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Abstract: In this research, we use Jordan algebra, split Jordan algebra and their complexifications specifically for con-
structing subgroups of the exceptional Lie group Ff in the Yokota-style. The Yokota-style algebraic construction method

characterizes non-compact groups and complex Lie groups as being constructed naturally. First, we define Cayley al-
gebra to consider Lie groups of type G,, and then we use Jordan algebra to extend them to Lie groups of type F, and their
involutions. Finally, we consider the arrangement of the subgroups of type F4 Lie groups using the involutions. In
particula, we consider the arrangement of two non-compactgroups of type Fy and their subgroups. We specifically use

the involutions and construct subgroups as their invariant subgroups.

1. Introduction In this paper, we consider the arrangement of the

) ) ) subgroups in F, using the Yokota-style method.
E. Cartan mentioned without proof that octonions and

the G, type Lie group are related, and N. Jacobson 2. Cayley algebra and the Lie group G,

constructed a non-compact Lie algebra of type G»

using split octonions. Later, F4 and Eg were given 2.1 The definition of Cayley algebra

by C.Chevalley and R.D.Schafer, and E; and Eg were We define a Cayley algebra, a split Cayley algebra and

given by H. Freudenthal as Lie algebras their complexifications and summarize their properties.

However, as Lie groups, the concrete construction First, we define a Cayley algebra.

of type Eg, E7 and Eg remained unknown for the first cen- Definition 2.1 Let € be the 8-dimensional vector space
tury after classification. In [15], a simply connected com- on R with the basis 1, e;, €3, €3, 4, €5, €5, ;. Withey = 1
pact exceptional Lie group of type E¢ was constructed us- as the identity element, other products are defined as the
ing algebraic techniques by I. Yokota. Later, Yokota and following figure. el

his fellow researchers constructed the E7 and Eg compact
Lie groups and non-compactLie groups. Yokota made an
algebraic constructionusing Cayley algebra, split Cayley
algebra and its complexification in the realization of ex-

ceptional Lie groups. Yokota was also deeply inspired by y \
Freudenthal’s treatise [3]. Yokota then developed his own

method for investigating exceptional Lie groups. The “

Yokota-style constructionmethod is very effective in con-

structing exceptional Lie groups in particular, and thus is €3 es €
expected to be used in the future. In the above figure, the product is defined as follows

103



between e, e;, e3 on the line:

ef=el=es’=-1,
€63 = —e3e, = ¢€j,
€361 = —€1€3= €,

€162 = —€3€1 = €3,

The productis defined in the same way on the other six
lines. For example, ese; = e,. Furthermore, the prod-
uct is defined so that the distributive law holds for any
element. The algebra € defined in this way is called the
Cayley algebra. The element of € is called an octonion
or a Cayley number The Cayley algebra € is a non-
associative algebra.

The product of the Cayley algebras is tabulated as

follows.

| Jale e ealeleale]
€1 -1 es3 —e) €s —é€4 ey —€g
e —€3 -1 (4} —€g ey €4 —€s
es3 ()] —e] -1 ey €s —€s5 —€y4
€4 —€s €g —ey -1 (5] —e) (4]
€s €4 —ey —€q —e1 -1 €3 ()
€s —ey —€y4 €s e —e3 -1 e
e; (13 es ey —e3 | —e; | —€1 -1

7 7
Fora = ay + Zaiei, b =by+ Zbiei in €, we
i=1_ i=1
define a conjugation @, an inner product (@, b), a norm

N(a), alength |a|, an R-linear mapy : € — € as follows:

a

ay — i ai,
i=1
(a,b) = 27] a;bi,

=0
N(a) = (a,a) = aa,

lal = V(a,a),
3

7(0) = Z ae; —
i=0

Then it holds (a, b) =

numbera, we put ;£ as a™'. Thenit holds

7
a;e;.
=4

(ab + ba). For a non-zero Cayley

=

Hence € is a non-associative skew field. And, from
v? =1, yis an involution.
The explicit forms of the products ag, a?, @ and ab

are as follows:

a

P R S
aa—a0+a1+ +Cl7,
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2 2 2 2

a=a;—a;—---—a

0 1 7
+ 2apa,e1 + 2apaze; + - - - + 2apaze;,
=2 _ 2 _ 2 ..._ 2
a =a;—aj a;
- 261()6116‘1 — 261061262 — = 2(1()6!767,

ab = (ap + ayey + -+ + aze;)(by + byey + - - - + byey)

= apby —arby — -+ — azb;

+(aghy +ai1by + aybs — asb,y +ashs — asby + agh; — az bg)ey
+ (apby + azbg + asby — a1 bz + agby — asbg + asb; — az; bs)e,
+ (apbs +azby + a by —ayby + asb; —a;by + asbg — agbs)e;
+ (agby +agbg + asby —a1bs + aybg — agb, + azbz —azby)ey
+(aogbs +asbg +a1by —ashy +a;by —ay by +aghs — azbg)es
+ (agbg +agbg + azby — a1 by + asby — ayby + asbs — asbs)eg

+ ((l()b7 +a7b0 +a1b6 —a6b1 +a2b5 —a5b2 +a3b4 —a4b3)e7.

Next we define the split Cayley algebra.

Definition 2.2 Let €’ be the 8-dimensional vector space

on R with the basis 1, e1, e5, €3, ¢}, €L, e, 7. Witheg = 1

as the identity element, other products are defined as the

following table.

L lealealelgleq]s]
e -1 es | —ey | e | —e, | —e, | e
e || —es | -1 er | e | e —e, | —eL
e;3 e | —ep -1 e | —ep | e | e
ey || —e. | —eg | e, | 1 | —er | —ez | —e3
e; e, | —e | e |e 1 e; | —e
eg e e, —er | e | —e3 1 e
e, || —eg | e e, | es| e | —e 1

The algebra €’ defined in this way is called the split
Cayley algebra. €’ is a non-associative algebra.

3 7 3 7
Fora = a0+z aie,-+z ae}, b = b0+z biei+ Z bie!
i=1 i=4 i=1 i=4

in €', we define a conjugation a, an inner product (a, b),

a normN(a) as follows :

a= ap
i=1 i=4
3 7
(a,b) = Z aib; — Z a;b;,
i=0 i=4
N(a) = (a,a) = aa = iaiz - ia,z

The explicit forms of the products aa, a?, @ and ab are
as follows:



- = _ 2., 2., 2, .2 2 2 2 2 2
aa = da = ag+aj+a;+ a3 — ay— a; — ag— as, a

22 2 .2 2. 2. 2 3
=ay—aj—a,— a5+ a; + a; + a; + a;
+ 2apaie; + 2apazes + - - - + 2apa-7¢5,

—2_ 2 2 2 2. 2. 2., 2 2
a’ =ay—a;—a;—a;+a;+a.+a;+a;

—2apaie; — 2apaze, — - -+ — 2apay ey,

ab = (ap +aje; +---+ a7€§)(b() +beg+---+ b7€'7)
=apbg—a1by— - - - —azbs+ asbs+ - - - + a7bq
+(aogby +ai1bg +arb; —azby +asbs —ashs +agh; —abe)ey
+(agby +arbg +azb; —a bz +aghbs —ashe +a;bs —asbq)es
+(a0b3 +a3b0 +Cl1b2 —azbl +a7b4 —Cl4b7 +Cl5b6 —06b5)€3
+(aobs +asbo +asby —a1bs +asby —arbe +azbz —azbq)e
+(aobs +asbo +a1by —asby +azby —axby +azbe —achs)e;
+(apbe +agbo +a1b; —azby +azbs —asb, +asbs —asbs)eg

+(agb7 +abg +aghy —a1be +arbs —asb, +azby —a4b3)e;‘

The complexification €€ = {a+ib | a,b € €} of the
Cayley algebra € is called the complex Cayley algebra.
In €€, we define a conjugation X, an inner product (x, y),
anorm N (x), a conjugation 7(x) for complexification and
an involution y as follows :

X=a+ib,

(x,y) = (a,¢) = (b,d) + i ((a,d) + (b, ¢)),

N(x) = xx = aa — bb + i (ab + ba),

T(x)=a-—ib,

y(x) =y(a) +iy(D),

(x=a+ib, y=c+id e €°).

Then it holds 7y = y7. In €, there are two complex

conjugations X and 7(x). The explicit forms of these are

as follows:
} =dap—ayey—---—azey; +i(b0 —b1€1 —- "—b7€7),
(x,y) = apco + -+ + ayc; — body — - - - — bydy
+i(agdy + - -+ + azd; + bocy + -+ - + byc7),
N(x) = aj+- - +a2—=bi—- - -—b2+i(2aghy+- - -+2azb;)

= (ag + iby)* + (ay + ib1)* + - - - (a7 + iby)?,

T()C) =aptae +-- -+a7e7—i(b0 +b1€1 +-- '+b7€7),

Y(x)=ag+ - +aze; —ases — -+ —aze;
+i(bg + -+ -+ bses — byeqg — - - — byey),
Ty(x) =ag+ -+ azes —ase, — - — aze;
+i(=by — - -+ — bzes + byes + -+ - + bsey).

Let ¢ be the linear map from €’ to €€ that corresponds
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L, e, e, €3, €}, e, e, e, 10 1, ey, e, e3, iey, ies, —ies, ie7,
respectively. Then ¢ is an injective homomorphism as
algebras. Therefore, the split Cayley algebra € is

isomorphic to the subalgebra < 1, ey, e, e3, iey, ies, —ies,

ie; >gof €€

¢'c €°.

Proposition 2.3 The complexifications of the Cayley

algebra € and the split Cayley algebra ¢ are isomorphic:
€€ = @°.

(Proof.) The map from €€ to G€ thatmakes a+ib € €€
correspondto ¢(a) + i ¢(b) is an isomorphism. m]

€ doesn’t have an associative law, but it replaces the
following formulas in C:
1. ab = ba.
2. (aa)b = a(ab), (ab)a = a(ba),
(aa)b = a(ab), (ab)a = a(ba),
3. (ab)c + b(ca) = a(bc) + (bc)a,
(ab)c + (ac)b = a(be) + alcbh),
(ab)c + (ba)c = a(bc) + b(ac).
4. (ab)(ca) = a(bc)a, (Moufang’s formula)
(ab)(ba) = a(bb)a = (a,a)(b, b).
5. (a,a) = aa = aa,
(a,b) = L(ab + ba) = 1 (@b + ba),
(a,b)c = 1((ca)b + (ch)a) = L(@(be) + b(ac)).
6. (a,b) = (b,a) = (@,b) = (b,a).
7. (ab,ab) = (a,a)(b,b),
(ab, ac) = (a,a)(b, c) = (ba, ca),
(a,b)(c,d) = %((ac, bd) + (ad, bc)).
8. (ab,c) = (b,ac), (ba,c) = (b, ca).
9. When wug=1,uy,u,,---,u, are the normal orthonor-
mal basis.

b(aa) = (ba)a.
b(aa) = (ba)a.

ui(uja) = —uj(ua), (i # j). especially, wuj= —uju;.
ui{ua) = —a. especially, u?=—1.

ui(ujug) = u () = w(uu ), (i, j, k are different).

2.2 Exceptional Lie group G,
We define the Lie groups of type G, and investigate their

properties.

Definition 2.4 We define groups G;, Gy(z) and G,¢ as

automorphismgroups of Jordan algebras :

G, = {a € Isor(€) | a(xy) = a(x)a(y)},
Gy = {a € Isor(€') | a(xy) = a(x)a(y)},



G, = {a € Isoc(€°) | a(xy) = a(x)a()).

Then G;, Gy) and G, are compact, non-compact and
complex Lie groups of type G,, respectively.

For @ € G;, we can define the complexified map
af : €€ - G€ as a(a + ib) ala) + ia(b), where

a,b € €. Then we identify & € G, with o€ € G,¢:

G, C G,°.

Similarly, from €€ = €€, for @ € Gy), we can define
the complexified map o€ : €€ — €€ as a€(a + ib) =
a(a) + ia(b), where a, b € €. Then we identify @ € Gy
with o€ € G, :
G2(2) - GZC.
We define (G,)” and (G,€)™ as follows :
(G ={aeG,C ar=1a},
(G)7={ae G ary =1y},
Then G, and Gy(z) are isomorphic to (G,€)" and
(G,6)7, respectively:
G = (G CGE,
Gy = (G G,E.

At this time, y is the element of G and Gy
v€GN Gy C GZC.

In general, for a group G and an involution u , we define
G* as follows:

G'= {geGlgu=pg}

2.3 Other y type involutions

We consider other y type involutions. Involutions ¥,y ’of

type y are defined as follows:

Y(a) = ap+ aier— ae;— azes + ases+ ases— ags —aze;,

v'(a) = ag— a1e1+ aze; — azez + ases— ases+ ageg —aze;.
By expressinga € € asa= m+ne,€ Ho Hey,
(m,neH= C® Cey, where C= R® Re;)
v"and " can also be defined as
Y (@) =y'(m) + v (n)ea,
Y'(a@) =y"(m) +y" (n)es,
where y'(m; + mye;) = my — myey,

v’ (my + myey) = my + mye;.
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form = my + mye; € H = C & Ce,. The same applies to
n.

Therefore, as notations, we often write

Y=vc=vns Y =YH=Yus Y =Yc=Vew:

Then, y* =y'?> = y”? = 1 andy, ¥/, ¥’ are commutative,

respectively:

=Yy v =Y"v YV =y
From the definition of y, y’, "/, we have

Y7 Y" €Ga.
Since the algebra generated by

1, e1, eq4, es, ieg, ie7, iey, ies

is isomorphicto the split Cayley algebra €', as in the case

of vy, we can get
(Gzc)wl = Gy,

where y" = y45. Similarly, since the algebra generated
by

1’ €6, €4, €3, ie37 ieS’ ie7’ iel
is isomorphic to the split Cayley algebra €', we can get
(G)" = Gy,

where y” = ygs. We put yy’ as y'":
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Y =Y.
Then we have
,_y,_y/ = ,ylll) ,yl,ylll = ,y, ,y/ll,y - yl.

In this paper, in order to investigate the relation be-
tween the arrangement of subgroups of Lie groups and
involutions, this relational expression is clarified as a con-

cept.

Definition 2.5
{1, pa2, ps3} of automorphismsof G, if they satisfy the

For a group G and an ordered set

following conditions

M1 Mz = M3, Mo M3 =My, M3 My = M,

then, we call them cyclic. Moreover, if any two auto-
morphismsis commutative, they are called commutative
cyclic automorphisms. When there is no confusion, we

omit the parentheses.

For cyclic automorphismsu;, i, ps of G, each G*
is a subgroup of G. So, we can write the following dia-

gram.



G

A
G2

N

Gt G

Then, each two intersections G**NG*/ is equal to the three

intersections:
G NG =G*NGP =GB NG =GR NGH*2 N GHs,

From now on, we will write G* N G* as G**i and
Gt N GH N GH* as GH#i#% | Using this notation, the above

relational expression can be written as:
GHiH2 = GH2H3 = GH3H1 = GH1H2M3 |
Proposition 2.6 For involutionsy = ys, v =yu, ¥y’ =

Yc Of GZC)

POV IRV AL AN GRS R VA AR
are commutatve cyclic involutions, respectively.

(Proof.) These are obtained by direct calculations. m]

By using 7, we get the following diagram.

G,
/ T N
(G)™ (GE) (G
This diagram means
G,©
TN
Gy G, Gy

3. Jordan algebra and the Lie group F,

3.1 Jordan algebra
First, we define Jordan algebra. Let J = J(3, €) denote
all 3 x 3 Hermitian matrices with entries in the Cayley

algebra €. Any element X € J is of the form

&1 ox3 X
X=X¢&x)=] x3 &E x|
X X1 &

where & € R, x; € €. In J, the multiplication X o Y is
defined by

XoY =1(XY+YX)

which is called the Jordan multiplication. Then J is
called Jordan algebra. We define a trace tr(X), an inner
product (X, Y) and a trilinear form tr(X, Y, Z) respectively
by
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tr(X) =& +6H+ 86, X =X(Ex)
(X,Y)=tr(X oY),
tr(X,Y,Z) = (X, Y o Z),
Moreover we define the Freudenthal multiplication X X Y
by
XxY = 12X Y —tr(X)Y —te(Y)X +(t(X)tr(Y) - (X, Y))E),

where E is the 3 X 3 unit matrix, and we define a trilinear
form (X, Y, Z) and a determinantdetX respectively by
X, Y,Z2)=(X,Y x 2),
detX = 1(X, X, X).
ForX = X(&,x),Y =Y(n,y)andZ = Z({,z) € J, the
explicit forms in the terms of their entries are as follows.
(X, Y) =&+ Em+ Ems + 2((n, y1) + (v, 32) + (43, 13)),
tr(X, ¥, Z) = &mdi + Emda + Em3ds + R(xiyazs + x122)3)
+R(x2y321 + X223y1) + R(x3y122 + X321Y2)
+&1(02, 22)+ (3, 23))+62((3, 23)+ (01, 21))
+&((1, 21) + (02, 22))
+11((22, %2) + (23, %3)) + (23, %3) + (21, X1))
+173((z1, 1)+ (22, X2))
+1(x2, y2) + (63, ¥3)) +42 ((x3, y3) +(x1, y1))
+03 (e, y1) +(x2, y2)s
X.Y,2) = 3(Embs+ Emb + Emli + Emb
+&ms + Emdy)
+R(x1y225 + X122Y3) + R(x2y321 + X223)1)

+R(x3y122 + X321)2)

-6 0121) —& (2, 22) & (y3,23)

=1m(z1, X1) = 12(22, X2) — 113(23, X3)
-0 (x1,y1) {2 (X2, y2) =05 (x3, y3),
detX = 616253 + 2R(X1X2)C3)

=&1x1%1 — E%% — E3X3X3,

where R(x) denotes the real partof x € €.
For X = X(&,x) and Y = Y(n,y) € 3, the explicit

form of X o Y is as follows.

H B 22
1 —
XoY=31zz &L 2 b
2 4

Q1 = 26 + X3Y3 + Y3X3 + X2y + Yoo,
& =26m + xiy1 + y1X01 + X5ys + Y3,
{3 = 26313 + X2 + yaXa + X1y1 + Yix1,
z1 = (M2 +m3)x + (&2 + E)y1 + XaY3 + V2 X3,

22 = (173 +m1)xa + (&3 + €1)y2 +X3y1 +3X0,
73 = (1 +72)x3 + (&1 + E)ys +Xy2 + V1%



Especially, X o X is as follows.

H B
X [e] X = X2 = Z _(2 71 5
2 a1 {3

4 =67 + 635 + XX,
5= §22 + Xx1X1 + X33,
03 = &% + X + XX,
71 = (& + &)x + XX,
72 = (& + &1)xa + 31,
73 = (& + &)xs + XX,

For X = X(&,x) and Y = Y(n,y) € 3, the explicit
form of X X Y is as follows.

O 2
X X Y = % E 52 Zl N
2 a1 03

{1 = Ems + Emp — ()1 +y1x%1),
O =&+ Ems — ()2 + y2X7),
& =&y + Emy — (035 + y3%3),
21 = X2y3 +YaX3 — E1y1 — Xy,
22 = X3yt + Y3X —£2Y2 — X2,
73 = X1y2 + Y1 X2 — £3Y3 — 1]3X3.

Especially, X x X is as follows.

&és — X1X1 XXy — &3x3 Xx3x1 — fzx_z
XX —&EX3 EE - 00X XX3—Ex
Xx1 —&xy xx; —E1x1 16 — XX

Lemma 3.1 The followings hold in J.
(1) XoY=YoX, XXY=YXxX.
(2 EcE=E. EXE=E.
EoX=X, ExX-= %(tr(X)E—X).
(3) The inner product (X, Y) is symmetric and positive
definite.
(4) t(X,Y,Z) = (Y, Z, X) = t«(Z, X, ¥)
=tr(X,Z,Y) =tr(Y, X, Z) = tr(Z, Y, X).
The similar statementis also valid for (X, Y, Z).
(5) X,E)=(X,E,E) =tr(X, E, E) = tr(X),
tr(X,Y,E) = (X, Y).
(6) tr(X xY) = %(tr(X)tr(Y) - (X, Y)).
(7) (XX X)oX = (detX)E (Hamilton-Cayley).
(8) X xXX)X(XxX)=(detX)X.

(Proof.) These are obtained by direct calculations. O

In 3, we use the following notations:

0 0

1
E1= 0 N E2=
0

S O O
(= =l
[N e}

0 0
0 0
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0 0 O
E3= 0 0 O >
0 0 1

0

0

0
0 0 x

F,(x)=1 0 0 0 | F3(X)_[
x 0 0

(= -

X
0
0

For the Jordan multiplication and the Freudenthal multi-

plication, we have the following formulas:

1. EioE =E, EoEj=0, (i#J).
EioFj(x) = %Fj(x), @@+ 7).
3. Fi(x) o Fi(y) = (%, )(Ein1 + Eis2),

Fi(x) 0 Fis1(y) = 3Fira(39).

4. E; X E; =0,

2. E,‘ o Fi(x) =0,

E;XEiy = %Enz-
5. ExX Fi(x)=-Fi(x) E;XFjx)=0,(#)).

6. Fi(x) X Fi(y) = —(x, y)E;,
Fi(x) X Fi1(y) = 3 Fiia(3).

In these formulas, the indexes are considered as mod 3.

3.2 Complex Jordan algebra
We define the complex Jordan algebra 3¢ as the complex-

ification of the Jordan algebra J :
IC={X1+iXo | X1, X, €I}

Any element X € I is of the form

& X3 0x
X= X(f’ X) = X_S §2 X1 >
Xy X &

where £, e C=R® iR, x;€CC=CaiC.

Then, 3¢ has two complex conjugations as follows :

X, +iX, =X, +i X5,

T(Xl + le) =X, —iX, Xj € S

For X = X; +iXs, Y = Y| +iY, € 3¢, we define the
multiplication X o ¥ and X X Y as follows :

XOY:X10Y1—X20Y2+i(X1OY2+X20Y1))
XXY=X1XYl—X2XY2+i(X1XY2+X2XY1).

C

3¢ is called the complex exceptional Jordan algebra.

Lemma 3.2 For @ € Isoc(3°), the following three con-

ditions are equivalent.



(1) det(@X) = detX forall X € €.
(2) (eX,aY,aZ) = (X,Y,Z) forall X,Y,Z e €.
B)aXxaY ='a ' (XxY) forall X,Y e 3C.

(Proof.) See [16, Lemma 2.1.1.]. O

3.3 Split Jordan algebra
For Cayley algebra € and split Cayley algebra €', we de-

fine two types of split Jordan algebras as follows :

33,€) ={XeM3,¢) | X* =X},
3(1,2,6) = {X e M(3,C) | LX*I, = X},

where I, =-E,+E,+Ej5:
-1 0 O
11 = 0 1 0
0 0 1

In 3(3,¢’), any element X is of the form

& x5 X
X=X¢&x)=x & x|
X3 X &3

where &; € R, x; € €. Andin 3(1,2, €), any element X
is of the form

& X3 X3
X=X¢&x)=| -x5 & x|
X3 X &

where §; € R, x; € € In J(3,¢) and 3(1,2,€), the
Jordan multiplication X o Y is defined by

XoY =1(XY+YX).
We define the (Sc)ﬂ, and (3°),, as follows :

(SC)W:{XGSC | TyX =X},
(SC)TU':{XESC | ToX =X }.

Then,
33, €)= (34,
3(1,2,6€) = (310

The correspondence between 3(1,2,€) and (3)., as a

Jordan algebra is as follows :

&L X X & ixzs ix
X3 & x |e|ix & x|
X X1 & ix, X1 &
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where &; € R, x; € €. The complexifications of J(3,€")
and 3(1, 2, €) are isomorphic to 3¢ respectively. So, we
can identify them:

3¢ =3(3,6)¢ =3(1,2,6).

3.4 Exceptional Lie group F,
We define the Lie group F4 and consider its involutions.

Definition 3.3 We define the group F,4 as the automor
phism group of the Jordan algebra J :
Fy = {a@ € Isor(J) | a(X oY) = a(X) o a(Y)}.

Theorem 3.4 We can also define F, as follows:

Fy = {a € Isor(3J) | a(X oY) = a(X) o a(Y)}
={a e Isor(J) | (X xY) = a(X) x a(Y)}
= {a € Isor(3J) | tr(aX, aY,aZ) =tr(X,Y,Z)

(X, aY) = (X, Y)}
= {a € Isor(J) | det(aX) = detX, (aX, aY) = (X, Y)}
= {a € Isor(J ) | det(aX) = detX, aE = E}.

(Proof.) See [19, Lemma 2.2.4]. O

F, contains G, as a subgroup in the following way.

For @ € G,, we define the mappinga : J — J as

& X3 X & axz axp
a x_3 .fz X1 = axs é‘:z ax;
X x & ax; ax; &

Then @ € Fy. So we identify @ € G, with @ € Fy :
G, C Fy.

We often write the same notationd@ = a.
Forthe mapy : € — €, R-linearmapy : J — J is
defined by

Soxnox &I yxs Yx;
Y| x5 & xi |=| v & yx
X X & Y yxi &

Then we get y? = . By this correspondence, we consider

vy € G, tobeyeF,.
vy € Gy CFy.
We consider the following subgroup F4” of Fy :
Fy ={a e by | ay = ya)

We get the following diagram.



Fy - Fy

T T

G’ - &
To investigate the group F,”, we decompose J into
eigenspaces :

=303
where

Jy={XeJ | yX =X},
Jy={XeJ | yX=-X}

Any element X € J, is of the form

& oaz
X= a_3 §2 ay |
a a; &

where &; € R, a; € H. And any element X € J_, is of

the form
0 aseéy —daeéy
X = —daszéy 0 ajéy >
ajéy —a1éy 0

where a; € H.

We define the R-linearmap o : J — J as
& x5 X & —X3 X
ol x3 & x |=| x5 & X1
X2 X1 & —X X &

Then we get o € Fyand 0 = 0. We consider the following
subgroup F, of F4:

Fy" ={a€Fy | a0 =oal.

o~

To investigate the group F,7, we decompose J into
eigenspaces :

J =30 ®3J-0>
where

Jo={XeJ | oX =X},
J-o={XeJ | oX=-X}.

For X = X(¢, x), we get

2

X3

X3
EjoX=3

Hence, the following holds:
Jo={X€J | EyoX=¢E,, {€R},

Jo=(XeJ | EioX=1X),

where any element X € 3, and Y € J_, are of the form

&0 0 0 x3 x3
X = 0 (fz X1 5 Y = X3 0 0
0 x_1 53 X2 0 0

Spin(8) and Spin(9) are realized in Fy as follows :
Spin(8) ={@ € Fy | @E; = E;, i=1,2,3},
Spin(9) = (Fy)g, = {a € By | @E, = E}.
By using eigendecomposition by o, we get
F47 = (F4)E, = Spin(9).
Hence we have

G, C Spin(8) C Spin(9) C F,.

3.5 Cayley projective plane
We define Cayley projective plane €P, as

P, ={XeJ | X* =X, t(X) =1}
We often refer to €P, simply as Cayley plane.
Theorem 3.5
€P, = F,/Spin(9)

(Proof.) For @ € F, and X € €P,, we have aX € €P,.
Hence the group F4 acts on €P,. Then this action is
transitive. And the isotropy subgroup of F, at E; is

(F4)E, = Spin(9). m]

From F,7 = (F4)g, = Spin(9), we get
Q:PZ = F4/F4a— = F4/(F4)E1 = F4/Sp1n(9)

We puto; = o, and we define the R-linearmapo, : 3 —

Jando; : J — J respectively, as

& x5 X & X3 X
o X3 & ox |=| X & —X1 p
X X & X —x1 &
& x5 X & ox3 —x
o3| X3 & x| = X3 &Hoo—x
Xy X & —X; —Xi &
For X = X(¢, x), we get
0 X3 0
EyoX=3 % 26 x |
x 0
X
E3 OXZ% 0 0 X1
Xy X 28
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Hence, for eigendecomposition
3=30, 830,
the following holds:
3o, =X €T | X =X},
={XeJ | EjoX=¢EE;, £€R},
3o, =1X€T | ;X ==X}
={XeJ | EjoX =3X},

where any element X € J,,, Y € 3_,, Z € J,,, W €

3-o, are of the form

&£ 0 X 0 x3 0
X=10 & 0 | Y=1%% 0 x |

x 0 & 0 x O

&1 x; X
Z = x_3 fz 0 5 W = 0 X1

0 0 & X x 0

At this time as in the case of o1, we get the following.
F,7* = (F4)E, = Spin(9),
F,7* = (F4)E, = Spin(9).

Proposition 3.6 o, 0, 03 are commutatve cyclic in-

volutions.
(Proof.) These are obtained by direct calculations. |

By using the symbols
F 7% = F " NES7, (i #)),
F, 70929 = F,' N F,72 N E73,

We get the following diagram.

Fy
/ T N
F4(r1 F4(r2 F4(r3
N T /
F4D'1 502,073

In this diagram, we have
F40—1’0—2’0-3 = F4O—1’0—2 = F4O—2’D_3 = F40—3’0—1 = Spln(8)

Hence this diagram means

F,y
/ T AN
Spin(9) Spin(9) Spin(9)
AN T /
Spin(8)
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The intersection of two different Spin(9) in this diagram
is Spin(8).
By Theorem 3.5, we get the following corollary.

Corollary 3.7 The Cayley plane €P, can be expressed
as:

P, = Fy/F47" = F4/(Fy)E, = F4/Spin(9),

P, = F4/F,”7> = F4/(Fy)E, = F4/Spin(9),

CP, = Fy/F47 = Fy/(Fy)E, = F4/Spin(9).

3.6 Complex exceptional Lie group F,©
Definition 3.8 We define the group F,€ as the automor-

phism group of the complex Jordan algebra J¢ :
F,€ = {@ € Isoc(3°) | a(X oY) = a(X) o a(Y)).

Theorem 3.9 We can also define F,€ as follows:
F,€ = {a €Isoc(3°) | a(X oY) = a(X) 0 a(Y)}

={a € Is0c(3°) | a(X x Y) = a(X) x a(Y)}

= {@ € Isoc(3°) | tr(aX, aY,aZ) = tr(X, Y, Z)
(aX,aY)=(X,Y)}

= {a € Isoc(3°) | det(@X) = detX,
(aX,aY)=(X,Y)}

= {a € Isoc( 39) | det(@X) = detX, «E = E}.

(Proof.) See [16, Proposition2.1.3.]. O
For @ € Fy, we define a€: 5¢ — JCas
a® (X1 +iXs) = a(Xy) + i a(Xy).
By identifying @ and a®, we can consider Fy as the sub-
group of F,°:
Fs C F,€.

When we extend a map @ € Homg (€, €) to the map of
Homg (3¢, 3), the following diagram is commutative.

Homg(€,€) — Homc(€C, EC)
l l
Homg(3,3) — Homce(3¢,3°)

That is, (#)€ = €. Then we get the following diagram.

F4 d F4C
T T
G2 — GZC
We consider the subgroup (B46)":

(F4C)T ={a e E,° | at = ta }.

Then (F,)7 is isomorphicto Fy :



F, = (F,°)" C E,“.
Proposition 3.10 T, y, o are commutatie, as elements
of F,€, respectively:

Ty =T, TO =0T, YO =0JY.

(Proof.) These are obtained by direct calculations. O

Then, Fy(4) and F4(_y) are representedas an invariant

group by 7y and 7o, respectively:
Fyy) = (Fs€)™ C E,S,

Fya0) = (Fs)™ C F,C.

Fora € Fy and X = X(£,x) € J, from a(-x;) =

—-a(x;) (j=2,3), we get
gaX(, x) = oX(&, ax) = acX(¢, x).

Hence we have G, C Fy_50).

Ga2) C Fy is obvious.
Theorem 3.11 The following inclusive relations hold:
G, C Fy,

Gy C Fy—20) Ga) S Fyu).

We get the following diagram.

Fi
7T N
Fy—20) Fy Fya
AN T
G G

4. Construction of (F§)” and (F§)”

Yokota constructed (Ff)y and (F4C)", concretely. Here
we describe the ideas.
Let S denoteall 3 x 3 Hermitian matrices with en-

tries in H.
Ja={XeM@3,H) | X=X}

Any element M € 3y is of the form

& omy my
M=|m; & m |
my my &

where & € R, m; € H. And, for a = (a;,az,a3) € H?,
we take
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0 aze, —azey
F(364) = —daszéy 0 aiéy
azéy —aiéy 0

By identifying M +a € Jg®H? and M + F(aey) € J,
we get the following as vector spaces:
SuoH’ =3.
In 35 ® H?, we define a Freudenthal multiplication X X Y
and an inner product (X, Y) as follows:
M+a)yx(N+b)=(MxN - %(a*b+b*a)) - % (aN + bM),
(M+a,N+b)=(M,N) +2(a,b).

These make 3y ® H? and 5 isomorphic, which keeps the
inner product as algebras. Then we have

y(M+a)=M —a.

By considering the complexification (3g® H?)€ = Jgc®
(HS)3, we have

Juc © (HE)® = 3€.
We define S p(n, K) as
Sp(n,K)={AeMn,K) | A*A =E}, K=H, HC.
As a notation, we write S p(n) = S p(n, H).

Theorem 4.1 (1) F¥ = (Sp(1) X S p(3))/Z,,
where Z, ={(1,E),(-1,—E)}.

(2) (F$) = (S p(1,HE) x S p(3,HC))/Z,,
where Z, ={(1,E),(-1,—-E)}.

(Proof.) (1) We define ¢ : S p(1,H) X S p(3,H) — F] by

o(p,A)(M +a) = AMA* + paA*, M+acJgoH> =3.
Then ¢ is a homomorphismand onto with Kery =

{(LE), (-1,-E)} = Z,.

(2) Similarly, we define ¢ : Sp(1,H®) x Sp(3,H") —

(FS) by o(p,A)(M + a) = AMA* + paA*, M +a ¢

Spe ® (HE)® = €. O

On the other hand, for Fy and (F4C )°, by showing

that these are the universal covering group of SO(9) and
SO(9, C) respectively, we obtain the following theorem.

Theorem 4.2 (1) F) = Spin(9).
2) (F4C )° = Spin(9, C).

5. Arrangement of subgroups of F,©

Let L be a subgroup of Ff andlet6 € F4C , then we define
L? as the following way :

’={aeL|la®d=06a}.



In this notation, we get G;7 = G,.
By using y and o, we can also make the following

diagram for F,.

Fy
/ N
F,” F47
N /!

Fy' NFy7

In this diagram, F4/F,” = €P, holds.
The arrangementof the non-compactgroups Fa(_)

and Fyuy in F 4C is as shown in the following diagram.

/ AN

Fy 20 Fyy

N /

Fy20) N Fyy

By using y for this diagram, we can get the following

diagram of the y sequence.
(F§)

/ N

F?’

Y
F 4(4)

4(-20)

N /

FV

Y
4(-20) n F4(4)

Similarly, we can get the following diagram of the o se-

quence.
(F$)”
/ N
Fi0 Fiw
N /
Fia0) N Fiw
As in the case of o = 01, we have
(F4€)™2 = Fy_y),
(F, €)= Fa20)-
Hence, we get the following diagram.
c
Fy
/ T N
(F4C)ro‘1 (F4C)‘ro‘2 (F4C)‘ro'3
This diagram means
c
Fy
/ T AN
Fa-20) Fy220) Fa220)
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In each Fyp0) = (F4)™1, the following diagram can be

obtained as a hierarchical structure by using commutative

cyclic involutions y, ¥/, yy’ € (F4€)™.
F-20)
/ T AN
Y Y vy
L Fia0) Fiyia0)
AN T 7
RN
Fiyi-20)
The intersection of two different Fj FZ(I—zo)’ FZ(V—IZO)
are equal:
Y Y _ vy _ Y vy
Faa0) Va0 = Faan) Vi a0) = Faan) N Fa(a)
— Yy
=Fy o) -

By combining commutative cyclic involutions oy,

oy, 03 and y, ¥, yy', we get the following proposition.

Proposition 5.1 yo, y'o,, vy o3 are commutative cyclic
involutions.

(Proof.) These are obtained by direct calculations. O

Hence, we get the following diagram.

Fg
/! T AN
(B Oy (B )y (F Cres
AN T /

(F,C)ron Yoz vy'os
The intersection of two different (F4€)77, (F,C)Y'72,
(F4€)rY'7s are equal:
(BT 0 (B4 72 = (BC)rr 0 (B
— (F4C)y’o'2 N (F4C)77'0'3 — (F4C)70'1: Yo, 77/0'3‘
Moreover, we can get larger diagrams by combining

F4-type Lie groups and involutions. For example, we can

get the following diagram.

F{
/ N
Fy T Fyuy
N /
T Fy N Fyy T
/ N
Fy7 T Fy”
N /
Fy7 N Fyw)?
T

F47 0 Fy20)7 N Fy)”



We can make various other diagrams by changing groups

and involutions.

Problem Investigate the structure of these diagrams as
Lie groups in detail.

In these diagrams using Lie groups and involutions,
there may be interesting facts that we do not yet know in
the concrete construction and application. The Yokota-
style method has the potential to investigate the structure
of these exceptional Lie groups from the perspective of
Lie groups (rather than Lie algebras).

6. Conclusion and future direction

6.1 Realization of concrete subgroups

By using the theory of Lie algebras, we can abstractly un-
derstand the subgroups of the Lie group. However, using
the Yokota-style construction method opens up the possi-
bility of concrete realization as groups.

In this paper, we dealt with the compact group Fj,
the non-compact groups Fyu), Fa—0) and the complex
compact group F4¢ and we investigated the arrangement
of their subgroups using involutions. These studies are
expected to be further refined. Moreover, it is conceivable
to extend the research to the exceptional Lie groups of
type E.

6.2 Relationship with M-theory in physics
In recent years, M-theory has been energetically studied
in mathematical physics. And M-theory is deeply linked
to the exceptional Lie groups.

In M-theory, we consider the fiber bundle 7 : M —
Y with the fiber €P, and the structure group Fs. At
this time, the base space Y is an 11-dimensional man-
ifold, and the total space M is a 27-dimensional mani-
fold. In this F4 - €P, bundle (M, =, Y, F4; €P,), H. Sati

(2009) investigated the question of whether when the 11-
dimensional base manifold Y has a Spin, String, or Five-
brane structure, it leads to a similar structure in the 27-
dimensional manifold M. From a mathematical physics
point of view, it is necessary to study the further connec-
tion between M-theory and the exceptional Lie groups.
From a mathematical point of view, we can also
consider the fiber bundle with the complex Cayley plane
€€ P, as the fiber and the exceptional Lie group E as the
structure group. Namely, a fiber bundle 1 : N — Z with

the fiber €€ P, and the structure group Eg can be mathe-

matically considered:
(N, u, Z, Eg, ; CPy).

€€ P, is no longer projective geometry, but it may have a
mathematically rich structure.

The question of mathematically investigating the re-
lationship between the Eg - €€ P, bundle and the F, - €P,
bundle can be considered. In this way, in relation to M-
theory, our future expectation is to investigate fiber bun-
dles where the fiber is the Cayley plane and the structure

group is the exceptional Lie group in the future.
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