
Abstract: In this research, we use Jordan algebra, split Jordan algebra and their complexifications specifically for con-
structing subgroups of the exceptional Lie group F4

C in the Yokota-style. The Yokota-style algebraic construction method 
characterizes non-compact groups and complex Lie groups as being constructed naturally. First, we define Cayley al-
gebra to consider Lie groups of type G2, and then we use Jordan algebra to extend them to Lie groups of type F4 and their 
involutions. Finally, we consider the arrangement of the subgroups of type F4 Lie groups using the involutions. In 
particular, we consider the arrangement of two non-compactgroups of type F4 and their subgroups. We specifically use 
the involutions and construct subgroups as their invariant subgroups.

In this paper, we consider the arrangement of the
subgroups in F4

C using the Yokota-style method.

2. Cayley algebra and the Lie group G2

2.1 The definition of Cayley algebra
We define a Cayley algebra, a split Cayley algebra and
their complexifications and summarize their properties.
First, we define a Cayley algebra.

Definition 2.1 Let C be the 8-dimensional vector space
on R with the basis 1, e1, e2, e3, e4, e5, e6, e7. With e0 = 1
as the identity element, other products are defined as the
following figure. e1

e2

e4

e7

e3 e5 e6

In the above figure, the product is defined as follows
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1. Introduction

E. Cartan mentioned without proof that  octonions   and
the G2 type Lie  group are related, and  N. Jacobson
constructed a non-compact Lie  algebra of  type G2 

using split octonions. Later, F4 and E6  were given
by C.Chevalley  and R.D.Schafer,  and E7  and  E8 were
given by H. Freudenthal as Lie  algebras.

However, as Lie  groups, the concrete construction 
of type E6, E7 and E8 remained unknown for the first cen-
tury after classification.  In [15], a simply connected com-
pact exceptional Lie  group of type E6 was constructed us-
ing algebraic techniques by I. Yokota. Later, Yokota and 
his fellow  researchers constructed the E7 and E8 compact 
Lie  groups and non-compact Lie  groups. Yokota made an 
algebraic construction using Cayley  algebra, split Cayley 
algebra and its complexification in the realization of ex-
ceptional Lie  groups. Yokota was also deeply inspired by 
Freudenthal’s treatise [3]. Yokota then developed his own 
method for investigating exceptional Lie  groups. The 
Yokota-style construction method is very effective in con-
structing exceptional Lie  groups in particular, and thus is 
expected to be used in the future.



between e1, e2, e3 on the line:

e1
2 = e2

2 = e3
2 = −1, 

e2e3 = −e3e2 = e1,
e3e1 = −e1e3 = e2, 
e1e2 = −e2e1 = e3.

The product is defined in the same way on the other six 
lines. For example, e5e7 = e2. Furthermore, the prod-
uct is defined so that the distributive law holds for any 
element. The algebra C defined in this way is called the 
Cayley algebra. The element of C is called an octonion 
or a Cayley number. The Cayley algebra C is a non-
associative algebra.

The product of the Cayley algebras is tabulated as 
follows.

e1 e2 e3 e4 e5 e6 e7

e1 -1 e3 −e2 e5 −e4 e7 −e6

e2 −e3 -1 e1 −e6 e7 e4 −e5

e3 e2 −e1 -1 e7 e6 −e5 −e4

e4 −e5 e6 −e7 -1 e1 −e2 e3

e5 e4 −e7 −e6 −e1 -1 e3 e2

e6 −e7 −e4 e5 e2 −e3 -1 e1

e7 e6 e5 e4 −e3 −e2 −e1 -1

For a = a0 +

7∑
i=1

aiei, b = b0 +

7∑
i=1

biei in C, we

define a conjugation a, an inner product (a, b), a norm 
N(a), a length |a|, an R-linear map γ : C → C as follows :

a = a0 −
7∑

i=1

ai,

(a, b) =
7∑

i=0

aibi,

N(a) = (a, a) = aa,

|a| =
√

(a, a),

γ(a) =
3∑

i=0

aiei −
7∑

i=4

aiei.

Then it holds (a, b) = 1
2 (ab + ba). For a non-zero Cayley

numbera, we put a
|a|2 as a−1. Then it holds

aa−1 = a−1a = 1.

Hence C is a non-associative skew field. And, from
γ2 = 1, γ is an involution.

The explicit forms of the products aa, a2, a2 and ab

are as follows:

aa = aa = a2
0 + a2

1 + · · · + a2
7,

a2 = a2
0 − a2

1 − · · · − a2
7

+ 2a0a1e1 + 2a0a2e2 + · · · + 2a0a7e7,

a2
= a2

0 − a2
1 − · · · − a2

7

− 2a0a1e1 − 2a0a2e2 − · · · − 2a0a7e7,

ab = (a0 + a1e1 + · · · + a7e7)(b0 + b1e1 + · · · + b7e7)
= a0b0 − a1b1 − · · · − a7b7

+ (a0b1+a1b0+a2b3−a3b2+a4b5−a5b4+a6b7−a7b6)e1

+ (a0b2+a2b0+a3b1−a1b3+a6b4−a4b6+a5b7−a7b5)e2

+ (a0b3+a3b0+a1b2−a2b1+a4b7−a7b4+a5b6−a6b5)e3

+ (a0b4+a4b0+a5b1−a1b5+a2b6−a6b2+a7b3−a3b7)e4

+ (a0b5+a5b0+a1b4−a4b1+a7b2−a2b7+a6b3−a3b6)e5

+ (a0b6+a6b0+a7b1−a1b7+a4b2−a2b4+a3b5−a5b3)e6

+(a0b7+a7b0+a1b6−a6b1+a2b5−a5b2+a3b4−a4b3)e7.

Next we define the split Cayley algebra.

Definition 2.2 Let C′ be the 8-dimensional vector space
on R with the basis 1, e1, e2, e3, e′4, e

′
5, e
′
6, e
′
7. With e0 = 1

as the identity element, other products are defined as the
following table.

e1 e2 e3 e′4 e′5 e′6 e′7
e1 -1 e3 −e2 e′5 −e′4 −e′7 e′6
e2 −e3 -1 e1 e′6 e′7 −e′4 −e′5
e3 e2 −e1 -1 e′7 −e′6 e′5 −e′4
e′4 −e′5 −e′6 −e′7 1 −e1 −e2 −e3

e′5 e′4 −e′7 e′6 e1 1 e3 −e2

e′6 e′7 e′4 −e′5 e2 −e3 1 e1

e′7 −e′6 e′5 e′4 e3 e2 −e1 1

The algebra C′ defined in this way is called the split
Cayley algebra. C′ is a non-associative algebra.

For a = a0+

i=1

aiei+

i=4
aiei
′, b = b0+

∑3

i=1

biei+

7∑
bie′i

in C′, we define a conjugation a, an inner product (a, b),
a norm N(a) as follows :

a = a0 −
3∑

i=1

aiei −
7∑

i=4

aie′i ,

(a, b) =
3∑

i=0

aibi −
7∑

i=4

aibi,

N(a) = (a, a) = aa =
3∑

i=0

ai
2 −

7∑
i=4

ai
2.

The explicit forms of the products aa, a2, a2 and ab are
as follows:

i=4

∑7 ∑3
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aa = aa = a2
0 + a2

1 + a2
2 + a2

3 − a2
4 − a2

5 − a2
6 − a2

7, a2

= a2
0 − a2

1 − a2
2 − a2

3 + a2
4 + a2

5 + a2
6 + a2

7

+ 2a0a1e1 + 2a0a2e2 + · · · + 2a0a7e7,

a2 
= a2

0 − a2
1 − a2

2 − a2
3 + a2

4 + a2
5 + a2

6 + a2
7

− 2a0a1e1 − 2a0a2e2 − · · · − 2a0a7e7,

ab = (a0 + a1e1 + · · · + a7e7)(b0 + b1e1 + · · · + b7e7)
= a0b0 − a1b1 − · · · − a3b3 + a4b4 + · · · + a7b7

+(a0b1 +a1b0 +a2b3 −a3b2 +a5b4 −a4b5 +a6b7 −a7b6)e1

+(a0b2 +a2b0 +a3b1 −a1b3 +a6b4 −a4b6 +a7b5 −a5b7)e2

+(a0b3 +a3b0 +a1b2 −a2b1 +a7b4 −a4b7 +a5b6 −a6b5)e3

+(a0b4 +a4b0 +a5b1 −a1b5 +a6b2 −a2b6 +a7b3 −a3b7)e
+(a0b5 +a5b0 +a1b4 −a4b1 +a7b2 −a2b7 +a3b6 −a6b3)e
+(a0b6 +a6b0 +a1b7 −a7b1 +a2b4 −a4b2 +a5b3 −a3b5)e
+(a0b7 +a7b0 +a6b1 −a1b6 +a2b5 −a5b2 +a3b4 −a4b3)e

The complexification CC = {a+ i b | a, b ∈ C } of the
Cayley algebra C is called the complex Cayley algebra.
In CC , we define a conjugation x, an inner product (x, y),
a norm N(x), a conjugation τ(x) for complexification and
an involution γ as follows :

x = a + i b,

(x, y) = (a, c) − (b, d) + i ((a, d) + (b, c)),

N(x) = xx = aa − bb + i (ab + ba),

τ(x) = a − i b,

γ(x) = γ(a) + i γ(b),

(x = a + ib, y = c + id ∈ CC).

Then it holds τγ = γτ. In CC , there are two complex
conjugations x and τ(x). The explicit forms of these are
as follows:

x = a0 − a1e1 − · · · − a7e7 + i(b0 − b1e1 − · · · − b7e7),

(x, y) = a0c0 + · · · + a7c7 − b0d0 − · · · − b7d7

+i(a0d0 + · · · + a7d7 + b0c0 + · · · + b7c7),

N(x) = a2
0+· · ·+a2

7−b2
0−· · ·−b2

7+i(2a0b0+· · ·+2a7b7)

= (a0 + ib0)2 + (a1 + ib1)2 + · · · (a7 + ib7)2,

τ(x) = a0+a1e1+ · · ·+a7e7− i(b0+b1e1+ · · ·+b7e7),

γ(x) = a0 + · · · + a3e3 − a4e4 − · · · − a7e7

+i(b0 + · · · + b3e3 − b4e4 − · · · − b7e7),

τγ(x) = a0 + · · · + a3e3 − a4e4 − · · · − a7e7

+i(−b0 − · · · − b3e3 + b4e4 + · · · + b7e7).

Let φ be the linear map from C′ to CC 

1, e1, e2, e3, e′4, e
′
5, e
′
6, e
′
7 to 1, e1, e2, e3, ie4, ie5, −ie6, ie7, 

respectively.  Then φ  is an injective homomorphism as 
algebras.  Therefore, the split Cayley  algebra C′ is 
isomorphic to the subalgebra < 1, e1, e2, e3, ie4, ie5, −ie6, 

ie7 >R of CC :

C′ ⊆  C C .

Proposition 2.3 The complexifications of the Cayley 
algebra C and the split Cayley algebra C′ are isomorphic:

CC � C′C .

(Proof.) The map from C′C to CC that makes a + i b ∈ C′C
correspond to φ(a) + i φ(b) is an isomorphism. □

C doesn’t have an associative law, but it replaces the 
following formulas in C:

1. ab = ba.
2. (aa)b = a(ab), (ab)a = a(ba), b(aa) = (ba)a.

(aa)b = a(ab), (ab)a = a(ba), b(aa) = (ba)a.
3. (ab)c + b(ca) = a(bc) + (bc)a,

(ab)c + (ac)b = a(bc) + a(cb),
(ab)c + (ba)c = a(bc) + b(ac).

4. (ab)(ca) = a(bc)a, (Moufang’s formula)
(ab)(ba) = a(bb)a = (a, a)(b, b).

5. (a, a) = aa = aa,

(a, b) = 1
2 (ab + ba) = 1

2 (ab + ba),

(a, b)c = 1
2 ((ca)b + (cb)a) = 1

2 (a(bc) + b(ac)).
6. (a, b) = (b, a) = (a, b) = (b, a).
7. (ab, ab) = (a, a)(b, b),

(ab, ac) = (a, a)(b, c) = (ba, ca),
(a, b)(c, d) = 1

2 ((ac, bd) + (ad, bc)).
8. (ab, c) = (b, ac), (ba, c) = (b, ca).
9. When u0 1, u1, u2, · · · , um

ui(u ja) = −u j(uia), (i , j). especially,  uiu j = −u jui. 
ui(uia) = −a. especially,  ui

2 = −1.
ui(u juk) = u j(ukui) = uk(uiu j), (i, j, k are different).

2.2 Exceptional Lie group G2

We define the Lie groups of type G2 and investigate their
properties.

Definition 2.4 We define groups G2, G2(2) and G2
C as

automorphismgroups of Jordan algebras :

G2 = {α ∈ IsoR(C) | α(xy) = α(x)α(y) },
G2(2) = {α ∈ IsoR(C′) | α(xy) = α(x)α(y) },that corresponds

are the normal orthonor-=

mal basis.
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G2
C = {α ∈ IsoC(CC) | α(xy) = α(x)α(y) }.

Then G2, G2(2) and G2
C are compact, non-compact and

complex Lie groups of type G2, respectively.
For α ∈ G2, we can define the complexified map

αC : CC → CC as αC(a + ib) = α(a) + iα(b), where
a, b ∈ C. Then we identify α ∈ G2 with αC ∈ G2

C :

G2 ⊆ G2
C .

Similarly, from C′C = CC , for α ∈ G2(2), we can define
the complexified map αC : CC → CC as αC(a + ib) =
α(a) + iα(b), where a, b ∈ C′. Then we identify α ∈ G2(2)

with αC ∈ G2
C :

G2(2) ⊆ G2
C .

γ′(a) = γ′(m) + γ′(n)e4,

γ′′(a) = γ′′(m) + γ′′(n)e4,

where γ′(m1 + m2e2) = m1 − m2e2,

γ′′(m1 + m2e2) = m1 + m1e2.

for m = m1 + m2e2 ∈ H = C ⊕ Ce2. The same applies to
n.

Therefore, as notations, we often write

γ = γC = γ123 , γ′ = γH = γ145 , γ′′ = γC = γ642 .

Then, γ2 = γ′2 = γ′′2 = 1 andγ, γ′, γ′′ are commutative,
respectively:

γγ′ = γ′γ, γγ′′ = γ′′γ, γ′γ′′ = γ′′γ′.

From the definition of γ, γ′, γ′′, we have

γ, γ′, γ′′ ∈ G2.

Since the algebra generated by

1, e1, e4, e5, ie6, ie7, ie2, ie3

is isomorphic to the split Cayley algebra C′, as in the case
of γ, we can get

(G2
C)τγ′ � G2(2),

where γ′ = γ145 . Similarly, since the algebra generated
by

1, e6, e4, e2, ie3, ie5, ie7, ie1

is isomorphic to the split Cayley algebra C′, we can get

(G2
C)τγ′′ � G2(2),

where γ′′ = γ642 . We put γγ′ as γ′′′:

γ′′′ = γγ′.

Then we have

γγ′ = γ′′′, γ′γ′′′ = γ, γ′′′γ = γ′.

In this paper, in order to investigate the relation be-
tween the arrangement of subgroups of Lie groups and
involutions, this relational expression is clarified as a con-
cept.

Definition 2.5 For a group G and an ordered set
{µ1, µ2, µ3} of automorphisms of G, if they satisfy the
following conditions

µ1 µ2 = µ3, µ2 µ3 = µ1, µ3 µ1 = µ2,

then, we call them cyclic. Moreover, if any two auto-
morphisms is commutative, they are called commutative
cyclic automorphisms. When there is no confusion, we
omit the parentheses.

For cyclic automorphismsµ1, µ2, µ3 of G, each Gµi

is a subgroup of G. So, we can write the following dia-
gram.

G2 = (G2
C )τ ⊆ G2

C ,

G2(2) = (G2
C )τγ ⊆ G2

C .

Then G2 and G2(2) are isomorphic to (G2
C  )τ and 

(G2
C )τγ, respectively:

At this time, γ is the element of G2 and G2(2) :

γ ∈ G2 ∩ G2(2) ⊆ G2
C .

In general, for a group G and an involution µ , we define 
Gµ as follows:

We consider other γ type involutions. Involutions             of 

type γ are defined as follows:

2.3 Other γ type involutions

γ′,γ′′

γ′(a) =  a0 + a1e1 − a2e2 − a3e3 + a4e4 + a5e5 − a6e6 −a7e7,  

γ′′(a) = a0 − a1e1 + a2e2 − a3e3 + a4e4 − a5e5 + a6e6 −a7e7. 

can also be defined as γ′     and  γ′′ 

By expressing a ∈ C as a = m   + ne4 ∈ H ⊕ He4,

        ( m, n ∈ H = C ⊕ Ce2, where C = R ⊕ Re1 ) 

We define (G2
C )τ and (G2

C )τγ as follows :

(G2
C )τ = {α ∈ G2

C | ατ = τα },

(G2
C )τγ = {α ∈ G2

C | ατγ = τγα }. 

Gµ =  { g ∈ G   | gµ = µg }.
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G

↗ ↑ ↖
Gµ1 Gµ2 Gµ3

Then, each two intersectionsGµi∩Gµ j is equal to the three
intersections:

Gµ1 ∩Gµ2 = Gµ2 ∩Gµ3 = Gµ3 ∩Gµ1 = Gµ1 ∩Gµ2 ∩Gµ3 .

From now on, we will write Gµi ∩ Gµ j as Gµi,µ j and
Gµi ∩Gµ j ∩Gµk as Gµi,µ j,µk . Using this notation, the above
relational expression can be written as:

Gµ1 ,µ2 = Gµ2 ,µ3 = Gµ3 ,µ1 = Gµ1 ,µ2 ,µ3 .

Proposition 2.6 For involutions γ = γC, γ′ = γH, γ′′ =
γC of G2

C ,

{γ, γ′, γγ′}, {γ, γ′′, γγ′′}, {γ′, γ′′, γ′γ′′}

are commutative cyclic involutions, respectively.

(Proof.) These are obtained by direct calculations. □

By using τ, we get the following diagram.

G2
C

↗ ↑ ↖
(G2

C)τ (G2
C)τγ′(G2

C)τγ

This diagram means

G2
C

↗ ↑ ↖
G2(2) G2 G2(2)

3. Jordan algebra and the Lie group F4

3.1 Jordan algebra
First, we define Jordan algebra. Let J = J(3,C) denote
all 3 × 3 Hermitian matrices with entries in the Cayley
algebra C. Any element X ∈ J is of the form

X = X(ξ, x) =


ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

,

1
2

where ξi ∈ R, xi ∈ C. In J, the multiplication X ◦ Y is
defined by

X ◦ Y = (XY + YX)

which is called the Jordan multiplication. Then J is
called Jordan algebra. We define a trace tr(X), an inner
product (X,Y) and a trilinear form tr(X,Y,Z) respectively
by

tr(X) = ξ1 + ξ2 + ξ3, X = X(ξ, x)

(X,Y) = tr(X ◦ Y),

tr(X,Y,Z) = (X,Y ◦ Z),

Moreover we define the Freudenthal multiplication X ×Y

by

X×Y = 2
1 (2X◦Y−tr(X)Y−tr(Y)X+(tr(X)tr(Y)−(X,Y))E),

where E is the 3 × 3 unit matrix, and we define a trilinear
form (X,Y,Z) and a determinantdetX respectively by

1
3

(X,Y,Z) = (X,Y × Z),

detX = (X, X, X).

For X = X(ξ, x), Y = Y(η, y) and Z = Z(ζ, z) ∈ J, the 
explicit forms in the terms of their entries are as follows.

(X, Y) = ξ1η1 + ξ2η2 + ξ3η3 + 2((x1, y1) + (x2, y2) + (x3, y3)),
tr(X, Y, Z) = ξ1η1ζ1 + ξ2η2ζ2 + ξ3η3ζ3 + R(x1y2z3 + x1z2y3)

(z1, x1))

+R(x2y3z1 + x2z3y1) + R(x3y1z2 + x3z1y2)
+ξ1((y2, z2)+(y3, z3))+ξ2((y3, z3)+(y1, z1))
+ξ3((y1, z1) + (y2, z2))

+η1((z2, x2) + (z3, x3)) + η2((z3, x3) +

+ξ3η1ζ2 + ξ3η2ζ1)
+R(x1y2z3 + x1z2y3) + R(x2y3z1 + x2z3y1)
+R(x3y1z2 + x3z1y2)

detX = ξ1ξ2ξ3 + 2R(x1 x2 x3)

where R(x) denotes the real part of x ∈ C.
For X = X(ξ, x) and Y = Y(η, y) ∈ J, the explicit

form of X ◦ Y is as follows.

X ◦ Y = 2
1


ζ1 z3 z2

z3 ζ2 z1

,z2 z1 ζ3

ζ1 = 2ξ1η1 + x3y3 + y3 x3 + x2y2 + y2 x2,
ζ2 = 2ξ2η2 + x1y1 + y1 x1 + x3y3 + y3 x3,
ζ3 = 2ξ3η3 + x2y2 + y2 x2 + x1y1 + y1 x1,
z1 = (η2 + η3)x1 + (ξ2 + ξ3)y1 + x2y3 + y2 x3,

 (ξ1η2ζ3 + ξ1η3ζ2 + ξ2η3ζ1 + ξ2η1ζ3

− ξ1 (y1, z1) − ξ2 (y2, z2) − ξ3 (y3, z3)
−η1(z1, x1) − η2(z2, x2) − η3(z3, x3)
ζ1− (x1,                 y1) ζ2−  (x2, y2) ζ3−  (x3, y3),

−ξ1 x1 x1 − ξ2 x2 x2 − ξ3 x3 x3,

z2 = (η3 + η1)x2 + (ξ3 + ξ1)y2 + x3y1 + y3 x1, 
z3 = (η1 + η2)x3 + (ξ1 + ξ2)y3 + x1y2 + y1 x2.

+η3((z1, x1)+ (z2, x2))

+ζ1 (x2, y2) + (x3, y3)) +ζ2 ((x3, y3) +(x1, y1))
+ζ3 ((x1, y1) +(x2, y2),

(X, Y, Z) = 1
2
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Especially , X ◦ X is as follows.

X ◦ X = X2 =


ζ1 z3 z2

z3 ζ2 z1

z2 z1 ζ3

,
ζ1 = ξ1

2 + x3 x3 + x2 x2,
ζ2 = ξ2

2 + x1 x1 + x3 x3,
ζ3 = ξ3

2 + x2 x2 + x1 x1,
z1 = (ξ2 + ξ3)x1 + x2 x3,
z2 = (ξ3 + ξ1)x2 + x3 x1,
z3 = (ξ1 + ξ2)x3 + x1 x2.

For X = X(ξ, x) and Y = Y(η, y) ∈ J, the explicit
form of X × Y is as follows.

1
2




ζ1 z3 z2

X × Y =  z3 ζ2 z1
,

z2 z1 ζ3

ζ1 = ξ2η3 + ξ3η2 − (x1y1 + y1 x1),
ζ2 = ξ3η1 + ξ1η3 − (x2y2 + y2 x2),
ζ1 = ξ1η2 + ξ2η1 − (x3y3 + y3 x3),
z1 = x2y3 + y2 x3 − ξ1y1 − η1 x1,
z2 = x3y1 + y3 x1 − ξ2y2 − η2 x2,
z3 = x1y2 + y1 x2 − ξ3y3 − η3 x3.

Especially , X × X is as follows.
ξ2ξ3 − x1 x1 x1 x2 − ξ3 x3 x3 x1 − ξ2 x2

x1 x2 − ξ3 x3 ξ3ξ1 − x2 x2 x2 x3 − ξ1 x1

x3 x1 − ξ2 x2 x2 x3 − ξ1 x1 ξ1ξ2 − x3 x3

.
Lemma 3.1 The followings hold in J.

1
2

(1) X ◦ Y = Y ◦ X, X × Y = Y × X.
(2) E ◦ E = E. E × E = E.

E ◦ X = X, E × X = (tr(X)E − X).
(3) The inner product (X,Y) is symmetric and positive

definite.
(4) tr(X,Y,Z) = tr(Y,Z, X) = tr(Z, X,Y)
= tr(X,Z,Y) = tr(Y, X,Z) = tr(Z,Y, X).
The similar statement is also valid for (X,Y,Z).

(5) (X, E) = (X, E, E) = tr(X, E, E) = tr(X),
tr(X,Y, E) = (X,Y).

(6) tr(X × Y) = 1
2 (tr(X)tr(Y) − (X,Y)).

(7) (X × X) ◦ X = (detX)E (Hamilton-Cayley).
(8) (X × X) × (X × X) = (detX)X.

(Proof.) These are obtained by direct calculations. □

In J, we use the following notations:

E3 =


0 0 0
0 0 0
0 0 1

, F1(x) =


0 0 0
0 0 x

0 x 0

,
F2(x) =


0 0 x

0 0 0
x 0 0

, F3(x) =


0 x 0
x 0 0
0 0 0

.
For the Jordan multiplication and the Freudenthal multi-
plication, we have the following formulas:

1. Ei ◦ Ei = Ei, Ei ◦ E j = 0, (i , j).

2. Ei ◦ Fi(x) = 0, 1
2Ei ◦ F j(x) = F j(x), (i , j).

3. Fi(x) ◦ Fi(y) = (x, y)(Ei+1 + Ei+2),

Fi(x) ◦ Fi+1(y) = 1
2 Fi+2(xy).

4. Ei × Ei = 0, Ei × Ei+1 =
1
2 Ei+2.

In these formulas, the indexes are considered as mod 3.

3.2 Complex Jordan algebra
We define the complex Jordan algebra JC as the complex-
ification of the Jordan algebra J :

JC = { X1 + i X2 | X1, X2 ∈ J }.

Any element X ∈ JC is of the form

X = X(ξ, x) =


ξ1 x3 x2

x3 ξ2 x1

,x2 x1 ξ3

where ξ j ∈ C = R ⊕ i R, x j ∈ CC = C ⊕ i C.
Then, JC has two complex conjugations as follows :

X1 + iX2 = X1 + i X2,
τ(X1 + iX2) = X1 − iX2, X j ∈ J.

For X = X1 + iX2, Y = Y1 + iY2 ∈ JC , we define the
multiplication X ◦ Y and X × Y as follows :

X ◦ Y = X1 ◦ Y1 − X2 ◦ Y2 + i(X1 ◦ Y2 + X2 ◦ Y1),
X × Y = X1 × Y1 − X2 × Y2 + i(X1 × Y2 + X2 × Y1).

JC is called the complex exceptional Jordan algebra.

E1 =


1 0 0
0 0 0
0 0 0


, E2 =


0 0 0
0 1 0
0 0 0

, Lemma 3.2 For α ∈ IsoC(JC), the following three con-
ditions are equivalent.

Fi(x) × Fi+1(y) = Fi+2(xy).1
2

5. Ei × Fi(x) = − Fi(x) 　Ei × F j(x) = 0, (i , j).

Fi(x) × Fi(y) = −(x, y)Ei,6.
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(1) det(αX) = detX for all X ∈ JC .
(2) (αX, αY, αZ) = (X,Y,Z) for all X,Y,Z ∈ JC .
(3) αX × αY = tα−1(X × Y) for all X,Y ∈ JC .

(Proof.) See [16, Lemma 2.1.1.]. □

3.3 Split Jordan algebra
For Cayley algebra C and split Cayley algebra C′, we de-
fine two types of split Jordan algebras as follows :

J(3,C′) = {X ∈ M(3,C′) | X∗ = X},
J(1, 2,C) = {X ∈ M(3,C) | I1X∗I1 = X},

where I1 = −E1 + E2 + E3:

I1 =

 0 1 0
0 0 1

.
In J(3,C′), any element X is of the form

X = X(ξ, x) =


ξ1 x3 x2

x3 ξ2 x1

,x2 x1 ξ3

where ξ j ∈ R, x j ∈ C′. And in J(1, 2,C), any element X

is of the form

X = X(ξ, x) =


ξ1 x3 x2

−x3 ξ2 x1

−x2 x1 ξ3

,
where ξ j ∈ R, x j ∈ C. In J(3,C′) and J(1, 2,C), the
Jordan multiplication X ◦ Y is defined by

X ◦ Y = 1
2 (XY + YX).

We define the (JC)τγ and (JC)τσ as follows :

(JC)τγ = { X ∈ JC | τγX = X },
(JC)τσ = { X ∈ JC | τσX = X }.

Then,

J(3,C′) � (JC)τγ,
J(1, 2,C) � (JC)τσ.

The correspondence between J(1, 2,C) and (JC)τσ as a
Jordan algebra is as follows :

ξ1 x3 x2

−x3 ξ2 x1

−x2 x1 ξ3

↔

ξ1 i x3 i x2

i x3 ξ2 x1

i x2 x1 ξ3

,

where ξ j ∈ R, x j ∈ C. The complexifications of J(3,C′)
and J(1, 2,C) are isomorphic to JC, respectively. So, we
can identify them:

JC = J(3,C′)C = J(1, 2,C)C .

3.4 Exceptional Lie group F4

We define the Lie group F4 and consider its involutions.

Definition 3.3 We define the group F4 as the automor-
phism group of the Jordan algebra J :

F4 = {α ∈ IsoR(J) | α(X ◦ Y) = α(X) ◦ α(Y)}.

Theorem 3.4 We can also define F4 as follows:
F4 = {α ∈ IsoR(J) | α(X ◦ Y) = α(X) ◦ α(Y)}
= {α ∈ IsoR(J) | α(X × Y) = α(X) × α(Y)}
= {α ∈ IsoR(J) | tr(αX, αY, αZ) = tr(X,Y,Z)

(αX, αY) = (X, Y)}

= {α ∈ IsoR(J ) | det(αX) = detX, (αX, αY) = (X, Y)}

= {α ∈ IsoR(J ) | det(αX) = detX, αE = E}.

(Proof.) See [19, Lemma 2.2.4]. □

F4 contains G2 as a subgroup in the following way.
For α ∈ G2, we define the mapping α̃ : J→ J as

α̃



ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

 =

ξ1 αx3 αx2

αx3 ξ2 αx1

αx2 αx1 ξ3

.
Then α̃ ∈ F4. So we identify α ∈ G2 with α̃ ∈ F4 :

G2 ⊆ F4.

We often write the same notation α̃ = α.
For the map γ : C → C, R-linear map γ : J → J is

defined by

γ


ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

 =

ξ1 γx3 γx2

γx3 ξ2 γx1

γx2 γx1 ξ3

.
Then we get γ2 = γ. By this correspondence,we consider
γ ∈ G2 to be γ ∈ F4.

γ ∈ G2 ⊆ F4.

We consider the following subgroup F4
γ of F4 :

F4
γ = {α ∈ F4 | αγ = γα }.

We get the following diagram.
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F4
γ → F4

↑ ↑
G2
γ → G2

To investigate the group F4
γ, we decompose J into

eigenspaces :

J = Jγ ⊕ J−γ,

where

Jγ = {X ∈ J | γX = X },
J−γ = {X ∈ J | γX = −X }.

Any element X ∈ Jγ is of the form

X =


ξ1 a3 a2

a3 ξ2 a1

a2 a1 ξ3

,
where ξi ∈ R, a j ∈ H. And any element X ∈ J−γ is of
the form

X =


0 a3e4 −a2e4

−a3e4 0 a1e4

a2e4 −a1e4 0

,
where a j ∈ H.

We define the R-linear mapσ : J→ J as

σ


ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

 =

ξ1 −x3 −x2

−x3 ξ2 x1

−x2 x1 ξ3

.
Then we get σ ∈ F4 and σ2 = σ. We consider the following 
subgroup F4

σ of F4 :

F4
σ = {α ∈ F4 | ασ = σα }.

To investigate the group F4
σ, we decompose J into 

eigenspaces :

J = Jσ ⊕ J−σ,

where

Jσ = {X ∈ J | σX = X },
J−σ = {X ∈ J | σX = −X }.

For X = X(ξ, x), we get

E1 ◦ X = 1
2


2ξ1 x3 x2

x3 0 0
x2 0 0

.
Hence, the following holds:

Jσ = {X ∈ J | E1 ◦ X = ξE1, ξ ∈ R },

J−σ = {X ∈ J | E1 ◦ X = 1
2 X },

where any element X ∈ Jσ and Y ∈ J−σ are of the form

X =


ξ1 0 0
0 ξ2 x1

0 x1 ξ3

, Y =


0 x3 x2

x3 0 0
x2 0 0

.
Spin(8) and Spin(9) are realized in F4 as follows :

Spin(8) = {α ∈ F4 | αEi = Ei, i = 1, 2, 3},

Spin(9) = (F4)E1 = {α ∈ F4 | αE1 = E1}.

By using eigendecomposition by σ, we get

F4
σ = (F4)E1 � Spin(9).

Hence we have

G2 ⊆ Spin(8) ⊆ Spin(9) ⊆ F4.

3.5 Cayley projective plane
We define Cayley projective plane CP2 as

CP2 = {X ∈ J | X2 = X, tr(X) = 1}.

We often refer to CP2 simply as Cayley plane.

Theorem 3.5

CP2 � F4/Spin(9)

(Proof.) For α ∈ F4 and X ∈ CP2, we have αX ∈ CP2.
Hence the group F4 acts on CP2. Then this action is
transitive. And the isotropy subgroup of F4 at E1 is
(F4)E1 = Spin(9). □

From F4
σ = (F4)E1 � Spin(9), we get

CP2 � F4/F4
σ = F4/(F4)E1 � F4/Spin(9).

We putσ1 = σ, and we define the R-linear mapσ2 : J→
J andσ3 : J→ J respectively, as

σ2


ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

 =

ξ1 −x3 x2

−x3 ξ2 −x1

x2 −x1 ξ3

,

σ3


ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

 =

ξ1 x3 −x2

x3 ξ2 −x1

−x2 −x1 ξ3

.
For X = X(ξ, x), we get

E2 ◦ X = 1
2


0 x3 0
x3 2ξ2 x1

0 x1 0

,
E3 ◦ X = 1

2


0 0 x2

0 0 x1

x2 x1 2ξ3

.
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Hence, for eigendecomposition

J = Jσ j ⊕ J−σ j ,

the following holds:

Jσ j = {X ∈ J | σ jX = X },

= {X ∈ J | E j ◦ X = ξE j, ξ ∈ R },

J−σ j = {X ∈ J | σ jX = −X }

= {X ∈ J | E j ◦ X = 1
2 X },

where any element X ∈ Jσ2 , Y ∈ J−σ2 , Z ∈ Jσ3 , W ∈
J−σ3 are of the form

X =


ξ1 0 x2

0 ξ2 0
x2 0 ξ3

, Y =


0 x3 0
x3 0 x1

0 x1 0

,

Z =


ξ1 x3 0
x3 ξ2 0
0 0 ξ3

, W =


0 0 x2

0 0 x1

x2 x1 0

.
At this time as in the case of σ1, we get the following.

F4
σ2 = (F4)E2 � Spin(9),

F4
σ3 = (F4)E3 � Spin(9).

Proposition 3.6 σ1, σ2, σ3 are commutative cyclic in-
volutions. 
(Proof.) These are obtained by direct calculations.         □

By using the symbols

F4
σi,σ j = F4

σi ∩ F4
σ j , (i , j),

F4
σ1 ,σ2 ,σ3 = F4

σ1 ∩ F4
σ2 ∩ F4

σ3 ,

We get the following diagram.

F4

↗ ↑ ↖
F4
σ1 F4

σ2 F4
σ3

↖ ↑ ↗
F4
σ1 ,σ2 ,σ3

In this diagram, we have

F4
σ1 ,σ2 ,σ3 = F4

σ1 ,σ2 = F4
σ2 ,σ3 = F4

σ3 ,σ1 � Spin(8).

Hence this diagram means

F4

↗ ↑ ↖
Spin(9) Spin(9) Spin(9)

↖ ↑ ↗
Spin(8)

The intersection of two different Spin(9) in this diagram
is Spin(8).

By Theorem 3.5, we get the following corollary.

Corollary 3.7 The Cayley plane CP2 can be expressed
as:

CP2 � F4/F4
σ1 = F4/(F4)E1 � F4/Spin(9),

CP2 � F4/F4
σ2 = F4/(F4)E2 � F4/Spin(9),

CP2 � F4/F4
σ3 = F4/(F4)E3 � F4/Spin(9).

3.6 Complex exceptional Lie group F4
C

Definition 3.8 We define the group F4
C as the automor-

phism group of the complex Jordan algebra JC :

F4
C = {α ∈ IsoC(JC ) | α(X ◦ Y) = α(X) ◦ α(Y)}.

Theorem 3.9 We can also define F4
C as follows:

F4
C = {α ∈ IsoC(JC ) | α(X ◦ Y) = α(X) ◦ α(Y)}

□(Proof.) See [16, Proposition 2.1.3.].

 For α ∈ F4, we define αC : JC → JC as 

αC (X1 + i X2) = α(X1) + i α(X2).

By identifying α and αC , we can consider F4 as the sub-
group of F4

C :

F4 ⊆ F4
C .

When we extend a map α ∈ HomR(C,C) to the map of
HomC(JC ,JC), the following diagram is commutative.

HomR(C,C) → HomC(CC ,CC)
↓ ↓

HomR(J,J) → HomC(JC ,JC)

That is, (α̃)C = α̃C . Then we get the following diagram.

F4 → F4
C

↑ ↑
G2 → G2

C

We consider the subgroup (F4
C)τ:

(F4
C)τ = {α ∈ F4

C | ατ = τα }.

Then (F4
C)τ is isomorphic to F4 :

= {α ∈ IsoC(JC) | α(X × Y) = α(X) × α(Y)}
= {α ∈ IsoC(JC) | tr(αX, αY, αZ) = tr(X,Y,Z)

         (αX, αY) = (X, Y)}
= {α ∈ IsoC  (   J C)  | det(αX) = detX, 

         (αX, αY) = (X, Y)}
= {α ∈ IsoC  (    J C) | det(αX) = detX, αE = E}.

111



F4 = (F4
C)τ ⊆ F4

C .

Proposition 3.10 τ, γ, σ are commutative, as elements
of F4

C , respectively:

τγ = γτ, τσ = στ, γσ = σγ.

(Proof.) These are obtained by direct calculations. □

Then, F4(4) and F4(−20) are representedas an invariant
group by τγ and τσ, respectively:

F4(4) = (F4
C)τγ ⊆ F4

C ,

F4(−20) = (F4
C)τσ ⊆ F4

C .

For α ∈ F4 and X = X(ξ, x) ∈ J, from α(−x j) =
−α(x j) ( j = 2, 3), we get

σαX(ξ, x) = σX(ξ, αx) = ασX(ξ, x).

Hence we have G2 ⊆ F4(−20) .
G2(2) ⊆ F4(4) is obvious.

Theorem 3.11 The following inclusive relations hold:

G2 ⊆ F4, G2 ⊆ F4(−20) , G2(2) ⊆ F4(4).

We get the following diagram.

FC
4

↗ ↑ ↖
F4(−20) F4 F4(4)

↖ ↑ ↑
G2 G2(2)

4. Construction of (FC
4 )γ and (FC

4 )σ

Yokota constructed (FC
4 )γ and (FC

4 )σ, concretely. Here
we describe the ideas.

Let JH denote all 3 × 3 Hermitianmatrices with en-
tries in H.

JH = {X ∈ M(3,H) | X∗ = X }

Any element M ∈ JH is of the form

M =


ξ1 m3 m2

m3 ξ2 m1

m2 m1 ξ3

,
where ξi ∈ R, m j ∈ H. And, for a = (a1, a2, a3) ∈ H3,
we take

F(ae4) =


0 a3e4 −a2e4

−a3e4 0 a1e4

a2e4 −a1e4 0

.
By identifying M+a ∈ JH ⊕H3 and M+F(ae4) ∈ J, 

we get the following as vector spaces:

JH ⊕ H3 = J.

In JH ⊕ H3, we define a Freudenthal multiplication X × Y 
and an inner product (X, Y) as follows:

JHC ⊕ (HC)3 = JC .

We define S p(n,K) as

S p(n,K) = {A ∈ M(n,K) | A∗A = E}, K = H, HC .

As a notation, we write S p(n) = S p(n,H).

Theorem 4.1 (1) F4
γ � (S p(1) × S p(3))/Z2,

where Z2 = {(1, E), (−1,−E)}.
(2) (FC

4 )γ � (S p(1,HC) × S p(3,HC))/Z2,
where Z2 = {(1, E), (−1,−E)}.

(Proof.) (1) We define φ : S p(1,H) × S p(3,H)→ Fγ4 by
φ(p, A)(M + a) = AMA∗ + paA∗, M + a ∈ JH ⊕H3 = J.

Then φ is a homomorphismand onto with Kerφ =

{(1, E), (−1,−E)} = Z2.
(2) Similarly, we define φ : S p(1,HC) × S p(3,HC) →
(FC

4 )γ by φ(p, A)(M + a) = AMA∗ + paA∗, M + a ∈
JHC ⊕ (HC)3 = JC . □

(M + a) × (N +b) = (M × N − -(a∗b+b∗a)) − - (aN + bM),

(M + a, N + b) = (M, N) + 2(a, b).

These make JH ⊕ H3 and J isomorphic, which keeps the 
inner product as algebras. Then we have

γ(M + a) = M − a.

By considering the complexification (JH ⊕ H3)C = JHC ⊕ 
(HC )3, we have

1
2

1
2
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C .

Proposition 3.10 τ, γ, σ are commutative, as elements
of F4

C , respectively:

τγ = γτ, τσ = στ, γσ = σγ.

(Proof.) These are obtained by direct calculations. □

Then, F4(4) and F4(−20) are representedas an invariant
group by τγ and τσ, respectively:

F4(4) = (F4
C)τγ ⊆ F4

C ,

F4(−20) = (F4
C)τσ ⊆ F4

C .

For α ∈ F4 and X = X(ξ, x) ∈ J, from α(−x j) =

σαX(ξ, x) = σX(ξ, αx) = ασX(ξ, x).

Hence we have G2 ⊆ F4(−20) .
G2(2) ⊆ F4(4) is obvious.

Theorem 3.11 The following inclusive relations hold:

G2 ⊆ F4, G2 ⊆ F4(−20) , G2(2) ⊆ F4(4).

We get the following diagram.

FC
4

↗ ↑ ↖
F4(−20) F4 F4(4)

↖ ↑ ↑
G2 G2(2)

4. Construction of (F4
C)γ and (F4

C)σ

Yokota constructed (F4
C)γ and (F4

C)σ, concretely. Here
we describe the ideas.

Let JH denote all 3 × 3 Hermitianmatrices with en-
tries in H.

JH = {X ∈ M(3,H) | X∗ = X }

Any element M ∈ JH is of the form

M =


ξ1 m3 m2

m3 ξ2 m1

,m2 m1 ξ3

where ξi ∈ R, m j ∈ H. And, for a = (a1, a2, a3) ∈ H3,
we take

F(ae4) =


0 a3e4 −a2e4

0 a1e4

a2e4 −a1e4 0

.

JHC ⊕ (HC)3 = JC .

We define S p(n,K) as

S p(n,K) = {A ∈ M(n,K) | A∗A = E}, K = H, HC .

As a notation, we write S p(n) = S p(n,H).

Theorem 4.1 (1) F4
γ � (S p(1) × S p(3))/Z2,

where Z2 = {(1, E), (−1,−E)}.
(2) (F4

C)γ � (S p(1,HC) × S p(3,HC))/Z2,
where Z2 = {(1, E), (−1,−E)}.

(Proof.) (1) We define φ : S p(1,H) × S p(3,H)→ F4
γ by

φ(p, A)(M + a) = AMA∗ + paA∗, M + a ∈ JH ⊕H3 = J.
Then φ is a homomorphismand onto with Kerφ =

{(1, E), (−1,−E)} = Z2.
(2) Similarly, we define φ : S p(1,HC) × S p(3,HC) →
(F4

C)γ by φ(p, A)(M + a) = AMA∗ + paA∗, M + a ∈
JHC ⊕ (HC)3 = JC . □

By identifying M+a ∈ JH ⊕H3 and M+F(ae4) ∈ J, 
we get the following as vector spaces:

JH ⊕ H3 = J.

In JH ⊕ H3, we define a Freudenthal multiplication X × Y 
and an inner product (X, Y) as follows:

(M + a) × (N +b) = (M × N − 1-(a∗b+b∗a)) − - (aN + bM),

(M + a, N + b) = (M, N) + 2(a, b).

These make JH ⊕ H3 and J isomorphic, which keeps the 
inner product as algebras. Then we have

γ(M + a) = M − a.

By considering the complexification (JH ⊕ H3)C = JHC ⊕ 
(HC )3, we have

1
22
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On the other hand, for F4
σ and (F4

C )σ, by showing 
that these are the universal covering group of SO(9) and 
SO(9, C) respectively, we obtain the following theorem.

Theorem 4.2 　(1) F4
σ � Spin(9).

(2) (F4
C )σ � Spin(9, C).

5. Arrangement of subgroups of F4
C

Let L be a subgroup of F4
C and let θ ∈ F4

C , then we define 
Lθ as the following way :

　　Lθ = { α ∈ L | αθ = θα }.



In this notation, we get G2
σ = G2.

By using γ and σ, we can also make the following 
diagram for F4.

F4

↗ ↖
F4
γ F4

σ

↖ ↗
F4
γ ∩ F4

σ

In this diagram, F4/F4
σ � CP2 holds.

The arrangementof the non-compactgroups F4(−20)

and F4(4) in FC
4 is as shown in the following diagram.

FC
4

↗ ↖
F4(−20) F4(4)

↖ ↗
F4(−20) ∩ F4(4)

By using γ for this diagram, we can get the following
diagram of the γ sequence.

(FC
4 )γ

↗ ↖
Fγ4(−20) Fγ4(4)

↖ ↗
Fγ4(−20) ∩ Fγ4(4)

Similarly, we can get the following diagram of the σ se-
quence.

(FC
4 )σ

↗ ↖
Fσ4(−20) Fσ4(4)

↖ ↗
Fσ4(−20) ∩ Fσ4(4)

As in the case of σ = σ1, we have

(F4
C)τσ2 � F4(−20) ,

(F4
C)τσ3 � F4(−20) .

Hence, we get the following diagram.

FC
4

↗ ↑ ↖
(F4

C)τσ1 (F4
C)τσ2 (F4

C)τσ3

This diagram means

FC
4

↗ ↑ ↖
F4(−20) F4(−20) F4(−20)

F4(−20)

↗ ↑ ↖
Fγ4(−20) Fγ

′

4(−20) Fγγ
′

4(−20)

↖ ↑ ↗
Fγ, γ

′, γγ′

4(−20)

The intersection of two different Fγ4(−20) , Fγ
′

4(−20) , Fγγ
′

4(−20)

are equal:

Fγ4(−20)∩Fγ
′

4(−20) = Fγ4(−20)∩Fγγ
′

4(−20) = Fγ
′

4(−20)∩Fγγ
′

4(−20)

= Fγ, γ
′, γγ′

4(−20) .

Hence, we get the following diagram.

FC
4

↗ ↑ ↖
(F4

C)γσ1 (F4
C)γ′σ2 (F4

C)γγ′σ3

↖ ↑ ↗
(F4

C)γσ1 , γ
′σ2 , γγ

′σ3

The intersection of two different (F4
C)γσ1 , (F4

C)γ′σ2 ,
(F4

C)γγ′σ3 are equal:

(F4
C)γσ1 ∩ (F4

C)γ′σ2 = (F4
C)γσ1 ∩ (F4

C)γγ′σ3

= (F4
C)γ′σ2 ∩ (F4

C)γγ′σ3 = (F4
C)γσ1 , γ

′σ2 , γγ
′σ3 .

Moreover, we can get larger diagrams by combining
F4-type Lie groups and involutions. For example, we can
get the following diagram.

FC
4

↗ ↖
F4 ↑ F4(4)

↖ ↗
↑ F4 ∩ F4(4) ↑

↗ ↖
F4
σ ↑ F4(4)

σ

↖ ↗
F4
σ ∩ F4(4)

σ

↑
F4
σ ∩ F4(−20)

σ ∩ F4(4)
σ

In each F4(−20) = (F4
C )τσ j , the following diagram can be 

obtained as a hierarchical structure by using commutative 
cyclic involutions γ, γ′, γγ′ ∈ (F4

C )τσ j .

By combining commutative cyclic involutions σ1, 
σ2, σ3 and γ, γ′, γγ′, we get the following proposition.

Proposition 5.1 γσ1, γ′σ2, γγ′σ3 are commutative cyclic 
involutions.  

(Proof.) These are obtained by direct calculations. 　    □
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matically considered:

(N, µ, Z, E6, ; CC P2).

CC P2 is no longer projective geometry, but it may have a 
mathematically rich structure.

The question of mathematically investigating the re-
lationship between the E6 - CC P2 bundle and the F4 - CP2 

bundle can be considered. In this way, in relation to M-
theory, our future expectation is to investigate fiber bun-
dles where the fiber is the Cayley plane and the structure 
group is the exceptional Lie group in the future.
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要約：本研究では、ジョルダン代数、split ジョルダン代数、及びその複素化を用いて、例外型 Lie群 F4
C

の部分群を横田流の手法で具体的に構成する。横田流の手法には、非コンパクト群や複素Lie群を自然に
構成できるという特徴がある。本論文では最初に、G2  型のリー群を調べるためにケーリー代数を定義

し、次にジョルダン代数を用いて F4 型の Lie 群と対合へ拡張する。最後に、F4 型の Lie群の部分群の
配置を対合を用いて考察する。特に、F4 型の 2 つの非コンパクト群とその部分群の配置を、その対合
不変部分群として考察する。

例外型リー群 F4
C における部分群の

横田流の手法を用いた具体的な配置について
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