## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 1-[2,2-Bis(phenylsulfonyl)ethenyl]-4methoxybenzene

#### Haruyasu Asahara, Peter Mayer\* and Herbert Mayr

Ludwig-Maximilians-Universität, Department of Chemistry, Butenandtstrasse 5–13, 81377 München, Germany Correspondence e-mail: p.mayer@lmu.de

Received 16 December 2011; accepted 16 January 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.084; data-to-parameter ratio = 17.5.

In the title compound,  $C_{21}H_{18}O_5S_2$ , the two sulfur-bound phenyl rings lie on opposite sides of the methoxyphenyl group, making dihedral angles of 77.58 (8) and 87.45 (8)° with it. The dihedral angle between the sulfur-bound phenyl rings is 57.31 (8)°. In the crystal,  $\pi - \pi$  stacking is observed between the two sulfur-bound phenyl rings, with a centroid–centroid distance of 3.878 (1) Å and a dihedral angle of 7.58 (8)°. The molecules are linked by weak C–H···O and C–H··· $\pi$ contacts.

#### **Related literature**

For background to bissulfonyl ethylenes and their synthesis, see: Simpkins (1993); Najera & Yus (1999); Prilezhaeva (2000); Nielsen *et al.* (2010), Zhu & Lu (2009), Alba *et al.* (2010), Sulzer-Moss *et al.* (2009). For a related structure, see: De Lucchi *et al.* (1985).



#### **Experimental**

Crystal data

 $C_{21}H_{18}O_5S_2$   $M_r = 414.50$ Monoclinic,  $P2_1/c$  a = 7.8291 (1) Å b = 21.6666 (4) Å c = 12.0332 (2) Å  $\beta = 107.8449 (10)^{\circ}$   $V = 1942.99 (5) \text{ Å}^3$  Z = 4Mo K $\alpha$  radiation  $\mu = 0.31 \text{ mm}^{-1}$ T = 173 K

#### Data collection

Nonius KappaCCD diffractometer 15675 measured reflections 4445 independent reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.033 & 254 \text{ parameters} \\ wR(F^2) &= 0.084 & H\text{-atom parameters constrained} \\ S &= 1.08 & \Delta\rho_{\text{max}} &= 0.33 \text{ e } \text{\AA}^{-3} \\ 4445 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.38 \text{ e } \text{\AA}^{-3} \end{split}$$

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C16-C21 ring.

| $D - H \cdots A$                                                                                          | $D-{\rm H}$                  | $H \cdot \cdot \cdot A$      | $D \cdots A$                                         | $D - \mathbf{H} \cdots A$ |
|-----------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------------------------------|---------------------------|
| $C8 - H8 \cdots Cg1^{i}$ $C14 - H14 \cdots O1^{ii}$ $C21 - H21 \cdots O3^{i}$ $C20 - H20 \cdots O4^{iii}$ | 0.95<br>0.95<br>0.95<br>0.95 | 2.56<br>2.51<br>2.50<br>2.59 | 3.4835 (17)<br>3.229 (2)<br>3.2695 (19)<br>3.453 (2) | 164<br>133<br>138<br>151  |
| 620-1120-04                                                                                               | 0.75                         | 2.37                         | 5.455 (2)                                            | 151                       |

Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.

Data collection: *COLLECT* (Hooft, 2004); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *PLATON* (Spek, 2009).

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2048).

#### References

- Alba, A. R., Companyo, X. & Rios, R. (2010). Chem. Soc. Rev. 39, 2018–2033. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C.,
- Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- De Lucchi, O., Pasquato, L., Modena, G. & Valle, G. (1985). Z. Kristallogr. 170, 267–274.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Najera, C. & Yus, M. (1999). Tetrahedron, 55, 10547-10658.
- Nielsen, M., Jacobsen, C. B., Holub, N., Paixao, M. W. & Jorgensen, K. A. J. (2010). Angew. Chem. Int. Ed. 49, 2668–2679.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Prilezhaeva, E. N. (2000). Russ. Chem. Rev. 69, 367-408.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Simpkins, N. S. (1993). Sulfones in Organic Synthesis. Oxford: Pergamon Press. Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Sulzer-Moss, S., Alexakis, A., Mareda, J., Bollot, G., Bernardinelli, G. &
- Filinchuk, Y. (2009). Chem. Eur. J. **15**, 3204–3220.
- Zhu, Q. & Lu, Y. (2009). Aust. J. Chem. 62, 951-955.



 $0.33 \times 0.26 \times 0.21 \text{ mm}$ 

 $R_{\rm int} = 0.026$ 

3908 reflections with  $I > 2\sigma(I)$ 

Acta Cryst. (2012). E68, o470 [doi:10.1107/S1600536812001961]

### 1-[2,2-Bis(phenylsulfonyl)ethenyl]-4-methoxybenzene

### H. Asahara, P. Mayer and H. Mayr

#### Comment

Bissulfonyl ethylenes are important reagents in synthetic organic chemistry, because they are active Michael acceptors [Simpkins (1993), Najera *et al.* (1999), Prilezhaeva (2000)]. Recently, organocatalytic Michael additions of bissulfonyl ethylene have also been reported [Nielsen *et al.* (2010), Zhu *et al.* (2009), Alba *et al.* (2010)]. During our studies on the electrophilic reactivity of bissulfonyl ethylenes, we discussed structure-reactivity relationships.

In the title compound, the C1—C2 double bond deviates only slighthly from coplanarity with the phenyl ring of the methoxyphenyl group (plane-bond angle  $10.22 (10)^{\circ}$ ). The double bonds S1—O2 and S2—O3 are coplanar with the C1—C2 double bond as is indicated by the torsion angles O2—S1—C1—C2 (-178.13 (13)°) and O3—S2—C1—C2 (1.12 (13)°). The sulfur-bound phenyl rings lie to opposite sides of the methoxyphenyl group with dihedral angles of 77.58 (8)° and 87.45 (8)°. The ring bound to S1 is almost coplanar with the S1—O1 double bond (plane-bond angle 7.79 (8)°), the ring bound to S2 is nearly coplanar with the S2—O4 double bond (plane-bond angle 9.12 (7)°). The molecular structure of the title compound is shown in Figure 1.

The packing of the title compound is shown in Figure 2.  $\pi$ - $\pi$ -stacking is observed between the two sulfur-bound phenyl rings with a centroid-centroid distance of 3.878 (1) Å and a dihedral angle of 7.58 (8)°. A C–H··· $\pi$  contact is established between the phenyl ring bound to S2 and the C8–H8 moiety. The distance of H8 to the centre of gravity of the phenyl ring is 2.56 Å, the angle around H8 is 164°. Furthermore weak C–H···O contacts with sulfur-bound oxygen atoms as acceptors are observed.

#### **Experimental**

The title compound has been obtained by following modified method of Alexakis [Sulzer-Moss *et al.* (2009)]. A mixture of *p*-anisaldehyde (15.0 g, 110 mmol, 7.4 equiv.), bis(phenylsulfonyl)methane (4.4 g, 14.8 mmol, 1.0 equiv.), diethylammonium chloride (32.1 mmol, 2.1 equiv.) and potassium fluoride (2.5 mmol, 0.17 equiv.) in dry toluene (150 ml) was stirred and refluxed under a Dean Stark water separator for 24 h. After cooling, the solvent was evaporated and residue was partitioned between water (50 ml) and CH<sub>2</sub>Cl<sub>2</sub> (150 ml). The organic phase was separated and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (three times 25 ml). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel (pentane/ethyl acetate: from 95/5 to 80/20), followed by recrystallization from pentane/chloroform. mp 123.0–123.9 °C (yield 4.9 g, 11.8 mmol, 79.9%).

#### Refinement

C-bound H atoms were positioned geometrically (C—H = 0.98 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms [ $U_{iso}(H) = 1.2U_{eq}(C, \text{ aromatic}), U_{iso}(H) = 1.5U_{eq}(C, \text{ aliphatic})$ ].

Figures



Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Fig. 2. The packing of the title compound.

F(000) = 864

 $\theta = 3.1 - 27.5^{\circ}$ 

 $\mu = 0.31 \text{ mm}^{-1}$ 

Block, yellow

 $0.33 \times 0.26 \times 0.21 \text{ mm}$ 

*T* = 173 K

sites

 $D_{\rm x} = 1.417 (1) \,{\rm Mg \ m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 7909 reflections

### 1-[2,2-bis(phenylsulfonyl)ethenyl]-4-methoxybenzene

Crystal data

 $\mathrm{C_{21}H_{18}O_5S_2}$  $M_r = 414.50$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc *a* = 7.8291 (1) Å b = 21.6666 (4) Å c = 12.0332 (2) Å  $\beta = 107.8449 \ (10)^{\circ}$ V = 1942.99 (5) Å<sup>3</sup> Z = 4

#### Da

| Data collection                          |                                                                           |
|------------------------------------------|---------------------------------------------------------------------------|
| Nonius KappaCCD<br>diffractometer        | 3908 reflections with $I > 2\sigma(I)$                                    |
| Radiation source: rotating anode         | $R_{\rm int} = 0.026$                                                     |
| MONTEL, graded multilayered X-ray optics | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$ |
| CCD; rotation images; thick slices scans | $h = -10 \rightarrow 10$                                                  |
| 15675 measured reflections               | $k = -27 \rightarrow 28$                                                  |
| 4445 independent reflections             | $l = -15 \rightarrow 15$                                                  |

#### Refinement

| Refinement on $F^2$             |
|---------------------------------|
| Least-squares matrix: full      |
| $R[F^2 > 2\sigma(F^2)] = 0.033$ |

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

| $wR(F^2) = 0.084$ | H-atom parameters constrained                                                      |  |  |
|-------------------|------------------------------------------------------------------------------------|--|--|
| <i>S</i> = 1.08   | $w = 1/[\sigma^2(F_o^2) + (0.031P)^2 + 1.0861P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |  |  |
| 4445 reflections  | $(\Delta/\sigma)_{max} < 0.001$                                                    |  |  |
| 254 parameters    | $\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$                                |  |  |
| 0 restraints      | $\Delta \rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$                               |  |  |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У             | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|---------------|--------------|---------------------------|
| S1  | 0.20814 (5)  | 0.197024 (16) | 0.62810 (3)  | 0.02090 (9)               |
| S2  | 0.18614 (5)  | 0.089334 (17) | 0.46455 (3)  | 0.02332 (10)              |
| 01  | 0.07863 (14) | 0.21777 (5)   | 0.68234 (10) | 0.0292 (2)                |
| O2  | 0.20435 (14) | 0.22512 (5)   | 0.51907 (9)  | 0.0278 (2)                |
| O3  | 0.17420 (16) | 0.02302 (5)   | 0.46677 (9)  | 0.0313 (3)                |
| O4  | 0.33662 (14) | 0.11588 (5)   | 0.43740 (9)  | 0.0305 (3)                |
| O5  | 0.25877 (18) | 0.04667 (6)   | 1.16063 (9)  | 0.0365 (3)                |
| C1  | 0.18455 (19) | 0.11624 (7)   | 0.60485 (12) | 0.0214 (3)                |
| C2  | 0.1764 (2)   | 0.07226 (7)   | 0.68278 (13) | 0.0245 (3)                |
| H2  | 0.1564       | 0.0325        | 0.6481       | 0.029*                    |
| C3  | 0.1902 (2)   | 0.07015 (7)   | 0.80624 (12) | 0.0242 (3)                |
| C4  | 0.18860 (19) | 0.12011 (7)   | 0.88083 (13) | 0.0243 (3)                |
| H4  | 0.1734       | 0.1609        | 0.8506       | 0.029*                    |
| C5  | 0.2090 (2)   | 0.11019 (7)   | 0.99738 (13) | 0.0276 (3)                |
| Н5  | 0.2058       | 0.1443        | 1.0464       | 0.033*                    |
| C6  | 0.2341 (2)   | 0.05075 (7)   | 1.04444 (13) | 0.0274 (3)                |
| C7  | 0.2320 (2)   | 0.00049 (8)   | 0.97225 (14) | 0.0338 (4)                |
| H7  | 0.2464       | -0.0403       | 1.0027       | 0.041*                    |
| C8  | 0.2085 (2)   | 0.01103 (7)   | 0.85489 (14) | 0.0322 (4)                |
| H8  | 0.2045       | -0.0234       | 0.8054       | 0.039*                    |
| C9  | 0.2945 (3)   | -0.01316 (9)  | 1.21382 (15) | 0.0435 (4)                |
| H9A | 0.1915       | -0.0403       | 1.1800       | 0.065*                    |
| H9B | 0.3150       | -0.0094       | 1.2981       | 0.065*                    |
| H9C | 0.4014       | -0.0307       | 1.1998       | 0.065*                    |
| C10 | 0.42503 (19) | 0.20496 (7)   | 0.72786 (13) | 0.0227 (3)                |

| C11 | 0.4505 (2)  | 0.23657 (7) | 0.83213 (13) | 0.0284 (3) |
|-----|-------------|-------------|--------------|------------|
| H11 | 0.3517      | 0.2532      | 0.8523       | 0.034*     |
| C12 | 0.6252 (2)  | 0.24312 (8) | 0.90616 (14) | 0.0365 (4) |
| H12 | 0.6463      | 0.2645      | 0.9780       | 0.044*     |
| C13 | 0.7677 (2)  | 0.21894 (9) | 0.87638 (15) | 0.0394 (4) |
| H13 | 0.8863      | 0.2241      | 0.9275       | 0.047*     |
| C14 | 0.7396 (2)  | 0.18709 (9) | 0.77248 (16) | 0.0368 (4) |
| H14 | 0.8387      | 0.1701      | 0.7531       | 0.044*     |
| C15 | 0.5677 (2)  | 0.17990 (8) | 0.69699 (14) | 0.0283 (3) |
| H15 | 0.5474      | 0.1583      | 0.6254       | 0.034*     |
| C16 | -0.0154 (2) | 0.11649 (7) | 0.36510 (12) | 0.0231 (3) |
| C17 | -0.0075 (2) | 0.14543 (7) | 0.26401 (13) | 0.0298 (3) |
| H17 | 0.1047      | 0.1546      | 0.2526       | 0.036*     |
| C18 | -0.1677 (2) | 0.16064 (8) | 0.17987 (14) | 0.0361 (4) |
| H18 | -0.1656     | 0.1801      | 0.1096       | 0.043*     |
| C19 | -0.3298 (2) | 0.14774 (8) | 0.19744 (15) | 0.0355 (4) |
| H19 | -0.4383     | 0.1582      | 0.1390       | 0.043*     |
| C20 | -0.3363 (2) | 0.11958 (8) | 0.29952 (15) | 0.0323 (4) |
| H20 | -0.4487     | 0.1113      | 0.3112       | 0.039*     |
| C21 | -0.1780 (2) | 0.10357 (7) | 0.38461 (14) | 0.0270 (3) |
| H21 | -0.1806     | 0.0842      | 0.4549       | 0.032*     |
|     |             |             |              |            |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$     | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | <i>U</i> <sup>13</sup> | $U^{23}$     |
|-----|--------------|-----------------|-----------------|--------------|------------------------|--------------|
| S1  | 0.01895 (17) | 0.02019 (17)    | 0.02280 (18)    | 0.00109 (13) | 0.00526 (13)           | 0.00185 (13) |
| S2  | 0.02724 (19) | 0.02359 (19)    | 0.01953 (17)    | 0.00020 (14) | 0.00776 (14)           | 0.00026 (13) |
| 01  | 0.0256 (5)   | 0.0272 (6)      | 0.0373 (6)      | 0.0061 (4)   | 0.0134 (5)             | 0.0010 (5)   |
| O2  | 0.0302 (6)   | 0.0260 (6)      | 0.0252 (5)      | 0.0007 (4)   | 0.0054 (4)             | 0.0073 (4)   |
| O3  | 0.0453 (7)   | 0.0237 (6)      | 0.0250 (5)      | 0.0030 (5)   | 0.0112 (5)             | -0.0005 (4)  |
| O4  | 0.0279 (6)   | 0.0390 (7)      | 0.0275 (6)      | -0.0007 (5)  | 0.0125 (5)             | 0.0005 (5)   |
| O5  | 0.0530 (7)   | 0.0367 (7)      | 0.0210 (5)      | 0.0024 (6)   | 0.0133 (5)             | 0.0005 (5)   |
| C1  | 0.0213 (7)   | 0.0219 (7)      | 0.0204 (6)      | -0.0013 (5)  | 0.0056 (5)             | -0.0011 (5)  |
| C2  | 0.0267 (7)   | 0.0229 (7)      | 0.0231 (7)      | -0.0024 (6)  | 0.0062 (6)             | -0.0017 (6)  |
| C3  | 0.0261 (7)   | 0.0244 (7)      | 0.0218 (7)      | -0.0024 (6)  | 0.0069 (6)             | -0.0006 (6)  |
| C4  | 0.0240 (7)   | 0.0232 (7)      | 0.0261 (7)      | -0.0021 (6)  | 0.0082 (6)             | 0.0002 (6)   |
| C5  | 0.0305 (8)   | 0.0274 (8)      | 0.0260 (7)      | -0.0012 (6)  | 0.0102 (6)             | -0.0053 (6)  |
| C6  | 0.0297 (8)   | 0.0334 (8)      | 0.0198 (7)      | -0.0022 (6)  | 0.0085 (6)             | -0.0004 (6)  |
| C7  | 0.0511 (10)  | 0.0261 (8)      | 0.0255 (8)      | 0.0004 (7)   | 0.0139 (7)             | 0.0027 (6)   |
| C8  | 0.0503 (10)  | 0.0233 (8)      | 0.0247 (8)      | -0.0026 (7)  | 0.0138 (7)             | -0.0033 (6)  |
| С9  | 0.0634 (12)  | 0.0432 (11)     | 0.0268 (8)      | 0.0097 (9)   | 0.0180 (8)             | 0.0097 (7)   |
| C10 | 0.0209 (7)   | 0.0218 (7)      | 0.0241 (7)      | -0.0031 (5)  | 0.0046 (5)             | 0.0024 (5)   |
| C11 | 0.0342 (8)   | 0.0242 (8)      | 0.0261 (7)      | -0.0037 (6)  | 0.0080 (6)             | 0.0004 (6)   |
| C12 | 0.0448 (10)  | 0.0330 (9)      | 0.0248 (8)      | -0.0110 (8)  | 0.0005 (7)             | 0.0012 (7)   |
| C13 | 0.0305 (9)   | 0.0432 (10)     | 0.0349 (9)      | -0.0134 (7)  | -0.0039 (7)            | 0.0104 (8)   |
| C14 | 0.0220 (8)   | 0.0451 (10)     | 0.0419 (10)     | -0.0015 (7)  | 0.0077 (7)             | 0.0094 (8)   |
| C15 | 0.0234 (7)   | 0.0325 (8)      | 0.0289 (8)      | -0.0020 (6)  | 0.0079 (6)             | 0.0013 (6)   |
| C16 | 0.0272 (7)   | 0.0200 (7)      | 0.0202 (7)      | -0.0025 (6)  | 0.0047 (6)             | -0.0018 (5)  |

| C17             | 0.0345 (8)    | 0.0296 (8)  | 0.0243 (7) | -0.0056(7)  | 0.0076 (6) | 0.0028 (6)  |  |
|-----------------|---------------|-------------|------------|-------------|------------|-------------|--|
| C18             | 0.0448 (10)   | 0.0343 (9)  | 0.0237 (8) | -0.0024 (7) | 0.0022 (7) | 0.0053 (6)  |  |
| C19             | 0.0344 (9)    | 0.0308 (9)  | 0.0324 (8) | 0.0027 (7)  | -0.0030(7) | -0.0033 (7) |  |
| C20             | 0.0280 (8)    | 0.0289 (8)  | 0.0386 (9) | -0.0007 (6) | 0.0082 (7) | -0.0083(7)  |  |
| C21             | 0.0313 (8)    | 0.0233 (7)  | 0.0273 (7) | -0.0020 (6) | 0.0105 (6) | -0.0024 (6) |  |
|                 |               |             |            |             | ( )        |             |  |
| Geometric paran | neters (Å, °) |             |            |             |            |             |  |
| S1—01           |               | 1.4359 (11) | C9—H       | 19B         | 0.         | .9800       |  |
| S1—O2           |               | 1.4383 (11) | C9—H       | 19C         | 0.         | .9800       |  |
| S1-C10          |               | 1.7620 (15) | C10—       | -C11        | 1.         | .389 (2)    |  |
| S1—C1           |               | 1.7731 (15) | C10—       | -C15        | 1.         | 1.391 (2)   |  |
| S2—O4           |               | 1.4357 (11) | C11—       | ·C12        | 1.         | .392 (2)    |  |
| S2—O3           |               | 1.4405 (12) | C11—       | ·H11        | 0.         | .9500       |  |
| S2-C16          |               | 1.7638 (15) | C12—       | -C13        | 1.         | .375 (3)    |  |
| S2—C1           |               | 1.7897 (14) | C12—       | -H12        | 0.         | .9500       |  |
| O5—C6           |               | 1.3544 (18) | C13—       | -C14        | 1.         | .385 (3)    |  |
| О5—С9           |               | 1.435 (2)   | C13—       | -H13        | 0.         | .9500       |  |
| C1—C2           |               | 1.352 (2)   | C14—       | -C15        | 1.         | .382 (2)    |  |
| C2—C3           |               | 1.457 (2)   | C14—       | -H14        | 0.         | .9500       |  |
| C2—H2           |               | 0.9500      | C15—       | -H15        | 0.         | 0.9500      |  |
| C3—C8           |               | 1.397 (2)   | C16—       | -C17        | 1.387 (2)  |             |  |
| C3—C4           |               | 1.409 (2)   | C16—       | -C21        | 1.392 (2)  |             |  |
| C4—C5           |               | 1.379 (2)   | C17—       | -C18        | 1.         | .389 (2)    |  |
| C4—H4           |               | 0.9500      | C17—       | -H17        | 0.         | .9500       |  |
| C5—C6           |               | 1.396 (2)   | C18—       | -C19        | 1.         | .377 (3)    |  |
| C5—H5           |               | 0.9500      | C18—       | H18         | 0.         | .9500       |  |
| C6—C7           |               | 1.390 (2)   | C19—       | -C20        | 1.         | .386 (2)    |  |
| С7—С8           |               | 1.386 (2)   | C19—       | -H19        | 0.         | .9500       |  |
| С7—Н7           |               | 0.9500      | C20—       | -C21        | 1.         | .388 (2)    |  |
| C8—H8           |               | 0.9500      | C20—       | -H20        | 0.         | .9500       |  |
| С9—Н9А          |               | 0.9800      | C21—       | -H21        | 0.         | 9500        |  |
| O1—S1—O2        |               | 117.52 (7)  | 05—0       | С9—Н9С      | 10         | 09.5        |  |
| O1—S1—C10       |               | 109.09 (7)  | Н9А—       | -С9—Н9С     | 10         | 09.5        |  |
| O2—S1—C10       |               | 109.05 (7)  | H9B—       | -С9—Н9С     | 10         | 09.5        |  |
| 01—S1—C1        |               | 109.08 (7)  | C11—       | C10—C15     | 12         | 21.94 (14)  |  |
| O2—S1—C1        |               | 107.57 (7)  | C11—       | -C10-S1     | 12         | 20.33 (12)  |  |
| C10—S1—C1       |               | 103.64 (7)  | C15—       | -C10—S1     | 11         | 17.71 (11)  |  |
| O4—S2—O3        |               | 117.79 (7)  | C10—       | -C11C12     | 11         | 17.97 (15)  |  |
| O4—S2—C16       |               | 109.75 (7)  | C10—       | -C11—H11    | 12         | 21.0        |  |
| O3—S2—C16       |               | 107.20 (7)  | C12—       | -C11—H11    | 12         | 21.0        |  |
| O4—S2—C1        |               | 109.11 (7)  | C13—       | -C12C11     | 12         | 20.72 (16)  |  |
| O3—S2—C1        |               | 106.75 (7)  | C13—       | -C12—H12    | 11         | 19.6        |  |
| C16—S2—C1       |               | 105.54 (7)  | C11—       | -C12H12     | 11         | 19.6        |  |
| С6—О5—С9        |               | 117.78 (13) | C12—       | -C13C14     | 12         | 20.50 (15)  |  |
| C2—C1—S1        |               | 127.66 (11) | C12—       | -C13—H13    | 11         | 19.8        |  |
| C2—C1—S2        |               | 116.11 (11) | C14—       | -C13—H13    | 11         | 19.8        |  |
| S1—C1—S2        |               | 116.10 (8)  | C15—       | -C14C13     | 12         | 20.17 (17)  |  |
| C1—C2—C3        |               | 136.46 (14) | C15—       | -C14—H14    | 11         | 19.9        |  |

| C1—C2—H2                        | 111.8        | C13—C14—H14                         | 119.9        |
|---------------------------------|--------------|-------------------------------------|--------------|
| С3—С2—Н2                        | 111.8        | C14—C15—C10                         | 118.70 (15)  |
| C8—C3—C4                        | 117.20 (14)  | C14—C15—H15                         | 120.7        |
| C8—C3—C2                        | 114.97 (14)  | С10—С15—Н15                         | 120.7        |
| C4—C3—C2                        | 127.82 (14)  | C17—C16—C21                         | 121.88 (14)  |
| C5—C4—C3                        | 120.49 (14)  | C17—C16—S2                          | 118.33 (12)  |
| С5—С4—Н4                        | 119.8        | C21—C16—S2                          | 119.53 (11)  |
| С3—С4—Н4                        | 119.8        | C16—C17—C18                         | 118.24 (15)  |
| C4—C5—C6                        | 120.95 (14)  | C16—C17—H17                         | 120.9        |
| С4—С5—Н5                        | 119.5        | C18—C17—H17                         | 120.9        |
| С6—С5—Н5                        | 119.5        | C19 - C18 - C17                     | 120.58 (16)  |
| 05-6-67                         | 124 39 (15)  | C19—C18—H18                         | 119.7        |
| 05 - 06 - 07                    | 115 88 (14)  | C17 - C18 - H18                     | 119.7        |
| $C_{7}$ $C_{6}$ $C_{5}$         | 119.73 (14)  | $C_{18}$ $C_{19}$ $C_{20}$          | 120.75 (15)  |
| $C_{8}^{-}$                     | 119.79 (11)  | C18 - C19 - H19                     | 119.6        |
| $C_{8}$ $C_{7}$ $H_{7}$         | 120.7        | $C_{10} - C_{19} - H_{19}$          | 119.6        |
| C6 C7 H7                        | 120.7        | $C_{20}$ $C_{10}$ $C_{20}$ $C_{21}$ | 119.0        |
| $C_{0} = C_{1} = \frac{11}{17}$ | 120.7        | $C_{19} = C_{20} = C_{21}$          | 119.75 (10)  |
| $C_7 = C_8 = C_3$               | 1122.80 (13) | $C_{1}^{2} = C_{2}^{2} = H_{2}^{2}$ | 120.1        |
| $C^2 = C^2 = H^2$               | 110.0        | $C_{21} = C_{20} = H_{20}$          | 120.1        |
| 05 00 110                       | 100.5        | $C_{20} = C_{21} = C_{10}$          | 110.70 (13)  |
| 05 C0 H0P                       | 109.5        | $C_{20} - C_{21} - H_{21}$          | 120.0        |
| $U_{2} = U_{2} = U_{2} = U_{2}$ | 109.5        | C10-C21-H21                         | 120.6        |
| Н9А—С9—Н9В                      | 109.5        |                                     |              |
| 01 - S1 - C1 - C2               | -49.65 (15)  | 01—S1—C10—C11                       | -9.58 (14)   |
| O2—S1—C1—C2                     | -178.13 (13) | O2—S1—C10—C11                       | 119.97 (12)  |
| C10—S1—C1—C2                    | 66.46 (15)   | C1—S1—C10—C11                       | -125.68 (12) |
| 01—S1—C1—S2                     | 134.70 (8)   | 01—\$1—C10—C15                      | 171.88 (12)  |
| 02—S1—C1—S2                     | 6.22 (10)    | O2—S1—C10—C15                       | -58.57 (13)  |
| C10—S1—C1—S2                    | -109.19 (9)  | C1—S1—C10—C15                       | 55.78 (13)   |
| O4—S2—C1—C2                     | -127.17 (12) | C15—C10—C11—C12                     | 0.4 (2)      |
| O3—S2—C1—C2                     | 1.12 (13)    | S1—C10—C11—C12                      | -178.05 (12) |
| C16—S2—C1—C2                    | 114.95 (12)  | C10-C11-C12-C13                     | 0.0 (2)      |
| O4—S2—C1—S1                     | 49.00 (10)   | C11—C12—C13—C14                     | -0.6 (3)     |
| O3—S2—C1—S1                     | 177.29 (8)   | C12—C13—C14—C15                     | 0.7 (3)      |
| C16—S2—C1—S1                    | -68.88 (9)   | C13-C14-C15-C10                     | -0.3 (3)     |
| S1—C1—C2—C3                     | -3.5 (3)     | C11-C10-C15-C14                     | -0.3 (2)     |
| S2—C1—C2—C3                     | 172.18 (15)  | S1—C10—C15—C14                      | 178.21 (12)  |
| C1—C2—C3—C8                     | -167.66 (18) | O4—S2—C16—C17                       | 14.62 (14)   |
| C1—C2—C3—C4                     | 11.9 (3)     | O3—S2—C16—C17                       | -114.41 (12) |
| C8—C3—C4—C5                     | 1.6 (2)      | C1—S2—C16—C17                       | 132.07 (12)  |
| C2—C3—C4—C5                     | -177.91 (14) | O4—S2—C16—C21                       | -171.11 (12) |
| C3—C4—C5—C6                     | 0.9 (2)      | O3—S2—C16—C21                       | 59.86 (13)   |
| C9—O5—C6—C7                     | 3.5 (2)      | C1—S2—C16—C21                       | -53.66 (13)  |
| C9—O5—C6—C5                     | -176.81 (16) | C21-C16-C17-C18                     | -1.1 (2)     |
| C4—C5—C6—O5                     | 177.80 (14)  | S2-C16-C17-C18                      | 172.98 (13)  |
| C4—C5—C6—C7                     | -2.4 (2)     | C16—C17—C18—C19                     | 0.6 (3)      |
| O5—C6—C7—C8                     | -178.93 (16) | C17—C18—C19—C20                     | 0.3 (3)      |
| C5—C6—C7—C8                     | 1.3 (3)      | C18—C19—C20—C21                     | -0.7 (2)     |
| C6—C7—C8—C3                     | 1.3 (3)      | C19—C20—C21—C16                     | 0.2 (2)      |

| C4—C3—C8—C7<br>C2—C3—C8—C7                          | -2.8 (3)<br>176.83 (16)                                             | C17—C16—C21—C20<br>S2—C16—C21—C20 |              | 0.8 (2)<br>-173.31 (12) |
|-----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------|--------------|-------------------------|
| Hydrogen-bond geometry (Å, °)                       |                                                                     |                                   |              |                         |
| Cg is the centroid of the C16–C21 r                 | ring.                                                               |                                   |              |                         |
| D—H···A                                             | <i>D</i> —Н                                                         | $H \cdots A$                      | $D \cdots A$ | D—H··· $A$              |
| C8—H8…Cg1 <sup>i</sup>                              | 0.95                                                                | 2.56                              | 3.4835 (17)  | 164                     |
| C14—H14…O1 <sup>ii</sup>                            | 0.95                                                                | 2.51                              | 3.229 (2)    | 133                     |
| C21—H21···O3 <sup>i</sup>                           | 0.95                                                                | 2.50                              | 3.2695 (19)  | 138                     |
| C20—H20…O4 <sup>iii</sup>                           | 0.95                                                                | 2.59                              | 3.453 (2)    | 151                     |
| Symmetry codes: (i) $-x$ , $-y$ , $-z+1$ ; (ii) $x$ | :+1, <i>y</i> , <i>z</i> ; (iii) <i>x</i> −1, <i>y</i> , <i>z</i> . |                                   |              |                         |

sup-7



Fig. 1

