Concrete Arrangement of Subgroups in the Exceptional Lie Group $F_{4}{ }^{C}$ Using the Yokota-style Method

Manabu Matsuoka*
(Received: May 31st, 2021)
Department of Core Studies, Kochi University of Technology
185 Miyanokuchi, Tosayamada, Kami City, Kochi 782-8502, JAPAN
* E-mail: matsuoka.manabu@kochi-tech.ac.jp

Abstract

In this research, we use Jordan algebra, split Jordan algebra and their complexifications specifically for constructing subgroups of the exceptional Lie group F_{4}^{C} in the Yokota-style. The Yokota-style algebraic construction method characterizes non-compact groups and complex Lie groups as being constructed naturally. First, we define Cayley algebra to consider Lie groups of type G_{2}, and then we use Jordan algebra to extend them to Lie groups of type F_{4} and their involutions. Finally, we consider the arrangement of the subgroups of type F_{4} Lie groups using the involutions. In particular, we consider the arrangement of two non-compact groups of type F_{4} and their subgroups. We specifically use the involutions and construct subgroups as their invariant subgroups.

1. Introduction

E. Cartan mentioned without proof that octonions and the G_{2} type Lie group are related, and N. Jacobson constructed a non-compact Lie algebra of type G_{2} using split octonions. Later, F_{4} and E_{6} were given by C.Chevalley and R.D.Schafer, and E_{7} and E_{8} were given by H. Freudenthal as Lie algebras.

However, as Lie groups, the concrete construction of type E_{6}, E_{7} and E_{8} remained unknown for the first century after classification. In [15], a simply connected compact exceptional Lie group of type E_{6} was constructed using algebraic techniques by I. Yokota. Later, Yokota and his fellow researchers constructed the E_{7} and E_{8} compact Lie groups and non-compactLie groups. Yokota made an algebraic construction using Cayley algebra, split Cayley algebra and its complexification in the realization of exceptional Lie groups. Yokota was also deeply inspired by Freudenthal's treatise [3]. Yokota then developed his own method for investigating exceptional Lie groups. The Yokota-style construction method is very effective in constructing exceptional Lie groups in particular, and thus is expected to be used in the future.

In this paper, we consider the arrangement of the subgroups in F_{4}^{C} using the Yokota-style method.

2. Cayley algebra and the Lie group G_{2}

2.1 The definition of Cayley algebra

We define a Cayley algebra, a split Cayley algebra and their complexifications and summarize their properties. First, we define a Cayley algebra.

Definition 2.1 Let \mathfrak{C} be the 8-dimensional vector space on \mathbf{R} with the basis $1, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}$. With $e_{0}=1$ as the identity element, other products are defined as the following figure.

In the above figure, the product is defined as follows
between e_{1}, e_{2}, e_{3} on the line:

$$
\begin{aligned}
e_{1}^{2}=e_{2}^{2}=e_{3}^{2} & =-1 \\
e_{2} e_{3}=-e_{3} e_{2} & =e_{1} \\
e_{3} e_{1}=-e_{1} e_{3} & =e_{2} \\
e_{1} e_{2}=-e_{2} e_{1} & =e_{3}
\end{aligned}
$$

The product is defined in the same way on the other six lines. For example, $e_{5} e_{7}=e_{2}$. Furthermore, the product is defined so that the distributive law holds for any element. The algebra \mathbb{C} defined in this way is called the Cayley algebra. The element of \mathfrak{C} is called an octonion or a Cayley number The Cayley algebra \mathfrak{C} is a nonassociative algebra.

The product of the Cayley algebras is tabulated as follows.

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
e_{1}	-1	e_{3}	$-e_{2}$	e_{5}	$-e_{4}$	e_{7}	$-e_{6}$
e_{2}	$-e_{3}$	-1	e_{1}	$-e_{6}$	e_{7}	e_{4}	$-e_{5}$
e_{3}	e_{2}	$-e_{1}$	-1	e_{7}	e_{6}	$-e_{5}$	$-e_{4}$
e_{4}	$-e_{5}$	e_{6}	$-e_{7}$	-1	e_{1}	$-e_{2}$	e_{3}
e_{5}	e_{4}	$-e_{7}$	$-e_{6}$	$-e_{1}$	-1	e_{3}	e_{2}
e_{6}	$-e_{7}$	$-e_{4}$	e_{5}	e_{2}	$-e_{3}$	-1	e_{1}
e_{7}	e_{6}	e_{5}	e_{4}	$-e_{3}$	$-e_{2}$	$-e_{1}$	-1

$$
\text { For } a=a_{0}+\sum_{i=1}^{7} a_{i} e_{i}, \quad b=b_{0}+\sum_{i=1}^{7} b_{i} e_{i} \text { in } \mathfrak{C}, \text { we }
$$

define a conjugation \bar{a}, an inner product (a, b), a norm $N(a)$, a length $|a|$, an \mathbf{R}-linear map $\gamma: \mathfrak{C} \rightarrow \mathfrak{C}$ as follows:

$$
\begin{aligned}
& \bar{a}=a_{0}-\sum_{i=1}^{7} a_{i}, \\
& (a, b)=\sum_{i=0}^{7} a_{i} b_{i}, \\
& N(a)=(a, a)=a \bar{a}, \\
& |a|=\sqrt{(a, a)}, \\
& \gamma(a)=\sum_{i=0}^{3} a_{i} e_{i}-\sum_{i=4}^{7} a_{i} e_{i} .
\end{aligned}
$$

Then it holds $(a, b)=\frac{1}{2}(a \bar{b}+b \bar{a})$. For a non-zero Cayley number a, we put $\frac{\bar{a}}{|a|^{2}}$ as a^{-1}. Then it holds

$$
a a^{-1}=a^{-1} a=1
$$

Hence \mathbb{C} is a non-associative skew field. And, from $\gamma^{2}=1, \gamma$ is an involution.

The explicit forms of the products $a \bar{a}, a^{2}, \bar{a}^{2}$ and $a b$ are as follows:
$a \bar{a}=\bar{a} a=a_{0}^{2}+a_{1}^{2}+\cdots+a_{7}^{2}$,

$$
\begin{aligned}
a^{2}= & a_{0}^{2}-a_{1}^{2}-\cdots-a_{7}^{2} \\
& \quad+2 a_{0} a_{1} e_{1}+2 a_{0} a_{2} e_{2}+\cdots+2 a_{0} a_{7} e_{7}, \\
\bar{a}^{2}= & a_{0}^{2}-a_{1}^{2}-\cdots-a_{7}^{2} \\
& -2 a_{0} a_{1} e_{1}-2 a_{0} a_{2} e_{2}-\cdots-2 a_{0} a_{7} e_{7}, \\
a b= & \left(a_{0}+a_{1} e_{1}+\cdots+a_{7} e_{7}\right)\left(b_{0}+b_{1} e_{1}+\cdots+b_{7} e_{7}\right) \\
= & a_{0} b_{0}-a_{1} b_{1}-\cdots-a_{7} b_{7} \\
+ & \left(a_{0} b_{1}+a_{1} b_{0}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{5}-a_{5} b_{4}+a_{6} b_{7}-a_{7} b_{6}\right) e_{1} \\
+ & \left(a_{0} b_{2}+a_{2} b_{0}+a_{3} b_{1}-a_{1} b_{3}+a_{6} b_{4}-a_{4} b_{6}+a_{5} b_{7}-a_{7} b_{5}\right) e_{2} \\
+ & \left(a_{0} b_{3}+a_{3} b_{0}+a_{1} b_{2}-a_{2} b_{1}+a_{4} b_{7}-a_{7} b_{4}+a_{5} b_{6}-a_{6} b_{5}\right) e_{3} \\
+ & \left(a_{0} b_{4}+a_{4} b_{0}+a_{5} b_{1}-a_{1} b_{5}+a_{2} b_{6}-a_{6} b_{2}+a_{7} b_{3}-a_{3} b_{7}\right) e_{4} \\
+ & \left(a_{0} b_{5}+a_{5} b_{0}+a_{1} b_{4}-a_{4} b_{1}+a_{7} b_{2}-a_{2} b_{7}+a_{6} b_{3}-a_{3} b_{6}\right) e_{5} \\
+ & \left(a_{0} b_{6}+a_{6} b_{0}+a_{7} b_{1}-a_{1} b_{7}+a_{4} b_{2}-a_{2} b_{4}+a_{3} b_{5}-a_{5} b_{3}\right) e_{6} \\
+ & \left(a_{0} b_{7}+a_{7} b_{0}+a_{1} b_{6}-a_{6} b_{1}+a_{2} b_{5}-a_{5} b_{2}+a_{3} b_{4}-a_{4} b_{3}\right) e_{7} .
\end{aligned}
$$

Next we define the split Cayley algebra.
Definition 2.2 Let \mathfrak{C}^{\prime} be the 8-dimensional vector space on \mathbf{R} with the basis $1, e_{1}, e_{2}, e_{3}, e_{4}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}, e_{7}^{\prime}$. With $e_{0}=1$ as the identity element, other products are defined as the following table.

	e_{1}	e_{2}	e_{3}	e_{4}^{\prime}	e_{5}^{\prime}	e_{6}^{\prime}	e_{7}^{\prime}
e_{1}	-1	e_{3}	$-e_{2}$	e_{5}^{\prime}	$-e_{4}^{\prime}$	$-e_{7}^{\prime}$	e_{6}^{\prime}
e_{2}	$-e_{3}$	-1	e_{1}	e_{6}^{\prime}	e_{7}^{\prime}	$-e_{4}^{\prime}$	$-e_{5}^{\prime}$
e_{3}	e_{2}	$-e_{1}$	-1	e_{7}^{\prime}	$-e_{6}^{\prime}$	e_{5}^{\prime}	$-e_{4}^{\prime}$
e_{4}^{\prime}	$-e_{5}^{\prime}$	$-e_{6}^{\prime}$	$-e_{7}^{\prime}$	1	$-e_{1}$	$-e_{2}$	$-e_{3}$
e_{5}^{\prime}	e_{4}^{\prime}	$-e_{7}^{\prime}$	e_{6}^{\prime}	e_{1}	1	e_{3}	$-e_{2}$
e_{6}^{\prime}	e_{7}^{\prime}	e_{4}^{\prime}	$-e_{5}^{\prime}$	e_{2}	$-e_{3}$	1	e_{1}
e_{7}^{\prime}	$-e_{6}^{\prime}$	e_{5}^{\prime}	e_{4}^{\prime}	e_{3}	e_{2}	$-e_{1}$	1

The algebra \mathfrak{C}^{\prime} defined in this way is called the split Cayley algebra. \mathfrak{C}^{\prime} is a non-associative algebra.
For $a=a_{0}+\sum_{i=1}^{3} a_{i} e_{i}+\sum_{i=4}^{7} a_{i} e_{i}^{\prime}, b=b_{0}+\sum_{i=1}^{3} b_{i} e_{i}+\sum_{i=4}^{7} b_{i} e_{i}^{\prime}$
in \mathbb{C}^{\prime}, we define a conjugation \bar{a}, an inner product (a, b), a norm $N(a)$ as follows :

$$
\begin{aligned}
& \bar{a}=a_{0}-\sum_{i=1}^{3} a_{i} e_{i}-\sum_{i=4}^{7} a_{i} e_{i}^{\prime}, \\
& (a, b)=\sum_{i=0}^{3} a_{i} b_{i}-\sum_{i=4}^{7} a_{i} b_{i}, \\
& N(a)=(a, a)=a \bar{a}=\sum_{i=0}^{3} a_{i}^{2}-\sum_{i=4}^{7} a_{i}^{2} .
\end{aligned}
$$

The explicit forms of the products $a \bar{a}, a^{2}, \bar{a}^{2}$ and $a b$ are as follows:

```
\(a \bar{a}=\bar{a} a=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}-a_{4}^{2}-a_{5}^{2}-a_{6}^{2}-a_{7}^{2}, a^{2}\)
\(=a_{0}^{2}-a_{1}^{2}-a_{2}^{2}-a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}+a_{7}^{2}\)
    \(+2 a_{0} a_{1} e_{1}+2 a_{0} a_{2} e_{2}+\cdots+2 a_{0} a_{7} e_{7}^{\prime}\),
\(\bar{a}^{2}=a_{0}^{2}-a_{1}^{2}-a_{2}^{2}-a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}+a_{7}^{2}\)
    \(-2 a_{0} a_{1} e_{1}-2 a_{0} a_{2} e_{2}-\cdots-2 a_{0} a_{7} e_{7}^{\prime}\),
\(a b=\left(a_{0}+a_{1} e_{1}+\cdots+a_{7} e_{7}^{\prime}\right)\left(b_{0}+b_{1} e_{1}+\cdots+b_{7} e_{7}^{\prime}\right)\)
\(=a_{0} b_{0}-a_{1} b_{1}-\cdots-a_{3} b_{3}+a_{4} b_{4}+\cdots+a_{7} b_{7}\)
\(+\left(a_{0} b_{1}+a_{1} b_{0}+a_{2} b_{3}-a_{3} b_{2}+a_{5} b_{4}-a_{4} b_{5}+a_{6} b_{7}-a_{7} b_{6}\right) e_{1}\)
\(+\left(a_{0} b_{2}+a_{2} b_{0}+a_{3} b_{1}-a_{1} b_{3}+a_{6} b_{4}-a_{4} b_{6}+a_{7} b_{5}-a_{5} b_{7}\right) e_{2}\)
\(+\left(a_{0} b_{3}+a_{3} b_{0}+a_{1} b_{2}-a_{2} b_{1}+a_{7} b_{4}-a_{4} b_{7}+a_{5} b_{6}-a_{6} b_{5}\right) e_{3}\)
\(+\left(a_{0} b_{4}+a_{4} b_{0}+a_{5} b_{1}-a_{1} b_{5}+a_{6} b_{2}-a_{2} b_{6}+a_{7} b_{3}-a_{3} b_{7}\right) e_{4}^{\prime}\)
\(+\left(a_{0} b_{5}+a_{5} b_{0}+a_{1} b_{4}-a_{4} b_{1}+a_{7} b_{2}-a_{2} b_{7}+a_{3} b_{6}-a_{6} b_{3}\right) e_{5}^{\prime}\)
\(+\left(a_{0} b_{6}+a_{6} b_{0}+a_{1} b_{7}-a_{7} b_{1}+a_{2} b_{4}-a_{4} b_{2}+a_{5} b_{3}-a_{3} b_{5}\right) e_{6}^{\prime}\)
\(+\left(a_{0} b_{7}+a_{7} b_{0}+a_{6} b_{1}-a_{1} b_{6}+a_{2} b_{5}-a_{5} b_{2}+a_{3} b_{4}-a_{4} b_{3}\right) e_{7}^{\prime}\).
```

The complexification $\mathfrak{C}^{C}=\{a+i b \mid a, b \in \mathfrak{C}\}$ of the Cayley algebra \mathbb{C} is called the complex Cayley algebra. In \mathbb{C}^{C}, we define a conjugation \bar{x}, an inner product (x, y), a norm $N(x)$, a conjugation $\tau(x)$ for complexification and an involution γ as follows :

$$
\begin{aligned}
& \bar{x}=\bar{a}+i \bar{b}, \\
& (x, y)=(a, c)-(b, d)+i((a, d)+(b, c)), \\
& N(x)=x \bar{x}=a \bar{a}-b \bar{b}+i(a \bar{b}+b \bar{a}), \\
& \tau(x)=a-i b, \\
& \gamma(x)=\gamma(a)+i \gamma(b), \\
& \left(x=a+i b, y=c+i d \in \mathbb{C}^{C}\right) .
\end{aligned}
$$

Then it holds $\tau \gamma=\gamma \tau$. In \mathscr{C}^{C}, there are two complex conjugations \bar{x} and $\tau(x)$. The explicit forms of these are as follows:

$$
\begin{aligned}
\bar{x}=a_{0}- & a_{1} e_{1}-\cdots-a_{7} e_{7}+i\left(b_{0}-b_{1} e_{1}-\cdots-b_{7} e_{7}\right), \\
(x, y)= & a_{0} c_{0}+\cdots+a_{7} c_{7}-b_{0} d_{0}-\cdots-b_{7} d_{7} \\
& +i\left(a_{0} d_{0}+\cdots+a_{7} d_{7}+b_{0} c_{0}+\cdots+b_{7} c_{7}\right), \\
N(x)= & a_{0}^{2}+\cdots+a_{7}^{2}-b_{0}^{2}-\cdots-b_{7}^{2}+i\left(2 a_{0} b_{0}+\cdots+2 a_{7} b_{7}\right) \\
= & \left(a_{0}+i b_{0}\right)^{2}+\left(a_{1}+i b_{1}\right)^{2}+\cdots\left(a_{7}+i b_{7}\right)^{2}, \\
\tau(x)= & a_{0}+a_{1} e_{1}+\cdots+a_{7} e_{7}-i\left(b_{0}+b_{1} e_{1}+\cdots+b_{7} e_{7}\right), \\
\gamma(x)= & a_{0}+\cdots+a_{3} e_{3}-a_{4} e_{4}-\cdots-a_{7} e_{7} \\
& +i\left(b_{0}+\cdots+b_{3} e_{3}-b_{4} e_{4}-\cdots-b_{7} e_{7}\right), \\
\tau \gamma(x)= & a_{0}+\cdots+a_{3} e_{3}-a_{4} e_{4}-\cdots-a_{7} e_{7} \\
& +i\left(-b_{0}-\cdots-b_{3} e_{3}+b_{4} e_{4}+\cdots+b_{7} e_{7}\right) .
\end{aligned}
$$

Let φ be the linear map from \mathbb{C}^{\prime} to \mathfrak{C}^{C} that corresponds
$1, e_{1}, e_{2}, e_{3}, e_{4}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}, e_{7}^{\prime}$ to $1, e_{1}, e_{2}, e_{3}, i e_{4}, i e_{5},-i e_{6}, i e_{7}$, respectively. Then φ is an injective homomorphism as algebras. Therefore, the split Cayley algebra \mathfrak{C}^{\prime} is isomorphic to the subalgebra $<1, e_{1}, e_{2}, e_{3}, i e_{4}, i e_{5},-i e_{6}$, $i e_{7}>_{\mathbf{R}}$ of \mathfrak{C}^{C} :

$$
\mathfrak{C}^{\prime} \subseteq \mathbb{C}^{C} .
$$

Proposition 2.3 The complexifications of the Cayley algebra \mathfrak{C} and the split Cayley algebra \mathbb{C}^{\prime} are isomorphic:

$$
\mathfrak{C}^{C} \cong \mathfrak{c}^{C} .
$$

(Proof.) The map from \mathfrak{C}^{C} to \mathfrak{C}^{C} that makes $a+i b \in \mathfrak{C}^{C}$ correspond to $\varphi(a)+i \varphi(b)$ is an isomorphism.
\mathfrak{C} doesn't have an associative law, but it replaces the following formulas in \mathfrak{C} :

1. $\overline{a b}=\bar{b} \bar{a}$.
2. $(a a) b=a(a b), \quad(a b) a=a(b a), \quad b(a a)=(b a) a$.
$(a \bar{a}) b=a(\bar{a} b), \quad(a b) \bar{a}=a(b \bar{a}), \quad b(a \bar{a})=(b a) \bar{a}$.
3. $(a b) c+b(c a)=a(b c)+(b c) a$,
$(a b) c+(a c) b=a(b c)+a(c b)$,
$(a b) c+(b a) c=a(b c)+b(a c)$.
4. $(a b)(c a)=a(b c) a, \quad$ (Moufang's formula)
$(a b)(\bar{b} \bar{a})=a(b \bar{b}) \bar{a}=(a, a)(b, b)$.
5. $(a, a)=a \bar{a}=\bar{a} a$,
$(a, b)=\frac{1}{2}(a \bar{b}+b \bar{a})=\frac{1}{2}(\bar{a} b+\bar{b} a)$,
$(a, b) c=\frac{1}{2}((c a) \bar{b}+(c b) \bar{a})=\frac{1}{2}(\bar{a}(b c)+\bar{b}(a c))$.
6. $(a, b)=(b, a)=(\bar{a}, \bar{b})=(\bar{b}, \bar{a})$.
7. $(a b, a b)=(a, a)(b, b)$,
$(a b, a c)=(a, a)(b, c)=(b a, c a)$,
$(a, b)(c, d)=\frac{1}{2}((a c, b d)+(a d, b c))$.
8. $(a b, c)=(b, \bar{a} c), \quad(b a, c)=(b, c \bar{a})$.
9. When $u_{0}=1, u_{1}, u_{2}, \cdots, u_{m}$ are the normal orthonormal basis.
$u_{i}\left(u_{j} a\right)=-u_{j}\left(u_{i} a\right),(i \neq j)$. especially, $u_{i} u_{j}=-u_{j} u_{i}$.
$u_{i}\left(u_{i} a\right)=-a$. especially, $u_{i}^{2}=-1$.
$u_{i}\left(u_{j} u_{k}\right)=u_{j}\left(u_{k} u_{i}\right)=u_{k}\left(u_{i} u_{j}\right),(i, j, k$ are different $)$.

2.2 Exceptional Lie group G_{2}

We define the Lie groups of type G_{2} and investigate their properties.

Definition 2.4 We define groups $\mathrm{G}_{2}, \mathrm{G}_{2(2)}$ and $\mathrm{G}_{2}{ }^{C}$ as automorphismgroups of Jordan algebras :

$$
\begin{aligned}
& \mathrm{G}_{2}=\left\{\alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathbb{C}) \mid \alpha(x y)=\alpha(x) \alpha(y)\right\}, \\
& \mathrm{G}_{2(2)}=\left\{\alpha \in \operatorname{Iso}_{\mathbf{R}}\left(\mathbb{C}^{\prime}\right) \mid \alpha(x y)=\alpha(x) \alpha(y)\right\},
\end{aligned}
$$

$$
\mathrm{G}_{2}^{C}=\left\{\alpha \in \operatorname{Iso}_{\mathbf{C}}\left(\mathfrak{C}^{C}\right) \mid \alpha(x y)=\alpha(x) \alpha(y)\right\} .
$$

Then $\mathrm{G}_{2}, \mathrm{G}_{2(2)}$ and $\mathrm{G}_{2}{ }^{C}$ are compact, non-compact and complex Lie groups of type G_{2}, respectively.

For $\alpha \in \mathrm{G}_{2}$, we can define the complexified map $\alpha^{C}: \mathfrak{C}^{C} \rightarrow \mathfrak{C}^{C}$ as $\alpha^{C}(a+i b)=\alpha(a)+i \alpha(b)$, where $a, b \in \mathfrak{C}$. Then we identify $\alpha \in \mathrm{G}_{2}$ with $\alpha^{C} \in \mathrm{G}_{2}{ }^{C}$:

$$
\mathrm{G}_{2} \subseteq \mathrm{G}_{2}{ }^{C} .
$$

Similarly, from $\mathfrak{C}^{C}=\mathfrak{C}^{C}$, for $\alpha \in \mathrm{G}_{2(2)}$, we can define the complexified map $\alpha^{C}: \mathbb{C}^{C} \rightarrow \mathfrak{C}^{C}$ as $\alpha^{C}(a+i b)=$ $\alpha(a)+i \alpha(b)$, where $a, b \in \mathfrak{C}^{\prime}$. Then we identify $\alpha \in \mathrm{G}_{2(2)}$ with $\alpha^{C} \in \mathrm{G}_{2}{ }^{C}$:

$$
\mathrm{G}_{2(2)} \subseteq \mathrm{G}_{2}{ }^{C} .
$$

We define $\left(\mathrm{G}_{2}{ }^{C}\right)^{\tau}$ and $\left(\mathrm{G}_{2}{ }^{C}\right)^{\tau \gamma}$ as follows:

$$
\begin{aligned}
& \left(\mathrm{G}_{2}^{C}\right)^{\tau}=\left\{\alpha \in \mathrm{G}_{2}^{C} \mid \alpha \tau=\tau \alpha\right\}, \\
& \left(\mathrm{G}_{2}^{C}\right)^{\tau \gamma}=\left\{\alpha \in \mathrm{G}_{2}^{C} \mid \alpha \tau \gamma=\tau \gamma \alpha\right\} .
\end{aligned}
$$

Then G_{2} and $G_{2(2)}$ are isomorphic to $\left(G_{2}^{C}\right)^{\tau}$ and $\left(\mathrm{G}_{2}{ }^{C}\right)^{\tau \gamma}$, respectively:

$$
\begin{aligned}
\mathrm{G}_{2} & =\left(\mathrm{G}_{2}^{C}\right)^{\tau} \subseteq \mathrm{G}_{2}^{C} \\
\mathrm{G}_{2(2)} & =\left(\mathrm{G}_{2}^{C}\right)^{\tau \gamma} \subseteq \mathrm{G}_{2}^{C}
\end{aligned}
$$

At this time, γ is the element of G_{2} and $\mathrm{G}_{2(2)}$:

$$
\gamma \in \mathrm{G}_{2} \cap \mathrm{G}_{2(2)} \subseteq \mathrm{G}_{2}^{C} .
$$

In general, for a group G and an involution μ, we define G^{μ} as follows:

$$
G^{\mu}=\{g \in G \mid g \mu=\mu g\} .
$$

2.3 Other γ type involutions

We consider other γ type involutions. Involutions $\gamma^{\prime}, \gamma^{\prime \prime}$ of type γ are defined as follows:

$$
\begin{aligned}
& \gamma^{\prime}(a)=a_{0}+a_{1} e_{1}-a_{2} e_{2}-a_{3} e_{3}+a_{4} e_{4}+a_{5} e_{5}-a_{6} e_{6}-a_{7} e_{7}, \\
& \gamma^{\prime \prime}(a)=a_{0}-a_{1} e_{1}+a_{2} e_{2}-a_{3} e_{3}+a_{4} e_{4}-a_{5} e_{5}+a_{6} e_{6}-a_{7} e_{7} .
\end{aligned}
$$

By expressing $a \in \mathbb{C}$ as $a=m+n e_{4} \in \mathbf{H} \oplus \mathbf{H} e_{4}$,

$$
\left(m, n \in \mathbf{H}=\mathbf{C} \oplus \mathbf{C} e_{2} \text {, where } \mathbf{C}=\mathbf{R} \oplus \mathbf{R} e_{1}\right)
$$

γ^{\prime} and $\gamma^{\prime \prime}$ can also be defined as

$$
\begin{aligned}
& \gamma^{\prime}(a)=\gamma^{\prime}(m)+\gamma^{\prime}(n) e_{4} \\
& \gamma^{\prime \prime}(a)=\gamma^{\prime \prime}(m)+\gamma^{\prime \prime}(n) e_{4}
\end{aligned}
$$

where $\gamma^{\prime}\left(m_{1}+m_{2} e_{2}\right)=m_{1}-m_{2} e_{2}$,

$$
\gamma^{\prime \prime}\left(m_{1}+m_{2} e_{2}\right)=\overline{m_{1}}+\overline{m_{1}} e_{2} .
$$

for $m=m_{1}+m_{2} e_{2} \in \mathbf{H}=\mathbf{C} \oplus \mathbf{C} e_{2}$. The same applies to n.

Therefore, as notations, we often write

$$
\gamma=\gamma_{\mathbb{E}}=\gamma_{123}, \quad \gamma^{\prime}=\gamma_{\mathbf{H}}=\gamma_{145}, \quad \gamma^{\prime \prime}=\gamma_{\mathbf{C}}=\gamma_{642}
$$

Then, $\gamma^{2}=\gamma^{\prime 2}=\gamma^{\prime \prime 2}=1$ and $\gamma, \gamma^{\prime}, \gamma^{\prime \prime}$ are commutative, respectively:

$$
\gamma \gamma^{\prime}=\gamma^{\prime} \gamma, \quad \gamma \gamma^{\prime \prime}=\gamma^{\prime \prime} \gamma, \quad \gamma^{\prime} \gamma^{\prime \prime}=\gamma^{\prime \prime} \gamma^{\prime}
$$

From the definition of $\gamma, \gamma^{\prime}, \gamma^{\prime \prime}$, we have

$$
\gamma, \gamma^{\prime}, \gamma^{\prime \prime} \in G_{2}
$$

Since the algebra generated by

$$
1, e_{1}, e_{4}, e_{5}, i e_{6}, i e_{7}, i e_{2}, i e_{3}
$$

is isomorphic to the split Cayley algebra \mathfrak{C}^{\prime}, as in the case of γ, we can get

$$
\left(\mathrm{G}_{2}^{C}\right)^{\tau \gamma^{\prime}} \cong \mathrm{G}_{2(2)}
$$

where $\gamma^{\prime}=\gamma_{145}$. Similarly, since the algebra generated by

$$
1, e_{6}, e_{4}, e_{2}, i e_{3}, i e_{5}, i e_{7}, i e_{1}
$$

is isomorphic to the split Cayley algebra \mathfrak{C}^{\prime}, we can get

$$
\left(\mathrm{G}_{2}^{C}\right)^{\tau \gamma^{\prime \prime}} \cong \mathrm{G}_{2(2)}
$$

where $\gamma^{\prime \prime}=\gamma_{642}$. We put $\gamma \gamma^{\prime}$ as $\gamma^{\prime \prime \prime}$:

$$
\gamma^{\prime \prime \prime}=\gamma \gamma^{\prime}
$$

Then we have

$$
\gamma \gamma^{\prime}=\gamma^{\prime \prime \prime}, \quad \gamma^{\prime} \gamma^{\prime \prime \prime}=\gamma, \quad \gamma^{\prime \prime \prime} \gamma=\gamma^{\prime}
$$

In this paper, in order to investigate the relation between the arrangement of subgroups of Lie groups and involutions, this relational expression is clarified as a concept.

Definition 2.5 For a group G and an ordered set $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ of automorphisms of G, if they satisfy the following conditions

$$
\mu_{1} \mu_{2}=\mu_{3}, \quad \mu_{2} \mu_{3}=\mu_{1}, \quad \mu_{3} \mu_{1}=\mu_{2}
$$

then, we call them cyclic. Moreover, if any two automorphisms is commutative, they are called commutative cyclic automorphisms. When there is no confusion, we omit the parentheses.

For cyclic automorphisms $\mu_{1}, \mu_{2}, \mu_{3}$ of G, each $G^{\mu_{i}}$ is a subgroup of G. So, we can write the following diagram.

G		
	\uparrow	Σ
$G^{\mu_{1}}$	$G^{\mu_{2}}$	$G^{\mu_{3}}$

Then, each two intersections $G^{\mu_{i}} \cap G^{\mu_{j}}$ is equal to the three intersections:

$$
G^{\mu_{1}} \cap G^{\mu_{2}}=G^{\mu_{2}} \cap G^{\mu_{3}}=G^{\mu_{3}} \cap G^{\mu_{1}}=G^{\mu_{1}} \cap G^{\mu_{2}} \cap G^{\mu_{3}}
$$

From now on, we will write $G^{\mu_{i}} \cap G^{\mu_{j}}$ as $G^{\mu_{i}, \mu_{j}}$ and $G^{\mu_{i}} \cap G^{\mu_{j}} \cap G^{\mu_{k}}$ as $G^{\mu_{i}, \mu_{j}, \mu_{k}}$. Using this notation, the above relational expression can be written as:

$$
G^{\mu_{1}, \mu_{2}}=G^{\mu_{2}, \mu_{3}}=G^{\mu_{3}, \mu_{1}}=G^{\mu_{1}, \mu_{2}, \mu_{3}} .
$$

Proposition 2.6 For involutions $\gamma=\gamma_{\mathbb{E}}, \gamma^{\prime}=\gamma_{\mathbf{H}}, \gamma^{\prime \prime}=$ γ_{C} of $\mathrm{G}_{2}{ }^{C}$,

$$
\left\{\gamma, \gamma^{\prime}, \gamma \gamma^{\prime}\right\}, \quad\left\{\gamma, \gamma^{\prime \prime}, \gamma \gamma^{\prime \prime}\right\}, \quad\left\{\gamma^{\prime}, \gamma^{\prime \prime}, \gamma^{\prime} \gamma^{\prime \prime}\right\}
$$

are commutative cyclic involutions, respectively.
(Proof.) These are obtained by direct calculations.

By using τ, we get the following diagram.

$$
\begin{array}{cccc}
& & \mathrm{G}_{2}^{C} \\
& \nearrow & \uparrow & \\
\left(\mathrm{G}_{2}^{C}\right)^{\tau \gamma} & & \begin{array}{c}
\left(\mathrm{G}_{2}^{C}\right)^{\tau}
\end{array} & \left(\mathrm{G}_{2}^{C}\right)^{\tau \gamma^{\prime}}
\end{array}
$$

This diagram means

$$
\begin{array}{ccccc}
& & \mathrm{G}_{2}{ }^{C} & & \\
& \nearrow & \uparrow & \nwarrow & \\
\mathrm{G}_{2(2)} & & \mathrm{G}_{2} & & \mathrm{G}_{2(2)}
\end{array}
$$

3. Jordan algebra and the Lie group F_{4}

3.1 Jordan algebra

First, we define Jordan algebra. Let $\mathfrak{J}=\mathfrak{J}(3, \mathfrak{C})$ denote all 3×3 Hermitian matrices with entries in the Cayley algebra \mathfrak{C}. Any element $X \in \mathfrak{I}$ is of the form

$$
X=X(\xi, x)=\left(\begin{array}{lll}
\xi_{1} & x_{3} & \overline{x_{2}} \\
\overline{x_{3}} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right),
$$

where $\xi_{i} \in \mathbf{R}, \quad x_{i} \in \mathfrak{C}$. In \mathfrak{J}, the multiplication $X \circ Y$ is defined by

$$
X \circ Y=\frac{1}{2}(X Y+Y X)
$$

which is called the Jordan multiplication. Then \mathfrak{J} is called Jordan algebra. We define a $\operatorname{trace} \operatorname{tr}(X)$, an inner product (X, Y) and a trilinear form $\operatorname{tr}(X, Y, Z)$ respectively by

$$
\begin{aligned}
& \operatorname{tr}(X)=\xi_{1}+\xi_{2}+\xi_{3}, \quad X=X(\xi, x) \\
& (X, Y)=\operatorname{tr}(X \circ Y), \\
& \operatorname{tr}(X, Y, Z)=(X, Y \circ Z),
\end{aligned}
$$

Moreover we define the Freudenthal multiplication $X \times Y$ by
$X \times Y=\frac{1}{2}(2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-(X, Y)) E)$,
where E is the 3×3 unit matrix, and we define a trilinear form (X, Y, Z) and a determinantdet X respectively by

$$
\begin{aligned}
& (X, Y, Z)=(X, Y \times Z), \\
& \operatorname{det} X=\frac{1}{3}(X, X, X) .
\end{aligned}
$$

For $X=X(\xi, x), Y=Y(\eta, y)$ and $Z=Z(\zeta, z) \in \mathfrak{I}$, the explicit forms in the terms of their entries are as follows.

$$
\begin{aligned}
(X, Y)= & \xi_{1} \eta_{1}+\xi_{2} \eta_{2}+\xi_{3} \eta_{3}+2\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)+\left(x_{3}, y_{3}\right)\right), \\
\operatorname{tr}(X, Y, Z)= & \xi_{1} \eta_{1} \zeta_{1}+\xi_{2} \eta_{2} \zeta_{2}+\xi_{3} \eta_{3} \zeta_{3}+R\left(x_{1} y_{2} z_{3}+x_{1} z_{2} y_{3}\right) \\
& +R\left(x_{2} y_{3} z_{1}+x_{2} z_{3} y_{1}\right)+R\left(x_{3} y_{1} z_{2}+x_{3} z_{1} y_{2}\right) \\
& +\xi_{1}\left(\left(y_{2}, z_{2}\right)+\left(y_{3}, z_{3}\right)\right)+\xi_{2}\left(\left(y_{3}, z_{3}\right)+\left(y_{1}, z_{1}\right)\right) \\
& +\xi_{3}\left(\left(y_{1}, z_{1}\right)+\left(y_{2}, z_{2}\right)\right) \\
& +\eta_{1}\left(\left(z_{2}, x_{2}\right)+\left(z_{3}, x_{3}\right)\right)+\eta_{2}\left(\left(z_{3}, x_{3}\right)+\left(z_{1}, x_{1}\right)\right) \\
& +\eta_{3}\left(\left(z_{1}, x_{1}\right)+\left(z_{2}, x_{2}\right)\right) \\
& \left.+\zeta_{1}\left(x_{2}, y_{2}\right)+\left(x_{3}, y_{3}\right)\right)+\zeta_{2}\left(\left(x_{3}, y_{3}\right)+\left(x_{1}, y_{1}\right)\right) \\
& +\zeta_{3}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right),\right. \\
(X, Y, Z)= & \frac{1}{2}\left(\xi_{1} \eta_{2} \zeta_{3}+\xi_{1} \eta_{3} \zeta_{2}+\xi_{2} \eta_{3} \zeta_{1}+\xi_{2} \eta_{1} \zeta_{3}\right. \\
& \left.+\xi_{3} \eta_{1} \zeta_{2}+\xi_{3} \eta_{2} \zeta_{1}\right) \\
& +R\left(x_{1} y_{2} z_{3}+x_{1} z_{2} y_{3}\right)+R\left(x_{2} y_{3} z_{1}+x_{2} z_{3} y_{1}\right) \\
& +R\left(x_{3} y_{1} z_{2}+x_{3} z_{1} y_{2}\right) \\
& -\xi_{1}\left(y_{1}, z_{1}\right)-\xi_{2}\left(y_{2}, z_{2}\right)-\xi_{3}\left(y_{3}, z_{3}\right) \\
& -\eta_{1}\left(z_{1}, x_{1}\right)-\eta_{2}\left(z_{2}, x_{2}\right)-\eta_{3}\left(z_{3}, x_{3}\right) \\
& -\zeta_{1}\left(x_{1}, y_{1}\right)-\zeta_{2}\left(x_{2}, y_{2}\right)-\zeta_{3}\left(x_{3}, y_{3}\right), \\
\operatorname{det} X= & \xi_{1} \xi_{2} \xi_{3}+2 R\left(x_{1} x_{2} x_{3}\right) \\
& -\xi_{1} x_{1} \overline{x_{1}}-\xi_{2} x_{2} \overline{x_{2}}-\xi_{3} x_{3} \overline{x_{3}},
\end{aligned}
$$

where $R(x)$ denotes the real part of $x \in \mathbb{C}$.
For $X=X(\xi, x)$ and $Y=Y(\eta, y) \in \mathfrak{J}$, the explicit form of $X \circ Y$ is as follows.

$$
\begin{gathered}
X \circ Y=\frac{1}{2}\left(\begin{array}{ccc}
\zeta_{1} & z_{3} & \overline{z_{2}} \\
\overline{z_{3}} & \zeta_{2} & z_{1} \\
z_{2} & \overline{z_{1}} & \zeta_{3}
\end{array}\right), \\
\zeta_{1}=2 \xi_{1} \eta_{1}+x_{3} \overline{y_{3}}+y_{3} \overline{x_{3}}+\overline{x_{2}} y_{2}+\overline{y_{2}} x_{2}, \\
\zeta_{2}=2 \xi_{2} \eta_{2}+x_{1} \overline{y_{1}}+y_{1} \overline{x_{1}}+\overline{x_{3}} y_{3}+\overline{y_{3}} x_{3}, \\
\zeta_{3}=2 \xi_{3} \eta_{3}+x_{2} \overline{y_{2}}+y_{2} \overline{x_{2}}+\overline{x_{1}} y_{1}+\overline{y_{1}} x_{1}, \\
z_{1}=\left(\eta_{2}+\eta_{3}\right) x_{1}+\left(\xi_{2}+\xi_{3}\right) y_{1}+\overline{x_{2} y_{3}}+\overline{y_{2} x_{3}}, \\
z_{2}=\left(\eta_{3}+\eta_{1}\right) x_{2}+\left(\xi_{3}+\xi_{1}\right) y_{2}+\overline{x_{3} y_{1}}+\overline{y_{3} x_{1}}, \\
z_{3}=\left(\eta_{1}+\eta_{2}\right) x_{3}+\left(\xi_{1}+\xi_{2}\right) y_{3}+\overline{x_{1} y_{2}}+\overline{y_{1} x_{2}} .
\end{gathered}
$$

Especially, $X \circ X$ is as follows.

$$
\begin{aligned}
& \quad X \circ X=X^{2}=\left(\begin{array}{ccc}
\zeta_{1} & z_{3} & \overline{z_{2}} \\
\overline{z_{3}} & \zeta_{2} & z_{1} \\
z_{2} & \overline{z_{1}} & \zeta_{3}
\end{array}\right), \\
& \zeta_{1}=\xi_{1}^{2}+x_{3} \overline{x_{3}}+\overline{x_{2}} x_{2}, \\
& \zeta_{2}=\xi_{2}^{2}+x_{1} \overline{x_{1}}+\overline{x_{3}} x_{3}, \\
& \zeta_{3}=\xi_{3}^{2}+x_{2} \overline{x_{2}}+\overline{x_{1}} x_{1}, \\
& z_{1}=\left(\xi_{2}+\xi_{3}\right) x_{1}+\overline{x_{2} x_{3}}, \\
& z_{2}=\left(\xi_{3}+\xi_{1}\right) x_{2}+\overline{x_{3} x_{1}}, \\
& z_{3}=\left(\xi_{1}+\xi_{2}\right) x_{3}+\overline{x_{1} x_{2}} .
\end{aligned}
$$

For $X=X(\xi, x)$ and $Y=Y(\eta, y) \in \mathfrak{I}$, the explicit form of $X \times Y$ is as follows.

$$
\begin{aligned}
& X \times Y=\frac{1}{2}\left(\begin{array}{ccc}
\zeta_{1} & z_{3} & \overline{z_{2}} \\
\overline{z_{3}} & \zeta_{2} & z_{1} \\
z_{2} & \overline{z_{1}} & \zeta_{3}
\end{array}\right), \\
& \zeta_{1}=\xi_{2} \eta_{3}+\xi_{3} \eta_{2}-\left(x_{1} \overline{y_{1}}+y_{1} \overline{x_{1}}\right), \\
& \zeta_{2}=\xi_{3} \eta_{1}+\xi_{1} \eta_{3}-\left(x_{2} \overline{y_{2}}+y_{2} \overline{x_{2}}\right), \\
& \zeta_{1}=\xi_{1} \eta_{2}+\xi_{2} \eta_{1}-\left(x_{3} \overline{y_{3}}+y_{3} \overline{x_{3}}\right), \\
& z_{1}=\overline{x_{2} y_{3}}+\overline{y_{2} x_{3}}-\xi_{1} y_{1}-\eta_{1} x_{1}, \\
& z_{2}=\overline{x_{3} y_{1}}+\overline{y_{3} x_{1}}-\xi_{2} y_{2}-\eta_{2} x_{2}, \\
& z_{3}=\overline{x_{1} y_{2}}+\overline{y_{1} x_{2}}-\xi_{3} y_{3}-\eta_{3} x_{3} .
\end{aligned}
$$

Especially, $X \times X$ is as follows.

$$
\left(\begin{array}{lll}
\xi_{2} \xi_{3}-x_{1} \overline{x_{1}} & \overline{x_{1} x_{2}}-\xi_{3} x_{3} & x_{3} x_{1}-\xi_{2} \overline{x_{2}} \\
x_{1} x_{2}-\xi_{3} \overline{x_{3}} & \xi_{3} \xi_{1}-x_{2} \overline{x_{2}} & \overline{x_{2} x_{3}}-\xi_{1} x_{1} \\
\overline{x_{3} x_{1}}-\xi_{2} x_{2} & x_{2} x_{3}-\xi_{1} \overline{x_{1}} & \xi_{1} \xi_{2}-x_{3} \overline{x_{3}}
\end{array}\right) .
$$

Lemma 3.1 The followings hold in \mathfrak{J}.
(1) $X \circ Y=Y \circ X, \quad X \times Y=Y \times X$.
(2) $E \circ E=E . \quad E \times E=E$.
$E \circ X=X, \quad E \times X=\frac{1}{2}(\operatorname{tr}(X) E-X)$.
(3) The inner product (X, Y) is symmetric and positive definite.
(4) $\operatorname{tr}(X, Y, Z)=\operatorname{tr}(Y, Z, X)=\operatorname{tr}(Z, X, Y)$ $=\operatorname{tr}(X, Z, Y)=\operatorname{tr}(Y, X, Z)=\operatorname{tr}(Z, Y, X)$.
The similar statement is also valid for (X, Y, Z).
(5) $(X, E)=(X, E, E)=\operatorname{tr}(X, E, E)=\operatorname{tr}(X)$, $\operatorname{tr}(X, Y, E)=(X, Y)$.
(6) $\operatorname{tr}(X \times Y)=\frac{1}{2}(\operatorname{tr}(X) \operatorname{tr}(Y)-(X, Y))$.
(7) $(X \times X) \circ X=(\operatorname{det} X) E \quad$ (Hamilton-Cayley).
(8) $(X \times X) \times(X \times X)=(\operatorname{det} X) X$.
(Proof.) These are obtained by direct calculations.

In \mathfrak{I}, we use the following notations:

$$
E_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\begin{array}{cc}
E_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), & F_{1}(x)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & x \\
0 & \bar{x} & 0
\end{array}\right), \\
F_{2}(x)=\left(\begin{array}{lll}
0 & 0 & \bar{x} \\
0 & 0 & 0 \\
x & 0 & 0
\end{array}\right), & F_{3}(x)=\left(\begin{array}{ccc}
0 & x & 0 \\
\bar{x} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{array}
$$

For the Jordan multiplication and the Freudenthal multiplication, we have the following formulas:

1. $E_{i} \circ E_{i}=E_{i}, \quad E_{i} \circ E_{j}=0, \quad(i \neq j)$.
2. $E_{i} \circ F_{i}(x)=0, \quad E_{i} \circ F_{j}(x)=\frac{1}{2} F_{j}(x), \quad(i \neq j)$.
3. $F_{i}(x) \circ F_{i}(y)=(x, y)\left(E_{i+1}+E_{i+2}\right)$,

$$
F_{i}(x) \circ F_{i+1}(y)=\frac{1}{2} F_{i+2}(\overline{x y}) .
$$

4. $E_{i} \times E_{i}=0, \quad E_{i} \times E_{i+1}=\frac{1}{2} E_{i+2}$.
5. $E_{i} \times F_{i}(x)=-F_{i}(x) \quad E_{i} \times F_{j}(x)=0,(i \neq j)$.
6. $F_{i}(x) \times F_{i}(y)=-(x, y) E_{i}$, $F_{i}(x) \times F_{i+1}(y)=\frac{1}{2} F_{i+2}(\overline{x y})$.

In these formulas, the indexes are considered as mod 3.

3.2 Complex Jordan algebra

We define the complex Jordan algebra \mathfrak{J}^{C} as the complexification of the Jordan algebra \mathfrak{I} :

$$
\mathfrak{J}^{C}=\left\{X_{1}+i X_{2} \mid X_{1}, X_{2} \in \mathfrak{J}\right\} .
$$

Any element $X \in \mathfrak{J}^{C}$ is of the form

$$
X=X(\xi, x)=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \overline{x_{2}} \\
\overline{x_{3}} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right)
$$

where $\xi_{j} \in \mathbf{C}=\mathbf{R} \oplus i \mathbf{R}, x_{j} \in \mathfrak{C}^{C}=\mathfrak{C} \oplus i \mathfrak{C}$.
Then, \mathfrak{J}^{C} has two complex conjugations as follows :

$$
\begin{aligned}
& \overline{X_{1}+i X_{2}}=\overline{X_{1}}+i \overline{X_{2}}, \\
& \tau\left(X_{1}+i X_{2}\right)=X_{1}-i X_{2}, \quad X_{j} \in \mathfrak{J} .
\end{aligned}
$$

For $X=X_{1}+i X_{2}, Y=Y_{1}+i Y_{2} \in \mathfrak{J}^{C}$, we define the multiplication $X \circ Y$ and $X \times Y$ as follows :

$$
\begin{aligned}
& X \circ Y=X_{1} \circ Y_{1}-X_{2} \circ Y_{2}+i\left(X_{1} \circ Y_{2}+X_{2} \circ Y_{1}\right) \\
& X \times Y=X_{1} \times Y_{1}-X_{2} \times Y_{2}+i\left(X_{1} \times Y_{2}+X_{2} \times Y_{1}\right)
\end{aligned}
$$

\mathfrak{J}^{C} is called the complex exceptional Jordan algebra.

Lemma 3.2 For $\alpha \in \operatorname{Iso}_{\mathbf{C}}\left(\mathfrak{J}^{C}\right)$, the following three conditions are equivalent.
(1) $\operatorname{det}(\alpha X)=\operatorname{det} X$ for all $X \in \mathfrak{J}^{C}$.
(2) $(\alpha X, \alpha Y, \alpha Z)=(X, Y, Z)$ for all $X, Y, Z \in \mathfrak{J}^{C}$.
(3) $\alpha X \times \alpha Y={ }^{t} \alpha^{-1}(X \times Y)$ for all $X, Y \in \mathfrak{J}^{C}$.
(Proof.) See [16, Lemma 2.1.1.].

3.3 Split Jordan algebra

For Cayley algebra \mathfrak{C} and split Cayley algebra \mathfrak{C}^{\prime}, we define two types of split Jordan algebras as follows :

$$
\begin{aligned}
& \mathfrak{J}\left(3, \mathfrak{C}^{\prime}\right)=\left\{X \in M\left(3, \mathfrak{C}^{\prime}\right) \mid X^{*}=X\right\}, \\
& \mathfrak{J}(1,2, \mathfrak{C})=\left\{X \in M(3, \mathfrak{C}) \mid I_{1} X^{*} I_{1}=X\right\},
\end{aligned}
$$

where $I_{1}=-E_{1}+E_{2}+E_{3}$:

$$
I_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In $\mathfrak{J}\left(3, \mathbb{C}^{\prime}\right)$, any element X is of the form

$$
X=X(\xi, x)=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \overline{x_{2}} \\
\overline{x_{3}} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right),
$$

where $\xi_{j} \in \mathbf{R}, x_{j} \in \mathfrak{C}^{\prime}$. And in $\mathfrak{J}(1,2, \mathfrak{C})$, any element X is of the form

$$
X=X(\xi, x)=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \overline{x_{2}} \\
-\overline{x_{3}} & \xi_{2} & x_{1} \\
-x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right)
$$

where $\xi_{j} \in \mathbf{R}, \quad x_{j} \in \mathfrak{C}$. In $\mathfrak{J}\left(3, \mathfrak{C}^{\prime}\right)$ and $\mathfrak{J}(1,2, \mathfrak{C})$, the Jordan multiplication $X \circ Y$ is defined by

$$
X \circ Y=\frac{1}{2}(X Y+Y X)
$$

We define the $\left(\mathfrak{J}^{C}\right)_{\tau \gamma}$ and $\left(\mathfrak{J}^{C}\right)_{\tau \sigma}$ as follows:

$$
\begin{aligned}
& \left(\mathfrak{J}^{C}\right)_{\tau \gamma}=\left\{X \in \mathfrak{J}^{C} \mid \tau \gamma X=X\right\} \\
& \left(\mathfrak{J}^{C}\right)_{\tau \sigma}=\left\{X \in \mathfrak{J}^{C} \mid \tau \sigma X=X\right\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \mathfrak{J}\left(3, \mathfrak{C}^{\prime}\right) \cong\left(\mathfrak{J}^{C}\right)_{\tau \gamma}, \\
& \mathfrak{J}(1,2, \mathfrak{C}) \cong\left(\mathfrak{J}^{C}\right)_{\tau \sigma} .
\end{aligned}
$$

The correspondence between $\mathfrak{J}(1,2, \mathfrak{C})$ and $\left(\mathfrak{J}^{C}\right)_{\tau \sigma}$ as a Jordan algebra is as follows :

$$
\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \overline{x_{2}} \\
-\overline{x_{3}} & \xi_{2} & x_{1} \\
-x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right) \leftrightarrow\left(\begin{array}{ccc}
\xi_{1} & i x_{3} & i \overline{x_{2}} \\
i \overline{x_{3}} & \xi_{2} & x_{1} \\
i x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right),
$$

where $\xi_{j} \in \mathbf{R}, x_{j} \in \mathfrak{C}$. The complexifications of $\mathfrak{J}\left(3, \mathbb{C}^{\prime}\right)$ and $\mathfrak{J}(1,2, \mathfrak{C})$ are isomorphic to \mathfrak{J}, respectively. So, we can identify them:

$$
\mathfrak{J}^{C}=\mathfrak{J}\left(3, \mathfrak{C}^{\prime}\right)^{C}=\mathfrak{J}(1,2, \mathfrak{C})^{C} .
$$

3.4 Exceptional Lie group F_{4}

We define the Lie group F_{4} and consider its involutions.
Definition 3.3 We define the group F_{4} as the automorphism group of the Jordan algebra \mathfrak{J} :

$$
\mathrm{F}_{4}=\left\{\alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{J}) \mid \alpha(X \circ Y)=\alpha(X) \circ \alpha(Y)\right\} .
$$

Theorem 3.4 We can also define F_{4} as follows:

$$
\begin{aligned}
\mathrm{F}_{4}=\left\{\alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{J}) \mid \alpha(X \circ Y)=\alpha(X) \circ \alpha(Y)\right\} \\
=\left\{\alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{J}) \mid \alpha(X \times Y)=\alpha(X) \times \alpha(Y)\right\} \\
=\left\{\alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{J}) \mid \operatorname{tr}(\alpha X, \alpha Y, \alpha Z)=\operatorname{tr}(X, Y, Z)\right. \\
(\alpha X, \alpha Y)=(X, Y)\} \\
=\left\{\alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{J}) \mid \operatorname{det}(\alpha X)=\operatorname{det} X,(\alpha X, \alpha Y)=(X, Y)\right\} \\
=\left\{\alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{J}) \mid \operatorname{det}(\alpha X)=\operatorname{det} X, \alpha E=E\right\} .
\end{aligned}
$$

(Proof.) See [19, Lemma 2.2.4].
F_{4} contains G_{2} as a subgroup in the following way. For $\alpha \in \mathrm{G}_{2}$, we define the mapping $\tilde{\alpha}: \mathfrak{J} \rightarrow \mathfrak{J}$ as

$$
\tilde{\alpha}\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \overline{x_{2}} \\
\overline{x_{3}} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & \alpha x_{3} & \overline{\alpha x_{2}} \\
\overline{\alpha x_{3}} & \xi_{2} & \alpha x_{1} \\
\alpha x_{2} & \overline{\alpha x_{1}} & \xi_{3}
\end{array}\right) .
$$

Then $\tilde{\alpha} \in \mathrm{F}_{4}$. So we identify $\alpha \in \mathrm{G}_{2}$ with $\tilde{\alpha} \in \mathrm{F}_{4}$:

$$
\mathrm{G}_{2} \subseteq \mathrm{~F}_{4} .
$$

We often write the same notation $\tilde{\alpha}=\alpha$.
For the map $\gamma: \mathfrak{C} \rightarrow \mathfrak{C}, \mathbf{R}$-linear map $\gamma: \mathfrak{I} \rightarrow \mathfrak{J}$ is defined by

$$
\gamma\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \overline{x_{2}} \\
\overline{x_{3}} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & \gamma x_{3} & \overline{\gamma x_{2}} \\
\overline{\gamma x_{3}} & \xi_{2} & \gamma x_{1} \\
\gamma x_{2} & \overline{\gamma x_{1}} & \xi_{3}
\end{array}\right) .
$$

Then we get $\gamma^{2}=\gamma$. By this correspondence, we consider $\gamma \in \mathrm{G}_{2}$ to be $\gamma \in \mathrm{F}_{4}$.

$$
\gamma \in \mathrm{G}_{2} \subseteq \mathrm{~F}_{4} .
$$

We consider the following subgroup $\mathrm{F}_{4}{ }^{\gamma}$ of F_{4} :

$$
\mathrm{F}_{4}^{\gamma}=\left\{\alpha \in \mathrm{F}_{4} \mid \alpha \gamma=\gamma \alpha\right\} .
$$

We get the following diagram.

$$
\begin{array}{ccc}
F_{4}{ }^{\gamma} & \rightarrow & F_{4} \\
\uparrow & & \uparrow \\
G_{2}{ }^{\gamma} & \rightarrow & G_{2}
\end{array}
$$

To investigate the group $\mathrm{F}_{4}{ }^{\gamma}$, we decompose \mathfrak{J} into eigenspaces :

$$
\mathfrak{J}=\mathfrak{I}_{\gamma} \oplus \mathfrak{I}_{-\gamma},
$$

where

$$
\begin{aligned}
\mathfrak{J}_{\gamma} & =\{X \in \mathfrak{I} \mid \gamma X=X\}, \\
\mathfrak{J}_{-\gamma} & =\{X \in \mathfrak{I} \mid \gamma X=-X\} .
\end{aligned}
$$

Any element $X \in \mathfrak{J}_{\gamma}$ is of the form

$$
X=\left(\begin{array}{ccc}
\xi_{1} & a_{3} & \overline{a_{2}} \\
\overline{a_{3}} & \xi_{2} & a_{1} \\
a_{2} & \overline{a_{1}} & \xi_{3}
\end{array}\right)
$$

where $\xi_{i} \in \mathbf{R}, \quad a_{j} \in \mathbf{H}$. And any element $X \in \mathfrak{J}_{-\gamma}$ is of the form

$$
X=\left(\begin{array}{ccc}
0 & a_{3} e_{4} & -a_{2} e_{4} \\
-a_{3} e_{4} & 0 & a_{1} e_{4} \\
a_{2} e_{4} & -a_{1} e_{4} & 0
\end{array}\right)
$$

where $a_{j} \in \mathbf{H}$.
We define the \mathbf{R}-linear map $\sigma: \mathfrak{J} \rightarrow \mathfrak{J}$ as

$$
\sigma\left(\begin{array}{lll}
\xi_{1} & x_{3} & \overline{x_{2}} \\
\overline{x_{3}} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & -x_{3} & -\overline{x_{2}} \\
-\overline{x_{3}} & \xi_{2} & x_{1} \\
-x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right) .
$$

Then we get $\sigma \in \mathrm{F}_{4}$ and $\sigma^{2}=\sigma$. We consider the following subgroup $\mathrm{F}_{4}{ }^{\sigma}$ of F_{4} :

$$
\mathrm{F}_{4}{ }^{\sigma}=\left\{\alpha \in \mathrm{F}_{4} \mid \alpha \sigma=\sigma \alpha\right\} .
$$

To investigate the group $\mathrm{F}_{4}{ }^{\sigma}$, we decompose \mathfrak{I} into eigenspaces :

$$
\mathfrak{I}=\mathfrak{I}_{\sigma} \oplus \mathfrak{J}_{-\sigma},
$$

where

$$
\begin{aligned}
\mathfrak{I}_{\sigma} & =\{X \in \mathfrak{I} \mid \sigma X=X\} \\
\mathfrak{I}_{-\sigma} & =\{X \in \mathfrak{I} \mid \sigma X=-X\} .
\end{aligned}
$$

For $X=X(\xi, x)$, we get

$$
E_{1} \circ X=\frac{1}{2}\left(\begin{array}{ccc}
2 \xi_{1} & x_{3} & \overline{x_{2}} \\
\overline{x_{3}} & 0 & 0 \\
x_{2} & 0 & 0
\end{array}\right) .
$$

Hence, the following holds:

$$
\begin{aligned}
& \mathfrak{I}_{\sigma}=\left\{X \in \mathfrak{J} \mid E_{1} \circ X=\xi E_{1}, \quad \xi \in \mathbf{R}\right\}, \\
& \mathfrak{J}_{-\sigma}=\left\{X \in \mathfrak{I} \left\lvert\, E_{1} \circ X=\frac{1}{2} X\right.\right\},
\end{aligned}
$$

where any element $X \in \mathfrak{I}_{\sigma}$ and $Y \in \mathfrak{I}_{-\sigma}$ are of the form

$$
X=\left(\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & \overline{x_{1}} & \xi_{3}
\end{array}\right), \quad Y=\left(\begin{array}{ccc}
0 & x_{3} & \overline{x_{2}} \\
\overline{x_{3}} & 0 & 0 \\
x_{2} & 0 & 0
\end{array}\right) .
$$

$\operatorname{Spin}(8)$ and $\operatorname{Spin}(9)$ are realized in F_{4} as follows :

$$
\begin{aligned}
& \operatorname{Spin}(8)=\left\{\alpha \in \mathrm{F}_{4} \mid \alpha E_{i}=E_{i}, \quad i=1,2,3\right\}, \\
& \operatorname{Spin}(9)=\left(\mathrm{F}_{4}\right)_{E_{1}}=\left\{\alpha \in \mathrm{F}_{4} \mid \alpha E_{1}=E_{1}\right\} .
\end{aligned}
$$

By using eigendecomposition by σ, we get

$$
\mathrm{F}_{4}{ }^{\sigma}=\left(\mathrm{F}_{4}\right)_{E_{1}} \cong \operatorname{Spin}(9) .
$$

Hence we have

$$
\mathrm{G}_{2} \subseteq \operatorname{Spin}(8) \subseteq \operatorname{Spin}(9) \subseteq \mathrm{F}_{4} .
$$

3.5 Cayley projective plane

We define Cayley projective plane $\mathfrak{C} P_{2}$ as

$$
\mathfrak{C} P_{2}=\left\{X \in \mathfrak{I} \mid X^{2}=X, \operatorname{tr}(X)=1\right\} .
$$

We often refer to $\mathfrak{C} P_{2}$ simply as Cayley plane.

Theorem 3.5

$$
\mathfrak{C} P_{2} \cong \mathrm{~F}_{4} / \operatorname{Spin}(9)
$$

(Proof.) For $\alpha \in \mathrm{F}_{4}$ and $X \in \mathbb{C} P_{2}$, we have $\alpha X \in \mathbb{C} P_{2}$. Hence the group F_{4} acts on $\mathfrak{C} P_{2}$. Then this action is transitive. And the isotropy subgroup of F_{4} at E_{1} is $\left(\mathrm{F}_{4}\right)_{E_{1}}=\operatorname{Spin}(9)$.

From $\mathrm{F}_{4}{ }^{\sigma}=\left(\mathrm{F}_{4}\right)_{E_{1}} \cong \operatorname{Spin}(9)$, we get

$$
\mathfrak{C} P_{2} \cong \mathrm{~F}_{4} / \mathrm{F}_{4}{ }^{\sigma}=\mathrm{F}_{4} /\left(\mathrm{F}_{4}\right)_{E_{1}} \cong \mathrm{~F}_{4} / \operatorname{Spin}(9) .
$$

We put $\sigma_{1}=\sigma$, and we define the \mathbf{R}-linear map $\sigma_{2}: \mathfrak{I} \rightarrow$ \mathfrak{I} and $\sigma_{3}: \mathfrak{I} \rightarrow \mathfrak{I}$ respectively, as

$$
\begin{aligned}
\sigma_{2}\left(\begin{array}{lll}
\xi_{1} & x_{3} & \overline{x_{2}} \\
\overline{x_{3}} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & -x_{3} & \overline{x_{2}} \\
-\overline{x_{3}} & \xi_{2} & -x_{1} \\
x_{2} & -\overline{x_{1}} & \xi_{3}
\end{array}\right), \\
\sigma_{3}\left(\begin{array}{lll}
\xi_{1} & x_{3} & \overline{x_{2}} \\
\overline{x_{3}} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & -\overline{x_{2}} \\
\overline{x_{3}} & \xi_{2} & -x_{1} \\
-\overline{x_{1}} & \xi_{3}
\end{array}\right) .
\end{aligned}
$$

For $X=X(\xi, x)$, we get

$$
\begin{aligned}
& E_{2} \circ X=\frac{1}{2}\left(\begin{array}{ccc}
0 & x_{3} & 0 \\
\overline{x_{3}} & 2 \xi_{2} & x_{1} \\
0 & \overline{x_{1}} & 0
\end{array}\right), \\
& E_{3} \circ X=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & \overline{x_{2}} \\
0 & 0 & x_{1} \\
x_{2} & \overline{x_{1}} & 2 \xi_{3}
\end{array}\right) .
\end{aligned}
$$

Hence, for eigendecomposition

$$
\mathfrak{I}=\mathfrak{I}_{\sigma_{j}} \oplus \mathfrak{J}_{-\sigma_{j}},
$$

the following holds:

$$
\begin{aligned}
\mathfrak{J}_{\sigma_{j}} & =\left\{X \in \mathfrak{I} \mid \sigma_{j} X=X\right\}, \\
& =\left\{X \in \mathfrak{I} \mid E_{j} \circ X=\xi E_{j}, \quad \xi \in \mathbf{R}\right\}, \\
\mathfrak{J}_{-\sigma_{j}} & =\left\{X \in \mathfrak{I} \mid \sigma_{j} X=-X\right\} \\
& =\left\{X \in \mathfrak{J} \left\lvert\, E_{j} \circ X=\frac{1}{2} X\right.\right\},
\end{aligned}
$$

where any element $X \in \mathfrak{J}_{\sigma_{2}}, Y \in \mathfrak{J}_{-\sigma_{2}}, Z \in \mathfrak{J}_{\sigma_{3}}, W \in$ $\mathfrak{J}_{-\sigma_{3}}$ are of the form

$$
\begin{array}{ll}
X=\left(\begin{array}{ccc}
\xi_{1} & 0 & \overline{x_{2}} \\
0 & \xi_{2} & 0 \\
x_{2} & 0 & \xi_{3}
\end{array}\right), & Y=\left(\begin{array}{ccc}
0 & x_{3} & 0 \\
\overline{x_{3}} & 0 & x_{1} \\
0 & \overline{x_{1}} & 0
\end{array}\right), \\
Z=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & 0 \\
\overline{x_{3}} & \xi_{2} & 0 \\
0 & 0 & \xi_{3}
\end{array}\right), & W=\left(\begin{array}{ccc}
0 & 0 & \overline{x_{2}} \\
0 & 0 & x_{1} \\
x_{2} & \overline{x_{1}} & 0
\end{array}\right) .
\end{array}
$$

At this time as in the case of σ_{1}, we get the following.

$$
\begin{aligned}
& \mathrm{F}_{4}{ }^{\sigma_{2}}=\left(\mathrm{F}_{4}\right)_{E_{2}} \cong \operatorname{Spin}(9), \\
& \mathrm{F}_{4}{ }^{\sigma_{3}}=\left(\mathrm{F}_{4}\right)_{E_{3}} \cong \operatorname{Spin}(9) .
\end{aligned}
$$

Proposition $3.6 \sigma_{1}, \sigma_{2}, \sigma_{3}$ are commutative cyclic involutions.
(Proof.) These are obtained by direct calculations.

By using the symbols

$$
\begin{aligned}
& \mathrm{F}_{4}{ }^{\sigma_{i}, \sigma_{j}}=\mathrm{F}_{4}{ }^{\sigma_{i}} \cap \mathrm{~F}_{4}{ }^{\sigma_{j}}, \quad(i \neq j), \\
& \mathrm{F}_{4}{ }^{\sigma_{1}, \sigma_{2}, \sigma_{3}}=\mathrm{F}_{4}{ }^{\sigma_{1}} \cap \mathrm{~F}_{4}{ }^{\sigma_{2}} \cap \mathrm{~F}_{4}{ }^{\sigma_{3}},
\end{aligned}
$$

We get the following diagram.

In this diagram, we have

$$
\mathrm{F}_{4}{ }^{\sigma_{1}, \sigma_{2}, \sigma_{3}}=\mathrm{F}_{4}{ }^{\sigma_{1}, \sigma_{2}}=\mathrm{F}_{4}{ }^{\sigma_{2}, \sigma_{3}}=\mathrm{F}_{4}{ }^{\sigma_{3}, \sigma_{1}} \cong \operatorname{Spin}(8) .
$$

Hence this diagram means

The intersection of two different $\operatorname{Spin}(9)$ in this diagram is $\operatorname{Spin}(8)$.

By Theorem 3.5, we get the following corollary.
Corollary 3.7 The Cayley plane $\mathfrak{C} P_{2}$ can be expressed as:

$$
\begin{aligned}
& \mathfrak{C} P_{2} \cong \mathrm{~F}_{4} / \mathrm{F}_{4}^{\sigma_{1}}=\mathrm{F}_{4} /\left(\mathrm{F}_{4}\right)_{E_{1}} \cong \mathrm{~F}_{4} / \operatorname{Spin}(9) \\
& \mathfrak{C} P_{2} \cong \mathrm{~F}_{4} / \mathrm{F}_{4}^{\sigma_{2}}=\mathrm{F}_{4} /\left(\mathrm{F}_{4}\right)_{E_{2}} \cong \mathrm{~F}_{4} / \operatorname{Spin}(9) \\
& \mathfrak{C} P_{2} \cong \mathrm{~F}_{4} / \mathrm{F}_{4}^{\sigma_{3}}=\mathrm{F}_{4} /\left(\mathrm{F}_{4}\right)_{E_{3}} \cong \mathrm{~F}_{4} / \operatorname{Spin}(9)
\end{aligned}
$$

3.6 Complex exceptional Lie group $\mathrm{F}_{4}{ }^{C}$

Definition 3.8 We define the group $\mathrm{F}_{4}{ }^{C}$ as the automorphism group of the complex Jordan algebra \mathfrak{J}^{C} :

$$
\mathrm{F}_{4}^{C}=\left\{\alpha \in \operatorname{Iso} \mathbf{C}\left(\mathfrak{J}^{C}\right) \mid \alpha(X \circ Y)=\alpha(X) \circ \alpha(Y)\right\} .
$$

Theorem 3.9 We can also define $\mathrm{F}_{4}{ }^{C}$ as follows:

$$
\begin{aligned}
& \mathrm{F}_{4}^{C}=\left\{\alpha \in \operatorname{Iso} \mathbf{C}\left(\mathfrak{J}^{C}\right) \mid \alpha(X \circ Y)=\alpha(X) \circ \alpha(Y)\right\} \\
&=\left\{\alpha \in \operatorname{Iso} \mathbf{C}\left(\mathfrak{J}^{C}\right) \mid \alpha(X \times Y)=\alpha(X) \times \alpha(Y)\right\} \\
&=\left\{\alpha \in \operatorname{Iso} \mathbf{C}\left(\mathfrak{J}^{C}\right) \mid \operatorname{tr}(\alpha X, \alpha Y, \alpha Z)=\operatorname{tr}(X, Y, Z)\right. \\
&\quad(\alpha X, \alpha Y)=(X, Y)\} \\
&=\left\{\alpha \in \operatorname{Iso} \mathbf{C}\left(\mathfrak{J}^{C}\right) \mid \operatorname{det}(\alpha X)=\operatorname{det} X,\right. \\
&(\alpha X, \alpha Y)=(X, Y)\} \\
&=\left\{\alpha \in \operatorname{Iso} \mathbf{C}\left(\mathfrak{J}^{C}\right) \mid \operatorname{det}(\alpha X)=\operatorname{det} X, \alpha E=E\right\} .
\end{aligned}
$$

(Proof.) See [16, Proposition 2.1.3.].
For $\alpha \in \mathrm{F}_{4}$, we define $\alpha^{C}: \mathfrak{J}^{C} \rightarrow \mathfrak{J}^{C}$ as

$$
\alpha^{C}\left(X_{1}+i X_{2}\right)=\alpha\left(X_{1}\right)+i \alpha\left(X_{2}\right) .
$$

By identifying α and α^{C}, we can consider F_{4} as the subgroup of $\mathrm{F}_{4}{ }^{C}$:

$$
\mathrm{F}_{4} \subseteq \mathrm{~F}_{4}{ }^{C} .
$$

When we extend a map $\alpha \in \operatorname{Hom}_{\mathbf{R}}(\mathfrak{C}, \mathfrak{C})$ to the map of $\operatorname{Hom}_{C}\left(\mathfrak{J}^{C}, \mathfrak{J}^{C}\right)$, the following diagram is commutative.

```
\(\operatorname{Hom}_{\mathbf{R}}(\mathfrak{C}, \mathfrak{C}) \rightarrow \operatorname{Hom}_{\mathbf{C}}\left(\mathfrak{C}^{C}, \mathfrak{C}^{C}\right)\)
\(\operatorname{Hom}_{\mathbf{R}}(\mathfrak{J}, \mathfrak{J}) \quad \rightarrow \quad \operatorname{Hom}_{\mathbf{C}}\left(\mathfrak{J}^{C}, \mathfrak{J}^{C}\right)\)
```

That is, $(\tilde{\alpha})^{C}=\tilde{\alpha^{C}}$. Then we get the following diagram.

$$
\begin{array}{ccc}
F_{4} & \rightarrow & F_{4}{ }^{C} \\
\uparrow & & \uparrow \\
G_{2} & \rightarrow & G_{2}{ }^{C}
\end{array}
$$

We consider the subgroup $\left(\mathrm{F}_{4}^{C}\right)^{\tau}$:

$$
\left(\mathrm{F}_{4}^{C}\right)^{\tau}=\left\{\alpha \in \mathrm{F}_{4}^{C} \mid \alpha \tau=\tau \alpha\right\}
$$

Then $\left(\mathrm{F}_{4}{ }^{C}\right)^{\tau}$ is isomorphic to F_{4} :

$$
\mathrm{F}_{4}=\left(\mathrm{F}_{4}^{C}\right)^{\tau} \subseteq \mathrm{F}_{4}^{C}
$$

Proposition $3.10 \tau, \gamma, \sigma$ are commutative, as elements of $F_{4}{ }^{C}$, respectively:

$$
\tau \gamma=\gamma \tau, \quad \tau \sigma=\sigma \tau, \quad \gamma \sigma=\sigma \gamma
$$

(Proof.) These are obtained by direct calculations.

Then, $\mathrm{F}_{4(4)}$ and $\mathrm{F}_{4(-20)}$ are represented as an invariant group by $\tau \gamma$ and $\tau \sigma$, respectively:

$$
\begin{gathered}
\mathrm{F}_{4(4)}=\left(\mathrm{F}_{4}^{C}\right)^{\tau \gamma} \subseteq \mathrm{F}_{4}^{C} \\
\mathrm{~F}_{4(-20)}=\left(\mathrm{F}_{4}^{C}\right)^{\tau \sigma} \subseteq \mathrm{F}_{4}^{C}
\end{gathered}
$$

For $\alpha \in \mathrm{F}_{4}$ and $X=X(\xi, x) \in \mathfrak{I}$, from $\alpha\left(-x_{j}\right)=$ $-\alpha\left(x_{j}\right) \quad(j=2,3)$, we get

$$
\sigma \alpha X(\xi, x)=\sigma X(\xi, \alpha x)=\alpha \sigma X(\xi, x)
$$

Hence we have $G_{2} \subseteq F_{4(-20)}$.

$$
G_{2(2)} \subseteq F_{4(4)} \text { is obvious. }
$$

Theorem 3.11 The following inclusive relations hold:

$$
G_{2} \subseteq F_{4}, \quad G_{2} \subseteq F_{4(-20)}, \quad G_{2(2)} \subseteq F_{4(4)}
$$

We get the following diagram.

4. Construction of $\left(F_{4}^{C}\right)^{\gamma}$ and $\left(F_{4}^{C}\right)^{\sigma}$

Yokota constructed $\left(F_{4}^{C}\right)^{\gamma}$ and $\left(F_{4}^{C}\right)^{\sigma}$, concretely. Here we describe the ideas.

Let $\mathfrak{J}_{\mathbf{H}}$ denote all 3×3 Hermitian matrices with entries in \mathbf{H}.

$$
\mathfrak{J}_{\mathbf{H}}=\left\{X \in M(3, \mathbf{H}) \mid X^{*}=X\right\}
$$

Any element $M \in \mathfrak{J}_{\mathbf{H}}$ is of the form

$$
M=\left(\begin{array}{ccc}
\xi_{1} & m_{3} & \overline{m_{2}} \\
\overline{m_{3}} & \xi_{2} & m_{1} \\
m_{2} & \overline{m_{1}} & \xi_{3}
\end{array}\right)
$$

where $\xi_{i} \in \mathbf{R}, m_{j} \in \mathbf{H}$. And, for $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbf{H}^{3}$, we take

$$
F\left(\mathbf{a} e_{4}\right)=\left(\begin{array}{ccc}
0 & a_{3} e_{4} & -a_{2} e_{4} \\
-a_{3} e_{4} & 0 & a_{1} e_{4} \\
a_{2} e_{4} & -a_{1} e_{4} & 0
\end{array}\right)
$$

By identifying $M+\mathbf{a} \in \mathfrak{J}_{\mathbf{H}} \oplus \mathbf{H}^{3}$ and $M+F\left(\mathbf{a} e_{4}\right) \in \mathfrak{I}$, we get the following as vector spaces:

$$
\mathfrak{J}_{\mathbf{H}} \oplus \mathbf{H}^{3}=\mathfrak{I}
$$

In $\mathfrak{J}_{\mathbf{H}} \oplus \mathbf{H}^{3}$, we define a Freudenthal multiplication $X \times Y$ and an inner product (X, Y) as follows:
$(M+\mathbf{a}) \times(N+\mathbf{b})=\left(M \times N-\frac{1}{2}\left(\mathbf{a}^{*} \mathbf{b}+\mathbf{b}^{*} \mathbf{a}\right)\right)-\frac{1}{2}(\mathbf{a} N+\mathbf{b} M)$,
$(M+\mathbf{a}, N+\mathbf{b})=(M, N)+2(\mathbf{a}, \mathbf{b})$.
These make $\mathfrak{J}_{\mathbf{H}} \oplus \mathbf{H}^{3}$ and \mathfrak{J} isomorphic, which keeps the inner product as algebras. Then we have

$$
\gamma(M+\mathbf{a})=M-\mathbf{a} .
$$

By considering the complexification $\left(\mathfrak{J}_{\mathbf{H}} \oplus \mathbf{H}^{3}\right)^{C}=\mathfrak{J}_{\mathbf{H}}{ }^{c} \oplus$ $\left(\mathbf{H}^{C}\right)^{3}$, we have

$$
\mathfrak{J}_{\mathbf{H}^{c}} \oplus\left(\mathbf{H}^{C}\right)^{3}=\mathfrak{J}^{C}
$$

We define $S p(n, K)$ as

$$
S p(n, K)=\left\{A \in M(n, K) \mid A^{*} A=E\right\}, \quad K=\mathbf{H}, \mathbf{H}^{C}
$$

As a notation, we write $S p(n)=S p(n, \mathbf{H})$.
Theorem 4.1 (1) $F_{4}^{\gamma} \cong(S p(1) \times S p(3)) / \mathbf{Z}_{2}$,
where $\mathbf{Z}_{2}=\{(1, E),(-1,-E)\}$.
(2) $\left(F_{4}^{C}\right)^{\gamma} \cong\left(S p\left(1, \mathbf{H}^{C}\right) \times S p\left(3, \mathbf{H}^{C}\right)\right) / \mathbf{Z}_{2}$,
where $\mathbf{Z}_{2}=\{(1, E),(-1,-E)\}$.
(Proof.) (1) We define $\varphi: S p(1, \mathbf{H}) \times S p(3, \mathbf{H}) \rightarrow F_{4}^{\gamma}$ by $\varphi(p, A)(M+\mathbf{a})=A M A^{*}+p \mathbf{a} A^{*}, \quad M+\mathbf{a} \in \mathfrak{J}_{\mathbf{H}} \oplus \mathbf{H}^{3}=\mathfrak{I}$.

Then φ is a homomorphismand onto with $\operatorname{Ker} \varphi=$ $\{(1, E),(-1,-E)\}=Z_{2}$.
(2) Similarly, we define $\varphi: S p\left(1, \mathbf{H}^{C}\right) \times S p\left(3, \mathbf{H}^{C}\right) \rightarrow$ $\left(F_{4}^{C}\right)^{\gamma}$ by $\varphi(p, A)(M+\mathbf{a})=A M A^{*}+p \mathbf{a} A^{*}, \quad M+\mathbf{a} \in$ $\mathfrak{J}_{\mathbf{H}^{c}} \oplus\left(\mathbf{H}^{C}\right)^{3}=\mathfrak{J}^{C}$.

On the other hand, for F_{4}^{σ} and $\left(F_{4}^{C}\right)^{\sigma}$, by showing that these are the universal covering group of $\mathrm{SO}(9)$ and $\mathrm{SO}(9, \mathrm{C})$ respectively, we obtain the following theorem.

Theorem 4.2 (1) $F_{4}^{\sigma} \cong \operatorname{Spin}(9)$.

(2) $\left(F_{4}^{C}\right)^{\sigma} \cong \operatorname{Spin}(9, \mathrm{C})$.

5. Arrangement of subgroups of $\mathrm{F}_{4}{ }^{C}$

Let L be a subgroup of F_{4}^{C} and let $\theta \in F_{4}^{C}$, then we define L^{θ} as the following way:

$$
L^{\theta}=\{\alpha \in L \mid \alpha \theta=\theta \alpha\}
$$

In this notation, we get $\mathrm{G}_{2}{ }^{\sigma}=\mathrm{G}_{2}$.
By using γ and σ, we can also make the following diagram for F_{4}.

In this diagram, $\mathrm{F}_{4} / \mathrm{F}_{4}{ }^{\sigma} \cong \mathfrak{C} P_{2}$ holds.
The arrangement of the non-compactgroups $F_{4(-20)}$ and $F_{4(4)}$ in F_{4}^{C} is as shown in the following diagram.

By using γ for this diagram, we can get the following diagram of the γ sequence.

Similarly, we can get the following diagram of the σ sequence.

As in the case of $\sigma=\sigma_{1}$, we have

$$
\begin{aligned}
& \left(\mathrm{F}_{4}^{C}\right)^{\tau \sigma_{2}} \cong \mathrm{~F}_{4(-20)}, \\
& \left(\mathrm{F}_{4}^{C}\right)^{\tau \sigma_{3}} \cong \mathrm{~F}_{4(-20)} .
\end{aligned}
$$

Hence, we get the following diagram.

$$
\begin{array}{lllll}
\\
\left(\mathrm{F}_{4}{ }^{C}\right)^{\tau \sigma_{1}} & & \begin{array}{c}
F_{4}^{C} \\
\\
\left(\mathrm{~F}_{4}{ }^{C}\right)^{\tau \sigma_{2}}
\end{array} & & \\
\left(\mathrm{~F}_{4}{ }^{C}\right)^{\tau \sigma_{3}}
\end{array}
$$

This diagram means

In each $\mathrm{F}_{4(-20)}=\left(\mathrm{F}_{4}\right)^{\tau \sigma_{j}}$, the following diagram can be obtained as a hierarchical structure by using commutative cyclic involutions $\gamma, \gamma^{\prime}, \gamma \gamma^{\prime} \in\left(\mathrm{F}_{4}{ }^{C}\right)^{\tau \sigma_{j}}$.

The intersection of two different $F_{4(-20)}^{\gamma}, F_{4(-20)}^{\gamma^{\prime}}, F_{4(-20)}^{\gamma \gamma^{\prime}}$ are equal:

$$
\begin{aligned}
& F_{4(-20)}^{\gamma} \cap F_{4(-20)}^{\gamma^{\prime}}=F_{4(-20)}^{\gamma} \cap F_{4(-20)}^{\gamma \gamma^{\prime}}=F_{4(-20)}^{\gamma^{\prime}} \cap F_{4(-20)}^{\gamma \gamma^{\prime}} \\
& =F_{4(-20)}^{\gamma, \gamma^{\prime}, \gamma \gamma^{\prime}} .
\end{aligned}
$$

By combining commutative cyclic involutions σ_{1}, σ_{2}, σ_{3} and $\gamma, \gamma^{\prime}, \gamma \gamma^{\prime}$, we get the following proposition.

Proposition $5.1 \gamma \sigma_{1}, \gamma^{\prime} \sigma_{2}, \gamma \gamma^{\prime} \sigma_{3}$ are commutative cyclic involutions.
(Proof.) These are obtained by direct calculations.
Hence, we get the following diagram.

The intersection of two different $\left(\mathrm{F}_{4}^{C}\right)^{\gamma \sigma_{1}},\left(\mathrm{~F}_{4}^{C}\right)^{\gamma^{\prime} \sigma_{2}}$, $\left(\mathrm{F}_{4}^{C}\right)^{\gamma \gamma^{\prime} \sigma_{3}}$ are equal:

$$
\begin{aligned}
& \left(\mathrm{F}_{4}{ }^{C}\right)^{\gamma \sigma_{1}} \cap\left(\mathrm{~F}_{4}^{C}\right)^{\gamma^{\prime} \sigma_{2}}=\left(\mathrm{F}_{4}^{C}\right)^{\gamma \sigma_{1}} \cap\left(\mathrm{~F}_{4}{ }^{C}\right)^{\gamma \gamma^{\prime} \sigma_{3}} \\
& =\left(\mathrm{F}_{4}^{C}\right)^{\gamma^{\prime} \sigma_{2}} \cap\left(\mathrm{~F}_{4}^{C}\right)^{\gamma \gamma^{\prime} \sigma_{3}}=\left(\mathrm{F}_{4}^{C}\right)^{\gamma \sigma_{1}, \gamma^{\prime} \sigma_{2}, \gamma \gamma^{\prime} \sigma_{3}} .
\end{aligned}
$$

Moreover, we can get larger diagrams by combining F_{4}-type Lie groups and involutions. For example, we can get the following diagram.

We can make various other diagrams by changing groups and involutions.

Problem Investigate the structure of these diagrams as Lie groups in detail.

In these diagrams using Lie groups and involutions, there may be interesting facts that we do not yet know in the concrete construction and application. The Yokotastyle method has the potential to investigate the structure of these exceptional Lie groups from the perspective of Lie groups (rather than Lie algebras).

6. Conclusion and future direction

6.1 Realization of concrete subgroups

By using the theory of Lie algebras, we can abstractly understand the subgroups of the Lie group. However, using the Yokota-style construction method opens up the possibility of concrete realization as groups.

In this paper, we dealt with the compact group F_{4}, the non-compact groups $F_{4(4)}, F_{4(-20)}$ and the complex compact group $F_{4}{ }^{C}$ and we investigated the arrangement of their subgroups using involutions. These studies are expected to be further refined. Moreover, it is conceivable to extend the research to the exceptional Lie groups of type E.

6.2 Relationship with M-theory in physics

In recent years, M-theory has been energetically studied in mathematical physics. And M-theory is deeply linked to the exceptional Lie groups.

In M-theory, we consider the fiber bundle $\pi: M \rightarrow$ Y with the fiber $\mathfrak{C} P_{2}$ and the structure group F_{4}. At this time, the base space Y is an 11 -dimensional manifold, and the total space M is a 27 -dimensional manifold. In this $\mathrm{F}_{4}-\mathfrak{C} P_{2}$ bundle $\left(M, \pi, Y, \mathrm{~F}_{4} ; \mathfrak{C} P_{2}\right), \mathrm{H}$. Sati (2009) investigated the question of whether when the 11dimensional base manifold Y has a Spin, String, or Fivebrane structure, it leads to a similar structure in the 27dimensional manifold M. From a mathematical physics point of view, it is necessary to study the further connection between M-theory and the exceptional Lie groups.

From a mathematical point of view, we can also consider the fiber bundle with the complex Cayley plane $\mathfrak{c}^{C} P_{2}$ as the fiber and the exceptional Lie group E_{6} as the structure group. Namely, a fiber bundle $\mu: N \rightarrow Z$ with the fiber $\mathfrak{C}^{C} P_{2}$ and the structure group E_{6} can be mathe-
matically considered:

$$
\left(N, \mu, Z, E_{6}, ; \mathfrak{C}^{C} P_{2}\right) .
$$

$\mathbb{C}^{C} P_{2}$ is no longer projective geometry, but it may have a mathematically rich structure.

The question of mathematically investigating the relationship between the $E_{6}-\mathbb{C}^{C} P_{2}$ bundle and the $\mathrm{F}_{4}-\mathbb{C} P_{2}$ bundle can be considered. In this way, in relation to Mtheory, our future expectation is to investigate fiber bundles where the fiber is the Cayley plane and the structure group is the exceptional Lie group in the future.

References

1) J. Daboul and R. Delbourgo, Matrix Representation of Octonions and Generalizations, J.Math.Phys. Vol. 40 (1999), 4134-4150.
2) H. Freudenthal, Octaven, Ausnahamegruppen und Octavengeometrie, Math. Inst. Rijkuniv. te Utrecht (1951).
3) H . Freudenthal, Bezihungen der E_{7} und E_{8} zur Oktavenebene I - XI, Indagationes Mathematicae (1954-1963).
4) H. Freudenthal, Lie groups in the foundations of geometry, Advances in Mathematics, Vol. 1, No. 2 (1964), 145-190.
5) T. Imai and I. Yokota, Simply connected compact simple Lie group $E_{7(-133)}$ of type E_{7}, J. Math. Kyoto Univ. Vol. 21 (1981), 383-395.
6) T. Imai and I. Yokota, Simply connected compact simple Lie group $E_{8(-248)}$ of type E_{8}, J. Math. Kyoto Univ. Vol. 21 (1981), 741-762.
7) T. Ishihara, Exceptional Lie algebra $g_{2(2)}$ and Lie group $G_{2(2)}$ on split octonions (Japanese), YSTM (2018), 40-86.
8) N. Jacobson, Cayley numbersand normalsimple Lie algebras of type G, Duke Math. J. Vol. 5, No. 4 (1939), 775-783.
9) M. Matsuoka, Realization of subgroups of the complex exceptional Lie group of type G_{2} by split cayley algebra and its complexification (Japanese), Kochi University of Technology research bulletin, Vol. 16 No. 1 (2019), 193-207.
10) T. Miyasaka and I. Yokota, Orbit types of the compact Lie group E_{7} in the Freudenthal vector space \mathfrak{B}^{C}, Tsukuba J. Math. Vol. 23 (1999), 229-234.
11) T. Miyashita, Realization of fixed point subgroups by automorphism mapping of finite order in exceptional type simple Lie groups and its application (Japanese), Doctoral Dissertation, Keio University (2007).
12) H. Sati, $O P^{2}$ bundles in M-theory, Commun. Num. Theor. Phys Vol. 3, (2009), 495-530.
13) O. Shukuzawa and I. Yokota, Non-compact simple Lie group $E_{6(6)}$ of type E_{6}, J. Fac. Sci. Shinshu Univ. Vol. 14 (1979), 1-13.
14) O. Shukuzawa and I. Yokota, Non-compact simple Lie group $E_{6(-14)}$ and $E_{6(2)}$ of type E_{6} J. Fac. Sci. Shinshu Univ. Vol. 14 (1979), 15-28
15) I. Yokota, Simply connected compact simple Lie group $E_{6(-78)}$ of type E_{6} and its involutive automorphisms, J. Math., Kyoto Univ. Vol. 20 (1980),447473.
16) I. Yokota, Realizations of involuti automorphisms σ and G^{σ} of exceptional linear Lie groups G, part I $G=G_{2}, F_{4}$ and E_{6}, Tsukuba J. Math. Vol. 14, No. 1 (1990),185-223.
17) I. Yokota, Classical simple Lie group (Japanese), Gendai suugakusha (1990).
18) I. Yokota, Exceptional simple Lie group (Japanese), Gendai suugakusha (1992).
19) I. Yokota, Exceptional Lie groups, Preprint, arXiv:math / 0902.0431, [math.DG] (2009).

例外型リー群 $F_{4}{ }^{C}$ における部分群の横田流の手法を用いた具体的な配置について

松岡 学＊

（受領日：2021年5月31日）
高知工科大学共通教育教室
〒 782－8502 高知県香美市土佐山田町宮ノ口 185
＊E－mail：matsuoka．manabu＠kochi－tech．ac．jp

Abstract

要約：本研究では，ジョルダン代数，split ジョルダン代数，及びその複素化を用いて，例外型 Lie群 F_{4}^{C} の部分群を横田流の手法で具体的に構成する。横田流の手法には，非コンパクト群や複素Lie群を自然に構成できるという特徴がある。本論文では最初に，G_{2} 型のリー群を調べるためにケーリー代数を定義 し，次にジョルダン代数を用いて F_{4} 型の Lie 群と対合へ拡張する。最後に，F_{4} 型の Lie群の部分群の配置を対合を用いて考察する。特に，F_{4} 型の 2 つの非コンパクト群とその部分群の配置を，その対合不変部分群として考察する。

