

caret (cursor) control time for four proposed text revision techniques. Results showed

that CCc-based techniques had better performance in caret (cursor) control time than

DCc-based techniques. We found a significant effect of technique on caret (cursor)

control time with a Friedman test (χ2(3) = 755.29, p <.001). Fig. 4.10 further shows

that for targets no matter the place, techniques with the continuous caret (cursor)
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Fig. 4.8 Cursor frequency for targets far from or near the end of the sentence.

control can decrease the time consumption during the revision process.

Fig. 4.9 Caret (cursor) control time for four VR text revision techniques.

Backspace time describes the average time consumption of pressing the backspace

key when revising each target. It is calculated as the period between the previous button

pressing and the selection moment of the backspace key. Fig. 4.11 shows the statistical

results of backspace time for four proposed text revision techniques. Results showed that

techniques with word-level backspace required less time to use the backspace than those
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Fig. 4.10 Caret (cursor) control time for targets far from or near the end of the sentence.

techniques with character-level backspace. We found a significant effect of technique on

caret (cursor) control time with a Friedman test (χ2(3) = 196.14, p <.001). Fig. 4.12

shows that when revising targets far from the end of the sentence, WBs-CCc required

the least time to use backspace to finish the revision.

Fig. 4.11 Backspace time for four VR text revision techniques.

We evaluated participants’ preference towards the four proposed techniques via

NASA-TLX [33] (see Fig. 4.13) and SUS score (see Fig. 4.14). Overall, WBs-CCc
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Fig. 4.12 Backspace time for targets far from or near the end of the sentence.

got the lowest NASA-TLX score (the lower the better) and the highest SUS score (the

higher the better) among four techniques and among all participants. Additionally, in

the NASA-TLX, all participants rated the most important factors when designing text

revision techniques in VR, Effort, Performance, and Physical Demand are three most

important factors that participants rated.

Fig. 4.13 NASA-TLX results for four VR text revision techniques.
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Fig. 4.14 SUS scores for four VR text revision techniques.
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Chapter 5

Discussion

In this chapter, we focus on the following perspectives: 1) we discuss the scalability

of our proposed design space, 2) we further analyze the results (for both quantitative

and qualitative) got from the comparative user study, and 3) we will point out the

limitation and future work for extensively research on text revision in VR applications.

5.1 Scability of the Design Space

In this study, we only include backsapce and caret (cursor) as two factors into

the design space. In other words, we built this design space from the level of revision

tools. We did this because backsapce and caret (cursor) are two obivious and avaliable

factors that come into our mind when proposing the design space. We admit that the

current design space is a simplified version for roughly summarizing current text revision

possibilities.

We should also be aware of the fact that compared with text revision research on

smartphones, VR text revision is more sophisticated with more factors involved during

the design process. In detail, smartphone text revision has the inherent limitation of

device, which we can focus more on exploring the text revision possibilities on a certain

type of devices. However, for VR text revision, device is also a vital factor to consider.

We cannot achieve a unified text revision solution that can be well-applied for various

devices. For instance, WBs-CCc is currently the best option for text revision with
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handheld controllers, but its performance may cannot be guaranteed when applied for

conditions with bare hands or styli.

5.2 Backspace and Cursor during Revision

Results showed that word-level backspace reduced the frequency and time con-

sumption of the backspace key. Compared with character-level backspace, users just

need to perform one time of word-level backspace to achieve the similar performance of

repetitive pressing. In our text revision design, we did not include the recovery mech-

anism in the system (e.g., as the Ctrl+Z function or the undo button). This decision

brings potential risks to participants during the revision process. In detail, if partici-

pants mis-trigger the word-level backspace or press it multiple times. In that case, more

attention and efforts will be needed to 1) check the whole sentence to confirm which

word(s) has been mis-deleted and 2) reenter the mis-deleted words and proofread the

sentence to make sure the recovery is qualified. Participants commented that, if there

is no recovery mechanism, the extra efforts of dealing with the mis-operation would

counteract the benefit brought from the word-level backspace.

Meanwhile, we keep the backspace available on the virtual keyboard to see how

participants behave when they encounter typos during typing. Based on the log records

and onsite observation, it is interesting to see that participants tend to use the backspace

on the virtual keyboard (even though we already instructed them to only use the physical

button on the handheld controller). We further asked participants about this behavior

after the experiment. Participants gave the reasons and scenarios of using the backspace

on the virtual keyboard. After summarizing their comments, we found that participants

had a quick balance protocol when deciding the use of different backspaces. In general,

it depends on the timing of observing the typo character: if that is just 1-2 characters
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away from the current caret (cursor) position, using the backspace key on the keyboard

would be the best choice; if the typo character has been already missed with multiple

characters after it, using the word-level backspace would feed the need (in this condition,

the cost of re-entering the correct characters would be regarded as necessary). Based

on the findings above, we summarize the design suggestions for the use of backspace: 1)

proper undo mechanisms should be involved in the VR typing system if the word-level

backspace is provided to users, and 2) character-level backspace is always needed for

quick deletion.

We further did a informal comparison about the preference of backspace on the

handheld controller and that on the virtual keyboard. After the formal experiment, we

asked five participants to revise another 30 sentences only with the virtual keyboard.

After the revision, we asked their preferences and found that the backspace on the

controller is more popular. The possible reason may be that 1) pressing the backspace

on the controller can avoid the long-distance movement (compared with subtle finger

movement) when navigating the virtual mallet to the backspace key on the virtual

keyboard. 2) for repetitive backspace pressing, using the backspace on the virtual

keyboard would bring repetitive acceleration changes during pressings, which may cause

extra fatigue to participants.

We are shocked by the fact that the cursor and caret (cursor) control mechanism

are missed in current VR text entry designs and systems. They, by default, set the

caret (cursor) at the end of the input string and ban the movement flexibility of going

between characters. Although this setting saves the space and effort of implementing

caret (cursor) control methods (e.g., arrow keys), it makes text revision time-consuming

or even impossible (for those designs without a backspace). With essential caret (cursor)

control, users can navigate the caret (cursor) near the intended position and finish the

revision with the backspace. This can significantly decrease the effort during revision
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compared with that with backspace only. Results (Fig. 4.2 and Fig. 4.8) validated that

participants with the continuous cursor control can decrease the number of operations.

The performance is more obvious for the condition where participants were required to

revise targets that are far from the end of the sentence.

However, similar to the backspace, caret (cursor) control may also cause negative

effects on the text revision performance. During the design process, we often consider the

target users as ”perfect” individuals (making no unintended interactions as imagined).

However, in the practical use, we found that participants sometimes cannot control the

cursor well. Especially for the continuous caret (cursor) control, Fig. 4.8 showed that

users may need extra attempts to navigate the caret (cursor) to the intended position

after their first attempt. The possible reason is that, for continuous caret (cursor)

control, the cursor moves quickly when sliding on the touchpad, participants need to

focus and trace the cursor movement. However, there exists a small period of time

offset between the moment when participants realized the cursor reached the position

and the moment of executing the operation of lifting up the finger from the touchpad.

This offset may cause the cursor finally stopped before or after the intended position.

Additionally, when lifting the finger from the touchpad, there also exists a small-scale

offset movement of the fingertip, which may also lead the unintended cursor movement.

According to the results of NASA-TLX questionnaire, we confirmed Effort, Perfor-

mance, and Physical demand as three most important factors that users paid attention

to when they evaluate text revision techniques in VR. This finding inspires us to summa-

rize the design guideline from the user perspective for designers that, the novel proposed

VR text revision techniques should show the power of dealing with exception conditions

during the revision with less effort. Meanwhile, the techniques should make sure the

revision can be properly and successfully finished with less physical (and mental) work-

load.
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5.3 Design suggestions for VR Revision

The conducted studies and results not only shed lights on the essential understand-

ing and summary of the research status of current text entry and text revision in VR

but also contribute to the community of HCI, especially for practitioners and designers

with valuable reference and suggestions when they attempt to propose useful and effi-

cient VR text entry methods with enough consideration of text revision. Here we list

the general design strategies concluded from the previous studies of this thesis.

First, from the motivation level of designing VR text entry techniques, designers

should put make sure the proposed technique has at least the essential capability of

handling various conditions during text entry and text editing rather than just chase

for faster typing speed.

Second, for VR text revision enhancement, the proposed designs should focus on

the ease of use, physical (and mental) workload, and the robustness of dealing with

different revision conditions.

Third, the text revision design should involve both character-level deletion and

word-level deletion mechanisms to satisfy different requirements of quick correction and

word-level revision. Undo mechanisms are also needed to make sure users can have the

chance to recover from their mis-operations.

Fourth, cursor control is a vital component that cannot be removed or ignored.

Proper assistant and corrective algorithms should also be involved to make sure the

accuracy of manipulation according to the characteristics of various devices.

Last but not least, when implementing the backspace and cursor control (two of

the most frequently used tools), essential optimizations are required to ensure users will

not encounter heavy physical fatigue when repetitively using those two tools.
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5.4 Limitation and Future Work

This work is the initial step of revealing the lack concern of text revision in VR and

providing the basic technique options to enhance the text revision performance in VR

environments based on the combination use of backsapce and caret. There is still a long

way to go for indepth research of VR text revision facilitation. In future work, we will

first conduct a long-term field study to further investigate how users use our proposed

text revision techniques in different real-life situations. Then, towards various input

devices in VR, we will optimize the proposed techniques to fit the features of various

devices to achieve the similar VR text revision performance. Finally, we will further

investigate the performance of our proposed techniques when users revise text content

in different conditions (e.g., during the game with time limit, sitting, or standing) with

a series of comparative studies.
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Chapter 6

Conclusion

Current developing VR techniques show us the promising future of transplanting

daily activities into the virtual world. For the virtualization of office work, practical and

efficient VR text input technique is one of the most vital and essential basis for both

providing immersive interaction experience and maintaining the working productivity,

especially for text-related tasks. Currently, numerous research and proposed techniques

mainly contribute to the facilitation of typing speed, accuracy, and error correction

features during typing in VR. Based on those improvements, they remarked themselves

“useful and efficient” for VR text-related tasks. We found that previous research and

methods cannot be qualified in the practical use because they only address the issue of

entering the text into VR systems. However, there is a lack of essential consideration on

the text manipulations after entering the text content, especially for text revision, the

most common and representative text editing activity. Through our literature review on

existing VR text entry techniques, we found that few research mentioned text revision

in their research and thus no further discussions on the facilitation of VR text revision.

Especially for VR typing with virtual keyboards, only backspace is available without

discussing the effectiveness.

To fill this gap, we combine the use of backspace and cursor into our considerations

for the following design of VR text revision techniques. Then, we confirmed the optional

functions (for backspace and cursor) and further designed and validated four text revi-

sion techniques based on the combinational use of backspace and caret (cursor) in the
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context of using virtual keyboards and handheld controllers. Results showed that using

word-level backspace and continuous cursor control is capable of text revision in VR.

This work and related result can be used as the groundwork and reference for the future

design of VR text revision techniques. Our research also contribute to the community

of VR text entry by reminding and raising the awareness and interests of text revision

improvement when proposing text entry techniques.
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Appendix A

Example Sentences of the

Experiment

Table A.1 Examples of revision targets in different types

Error type Near error

Omission (near error)
Required sentence: i would expect an answer asap

Current sentence: i would expect an asap

Omission (far error)
Required sentence: did you not read my first email

Current sentence: did you read my first email

Insertion (near error)
Required sentence: i am out of town until friday

Current sentence: i am out of town until next friday

Insertion (far error)
Required sentence: let me know if i can help

Current sentence: let me know that if i can help

Substitution (near error)
Required sentence: today has been hard for me

Current sentence: today has been hard with me

Substitution (far error)
Required sentence: much better than carrying a laptop

Current sentence: much worse than carrying a laptop
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