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Abstract

3D MRI Reconstruction Based on 2D Generative Adversarial

Network Super-Resolution

Zhang Hongtao

In medical diagnosis, the diagnosis of brain pathology often requires the analysis

of the brain through imaging. MRI is currently one of the mainstream brain imag-

ing techniques. The image quality of brain MRI generally depends on the strength

of the static magnetic field. MRI Scanners with lower field strength have disadvan-

tages such as low resolution, high imaging cost, and long scanning time. Researchers

used an iterative method to solve the problem and reconstruct MRI images through

prior information. With the in-depth development of machine learning, deep learning

models for super-resolution reconstruction of MRI images have become a mainstream

trend. Nowadays, the traditional deep learning-based super-resolution method uses a

three-dimensional convolutional neural network to reconstruct MRI images, thereby

obtaining high-resolution MRI images. However, there is a problem of higher training

costs. Our research proposes using two-dimensional generative adversarial neural net-

work technology for super-resolution reconstruction of MRI images. In the experiment,

we design two reconstruction steps. In advance of the reconstruction steps, based on

the three-dimensional peculiarities of MRI and a scale factor of 2, we simulate half of

the MRI slice volume as input. In the first step, we use the residual multi-scale module

attention mechanism generative adversarial network (RMAM-GAN) to reconstruct the

MRI image. RMAM-GAN is a two dimensional generative adversarial network and is
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superior to other super-resolution technologies in texture and frequency information.

Then we stack the reconstructed MRI images and rebuild them to new MRI. The re-

constructed MRI consists of only half of the slices, and there are still missing values

and noise. Using the traditional interpolation method will enlarge the influence of the

noise area. Therefore, we propose a noise-based enhanced super-resolution generative

adversarial network (nESRGAN) in the second reconstruction. The noise added to the

network can provide additional texture restoration possibilities. We use nESRGAN to

restore MRI resolution and high-frequency details further. Finally, we achieve the 3D

reconstruction of brain MRI through two generative adversarial networks. Our proposed

method is superior to 3D super-resolution technology based on deep learning regarding

perception range and image quality evaluation criteria.

key words magnetic resonance imaging; deep learning; super-resolution; three-

dimensional reconstruction; RMAM-GAN; nESRGAN
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Chapter 1

Introduction

In this chapter, we mainly introduce the experimental background and the main-

stream networks under deep learning. In addition, we also review the development

of MRI in the direction of super-resolution and introduce the main contributions and

significance of the experiment.

1.1 Background

The analysis of brain pathology has always been an active area of research. Through

brain imaging, information about brain diseases can be obtained, which is helpful to the

prevention and early diagnosis of brain diseases[1]. Magnetic resonance imaging (MRI)

is one of the most important diagnostic imaging methods widely used in the diagnosis

and image-guided therapy, especially brain imaging diagnosis[2]. The quality of MRI

images is generally determined by the field strength and signal of the MRI scanner.

High-quality images often require more time cost and a smaller signal-to-noise ratio. At

present, most of the MRI scanners commonly used in hospitals are scanners with a field

strength of 1.5 Tesla[3][4]. In a limited time, MRI images have the characteristics of

low resolution, and there are also limiting factors such as long imaging time and noise.

Due to the limitations of imaging technology[5], image super-resolution technology is

favored by medical experts. Image super-resolution technology refers to reconstructing

input low-resolution images into high-resolution images through specific algorithms and
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1.2 Deep Learning

processing methods[6][7].

Researchers have used three-dimensional convolutional neural networks

(3DCNN)[8] to perform MRI super-resolution reconstruction in recent years. 3DCNN

can directly extract 3D image features to reconstruct the entire MRI. Nevertheless,

there are problems such as a large amount of calculation and high time cost. Therefore,

we propose using two-dimensional convolutional neural networks to reduce memory

allocation and time costs.

Our research uses deep learning-based super-resolution models to perform 3D recon-

struction of MRI. The experiment adopts the characteristics of MRI in two-dimensional

slices[9] and prepares two-step reconstruction, respectively. The first reconstruction

mainly restores the high-frequency information of MRI and then reorganizes it. After

the rebuilding, the second reconstruction solves the missing value and noise problems

and finally obtains a high-resolution MRI. Our proposed method is superior to 3D Con-

volutional Neural Network in terms of vision and image evaluation. The high-resolution

MRI images obtained can support an effiective and accurate diagnosis of a medical

doctor within a limited time.

1.2 Deep Learning

1.2.1 Convolution Neural Network

The super-resolution method based on CNN, means that after the pixels are copied

and magnified, a specific fixed convolution kernel is used to convolve and learn this

convolution kernel.

According to the convolutional neural network characteristics, CNN can obtain

high-frequency information from images and can learn nonlinear relationships. Then

low-resolution images and high-resolution images can be fitted through nonlinear map-
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1.2 Deep Learning

ping. It updates the network parameters according to the difference between the con-

structed super-resolution image and the actual high-resolution image. CNN uses the

traditional loss function to measure the accuracy of the image, and the mathematical

proximity is used to measure the smooth average of the colors in the area of the image.

The visually generated image is sometimes not close to the actual image. The primary

process is shown in Figure 1.1.
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Fig. 1.1 MRI super-resolution in CNN.

1.2.2 Generative Adversarial Network

Unlike CNN, a generative adversarial network(GAN) adopts the idea of game

confrontation and uses adversarial loss and content loss. There have some benefits

of GAN. One of the great benefits is that GAN can use the adversarial loss to

encourage the output to look natural. The adversarial loss is part of the discriminator

network’s evaluation of the generator’s operating conditions. If the discriminator

believes that the image makes the generator look reliable, the loss is less than the

loss that the image is ultimately forged. The content loss compares the fine details

in the image by passing the generated image and the original image through the
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1.3 MRI in Super Resolution

CNN feature map and calculating the output loss. GAN combines perceptual loss

with generative loss and applies sub-pixel convolution for up-sampling, generating bet-

ter photo-realistic super-resolution images. The primary process is shown in Figure 1.2.

!"#"$%&'$
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,-+.$-/-#%&'$

Fig. 1.2 MRI super-resolution in GAN.

1.3 MRI in Super Resolution

1.3.1 Super Resolution Reconstruction

Early super-resolution research on MRI images used super-resolution reconstruc-

tion (SRR) to improve the resolution of MRI images[10][11][12]. The SRR algorithm can

mine the relative motion relationship between low-resolution images or video sequences

and mix this relationship on a frame, thereby improving the image’s resolution. At first,

MRI image reconstruction based on super-resolution technology initially adopted the

spatial method. High-resolution images are reconstructed using a series of low-resolution

images with different spatial displacements or blur degrees and some preliminary infor-

mation. However, the disadvantage is that the model is complex, and the calculation is

extensive. The main idea is shown in Figure 1.3.
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1.3 MRI in Super Resolution
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Fig. 1.3 MRI Reconstruction on SRR.

1.3.2 Single Image Super Resolution

With the introduction of single image super-resolution (SISR), MRI super-

resolution reconstruction only requires a low-resolution scan corresponding to a

high-resolution output. However, there are still problems, such as complex calculations.

The subsequent development of deep learning has led researchers to combine deep

learning to perform MRI super-resolution reconstruction[13][14]. It uses a large num-

ber of high-resolution images to construct a learning library to generate a learning

model(Figure 1.4). Restoring low-resolution images introduces the prior knowledge ob-

tained by the learning model to obtain high-frequency details of the image and finally
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1.4 Main Contribution

obtain a better reconstruction effect[15]. The model SRCNN [16]based on CNN (Con-

volutional Neural Network) first introduced CNN into SISR. It only uses a three-layer

network and uses PSNR, SSIM, and other evaluation standard algorithms to achieve

advanced results. Subsequently, MRI super-resolution research began to try to combine

convolutional neural networks for super-resolution reconstruction. With the introduc-

tion of residual learning[17], the super-resolution reconstruction network began to move

in a deeper direction. At present, the SR reconstruction algorithm based on CNN has

been developed rapidly. New network structures and training strategies have continu-

ously improved the quality of SR reconstructed images, but these algorithms tend to

output too smooth results without sufficient high-frequency details. Furthermore, the

measurement results based on PSNR are inconsistent with human subjective evalua-

tion. This problem began to be solved with Goodfellow’s[18] proposal. SISR began to

develop to improve the overall visual effect of the reconstructed image. Later, MRI’s

super-resolution reconstruction work focused on GAN to restore more texture details

and high-frequency information rather than overall clarity.

!"#$%

&$'()"*+(,
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Fig. 1.4 Super Resolution in deep learning.

1.4 Main Contribution

The contributions of this paper mainly include the following three points:

1. We propose a two-dimensional MRI-based three-dimensional reconstruction

method through two super-resolution generative adversarial networks.
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1.4 Main Contribution

2. The RAMA-GAN combined with the residual multi-scale module attention

mechanism is proposed to recover the high-frequency details of MRI. At the same time,

we also propose a new network(nESRGAN) for MRI image restoration. The noise added

part of nESRGAN could provide certain high-frequency information and details without

affecting the overall feature restoration. At the same time, the interpolation part of the

up-sampling part can solve the artifact problem caused by the checkerboard effect. The

network’s global residual module and branch sampling module reduce the loss of detail

caused by upsampling.

3. The method we proposed has achieved good performance in visual effects and

high-frequency details. The obtained high-resolution MRI can help doctors get more

brain information, which is particularly important for diagnosing and predicting brain

diseases.
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Chapter 2

Proposed methods and

reconstruction

This chapter mainly introduces the main reconstruction steps in the research and

the neural network used.

2.1 Main Idea and Processes

2.1.1 MRI and 2D Reconstruction

In MRI, evenly spaced 2D slice views generated by acquisition equipment are usu-

ally stacked on top of each other into a three-dimensional volume. From this 3D volume,

we can obtain slices in any direction. The stacking method is shown in the figure 2.1.

Traditionally, MRI provides views in three main orthogonal directions, mainly axial,

sagittal, and coronal. As shown in the figure 2.2, three slices in orthogonal directions

are stacked to form the MRI volume. MRI is usually saved in a three-dimensional pixel

matrix, and slice information is saved in three dimensions.

A three-dimensional convolutional neural network is generally used for super-

resolution reconstruction in the traditional MRI super-resolution reconstruction

technology. However, considering the memory limitations of the real GPU, it is more

difficult to reconstruct the entire MRI at once. Therefore, in the three-dimensional

convolutional neural network, the MRI is divided into blocks and reconstructed, and

– 8 –



2.1 Main Idea and Processes

!"#$%&'()

Fig. 2.1 MRI 2D slices and 3D volume.

then perform the block combination[19]. As shown in the 3DCNN steps in the figure

2.3, this method not only has an enormous time cost but also has the problem of

memory limitation. Our research is based on MRI slices through two-dimensional

slices to carry out MRI reconstruction, reducing training costs and memory allocation

problems. Considering the characteristics of the 3D pixel matrix of MRI, by traversing

the three dimensions of MRI, we can obtain slices in three orthogonal directions. We

set a scale factor of 2 in the experiment. Combined with the matrix characteristics of

MRI, obtaining the entire MRI requires half the number of slices to be prepared as the

recombination condition, as shown in the 2DCNN step in the figure 2.3. Moreover,

based on the particularity of MRI, although the number of reconstructed slices is

only half in the three dimensions, MRI can still be reconstructed. There are many

noises and missing values in the reconstructed MRI, as shown in figure 2.4. The

insufficient number of slices causes this problem. In the beginning, we consider that the

reconstructed slice has much high-frequency information, which can be interpolated

and repaired by surrounding pixel values[20]. However, interpolation repair will only
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2.1 Main Idea and Processes

Fig. 2.2 MRI Rebuilding with three plane slices.

restore more low-frequency information and enlarge the influence of the noise part

and the missing value part, resulting in more blurred areas. Therefore, we set up a

second network to perform a second super-resolution reconstruction of the entire MRI

to restore the overall high-frequency information and details.

– 10 –



2.1 Main Idea and Processes
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Fig. 2.3 MRI Reconstruction on 2D and 3D.

Fig. 2.4 The missing value and noise in MRI slice.

We take the new slice as a low-resolution image and then perform the super-
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2.1 Main Idea and Processes

resolution reconstruction of the new network. Finally, we recombine the reconstructed

MRI slice for the second time to obtain a high-resolution MRI. Figure 2.3 shows the

comparison between 3D and 2D.

2.1.2 Processes

In the first reconstruction step, we propose two two-dimensional convolutional neu-

ral networks for three-dimensional reconstruction. We propose RMAM-GAN as a super-

resolution reconstruction network. According to the parameter requirements, half of the

slices are reconstructed in the first MRI reconstruction. The reconstructed MRI has only

half of the slices in all three dimensions. Every slice has missing values in this new MRI,

so we propose a noise-based network nESRGAN for the second super-resolution recon-

struction. Inspired by StyleGAN[21], we find that adding noise can help restore features

to a certain extent and supplement more high-frequency information.

Similarly, ESRGAN has the problem of the checkerboard effect caused by

deconvolution[22]. For this reason, we propose a new interpolation sampling recovery

block to replace the deconvolution layer so that the reconstructed image no longer has

artifacts. Besides, the setting of the global residual module reduces the loss of detail

caused by sampling.

In general, we adopt RMAM-GAN as the first MRI reconstruction method. Then

half of the MRI slices are reorganized to obtain an MRI with a lot of noise and missing

values. Next, we utilize nESRGAN to perform the second reconstruction. Traverse all

the slices of the new MRI, and then use nESRGAN for super-resolution reconstruction,

and finally rebuild a new high-resolution MRI. The main processes are shown in figure

2.5.
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Traversal
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Fig. 2.5 The main processes in this research.

2.2 First MRI Slice Reconstruction

2.2.1 RMAM-GAN

Our previous first reconstruction work was to use GAN with perceptual domain

blocks for MRI super-resolution reconstruction[23][24]. Considering the possibility of

multi-scale reconstruction in the future and the starting point of focusing on more infor-

mation features, we adopt the residual multi-scale module with an attention mechanism

module[25] to replace RFB to obtain more feature information. The network is built

based on the framework of ESRGAN, which includes two main modules, as shown in

block A and block B in figure 2.6. Among them, block A represents Residual in Residual

Dense block[26][27]. This setting can increase not only the depth of the network but

also realize a more complex structure. The network can learn finer details. Block B

is Dense bLock with RMAM, which is mainly used to extract detailed features. The
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2.2 First MRI Slice Reconstruction

up-sampling part of the network uses a combination of interpolation and up-sampling

to achieve a good blend of spatial information and depth information and reduce the
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Fig. 2.6 The structure of RMAM-GAN.

loss of detail performance. Through RMAM-GAN, high-resolution MRI slices with rich,

detailed information can be obtained.

2.2.2 RRDB

In previous studies, deep neural networks are difficult to train, and the gradient dis-

persion and explosion problem make it difficult for model training to converge. Although

this problem has primarily been effectively controlled by standard initialization and in-

termediate layer normalization methods, these methods allow deep neural networks to

converge. On the premise that the neural network can converge, as the network’s depth

increases, the network’s performance first gradually increases to saturation and then de-

creases rapidly. With the introduction of the residual network, gradient disappearance

and gradient explosion have been solved, allowing us to train a deeper network while

ensuring good performance. As shown in figure 2.7, the residual blocks are stacked
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2.2 First MRI Slice Reconstruction

together to form an intense neural network. Later, the deep network DenseNet[28] was

proposed to directly connect all layers to ensure maximum information transmission

between layers in the network. This method alleviates the problem of gradient disap-

pearance and also strengthens the transmission and utilization of features. To a certain

extent, the number of parameters is reduced. The RRDB in RMAM-GAN combines

deep network and residual network, which can ensure smaller parameters while improv-

ing feature extraction capabilities. The main structure of the network is shown in Figure

2.8.
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Fig. 2.7 The idea of residual net.
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2.2 First MRI Slice Reconstruction

Fig. 2.8 RRDB.

2.2.3 RMAM

Similarly, the RMDB in RMAM-GAN also adopts the same structure, using the

RMAM module in the network structure, as shown in figure 2.9. RMAM is a multi-

Fig. 2.9 RMDB

feature fusion module that combines multiple small convolution kernels. The 1x1 con-

volution in the module has two advantages. On the one hand, the filter is small, and the

calculation is fast. On the other hand, it can improve the non-linearity of the network to

learn more complicated mapping relationships. The module uses small filters to reduce

parameters and calculations and uses a more extensive range of receptive fields to trans-

mit information after acquiring features. The features of multiple channels are merged,
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2.2 First MRI Slice Reconstruction

and SEnet[29] is used to enhance the sensitivity of the model to channel features. By

weighting the channels, effective information is emphasized, and invalid information

is suppressed. Moreover, it adjusts the relationship between channels to make their

weights more reasonable, thereby improving the SR performance of the network. The

structure of the module is shown in figure 2.10. In general, the RMAM module

Fig. 2.10 The structure of RMAM.

strengthens the interactivity of each channel, and this setting can extract very

detailed features.
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2.2 First MRI Slice Reconstruction

2.2.4 Upsampling

The up-sampling part of the network consists of the RMAM module and nearest-

neighbor interpolation and Sub-pixel Convolution (SPC) alternately. Nearest Neigh-

borhood Interpolation (NNI) plays a role in the spatial conversion of input features and

then connects to the RMAM layer to diffuse its spatial influence in depth. SPC performs

a depth-to-space transformation and then connects to the RMAM layer to enhance the

transformation within the spatial range. The specific structure is shown in figure 2.6.

2.2.5 Patch Discriminator

The discriminators of the previous super-resolution generative adversarial network

all adopt the VGG128 structure[30]. The main structure of the discriminator is shown in

figure 2.11. The discriminator network pays more attention to the overall image features

rather than the local image features. That is to say, this structure usually only needs

to output a scalar, which is used to distinguish two categories. Therefore, we adopt the

structure of Patch Discriminator[31] on the discriminator. The output of PatchGAN

is a two-dimensional matrix. Each value represents the judgment of the local area of

the image so that the local texture details of the image can be paid attention to and

enhanced. In addition, we use a relativistic discriminator[32] as the loss criterion.

The relativistic discriminator could provide the probability that one image is more

accurate than another image. This method can make the generator generate more

realistic texture details.
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2.3 Second MRI Slice Reconstruction
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Fig. 2.11 The network of discriminator.

2.3 Second MRI Slice Reconstruction

2.3.1 nESRGAN

After completing the first MRI super-resolution reconstruction, combined with the

problems that occurred after the recombination mentioned, we hope to maintain a

better reconstruction performance as much as possible while ensuring a small amount of

calculation. We propose a new super-resolution network, nESRGAN, as the network for

the second super-resolution reconstruction. We perform the second slice processing on

the reorganized MRI, and the obtained MRI slice is used as a new dataset. Considering

the noise and missing areas of the slice, we regard the dataset as a low-resolution image

that has undergone image degradation. The main architecture of the network is shown

in figure 2.12. The network is based on ESRGAN, mainly composed of a noise-adding

module, an up-sampling module, and a global residual module. The discriminator part

is consistent with RMAM-GAN. nESRGAN can recover detailed information, and the

overall network complexity is not enormous, which is suitable for the rapid progress of
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2.3 Second MRI Slice Reconstruction

the second reconstruction work.

2.3.2 noise

Based on the problem of missing values, inspired by StyleGAN’s added noise[21] to

achieve the diversity of details, we add random Gaussian noise to RRDB. This kind of

noise is added to the residual dense block residual, which can generate certain detailed

information. The noise part in Figure 2.12 shows the central architecture.
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Fig. 2.12 The structure of nESRGAN.

2.3.3 Global Residual Block

In the super-resolution reconstruction process, we set up two branches for upsam-

pling. Using the fusion of the two branches of interpolation sampling and deconvolution

can avoid the checkerboard effect happens. In addition, the up-sampling step usually

results in the loss of information. For this reason, we set up a branch convolution fusion

after upsampling to reduce the loss of information. In addition, inspired by U-net’s[33]
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2.4 Related Loss Function

global context information, we set up a global residual module in the network. The

global residual module merges the feature information of the input image with the out-

put image. This setting also reduces the loss of feature information and improves the

SISR performance.

2.4 Related Loss Function

2.4.1 Generator loss

The loss functions of the two networks in the reconstruction process are consistent.

The generator network loss is mainly composed of content loss, perceptual loss, and

confront loss[34]. Content loss refers to the L1 of the supervised learning enhancement

output and label, which calculates the pixel loss between the predicted image and the

target image. The content loss can be expressed as follows:

l1 = −E[log(1−∆Real)]− E[log(∆Fake)] (2.1)

∆Real = sigmoid(D(IHR)− E[D(ISR]) (2.2)

∆Fake = sigmoid(D(ISR)− E[D(IHR]) (2.3)

Lcont = ηl1 (2.4)

The perceptual loss compares the high-level perception and semantic differences

between images. The low-level feature information of the image is extracted through

the VGG19 network before activation. These low-level feature tensors can be compared

through simple pixel-level loss. The perceptual loss can be expressed as follows:

ISR = G(ILR) (2.5)
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2.4 Related Loss Function

Lpercep = Σ||V GG(ISR)− V GG(IHR)||1 (2.6)

In addition, the generator loss refers to the loss when confronting the discriminator,

which is mainly expressed as follows:

LRa
G = Σ||ISR − IHR||1 (2.7)

LD
G = λLRa

G (2.8)

In general, the generator loss can be represented by:

LG = Lpercep + λLRa
G + ηl1 (2.9)

On the whole, the perceptual loss is extracted from the image features through the

VGG19 network, and the features obtained from the real image convolution are com-

pared with the features obtained from the generated image convolution, so that the high-

level information (content and global structure) is close. V GG(ISR) and V GG(IHR)

are real MRI image and generated MRI image, respectively. LRa
G reflects the probability

of generating a more realistic slice. Bothλ andη are coefficients that balance different

loss terms.

2.4.2 Adversarial loss

The idea of RaGAN is adopted in the discriminator network, mainly to calculate

the probability that the real image is relatively more realistic than the fake image. The

discriminator loss can be expressed as follows:

LD = −E[log(∆Real)]− E[log(1−∆Fake)] (2.10)
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2.5 Image Quality Evaluation Indicators

2.5 Image Quality Evaluation Indicators

2.5.1 PSNR and SSIM

In the super-resolution algorithm, the image quality of the super-resolution picture

will be evaluated after the reconstruction work is completed. It is more common to

use PSNR and SSIM[35]as evaluation criteria. Considering that PSNR and SSIM often

have evaluations that do not meet the actual human visual effects, we have added

LPIPS to the experiment for image evaluation. PSNR (Peak Signal to Noise Ratio) is

the most common and widely used objective standard for evaluating images. In order

to measure the image quality after processing, we usually refer to the PSNR value to

measure whether a specific processing program can be satisfactory. However, many

experimental results show that it has limitations. The PSNR score cannot be the same

as the visual quality seen by the human eyes. The higher PSNR may look worse than

the lower PSNR. PSNR is mainly represented by:

PSNR = 10× log10
MAX2

I

MSE
(2.11)

Among them, MSE represents the mean square error (Mean Square Error) of the

current image X and the reference image Y, and H and W are the height and width of

the image, respectively. The main expressions are as follows:

MSE =
1

HW

H∑
i=1

W∑
j=1

[X(i, j)− Y (i, j)]2 (2.12)

SSIM (structural similarity) is also a full-reference image quality evaluation index,

which measures image similarity from three aspects: brightness, contrast, and structure.

The main formula is as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2.13)
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2.5 Image Quality Evaluation Indicators

μx andμy represent the average of images X and Y,σxy represents the covariance

of images X and Y, and σx and σy represent the variance of images X and Y. The

value range of SSIM is [0,1]. Generally speaking, the larger the SSIM value, the smaller

the image distortion.

2.5.2 LPIPS

The unreasonable effectiveness of deep features as a perceptual metric-LPIPS[36]

is a perceptual similarity measure based on learning. Perceiving similarity is not a

particular function in itself but the result of visual representations that predict essential

structures in the world. Although PSNR and SSIM are widely used, they often fail to

provide feedback that meets natural sensory conditions. Therefore, we also add LPIPS

as the image quality evaluation standard in the evaluation. The primary expressions

are as follows:

d (x, x0) =
∑
l

1

HlWl

∑
h,w

∥∥wl ⊙
(
ŷlhw − ŷl0hw

)∥∥2
2

(2.14)

Among them, d is the distance between x0 and x. The feature stack is extracted

from the L layer and unit-normalized in the channel dimension. Use the vector wl = RCl

to scale the number of activated channels and calculate the L2 distance, average in space,

and sum on the channel.
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Chapter 3

Configuration and Comparison

This chapter mainly introduces the experiment’s configuration, including the ex-

perimental environment, dataset, and experimental configuration. In addition, we also

show the comparison of some parameter settings on the two networks.

3.1 Experimental Configuration

3.1.1 Experimental Environment

Our super-resolution reconstruction network is based on PyTorch. Torch is a classic

tensor library that operates on multi-dimensional matrix data. It is widely used in

machine learning and other math-intensive applications. Pytorch is the python version

of the torch and a neural network framework open-sourced by Facebook. In the entire

network, we use GPU for network training. The specific configuration information is

shown in Table 3.1:

Table 3.1 Experimental Configuration.

CPU-model : Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

Graphics ： Tesla V100-SXM2-32G

Operating System : Ubuntu 16.04.10 LTS

Scripting language : Python 3.6.10

Neural network framework: Pytorch
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3.1 Experimental Configuration

3.1.2 Dataset

The data set in the experiment is mainly composed of IXI (Information eXtraction

from Images) dataset[37], Kenshin dataset, and Simon dataset[38]. A total of 352 T1

brain MRI data sets were used in the experiment. The specific information of the data

set is shown in the table 3.2:

Table 3.2 The information of MRI dataset.

Dataset number Manufacturer Model

IXI 200 Philips system T1

Kenshin 100 Hitachi-ECHELON T1

Simon 52 Philips and Siemens T1

In our previous work, bicubic interpolation was used as the image degradation

processing method. However, the low-resolution MRI slices obtained often cannot meet

the low-resolution conditions of the real world. Low-resolution MRI slices usually have

problems such as noise and blur. Bicubic cannot achieve better performance in actual

super-resolution reconstruction through simple interpolation degradation. In addition,

it is not easy to use unsupervised learning to generate low-resolution MRI. Therefore,

we adopt a new integrated standard medical image processing library Torchio[39] to

perform MRI slice image degradation processing. Torchio is an open-source python

data package responsible for the processing of medical images. It solves the problem

of the lack of a large number of paired information medical image data sets in the real

world. We performed four image degradation processing operations on the dataset,

namely Gaussian blur, Gaussian noise, motion blur, and motion blur with Gaussian

noise added[40][41]. The main preprocessing is shown as figure 3.1:

We select three slices on the Plane in the first super-resolution reconstruction work
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3.1 Experimental Configuration

!"#$$%"&'()#* !"#$$%"&'+,%$-

.,/%,&'()#* .,/%,&'()#*'0'!"#$$%"&'&,%$-

/,*12%,

Fig. 3.1 The degenerative process of MRI. High-resolution MRI performs four

kinds of degradation through Torchio: Gaussian blur, Gaussian noise, motion

blur, motion blur, and Gaussian noise.

as the training set and the testing set. Table 3.3 and table 3.4 shows the information of

the dataset for training and testing. In addition, we have performed data augmentation

processing for the training set. The randomly selected slices are randomly cropped,

and the size is 64 x 64. At the same time, the size of the pre-processed low-resolution

slice is 32 x 32. After that, we perform half of the MRI slice reorganization, and the

reorganization work adopted an interval of 1. After that, the MRI will be sliced and

then randomly cropped. The size of HR-LR is also 64 x 64 and 32 x 32.
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3.2 Comparison

Table 3.3 RMAM-GAN

Trainset Testset

HR 64 x 64 64 x 64

LR 32 x 32 32 x 32

Numbers 62400 26750

Table 3.4 nESRGAN

Trainset Testset

HR 64 x 64 64 x 64

LR 32 x 32 32 x 32

Numbers 46700 20015

3.2 Comparison

3.2.1 RMAM-GAN

In the construction of RMAM-GAN, we compare the performance of reconstruction

under different structures. As shown in figure 3.3, as the number of training increases,

the overall performance of the RMAM module is great. In addition, figure 3.2 shows

several different network architectures. The addition of the SEnet hardly affects the

size of the parameters and improves the SR performance.

3.2.2 nESRGAN

In order to detect the status of each module in nESRGAN, we compare the three

modules in a blending test. As shown in the table 3.5, in the evaluation of perceived

similarity, the network with three modules performed best. In addition, combined with

the noise module, the noise part can provide detailed information to a certain extent

and improve the visual effect.
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Fig. 3.2 Different module of second MRI Super Reconstruction.

Table 3.5 Comparison of different module in nESRGAN(mean ± standard deviation).

Module

Global residual √ √ √

Upsampling √ √ √

Noise √ √ √

LPIPS↓ 0.1271 ± 0.0110 0.1749 ± 0.0103 0.1584 ± 0.0117 0.1762 ± 0.0139
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3.2 Comparison

Fig. 3.3 The comparison of configuration on network.The PSNR of the three

modules increases as the number of training increases. Comparing the three

modules, RMAM performs best overall. Adding SEnet can indeed improve the

reconstruction performance of the image.
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Chapter 4

Result and Discussion

In this chapter, we mainly introduce and show the SR performance of the two

reconstruction tasks. In addition, we also compare the reconstruction performance

between 2D and 3D. Finally, we discussed the entire experiment.

4.1 First Super-Resolution Reconstruction

In order to verify the reconstruction performance of RMAM-GAN, we make a com-

parison during the first SR reconstruction process. As shown in table 4.1, we compare

the traditional deep learning super-resolution network with RMAM-GAN. It can be

seen from the table that RMAM-GAN performs best in image evaluation. In addition,

in figure 4.1, we show the reconstructed slices under each network. It can be seen that

the texture details also maintain superior performance.

4.2 Second Super-Resolution Reconstruction

After the first reconstruction using RFB-ESRGAN, we perform the second MRI

reconstruction. The reconstructed MRI image is noisy and has missing values. We

perform the second reconstruction of MRI through the proposed nESRGAN. In the

second SR reconstruction work, we compare the pixel distribution and frequency domain

to show the reconstruction situation more clearly. Figure 4.2 shows the image pixel

distribution before and after reconstruction. The pixel distribution of the reconstructed
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4.2 Second Super-Resolution Reconstruction

MRI image in the spatial domain is close to the original high resolution, indicating

that the low-frequency components are similar. As shown in Figure 4.3, a is the MRI

slice after the first reorganization, b and c are the reconstructed slice and the high-

resolution GT-MRI, respectively. The peak point in the figure is the low-frequency

component, and a has complex and irregular multiple low-frequency information. After

nESRGAN super-resolution reconstruction, the distribution trend of b and c is the same.

At the same time, the low-frequency information remains the same, which satisfies the

convergence of the original GT image. There is a slight difference in the distribution of

high-frequency components.

However, it is close to the original GT image.

We also compare and evaluate nESRGAN and standard super-resolution methods.

As shown in table 4.2 and figure 4.4, although SRGAN performs best on PSNR, the

feature details after reconstruction are insufficient. In general, nESRGAN performs

better than other traditional networks in terms of visual hierarchy and image quality.

After completing the second SR reconstruction, the high-resolution MRI is basically

obtained. Our research has realized the replacement of 3D convolutional neural network

reconstruction through two reconstructions on the 2D level.
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4.2 Second Super-Resolution Reconstruction

Table 4.1 Comparison of different SR method in deep learning(mean ± standard deviation).

PSNR(dB)↑ SSIM↑ LPIPS↓

SRCNN 19.2607 ± 0.1361 0.5715 ± 0087 0.4275 ± 0086

FSRCNN 25.6614 ± 0.1527 0.8513 ± 0.0062 0.1989 ± 0.0075

EDSR 25.1103 ± 0.2437 0.8568 ± 0.0088 0.1789 ± 0.0080

SRGAN 25.5919 ± 0.1785 0.8569 ± 0.0074 0.1811 ± 0.0091

ESRGAN 25.1706 ± 0.1527 0.8360 ± 0.0070 0.1671 ± 0.0077

RRAM-GAN 25.9050 ± 0.1765 0.8517 ± 0.0078 0.1642 ± 0.0105

Table 4.2 Comparison of EDSR,SRGAN,ESRGAN,nESRGAN in second super

resolution reconstruction step(mean ± standard deviation).

PSNR(dB)↑ SSIM↑ LPIPS↓

EDSR 26.7625 ± 0.3102 0.8604 ± 0.0143 0.1737 ± 0.0138

SRGAN 27.553 ± 0.4186 0.8234 ± 0.0112 0.1538 ± 0.0113

ESRGAN 27.2105 ± 0.2726 0.8585 ± 0.0029 0.1504 ± 0.0118

nESRGAN 24.0622 ± 0.2212 0.8815 ± 0.0054 0.1242 ± 0.0063
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Fig. 4.1 Comparion of SRCNN,FSRCNN,EDSR,SRGAN,ESRGAN,and RMAM-GAN.
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4.2 Second Super-Resolution Reconstruction

Fig. 4.2 The pixcel historgram of LR, SR and HR.
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4.2 Second Super-Resolution Reconstruction
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Fig. 4.3 Frequency distribution of LR,SR,HR.
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Fig. 4.4 Comparison of second reconstruction step.
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4.3 2D vs 3D

4.3 2D vs 3D

Traditional MRI three-dimensional super-resolution reconstruction generally uses

CNN or GAN to perform. We also compare our method with three-dimensional-based

super-resolution methods. In figure 4.5 and figure 4.6, our method maintains a good

advantage in PSNR and LPIPS. Besides, as shown in table 4.4, table 4.4 shows the

comparison of the three datasets after reconstruction under each method. It can be seen

from the table that our method maintains advantages in image evaluation compared to

3DSRCNN[42] and 3D-SRGAN[43]. In addition, from the figure 4.7, 3D-SRGAN and

our method are better than other methods. In terms of texture details, our method is

superior to 3D-SRGAN.
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Fig. 4.5 Comparison of PSNR between 3D methods and the proposed method.
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Fig. 4.6 Comparison of LPIPS between 3D methods and the proposed method.

4.4 Discussion

Our experiment is based on the direction of the two-dimensional slice to carry

out the super-resolution reconstruction of the three-dimensional MRI, which realizes

the simulation and reconstruction of the three-dimensional convolutional neural net-

work. Based on the uniqueness of MRI, our method adopts the idea of two-step super-

resolution reconstruction (Figure 2.5). The first reconstruction is responsible for ob-

taining more high-frequency information. The second reconstruction is responsible for

restoring the corresponding semantic information and missing values to achieve a high-

resolution MRI with excellent visual and image evaluation. Traditional deep learning

super-resolution methods mostly use paired images for training and reconstruction. The

experiment uses the medical image processing library to prepare the paired data set of

MRI. In addition, we conduct simulations of four degradation mechanisms in the exper-

iment. Table 4.4 shows the reconstruction of four low-resolution MRI by our method.
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4.4 Discussion

Our method performs better in Gaussian blur and noise but not as good as the former

in the degraded mode of motion blur.

Within limited conditions, we need better super-resolution reconstruction perfor-

mance. It can be seen from figure 3.3 that our proposed RMAM-GAN is better than

other advanced methods in detail texture and vision. Table 4.1 shows the superiority

of RMAM-GAN in image evaluation indicators. Subsequently, based on the missing

values and noise after the recombination, we propose nESRGAN to perform the second

super-resolution reconstruction of the recombined MRI. In combination with figure 4.4,

nESRGAN also achieves good reconstruction performance in texture details, superior

to other methods.

Moreover, there are no problems such as artifacts. Table 4.2 also illustrates the su-

periority of nESRGAN in image evaluation. Figure 4.2 and figure 4.3 also show the pixel

distribution and high-frequency distribution of nESRGAN, which fits the distribution

of high-resolution MRI slices.

The RMAM module in RMAM-GAN can obtain fine details. Compared with RFB,

it can also generate a larger feature map to capture more contextual information. More-

over, the Senet in RMAM can improve the super-resolution reconstruction performance

without affecting the overall model parameters. It can be seen from table 4.1 and the

figure 3.3 that RMAM performs better than other methods. In addition, table 3.5

shows the configuration comparison of multiple modules in nESRGAN. The addition

of noise can indeed provide more high-frequency information, and the global residual

module can reduce the loss of detail. Our method is based on a two-dimensional con-

volutional neural network and successfully achieves super-resolution reconstruction of

three-dimensional MRI. In table 4.4, our method is superior to the three-dimensional

convolutional neural network method in all aspects. Our method can reduce training

costs and memory utilization by reconstructing MRI through a two-dimensional neural
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4.4 Discussion

network. It has specific significance in brain MRI pathological analysis and diagnosis

under limited conditions.
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Fig. 4.7 Comparison of interpolation,3DSRCNN,3DSRGAN,and proposed method.

– 41 –



4.4 Discussion

Table 4.3 Comparison of 2d and 3d methods on different datasets(mean ±
standard deviation).

dataset PSNR(dB) ↑ SSIM ↑ LPIPS ↓

IXI-dataset

Gaussian Blur 19.2471 ± 1.7245 0.4353 ± 0.0859 0.4661 ± 0.0268

3D-SRCNN 16.5874 ± 0.3925 0.5352 ± 0.0273 0.4007 ± 0.0101

3D-SRGAN 21.7050 ± 1.3896 0.7397 ± 0.0132 0.2021 ± 0.0113

ours 23.9249 ± 0.2631 0.8804 ± 0.0067 0.1220 ± 0.0043

kenshin

Gaussian Blur 20.3414 ± 1.5248 0.4462 ± 0.0784 0.4335 ± 0.0234

3D-SRCNN 16.5393 ± 0.5360 0.4085 ± 0.0639 0.4131 ± 0.0241

3D-SRGAN 24.5306 ± 1.0988 0.6684 ± 0.0449 0.2471 ± 0.0162

ours 24.2555 ± 0.2162 0.8631 ± 0.0068 0.1354 ± 0.0058

SiMon

Gaussian Blur 19.3083 ± 1.5396 0.3486 ± 0.0642 0.5203 ± 0.0219

3D-SRCNN 15.7389 ± 0.5409 0.3326 ± 0.0401 0.4661 ± 0.0162

3D-SRGAN 23.0346 ± 2.1304 0.5571 ± 0.0516 0.2345 ± 0.0263

ours 24.6393 ± 0.0844 0.8647 ± 0.0092 0.1681 ± 0.0133
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4.4 Discussion

Table 4.4 The perfomance of different datasets by proposed method(mean ±
standard deviation).

Dataset/Degredation PSNR(dB)↑ SSIM↑ LPIPS↓

IXI

Gassuian Blur 29.5049 ± 0.3803 0.8780 ± 0.0057 0.1461 ± 0.0098

Gassuian Noise 26.1182 ± 0.1069 0.8353 ± 0.0067 0.1620 ± 0.0063

Motion Blur 25.8653 ± 0.1223 0.8219 ± 0.0081 0.2172 ± 0.0074

Motion Blur & noise 23.7876 ± 0.2120 0.7321 ± 0.0147 0.2575 ± 0.0129

Kenshin

Gassuian Blur 29.3052 ± 0.3746 0.8919 ± 0.0069 0.1403 ± 0.0108

Gassuian Noise 25.7661 ± 0.3672 0.8693 ± 0.0070 0.1471 ± 0.0041

Motion Blur 25.9764 ± 0.2049 0.8331 ± 0.0065 0.2095 ± 0.0047

Motion Blur & noise 23.9465 ± 0.1187 0.7515 ± 0.0076 0.2337 ± 0.0044

Simon

Gassuian Blur 28.8848 ± 0.3795 0.8169 ± 0.0046 0.2063 ± 0.0054

Gassuian Noise 25.5422 ± 0.3082 0.8158 ± 0.0135 0.2105 ± 0.0083

Motion Blur 22.5868 ± 0.3551 0.7219 ± 0.0070 0.2928 ± 0.0077

Motion Blur & noise 20.6202 ± 0.2197 0.5374 ± 0.0079 0.3789 ± 0.0059
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Chapter 5

Conclusions and Prospects

In this chapter, we have conducted a summary of the research, and analyze related

deficiencies and improvements, as well as the direction and ideas for future improvement.

5.1 Conclusions

In this paper, we propose a method based on a two-dimensional generative adver-

sarial network to perform super-resolution reconstruction of 3DMRI. The experiment

mainly design two networks for super-resolution reconstruction, namely RMAM-GAN

and nESRGAN. By simulating the idea of a three-dimensional convolutional network

and the volume characteristics of MRI, we use half the number of MRI slices for MRI

super-resolution reconstruction, and then reorganize MRI. We adopt RMAM-GAN with

RMAM module as the first super-resolution reconstruction network. After reorganizing

the MRI, the nESRGAN of the noise module is used to further perform the feature

restoration and detail supplement work of MRI. The result is a high-resolution brain

MRI. Our experimental results show that our proposed method is better than the tra-

ditional MRI 3D convolutional neural network reconstruction method in terms of visual

effects and image evaluation indicators. In general, our method realizes the three-

dimensional super-resolution reconstruction of the brain MRI on the two-dimensional

convolutional neural network. The reconstructed MRI can provide more details, and

the diagnosis of brain pathology can provide certain help.
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5.2 Prospects

There are some shortcomings in the whole experiment:

1. In experiments, our method perform differently in different types of low-

resolution MRI. Under the conditions of Gaussian blur and noise, the reconstructed

MRI image is more realistic, but under the condition of dynamic blur, the performance

is far inferior to the former. In addition, although the generation of the GAN is close to

the original high-resolution image as a whole, there is a slight difference in brightness.

2. Experimental simulation of real-world low-resolution MRI still has many

strength problems, and the characteristics of more low-resolution MRI are not

considered. The robustness of the model still needs to be improved.

3. The experiment only uses the scaling factor of 2 to perform MRI super-resolution

reconstruction, and does not perform multi-scale comparison. Although the RMAM

module is suitable for multi-scale super-resolution reconstruction, the experiment did

not compare the performance of super-resolution reconstruction at different scales.

5.2 Prospects

In the future experiments, we believe that there are still many improvements in the

experiment. In the loss function, we use the combination of perceptual loss, content loss

as the loss function of the network. However, the perceptual loss often considers the

overall high-level features, ignoring some local features. Super-resolution reconstruction

of MRI focuses more on detailed features. In the future, the loss function needs to be

biased towards the direction and local characteristics of human perception. In addition,

the paired datasets are often the inverse process of defining the image degradation

process. The application of the network to natural MRI low-resolution images requires

further research and improvement, and more unsupervised super-resolution directions

need to be learned. The degradation method of the real image needs to be further
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5.2 Prospects

matched. In addition, we need to continue to supplement the comparison of 2D and 3D

GPU usage and runtime.
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