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Abstract

A Study on Attention Model and Computational Optics for Pain Face Detection and
Fruits Segmentation

Jun Yu
Doctoral Program of Engineering Course, Department of Engineering,

Graduate School of Engineering

Pain is one of the primary feelings that encourage people to seek medical care and

attention. Hence, automatic estimation of the sense of pain has lots of applications in

medical treatment. However, the feeling of pain is an individual and distinctive experience

which differs from each person. Recently, there have been several attempts to model the

attention ability inside the neural network to improve the performance. Inspired by the

previous work in the attention model, we proposed the spatial attention model and inserted

it into our convolutional neural network. Our neural network can find the most correlated

region on the human face for pain facial expression detection and analysis aiding by

our spatial attention model. Experimental results show that our locally spatial attention

learning can provide the fine-grained variation on the face region for pain intensity assessment.

Our current study extends the prior work in this research area and provides a new method

for future studies on painful expression analysis.

Accompanied by the increasing labor cost and the growth of the aging population in

Japan, the automatically harvesting system’s development is one of the popular research

topics in machine vision, computer vision, and robots. The hyperspectral camera can

capture not only the visible wavelength but also the near-infrared wavelength. It can
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provide many more details about living plants and fruits. Motivated by the previous study

of the channel attention model and Long short-term memory(LSTM), we proposed our

novel neural-network-based algorithm for green pepper segmentation. Unlike the other

research work, our method is a pixel-wise framework for green pepper segmentation. In

particular, we select some pixels from the green pepper and some pixel from the foliage.

We treat each pixel as a long vector to put into our proposed framework. There are

two parts of our deep neural network. The first part is our proposed channel attention

module, and the second part is the LSTM. By utilizing the memory function of the LSTM,

our proposed structure can use the critical wavelength information to distinguish green

pepper. The whole network can train in an end-to-end manner. The experimental results on

our hyperspectral dataset show competitive performance for our proposed approach. Our

proposed channel attention model considers the intrinsic feature of the hyperspectral data.

Besides, our proposed methods require a smaller dataset, lower hardware requirements,

and faster, compared with the deep convolutional neural network. However, our approach

is vector-based machine learning. The hyperspectral camera can provide not only spectral

details but also provide the spatial details of the captured scene.

Computational Optics provides a way to co-design optics devices, camera sensors,

and spectral illumination. Recently, the proposal of end-to-end optimization of optics,

sensor and camera pipeline is attracting widespread interest. In our research, we proposed

to utilized an optical filter to enhance a red-green-blue(RGB) camera system to detect

green pepper or immature yuzu citrus. We use the power of the deep neural network

to help us to find the best optical transmission curve of the optical filter for a specific

task. Specifically, we reported the relationship between the depth-wise convolutional
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kernel and the transmission curve of the optical filter. The weights of the first layer and

weights of the second layer in our neural network represent the optical filter and color

filter array (CFA) inside the camera. Hence, we can represent the physical device by

the depth-wise convolutional layer and convolutional layer. To our best knowledge, it

is the first proposal to represent the optical devices by the deep neural network layer.

Consequently, we can use the deep neural network to find the optimal transmission curve

for the optical filter in a data-driven way. Both optical filter and color filter array must

satisfy specific physical requirements that constrain both the spectral transmission curve

and camera spectral response. The experimental results show our proposed framework can

achieve better detection results than an RGB camera without an optical filter. Besides, our

proposed camera system is cheaper and easy to use compared with the multispectral and

hyperspectral cameras.
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1 Introduction

1.1 Background

In recent years, we have witnessed the rapid development of computer vision and

machine learning research due to the success of deep learning. With the increasing amount

of data and computational power, we can more easily train the deep neural network than

before. Since the deep neural network has been successfully adopted for image classification,

object detection, etc. There are still many new problems and applications worth applying

the power of deep neural networks. In this study, we aim to leverage the power of the

deep neural network to affective computing and computational optics. Specifically, we

combined the attention module and deep neural network to the pain face estimation for

aiding the diagnosis of dementia. Our proposed attention-based method can provide a hint

to help to analyze the facial pain expressions. In addition, we utilized the deep neural

network to end-to-end optimize optical filter design and fruits segmentation for supporting

agriculture applications. Following our proposed system, we can quickly adapt to other

tasks and reduce the cost of the whole system.

The prevalence of dementia in older people becomes a severe concern worldwide.

Significantly, the Japanese elderly confront the need for long-term health care and the risk

of high dementia prevalence [2]. The damage lead by the disease dementia is broad in

an extensive range, consisting of judgment, language, learning, and social activity [3].

Dementia leads to severe and particular obstacles to pain assessment [4]. Amanda et

al., in their study [5], report the facial expression is sensitive and specific non-verbal
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evidence of pain. The analysis of the facial pain expression is one of the concise tools

for identifying pain within patients with moderate to severe levels of dementia who can

no longer self-report pain [6]. Previous research has widely investigated the response to

pain in the human face using the Facial Action Coding System(FACS). The FACS is an

empirical, fine-grained, and anatomical facial coding system. However, it is labor-intensive

and time-consuming and requires much effort in personnel training for skilled experts.

Hence, it is not widely available in clinical treatment and increases the economic burden on

the whole society. Consequently, there is a growing demand for automatic pain estimation

by using facial expression analysis. As reported by previous research, not all the face areas

are essential to the pain face expression, and facial expression usually represents by a video

sequence. To address these features, we propose the attention model with the deep learning

technique for automatic pain estimation

Agriculture is the pillar industry and primary economic income in the Kochi Prefecture.

However, Kochi’s agricultural sector has been facing many issues, such as an aging population,

population migration to the metropolitan, and an increase in the deserted farm field. Our

research aims to utilize advanced deep learning technology with computational optics to

develop precision agriculture in the Kochi prefecture. Improving the quality and production

of the economic crop while aiding the management and marketing strategy is one of the

critical aims of precision agriculture. Precision agriculture can provide useful information

in the early stage to enable better decisions to make on the management system. In recent

years, computer vision and artificial intelligence technology have developed to meet the

growing demand for fast and accurate grain crop production [7] [8]. As reviewed by a

previous study [9], Machine Learning techniques have been widely used for the early and

precise detection of biotic stress in the crop, specifically for the detection of weeds, plant

diseases, and insect pests. Estimation of the leaf-to-Fruit ratio is a critical indicator of the

yield number and berry composition for fruits [10].
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1.2 Attention model

A critical characteristic of the human vision system is the attention mechanism. The

human visual system does not tackle to process a whole scene at once. Instead, the system

deals with a sequence of partial glimpses of the image and selectively focuses on the

important part to better understand visual structure. Combining the information of different

partial glimpses of the image can build up a scene representation and guide advanced eye

movements and decision-making. Much research in recent years has focused on utilizing

attention mechanisms in the neural network structure to improve performance.

Recently, state-of-the-art computer vision methods have relied on intense deep neural

networks, which are computationally expensive. The reason behind it is that the most

deep neural network process the whole image at once, and the amount of the parameter

scales linearly with the number of the layer and image pixels. The principle of attention

mechanisms is that they are an imitation of processing in the human visual system. Mnih et

al. [11] proposed a novel recurrent visual attention model, which extracts visual information

from an image and adaptively processes it. Vaswani et al. [12] proposed using the attention

mechanism to replace the traditional RNN and Seq2Seq model [13] in the natural language

processing research area. Recently, a form of the attention-based method, self-attention

is introduced, which is similar to Non-Local Neural Networks [14]. The attention-based

method is a flexible building block and can be easily integrated with the deep neural

network.

1.3 Computation optics

In the research field of medical, scientific, and industrial optical and imaging applications,

it is feasible to co-design the illumination, optical element, sensor, and imaging processing

algorithm. Unlike the traditional hardware(e.g., optical elements) and algorithm(e.g., computer

vision and machine learning algorithm) design, , which treat them separately, computational
3



optics can jointly optimize both of them to achieve better results for a specific task. Hyttinen

et al. [15] introduced to use of partially negative filters to optical implement partially

negative filters for contrast-enhanced oral and dental imaging. Wang et al. [16] developed

multiplexed(coded) illumination to classify similar visuall objects, such as real and synthetic

fruit and vegetables. Boominathan et al. [17] demonstrated to design phase-mask-based

thin lensless camera system. The key idea of their work is to utilize an optimized mask and

computation method to replace the camera lens, which makes the camera more compact

than ever before.

There has been an increasing amount of literature on end-to-end jointly optimize

optical elements and corresponding algorithms by using deep neural networks in recent

years. The concept of deep optics has been demonstrated to contribute significant benefits

for various applications in spectral signal reconstruction [18], monocular depth estimation [19] [20],

high dynamic range imaging [21], and computational microscopy [22]. The main challenge

on deep optics is listed as follows.

• How to represent the optical element as the parameters of one layer in the deep neural

network?

• How to design a suitable physical constraint for the fabrication of the optical device?

• The loss function is a critical part of any machine learning and deep learning algorithm.

How to choose the proper loss function to optimize the optical element and algorithm

jointly?

To address the above issues, we introduce our proposed method for green pepper segmentation

in Chapter 4 and Chapter 5.
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1.4 Organization of the thesis

The thesis is organized into four parts. The first part is introduction chapter, which

provides the background information about the study and summarizes the contribution of

the original papers. The second part consists of the Chapter 2 and the Chapter 3. The third

part is composed of the Chapter 4 and the Chapter 5. Lastly, we make an conclusion about

the whole research in Chapter 6.

In the second part, we reported our proposed attention-based method for pain face

estimation and green pepper segmentation. Due to the fact, not all the face areas can

contribute to the pain face expression. We proposed the spatial attention module for extracting

features from the pain face. We demonstrated our proposed spatial attention method could

achieve better results than without the spatial attention method.Hyperspectral imaging can

capture more detailed information than RGB images. In this study, we proposed a novel

attention-based LSTM model that can effectively leverage the hyperspctral pixels to distinguish

green pepper and leave. Specifically, our proposed method uses the band attention mechanism

to detect the essential band information for classification. Experimental results in our

hyperspectral image dataset suggest our approach can outperform other methods

In the third part, we introduced our proposed method to jointly end-to-end optimize

the transmittance curve of the optical filter and the parameters of the image segmentation

network. To our best knowledge, it is the first time to use the depthwise convolutional layer

to represent the transmittance curve of the optical filter. As a result, we successfully treat

the transmittance curve of the optical filter as one layer of the whole deep neural network

structure. To aid our proposed optical filter fabrication, we presented the physical-based

constraint on the optical filter layer. Under the physical-based constraint, the transmittance

curve becomes smooth and non-negative. Inspired by the previous research on the ratio of

R, G, B channels, we proposed a color-ratio map enhanced method for optical filter design.
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Our proposed method was validated on our hyperspectral image dataset and demonstrated

to achieve better results than the purely CNN-based method(no optical filter setting).

In the last part, we summarize the whole research work and discuss the future work.

For pain face estimation, we expect to utilize the 3D landmark to estimate the pain face’s

intensity. In the topic of optical filter design, we are interested in exploiting the color space

to aid the optical filter design in our future work.
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2 Frame by Frame Pain Estimation Using Locally

Spatial Attention Learning

Estimating pain intensity for a patient is a challenging area in clinic treatment and

medical diagnosis. The painful facial expression only relates to some areas of the face.

Inspired by this fact, we introduce end-to-end locally spatial attention learning for pain

estimation. By focusing on an important region in the face with 1× 1 locally convolutional

layer, the local features related to pain intensity can be captured. Furthermore, the facial

expression is the dynamic deformation of the face in the time domain. To model the

information, the long short-term memory network(LSTM) is incorporated into our architecture.

The feature extracted by the CNN with the locally spatial attention learning is fed to the

LSTM network. The results show that our locally spatial attention learning can provide the

fine-grained variation on the face region for pain intensity assessment.

2.1 Introduction

Pain is an unpleasant feeling which is related to tissue damage and unhealthy condition.

Accurate pain intensity estimation is a central problem in mental health and clinical treatment.

Traditionally, pain intensity is evaluated by the observation of expert and self-reported

data, such as Observer Pain Intensity (OPI), Visual Analog Scale (VAS). However, for

elderly people with dementia who lack the ability to express pain intensity, evaluating

pain intensity becomes a basic issue in some medical diagnosis applications. In addition,

manual pain estimation is time-consuming, inaccurate without professional training and

not available for real-time pain assessment. In such situations, accurate pain intensity

7



evaluation plays an important role in medical treatment and health care. Hence, there is

a large demand to build automatic assessment system for pain intensity estimation.

To solve the great demand, a large majority of research has focused on automatic pain

intensity assessment. In the initial stage, detecting pain in video by facial action units has

been proposed by Lucey.et al [23]. Later, some methods have been proposed to evaluate

pain intensity using multimodal data, such as thermal and depth data from camera [24],

biomedical signals from the electrocardiogram signals (ECG) and the electromyogram

signals (EMG) [25]. Recently, deep convolutional neural networks have achieved great

successful results in face recognition, face detection and so on. Therefore, deep neural

networks are attracting widespread interest in the fields of facial expression recognition,

especially pain intensity estimation. Recurrent Convolutional Neural Network used for

object detection was utilized by Zhou et al. [26] for pain intensity estimation. Another

method was developed by fine-tuning deep face verification net with regularized regression

loss [27]. Pau et al. [28] proposed a method by combining deep convolutional neural

networks with long short-term memory networks for pain intensity estimation. Their study

suggested extracting features from both the spatial space and the temporal space can obtain

good performance for frame-level pain intensity estimation. Tavakolian et al. [29] developed

a method by using binary coding of discriminative statistical feature representation from

the convolutional neural network. Hamming distance is applied in the new loss function

and benefits the training of the whole framework.

Attention mechanism is one of key properties of human being’s visual system which

can selectively concentrate on the important areas in an image or a scene for better understanding.

Inspired by that, there are several attempts to utilize attention mechanism to improve the

performance in Image captioning [30] and other applications. More recently, a concise

attention module was proposed by Hu et al. [31] to build the relationship between different

channels inside the neural network. The global average pooling was used for estimating
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the channel-wise attention. Later, Woo et al. [32] proposed new attention model called

Convolutional Block Attention Module(CBAM). In the CBAM module, the attention mechanism

was applied not only in the channel space, but also in the spatial space. Extensive experimental

results have shown that CBAM module can achieve the best performance in both the image

classification task and the object detection task.

Until now, a few research in the field of pain intensity estimation has attempted to

utilize the attention mechanism in their research work. The purpose of this study is to

propose and examine end-to-end locally spatial attention learning architecture for pain

intensity assessment. The overview of the pipeline of our approach is illustrated in Fig. 2.1.

The approach we have applied in this work aims to exploit “where” is important in spatial

space for pain intensity estimation. Besides, our architecture also exploits the relationship

between different frames in the video sequence. The proposed attention-based architecture

is validated in the widely used benchmark database [33]. The chapter is organized as

follows: In the method part, we describe the details of our approach. In the experiments

part, we investigate and analyze our proposed method in the database. Finally, the conclusion

is given for our research.
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Figure 2.1: The illustration of the whole pipeline of our architecture. The input of the
architecture is a five-dimensional tensor, including batch size, length of the sequence,
channel, height, width.

2.2 Proposed Method

In a comprehensive literature review of Pain, Craig et al. [34] demonstrated that facial

expression could be adequate evidence for identifying pain. The purpose of our study is

to estimate the pain intensity directly from the patient’s face in a recorded video or in the

real-time surveillance system. The motivation of our method is that each region of the face

is not equally contributed to the painful expression. In order to capture the local detailed

variation of face, we propose the locally spatial attention learning architecture for pain

assessment. Our structure is based on the VGG network [35] and previous face recognition

work [36]. The input tensor is rescaled by the locally spatial attention model, which can

enhance the ability of our network for extracting features from images. Some previous

behavioral and emotion study suggests the dynamic information of facial expression is

useful and efficient for emotional assessment[37]. In our architecture, the LSTM network

is adopted for capturing the dynamic information in the temporal domain. By combining
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the spatial variation and the temporal variation in the video sequence of patient’s face, we

are able to estimate the pain intensity robustly. Our architecture consists of CNN with

spatial attention model and LSTM. Each frame in the video sequence is fed into the whole

architecture. The CNN block extracts features from single frame, then puts the feature

vector into the LSTM block to estimate the pain intensity. The details of our architecture is

shown in Fig. 2.2. In the next section, we elaborate on the details of our approach.

Figure 2.2: In our study, we utilize CNN network and LSTM network as the backbone
of our architecture. We incorporate the locally spatial attention learning model into the
convolutional network as illustrated in this figure.

2.2.1 Locally spatial attention learning

Figure 2.3 shows the overview of our locally spatial attention learning model. For

extracting the static features from the patient face, we utilize the convolutional neural

network which is based on VGG11 network(configuration A)[35] for pain intensity estimation.

The motivation of our study is that each region of the face is not equally contributed to the

painful expression. In an attempt to design the spatial attention model, our intention is to

provide a way of detecting the important region for pain intensity estimation. The proposed
11



Figure 2.3: The overview of the locally spatial attention learning model. As illustrated
in Fig. 2.2, the spatial attention model is inserted inside the third block of convolutional
neural network. The first layer is 1 × 1 locally convolutional layer. The second layer
is the conventional 1 × 1 convolutional layer for dimension reduction. The input of the
attention model is the orange block which is the output of first layer in the third block of
convolutional network. The spatial attention map is used for rescaling the input tensor.

model which consists of two layers is inserted inside the third block in the convolutional

neural network to capture the detailed information from the previous layers.

The aim of the locally spatial attention learning is to capture more detailed information

from the face region. A major problem with the previous attention model based on the

conventional convolutional kernel is that the generated attention map is translation invariant

so that the local details of the image are hard to capture. The geometry attribute of the

face image is symmetrical and structural. Inspired by previous face recognition study[36]

and other research field based on the facial expression[38], we propose the locally spatial

attention learning model which is incorporated into the convolutional neural network. Given

the output tensor T from the previous building block in the convolutional neural network,

the shape of the tensor is C ×H ×W , which C is the channel number of the tensor while
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H and W represent height and width respectively. The spatial attention model takes the

input tensor T and generates a 2D spatial attention map As, with size H ×W . To generate

the spatial attention map, the locally convolutional layer is adopted in the first layer of the

spatial attention model. For each location in the spatial dimension of the input tensor, the

first layer of our locally spatial attention learning model uses different convolutional kernel

for extracting discriminative appearance feature. The Pij denotes the different weights for

the input tensor T of different location Tij . Each Tij has its own receptive field of the face

image. In hence, the more the spatial attention model is behind, the larger the receptive field

of the attention model becomes. The kernel size of the locally convolutional layer is 1× 1,

so shape of the output tensor of the first layer is R ×H ×W , R = 16. The tanh function

is used as activate function in the first layer. In the second layer of spatial attention model,

we apply the conventional 1× 1 convolutional kernel to generate the spatial attention map,

which describes the informative parts of the face region. The sigmoid function is applied

on the top of the spatial attention model to let the attention weight lie from zero to one.

The shape of the attention map As is 1 × H ×W . In short, the spatial attention model is

calculated as:

Tres = T ⊗ As (2.1)

where, the operation⊗ denotes the element-wise multiplication. The output of the attention

map rescales the input tensor T . In our implementation, the attention mapAs is broadcasted

in the channel dimension of the input tensor T . Then, the rescaled tensor Tres is fed to the

latter convolutional layer in the convolutional neural network. We utilized dropout strategy

to avoid the overfitting problems. The dropout ratio of the fully connected layer was set

to 0.3. The arrangement of the two layers inside the attention model is a key problem for

pain intensity estimation. We compare different spatial attention models in the experiments

section, and the results demonstrate that locally convolutional layer in the first order is

better than other structures.
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2.2.2 Temporal learning
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Figure 2.4: The illustration of the LSTM structure. Ct−1 denotes the memory from the
previous block. ht−1 represent the output from previous block. Xt denotes the input vector.
σ denotes the sigmoid function. Ct and ht represent the memory from the current block
and output of the current block, respectively.

The structure we have used in this study aims not only to extract features from the

single frame, but also to build the dynamic temporal relationship among different frames.

For this purpose, the LSTM [39] network for learning the long-term relationship among

sequence data is adopted in our temporal model. The output feature vectorZ(t) of convolutional

neural network is fed into the LSTM, so the input node of the LSTM is 256-dimensional.

Z(t) denotes the feature vector of tth frame in the video sequence. In our temporal model,

we only use one LSTM layer. The hidden node of our LSTM is 128-dimensional. The

dropout ratio of our temporal model is 0.3. The LSTM network has three gates to control

the information from the previous sequence data and the existing sequence data. The video

sequence of the patient is divided into small groups to train our architecture. For instance,

the first sequence s1 = {f1, f2, . . . , f16}, is 16 consecutive frames from one video , the

14



next sequence is s2 = {f2, f3, . . . , f17}, until the last sequence of this video. Here, fi

denotes the i th frame in the video sequence. The frame label of our training database is

Prkachin and Solomon’s Pain Intensity metric(PSPI)[40]. The label of each sequence is

the PSPI label of the last frame in this sequence. Therefore, the PSPI label is predicted by

considering all the 16 frames. Finally, two fully connected layers are used for predicting the

PSPI value based on the output of the LSTM network. The dimension of the first layer is 64

and the dimension of the second layer is only 1 for estimating pain intensity. Considering

that estimating the pain intensity is the regression task, we chose the mean squared error

loss for training our architecture.

2.3 Experiment

In this section, we will discuss the details of our experiments and results for our

proposed architecture.

2.3.1 Database and preprocessing details

We trained and validated our spatial attention architecture in the UNBC-McMaster

shoulder pain database[33], which consists of 25 subjects with 200 videos. All the participants

in this database have got shoulder pain. In the recording stage, they did a list of active

and passive range-of-motion tests with their limbs under the professional guidelines. The

database provides three types of labels for calculating pain intensity, including VAS, OPI

and PSPI. The PSPI intensity can be calculated as:

PSPI = AU4 +max(AU6, AU7) +max(AU9, AU10) + AU43 (2.2)

As reported in the previous research[41], the PSPI label in the UNBC-McMaster shoulder

pain database is not always reliable. In their finding, both VAS and OPI labels for some

subjects are not zeros which means the subject feels pain. However, the PSPI label for that
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subject is zero. It is known from the literatures[42], that some action units related to the

pain expression is not calculated in the original PSPI equation. To improve the accuracy

of our proposed spatial attention model, we conduct the data cleaning process for reliable

PSPI labels in the database. Therefore, we excluded one subject which has no obvious pain

(101-mg101 subjects, including 9 video sequences) and some video sequences without

reliable PSPI labels (bg096t2afaff, ib109t2aeaff). We illustrated the sample sequence of

the excluded video in Fig. 2.5. Totally, 24 subjects with 189 video sequences were used in

(a) Example of bg096t2afaff

(b) Example of ib109t2aeaff

(c) Example of mg101t1aiaff

Figure 2.5: Example video sequence removed from our experiment. (a) The example
shows patient feels pain. However, Lip parting(AU25), Lip stretching(AU20)), raised
eyebrows(Au1/2) is not considered in PSPI equation. (b) The VAS(VAS=5) and
OPR(OPR=1) of sequence ib109t2aeaff are not zero. Otherwise, the PSPI is annotated
as 0. (c) There is no significant pain for 101-mg101 subject.

our experiments. We followed the previous research[27] to preprocess the PSPI label by

transforming the range of value from 0 ∼ 15 to 0 ∼ 5. Data preprocessing is a major part

in training deep neural networks. As demonstrated in Fig. 2.6, the OpenFace2.0 toolkit[43]

was utilized in our experiments for face alignment and cropping.
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2.3.2 Implementation and analysis

The convolutional neural network in our architecture was trained from scratch and

the whole structure was trained in the end-to-end manner. As mentioned before, we only

used 24 subjects with 189 video sequences to train our network. Therefore, we evaluated

our network in 24 subjects leave-one-subject-out cross validation. The learning rate of

our network was set to 0.0001. Our network was trained in 20 epochs. Furthermore, we

utilized Adam[44] optimizer with weight decay 0.001 to train our architecture. The whole

architecture was implemented by PyTorch 1.10 [45] framework with batch size 32 in 4

GPUs. The order of the locally convolutional layer and the conventional convolutional

(a) Original Image (b) OpenFace (c) Our Proposal (d) Reversed Order

Figure 2.6: Original image and processed image by OpenFace 2.0 toolkit. All the images in
the database are resized to 224×224. Example of two different attention maps is illustrated.
(c) Attention map is derived from our proposed attention model. (d) The reversed order is
comparison model which exchanges the order of 1×1 locally convolutional layer and 1×1
common convolutional layer.

layer in the spatial attention model is an essential issue in our study. Here, we compare

two different spatial attention models. As illustrated in Fig. 2.6, the left attention map is

derived from the locally spatial attention learning model used in our architecture, while the
17



Table 2.1: Comparison of different methods.
Methods MAE↑ MSE↓ PCC↓
Zhou et al.[26] N/A 1.54 0.65
Wang et al.[27] 0.456 0.804 0.651
Rodriguez et al.[28] 0.5 0.74 0.78
Tavakolian et al.[29] N/A 0.69 0.81

right attention map is from the different spatial attention model which the first layer is the

convolutional layer and the second layer is the locally convolutional layer. As can be seen

from Fig. 2.6, our proposed locally spatial attention learning model indicates that the cheek

of the face and the region between eyebrows are important for pain intensity estimation.

The right attention map shows nearly same importance in the whole face region which

indicates this architecture cannot detect significant region for pain intensity estimation.

Comparison of two different attention maps shows our proposed model can capture the

important region of face more effectively than another model with different order. We also

compare the performance of our method with the general architecture and the previous

research. Here, the general architecture only contains CNN network without locally spatial

attention learning and LSTM network. The mean absolute error (MAE), mean squared

error (MSE) and Pearson Correlation Coefficient (PCC) are reported in Table 2.1. As

listed in Table 2.1, it is obvious that the locally spatial attention model can achieve an

improvement on both MAE and MSE with comparison of general architecture. Comparison

between our method and previous research shows the performance of our architecture is not

perfect. It should, however, be noted that we use smaller training database for our neural

network. Accurate and reliable PSPI label is important for training deep neural networks.

Estimating the Pain intensity should be accurately related to the painful expression and

feeling which are crucial issues for some medical diagnosis.
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2.4 Conclusion

Automatic pain intensity estimation is a key technique in some medical applications.

In this research, we propose locally spatial attention learning method to find important

region on the face and to enhance the performance of the whole architecture. The results

indicate that our proposed method can capture the important area of face for pain intensity

estimation. Our current study expands the prior work in this research area and provides a

new method for future study on painful expression analysis. We conducted our experiments

in the shoulder pain database. At present, the results show the performance of our architecture

is better than the general structure without locally spatial attention learning and is not

outstanding compared with the state-of-the-art methods. We will improve our spatial attention

architecture for better results by effective network engineering in the future.
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3 Green Pepper Segmentation by Attention LSTM

3.1 Introduction

Green Pepper is one of the main economic crops in Kochi prefecture, Japan. In 2019,

we began the IOP(Internet of Plant) project, aiming to improve agriculture’s efficiency and

production. Due to the similar color between the green pepper and foliage, our human

vision system is difficult to detect green pepper by judging color. As a result, it is harder

to develop automatic picking up techniques and more channeling to estimate yield for

the marketing decision. An automatic harvesting system for vegetables and fruits attracts

widespread interest in research fields, such as computer vision, robots [46], and the Internet

of Things. Several methods for distinguishing a green pepper from its leaves in the research

fields of image processing and computer vision. Recently, some research has focused

on hue, saturation, and the value of the color space to classify a green pepper and its

leaves [47]. An alternative approach was developed using a three-dimensional (3D) sensor

to detect and segmentation of fruits and vegetables in 3D space [48]. Despite this, there

remains a need for an algorithm to identify crops for which leaves and the remaining

backgrounds are similar colors. The final goal of this research is to obtain good segmentation

results for automatic picking or prediction of green pepper growth. For such a purpose,

object detection is not suitable since the detection results cannot be used for cutting the

stem of fruit or estimation of fruit size, although it can be used for counting. One approach

to improve the system is to incorporate hyperspectral imaging, which collects and transfers

various information at different wavelengths; hence, it can provide rich information for

classifying vegetables and leaves, even if the colors are similar. Hyperspectral image
20



Figure 3.1: Where is the green pepper? In the real world, we hardly see the monochromatic
object. Instead, the surface of the object reflects a wide range of wavelengths of light. Due
to our eyes can only perceive three primary colors, Red, Green, Blue, it leads to the different
object surface reflectance but matching the same or near color in our vision system. It is
the Metamerism. The photograph was captured in the greenhouse.
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(a) RGB image (b) Reflectance of sample points

Figure 3.2: The above image illustrate the different reflectance of the green pepper and
green leave. (a) illustrates the sRGB image and selected point location. (b) demonstrate
the reflectance of each selected point on the surface of green pepper and leaf.

segmentation is most commonly used in remote sensing [49] [50]. Its research purpose

is to achieve land cover classification, including vegetation mapping. In the agricultural

field, hyperspectral imaging has been used to detect green citrus using pixel-wise linear

discriminant analysis followed by spatial image processing [51]. Its purpose is to improve

segmentation results using all the information in high-dimensional space. Therefore, unlike

RGB, it does not need to degenerate to three dimensions from a higher spectral dimension.

Image segmentation is a major topic in image processing and computer vision, building

a solid foundation for understanding images and solving other computer vision tasks.

Traditional image segmentation is based on threshold methods [52], edge detection methods [53],

and clustering methods. Much more research in recent years has used deep learning to

improve the performance of image segmentation. A breakthrough was achieved by fully

convolutional neural networks (FCN), which convert a fully connected layer to a convolutional
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layer [54]. Despite the successful results of the FCN model for dense pixel-wise segmentation,

it still has some problems regarding losing the spatial resolution of feature maps and some

boundary information of objects. To solve these problems, the SegNet [55] structure was

proposed, which adopts encoder and decoder architecture to improve performance. The

encoder part of SegNet is the same as that of the first 13 convolutional layers of the VGG16

network [35], and the corresponding decoder part uses pooling indices to upsample the

feature map. Because of the pooling indices and fully convolutional layer, SegNet is smaller

and quicker than other architectures in the training and evaluation stages. However, most

image segmentation studies have focused only on RGB space. Few studies have addressed

the continuous wavelength in the real world. In the hyperspectral image classification and

segmentation area, Gao et al. [51] proposed to use a convolutional neural network with

multiple feature learning for hyperspectral image classification. Mou et al. [56] firstly

proposed to utilize the deep recurrent neural network for hyperspectral image classification.

Their idea is a vector-based method, which treats the one pixel of the hyperspectral image

as one vector. By applying the recurrent neural network, the hyperspectral image can be

treated as a sequence-based data structure. Besides, they also proposed the new activate

function, which is called the parametric rectified tanh function.

In this chapter, we present a novel approach to use a hyperspectral image and the power

of a deep neural network to improves the segmentation results of green peppers. Although

a hyperspectral image carries a large amount of information, a hyperspectral camera is

expensive, and hyperspectral data processing requires a large amount of memory; hence,

there are some difficulties in introducing hyperspectral imaging to many farmers. We

propose a vector-based method for green pepper segmentation. Our approach combined

channel attention and the LSTM module to segment the green pepper. A conceptual

diagram is shown in Fig. 3.3.
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Figure 3.3: The above image illustrates the whole structure of our proposed method. We
extra one pixel from the hyperspectral image as one vector. There are two central parts of
our proposed method. The first part is the channel attention module. The second part is the
LSTM with two fully connected layers.

3.2 Proposed Method

In this section, we introduce the details of our proposed method. Inspired by the

Squeeze-and Excitation block in the SeNet [31] and deep recurrent neural network for

hyperspectral image classification [56], we presented our channel attention module with

LSTM. In order to deal with the issue of exploiting channel dependencies, we first consider

reducing the dimension in the output feature space. Unlike the Squeeze-and -Excitation

block, we don’t need to consider squeezing global spatial information because our approach

is vector-based. In figure 3.4, we illustrate the details about our channel attention module.

The aim of the channel attention module is to capture channel-wise dependencies fully. To

fulfil this objective, the proposed method must satisfy two patterns: first, it must be flexible

(in particular, it must be capable of learning a nonlinear interaction between channels), and

second, it must retain a non-mutually-exclusive relationship. To meet these criteria, we
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Figure 3.4: The above image shows the details about the channel attention module. Our
channel attention module consists of two fully connected layers. The first layer is 61
dimensions, and the second layer is 121 dimensions. After the sigmoid function, we get
the weight for each channel of the input vector. We use this weight to reweight the input
vector.

opt to employ a simple gating mechanism with a sigmoid activation. It is straightforward

to apply the channel attention block to the LSTM structure. The flexibility of the channel

attention block means that it can be directly applied to transformations of the hyperspectral

input vector. For the proposed channel attention block to be viable in practice, it must

provide a useful trade-off between model complexity and performance, which is essential

for scalability. We set up the dimension of the first layer to be 61. The final output of

the channel attention block is obtained by rescaling the transformation output with the

activation. The output of the channel attention block act as channel weights to adapt to

the input-specific hyperspectral vector. In this regard, channel attention block intrinsically

introduces dynamics conditioned on the input, helping to boost feature discriminability.

The layer normalization [57] was utilized in our architecture to speed-up the whole training

process.
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Most of the existing classification techniques are based on spectral-spatial frameworks.

They do not take advantage of the fact that the spectral information in the hyperspectral

images is sequential in nature. A recurrent neural network (RNN) is an extension of

traditional neural networks and is used to address the sequence learning problem. However,

it turns out to be that training RNN models to model the long-term sequence data is difficult.

To address this issue, Hochreiter and Schmidhuber proposed LSTM to replace the recurrent

hidden node with a memory cell, which defeats the shortcomings of the previously built

RNNs [39].

The LSTM structure consists of four essential parts: input gate it, output gate ot,

forget gate ft , and candidate cell value ct. The equation of the forward pass of an LSTM

is followed by:

ft = σg (Wfxt + Ufht−1 + bf )

it = σg (Wixt + Uiht−1 + bi)

ot = σg (Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc (Wcxt + Ucht−1 + bc)

ht = ot ◦ σh (ct)

(3.1)

3.3 Experiments

Since there are no available hyperspectral pepper datasets on the internet, hyperspectral

images of green peppers were taken by our own hyperspectral camera(NH-2 by EBA

JAPAN CO., LTD.). Fig 3.5 demonstrates the data acquisition flow for our dataset. We

collected our hyperspectral dataset in the Kochi Agriculture center four times from June to

December 2019. Let L(x, y, λ) be the radiance data index at spatial coordinates (x, y) of

the scene at wavelength λ. We also define the spectral reflectance R(x, y, λ) and the global
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Figure 3.5: The above image demonstrates the data acquisition flow in Kochi Agriculture
center for our research
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Figure 3.6: The above image shows how to get the pixel-wise data from our dataset. The
image is in the raw-RGB color space. The green rectangle represents the pixel for green
pepper. The red rectangle represents the pixel for green leave.

illumination E(λ). The spectral reflectance of the image is then calculated as:

R(x, y, λ) =
L(x, y, λ)

E(λ)
. (3.2)

We developed pixel-wise sampling software by using Python Package, such as OpenCV,

to get the vector-based dataset. We illustrate the location of the bounding box for collecting

pixel data in each sample image in Fig 3.6. The green rectangle represents the pixel

for green pepper. The red rectangle represents the pixel for green leave. As reported

in the previous research [58], there is no overlapping between each bounding box in our
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Table 3.1: Comparison of our proposed method and ACPR pixelwise result.
Methods accuracy loss
Our proposed. 0.987 0.0387
ACPR. [1] 0.796 0.45

dataset to avoid an information leak. Because the camera has a spectral resolution of 10

nm potentially, the whole spectral range of 400–1000 nm was divided into 121 wavebands.

We selected 120445 samples, including 50,376 positive samples(green peppers) and 42,681

negative samples(green leaves). In our training stage, we adopted adam [44] with a learning

rate of 0.001 for optimization. We used ten epochs for training, and the batch size was

set to 50. We implemented our model in Keras [59] with TensorFlow backend [60] and

trained them by using an NVIDIA™ GeForce 1080Ti GPU. In figure 3.8, we show the

segmentation result of the green pepper. As you can see, our proposed method can achieve

good green pepper segmentation results.

(a) (b)

Figure 3.7: (a)Training and Validation loss, (b)Training and Validation accuracy.
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sRGB Ground Truth ACPR [1] Proposed Method

Figure 3.8: Comprehensive segmentation results of our proposed method with our
ACPR paper result. The above image demonstrates the green pepper segmentation results.
The first column is the sRGB image. The second column is the ground truth. The third
column is the segmentation results from [1]. The fourth column is the segmentation results
by using our proposed methods.

3.4 Conclusion

We have presented a vector-based model that achieves excellent green pepper segmentation

problem performance, which can be widely applied in agricultural fields. This research

aims not to object detection for green pepper counting but segmentation for automatic

picking or growth prediction of green pepper. Our method consists of two parts. The first
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part is the channel attention block, which generates the weights for each input channel.

The second part is the LSTM. We treat the hyperspectral segmentation as the vector-based

machine learning problems. In the future, we will extend our work to the spatial-spectral

domain, which we believe can provide more information than the vector-based methods.
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4 A Spectral-Aware RGB Camera Framework for

Effective Green Pepper Segmentation

Detecting and identifying objects of similar color is a challenging task in computer

vision. Green peppers in a natural environment can be found using the abundant information

provided by a hyperspectral camera in the spectral domain, but the hyperspectral camera

is an expensive device. Therefore, we propose a novel framework called Optical Filter

Net, which enables the design of an optical filter that improves the performance of green

pepper segmentation by a specific red-green-blue (RGB) camera system. When installed

with the optical filter, the system can efficiently utilize the spectral information in the

visible wavelength to distinguish green pepper and foliage without requiring an expensive

hyperspectral camera. A main finding is the similarity between the transmission curve of

the optical filter and the depth-wise convolution kernel without bias. Accordingly, we can

treat the transmission curve of the optical filter as one layer of a deep neural network. The

whole structure can be trained in an end-to-end manner. To comply with the physical

requirement of the optical filter, we further constrain the training process to achieve a

non-negative and smooth transmission curve. In an experimental evaluation on our dataset,

our proposed spectral-aware RGB camera system outperformed the RGB camera system

without an optical filter.

4.1 Introduction

Green pepper is one of the major vegetables found in Kochi Prefecture, which contributes

to approximately 10% of the overall green pepper production in Japan. Hence, the production
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Figure 4.1: Pipeline of our work. Based on our hyperspectral dataset, an end-to-end
network structure designs the transmission curve of the optical filter. Our structure
consists of two parts: a depth-wise convolution layer and a traditional convolution
layer (representing the spectral transmission curve of the optical filter and the camera
spectral response, respectively), followed by a U-Net shaped structure for green pepper
segmentation. During the training stage, the weight of the camera spectral response is
fixed. At the bottom right, the blue and red dashed-line rectangles indicate the trainable
framework parameters and the frozen weights representing the camera spectral functions,
respectively. During the application stage, the optical filter is attached in front of the camera
lens. Consequently, the optical filter changes the spectral distribution of the incident light
by its transmission curve.

efficiency of green pepper must be improved using recent technology. Green pepper segmentation

is useful to estimate the size and shape of green pepper, which has potential application in

precision agriculture applications, e.g., automatic harvesting, green pepper growth estimation,

harvest prediction, and marketing aid. However, to the human eye and in red-green-blue

(RGB) images, green pepper is the same color as the foliage. Hyperspectral cameras can

provide much more detailed clues than a consumer RGB camera, because a hyperspectral

image records the interaction between the material surface and incident light at different

wavelengths. Therefore, it captures the intrinsic physical and chemical properties of the

imaged material. Hyperspectral imaging is a useful tool in agricultural applications [61],

food industries [62], and scientific research [63], but hyperspectral cameras are expensive

and not widely available to most farmers.

Under a particular illumination condition, two objects with different spectral reflectances

may appear as the same color. This phenomenon is called metamerism [64]. Metamerism

arises because the surface reflectance and scene illumination have more degrees of freedom
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than trichromatic vision responses. Consequently, color provides insufficient evidence

for identifying and detecting objects. To increase the accuracy of surface classification,

Blasinski et al. [65] proposed to design the spectral power distributions of illumination. A

critical component of a consumer RGB camera is the Bayer color filter array [66]. The

camera spectral response (CSR) describes the sensitivity of the camera sensor with a Bayer

color filter array to incident light of different wavelengths. The CSR, which relates the

image intensity to the scene radiance, plays an essential role in computer vision tasks such

as hyperspectral reconstruction [67], color constancy [68], and integrated signal processing

inside digital cameras [69]. However, the main purpose of most consumer cameras is

generating visually pleasing images, which does not require precise measurements of the

scene radiance. Previous research [70] has shown that the CSR is not necessarily the best

choice for specific computer vision tasks such as hyperspectral estimation. Moreover, the

CSR varies notably among the different manufacturers and models of cameras [71]. Fu

et al. [72] proposed a deep neural network based method to jointly select the optimal

CSR and learn the hyperspectral image reconstruction network. Another major current

focus is computational optics [73]. Jointly optimizing optical elements with differentiable

end-to-end algorithms has generated considerable recent research interest, such as sensor

design [74], automatic lens design [75] and HDR imaging [21].

Inspired by these works, we here introduce a spectral-aware RGB camera system that

economically improves the accuracy of detecting green peppers in their natural environment.

To meet our ultimate goal (optimizing the transmission curve for green pepper segmentation),

we add an optical filter to a specific consumer digital camera. The transmission curve of

the optical filter is designed by a deep neural network, which is driven by the task of green

pepper detection. Figure 4.1 is an outline of our presented study.

The main contributions of our research are summarized below:

• Rather than redesigning or selecting the CSR, we design an optical filter that can be
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added to any available camera owned by farmers and workers. The optical filter enables an

automatic harvesting system in a cost-efficient way.

• We show that the transmission curve of the optical filter can be considered as a 1 × 1

depth-wise convolution kernel without bias. Following previous research, we treat the

CSR of the RGB camera as fixed-weight 1 × 1 traditional convolution kernels without

bias[76], and thereby represent our proposed physical camera model. The CSR layer is

followed by a segmentation part, a namely, a U-Net like neural network with three input

channels, for green pepper segmentation. The whole structure simultaneously learns the

spectral transmission curve and optimizes the green pepper segmentation neural network

in an end-to-end manner.

• Owing to the physical limitations of filter production, the transmission curve of an

optical filter is non-negative and smooth. During the training stage, we impose a particular

constraint on our deep neural network. We then show that our deep neural network can

learn the spectral transmission curve in a non-negative and smooth space.

The remainder of this chapter is organized as follows. Section 4.2 briefly reviews

the related work on CSR, deep neural networks, and object segmentation and detection.

Section 4.3 introduces the details of our method, and Section 4.4 presents the experimental

results and our green pepper dataset. Section 4.5 reports our fabricated optical filter and

the whole imaging sensor system. The paper concludes with Section 4.6.

4.2 Related work

Agriculture, horticulture, and food industries continue to rely largely on the manual

labor of farmers and workers. However, as labor costs increase and the population ages,

automatic harvesting systems have gained attention in the computer vision and robotics

field. Kitamura et al.[77] developed a picking and cutting robot system equipped with a

parallel stereo vision system and a HALCON image processing application. In a follow-up
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study, Eizentals et al.[47] proposed a novel three-dimensional (3D) pose estimation method

for green pepper detection by their automatic harvesting robot. Their approach utilizes

illumination by a light-emitting diode in hue-saturation-value color space for target recognition,

and laser measurement with point segmentation for 3D pose estimation. Alternatively,

automatic fruit segmentation has been achieved by feature learning algorithms with conditional

random fields on multi-spectral images[78]. Although such algorithms achieve high performance

on multi-spectral images, the method is uneconomic and insufficient for large-scale applications

in practice. Our proposed method efficiently utilizes the spectral information for low-cost

segmentation of green pepper among its foliage. A critical advantage of our strategy is its

generalization, as RGB cameras are widely available.

Mimicking the visual attention of the human vision system, salient object detection

aims to detect and segment the most perceivable objects from an image. This method is

attracting widespread interest in computer vision fields such as object detection and image

manipulation, and has been extensively improved by the rapid development of deep neural

networks in segmentation tasks. A variety of methods and datasets have been proposed in

this research area[79]. Recently, salient object detection has focused on new approaches

using hyperspectral images. For example, Liang et al.[80] used the hyperspectral information

to distinguish objects with similar appearance but constructed from different materials,

which is a challenging problem in salient object detection. The HS-SOD dataset[81]

was one of the first large-scale hyperspectral image datasets for evaluating salient object

detection algorithms. Hyperspectral imaging achieves high spectral resolution, as it provides

the full spectral reflectance information of the object. In a recent study, İmamoğlu et al.[82]

proposed feature learning on hyperspectral images by unsupervised segmentation tasks.

Many computer vision algorithms require accurate measurements of the scene radiance

in (for example) high dynamic range [83], photometric stereo [84] and shape from shading[85].

CSR links the scene radiance to image intensity. The CSR is most precisely estimated
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using a monochromator and a spectrometer, but such measurements are time-consuming

and expensive. Much research in recent years has focused on modeling and evaluating

the CSR. In one significant study, Han et al.[86] estimated the CSR from the fluorescence

signals of a single image. From a different angle, Jiang et al.[71] analyzed the CSR by a

statistical method, and reported that principal component analysis achieves more accurate

and robust results than other methods. Their results showed that the CSR can be estimated

from a single image with known or unknown illumination.

Recently, Nie et al.[76], who analyzed the working process of the CSR, reported that

the CSR is similar to a convolution layer, and can be optimized by leveraging robust

deep neural networks. Examining their results in detail, it was found that the machine

learning algorithm can automatically design the CSR for a specific task. Because CSR

performs dimensional reduction in the spectral domain, most consumer cameras cannot

provide the full spectral information. Kimachi et al.[87] proposed a three-phase quadrature

spectral matching imager based on a correlation image sensor. Their technique offers a

new way of utilizing spectral information without a hyperspectral camera. Unlike the

methods mentioned above, an alternative approach was developed by selecting limited

band information from the hyperspectral image and increasing features by morphological

calculation. In the remote sensing area, Kwan et al.[88] proposed to utilize RGB-NIR bands

and augment features by EMAP[89] which enlarges feature map considering morphological

attribute for land cover classification and achieved better performance than using hyperspectral

images.

Detecting objects in an image is one of the fundamental tasks in computer vision.

Much research progress in recent years has focused on CNN-based detectors, such as

RCNN[90], YOLO[91], and so on. Gan et al.[92] developed an immature green citrus

detection approach based on faster RCNN using color and thermal cameras. Kwan et

al.[93][94][95] firstly applied the YOLO algorithm on coded exposure cameras and achieved
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good detection accuracy with low power consumption and small bandwidth. Object detection

is out of focus for our own application but focusing on low power consumption is also

important even in agricultural application.

The above studies highlight the need for developing computer-aided technology in

agriculture, and emphasize the critical role of the CSR function in computer vision applications.

However, few studies have considered the spectral information in a ready-made camera

system. The present study explores the distinguishing ability of a transmission curve

for similarly colored objects, such as green pepper and foliage. The proposed method

is generalizable to the segmentation of other objects composed of materials with similar

colors but different spectral reflectances.

4.3 Proposed Method

This section provides the details of our proposed method. We first describe the relationship

between the 1 × 1 depth-wise convolution kernel and the optical filter. We then report the

whole structure of our neural networks. Finally, we present the non-negative and smooth

constraint of our neural network.

4.3.1 Optical filter simulation

Our proposed method is overviewed in Fig. 4.1. Our framework uniquely simulates

the optical filter as a 2D depth-wise convolution kernel without bias. By this approach,

we can explore the transmission curve of the optical filter through the deep neural network

algorithm. Fig. 4.2 demonstrates the similarity between depth-wise convolution and the

transmission curve of an optical filter.

The essential equipment in the imaging system is the optical filter, which selectively

transmits the incident light at different wavelengths. Tensor factorization is a popular

method for analyzing 3D hyperspectral data [96]. The captured scene is represented as
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1 × 1 2D depth-wise Convolution

Transmission Curve

Hyperspectral Image Feature Map

Figure 4.2: Similarity between the 1 × 1 depth-wise convolution and the spectral
transmission curve of an optical filter. The spectral transmission curve of the optical filter
can be represented by a non-biased 1× 1 depth-wise convolution kernel.

a 3D tensor L(x, y, λ), where λ denotes the wavelength, and x, y is the spatial position of

the analyzed point. Given the radiance of the captured scene L(x, y, λ), the workflow of

the optical filter can be described by the following element-wise product:

S(x, y, λ) = L(x, y, λ) ◦ T (λ), (4.1)

where 1 ≤ x ≤ W , 1 ≤ y ≤ H , W and H represent the width and height, respectively,

of the hyperspectral image in the spatial domain. T (λ) represents the spectral transmission

curve of the optical filter, and S(x, y, λ) denotes the output of the optical filter. The

elements of the column vector T (λ) are the transmittance at different sampled wavelengths

[t(λ1), t(λ2), t(λ3), · · · , t(λn)]. Depth-wise convolution was proposed for the Xception

architecture [97], which uses depth-wise separable convolution operations (depth-wise and

point-wise convolution) in its Inception module. Here, we chose a depth-wise convolution

kernel because it executes independently over each channel of the input tensor. By employing
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the depth-wise convolution kernel, we can treat the optical filter’s transmission curve as

one layer in the deep neural network, and design the most efficient transmission curve in

an end-to-end manner. The transmission curve of an optical filter is usually assumed to

be spatially uniform. Under this assumption, the spatial size of the depth-wise convolution

kernel is 1×1, and the kernel weight is constant at different positions in the spatial domain.

Incident light passes through the optical filter and enters the camera equipped with

a Bayer color filter array. Inspired by previous research [76], we simulated the camera’s

spectral response with a three-kernel 1 × 1 convolution layer. The three kernels represent

the R, G, and B channels, respectively. The intensity of the pixel located at (x, y) in the

k-th channel of the image is

Pk(x, y) =
N∑
i=1

Ck(λi)S(x, y, λi), k = R,G,B (4.2)

where Ck(λi)(i = 1, 2, · · · , N) is the related spectral response function of the camera,

and S(x, y, λi) is the output tensor of the previous optical filter. As shown in Fig. 4.1, our

deep neural network is appended with a 1 × 1 depth-wise convolution layer followed by a

1× 1 convolution layer with three kernels. Following the above approach, our architecture

extracts the spectral transmission curve of the optical filter from the optimized weight of

the 1× 1 depth-wise convolution kernel.

4.3.2 Network structure

The hyperspectral image passes through the one-kernel depth-wise convolution layer

and the three-kernel convolution layer. After this passage, it is converted to three channel

feature maps representing the three color intensities of the raw-RGB image. The feature

maps from the two convolution layers are input to our green pepper segmentation module,

which is configured as an encoder–decoder U-Net [98] structure with a skip connection

design. This module provides more accurate segmentation results than other module designs
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on a small training set. Moreover, the U-Net structure simultaneously captures the low-level

features and high-level contexts. The skip connection is particularly useful for sharing the

low-level details and features across the whole structure. Here we investigate the possibility

of designing an optical filter by a deep neural network. Applying a more effective neural

network structure in the green pepper segmentation module is left for future study.

In the encoder part of our U-Net structure, the basic module is a 2D convolution

layer composed of a batch normalization layer [99] and a rectified linear unit activation

function[100]. After spatial down-sampling by the max-pooling layer in the encoder part,

the spatial dimension is further reduced to 20× 20. The decoder part is nearly structurally

symmetric to the encoder part, and upsampling is performed by a transposed convolution

layer of stride 2. The transposed convolution layer is followed by basic feature-extraction

modules in each block.

4.3.3 Constraint ensuring a non-negative and smooth function

The optical filter must satisfy certain physical requirements that constrain its spectral

transmission curve. First, the weight of the spectral transmission curve must be non-negative.

Second, as a smooth curve is more feasible than other arbitrary curves during actual implementation,

the spectral transmission curve cannot be spiky and randomly fluctuating. Last but not least,

the spectral transmission curve must be spatially invariant. To optimize the optical filter

design, we trained the whole framework under the following loss-minimization formula:

` = `bce + η‖GW‖22 s.t. W ≥ 0, (4.3)

where `bce is the binary cross entropy, the most commonly used loss function in binary

classification and binary image segmentation. The coefficients η control the smoothness

of the spectral transmission curve, G denotes the first or second derivative matrix of the

depth-wise convolution layer, and W denotes the shape of the transmission curve of the
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Figure 4.3: The sample color images were rendered from our hyperspectral dataset and the
corresponding ground truth of each image

optical filter. We impose a non-negative constraint W ≥ 0 on the depth-wise convolution

kernel in forward and backward propagation modes. To experimentally verify the effectiveness

of the constraint in different settings, we varied η and controlled the smoothness of the

spectral transmission curve by changing the derivative matrix. Therefore, the optimal

weight of the optical filter can be obtained from the learned weight of the depth-wise

convolution kernels W .

4.4 Experiment

4.4.1 Dataset and Setup

Thus far, the research community has lacked a public hyperspectral dataset for green

pepper segmentation. To construct such a dataset, we collected hyperspectral images at

the Kochi Agriculture Research Center, Kochi, Japan. Various types of hyperspectral

cameras—wavelength-scan type, line-scan type, and snapshot type[101]— are available

for scientific and industrial research. Our dataset was acquired by a line-scan type camera

(Model NH-2-KTK, EBA Japan Co., Ltd, Japan). The NH-2 hyperspectral camera can

provide 640× 480 pixel images with 121 spectral bands ranging from 400 to 1000 nm. For

compatibility with our target camera (a common RGB camera), we utilized only 61 spectral

42



Specific illumination

Synthetic Radiance

Standard White Plate

Scene

Scene Reflectance

illumination

Spectral Image

Illumination Spectrum

                        
   

   

   

   

    

    

    

    

Hyperspectral 

Camera

Figure 4.4: Pre-processing of hyperspectral images in our proposed method. After inserting
a standard white plate over the captured scene, we take an image using the hyperspectral
camera. Second, we divide the spectral image by the illumination spectrum to obtain the
reflectance of the scene. Finally, we multiply the scene reflectance by specific illumination
spectrum such as 6,500 K for daylight and 4,000 K for early evening.

bands ranging from 400 to 700 nm. The measurement resolution of our camera was 5 nm.

When acquiring the images, we fixed the camera on a tripod to avoid motion distortions in

the recorded data and adjusted the focus lens, the aperture of the camera. The recording

time depended on the weather, and ranged from 30 seconds to 2 minutes. To obtain the

reflectance data of the scene, we inserted a standard white plate in the field of view of the

camera. Sample images are presented in Fig. 4.3.

Image capture by a hyperspectral camera is time-consuming and is often technically

difficult, especially in outdoor scenes. The recorded radiance data are much more variable

in outdoor environments than in laboratory settings, as natural illumination is not constant,

but are greatly affected by weather conditions and seasons. The viewing geometry also

alters the natural illumination. To construct our experimental dataset under different weather

conditions and natural illumination conditions, we collected data at four times from June to

December, 2019. Let L(x, y, λ) be the radiance data index at spatial coordinates (x, y) of

the scene at wavelength λ. We also define the spectral reflectance R(x, y, λ) and the global

illumination E(λ). The global illumination E(λ) is determined by averaging the spectral
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information over the standard white plate:

E(λ) =
1

N

N∑
n=1

W (n, λ), (4.4)

whereW (n, λ) represents the spectral information recorded by measurement of the standard

white plate, and N is the total number of pixels on the standard white plate. As shown in

Fig. 4.4, the global illumination E(λ) of each image is estimated by the measurement of

reference plate reflectance. The spectral reflectance of the image is then calculated as

R(x, y, λ) =
L(x, y, λ)

E(λ)
. (4.5)

To solve the different illuminations in our dataset,

we simulated the synthetic radiance data by a specific illumination at different color

temperatures, e.g., 4,000 K, 6,500 K. The radiance data under a particular illumination

were then constructed as follows:

Lsynthetic(x, y, λ) = R(x, y, λ)Especific(λ). (4.6)

In experiments, we conduct our proposed method in two datasets. One has a 6500K

illumination condition, and the other has different illumination conditions. We rendered

the hyperspectral image in standard RGB color space and created the ground truth for

green pepper segmentation using the annotation tool LabelMe [102].

4.4.2 Implementation Details

We trained our framework on the above-constructed dataset, which has 104 and 9

hyperspectral images for training and testing, respectively. Before the training step, we

enlarged our training dataset by data augmentation (random crop and random horizontal flip
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operations). To extract an image patch from the original image, we set the crop size to 320×

320. All convolution layers (except the three-kernel convolution layer) were initialized by

the He uniform method[103]. The spectral resolution of the CSR of Nikon D1X was 4 nm

[104]. Figure 4.6 shows the CSR of Nikon D1X, simulated by Gaussian functions at 5 nm

resolution.

The whole network was trained by an Adam optimizer[44], and the hyperparameters

were set to their default values. The initial learning rate was 10−3, the weight decay was

0, and beta was 0.9 or 0.999. A dynamic learning rate was assumed with a learning rate

drop of 0.1, determined by monitoring the changing test loss. The batch size and total

epochs were set to 32 and 60, respectively. All experiments were implemented in the deep

learning tool PyTorch 1.14[45] run on our GPU server, which is equipped with an Intelr

Xeonr Silver 4110 central processing unit @ 2.10 GHz, 512 GB DDR4 memory, and an

NVIDIA™ Tesla V-100 graphics processing unit. The total time of our training process

was approximately 10 hours.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

6500K

no filter
model8
model7
model6
model5
model4
model3
model2
model1

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

MIX

no filter
model8
model7
model6
model5
model4
model3
model2
model1

(b)

Figure 4.5: PR curve for comparing no-filter method and proposed methods under (a) 6,500
K dataset, (b) MIX dataset.
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Figure 4.6: Learned spectral transmission curves under different settings in our proposed
approach. The horizontal axis of each graph is the wavelength (in nm), and the vertical axis
represents the normalized response. The black curves plot the learned spectral transmission
responses of the optical filter. The R, G, B curves denote the spectral response functions
of the camera to red, green, and blue light, respectively. FD: first derivative, SD: second
derivative.

4.4.3 Results

Our aim was to design a data-driven spectral transmission curve of an optical filter

for the effective segmentation of green peppers among foliage. This section presents the

learned spectral transmission curves of the optical filter and the green pepper segmentation

results.

Evaluation metrics

To qualitatively evaluate our proposed method, we adopted three common evaluation

metrics: the precision-recall (PR) curve, F-measure, and mean absolute error (MAE). The

MAE is computed by the average pixel-wise dissimilarity between the predicted object
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Table 4.1: Ablation study of our model with different parameter settings and architectures
by using two types of dataset.

6500K MIX
Configuration MAE↓ F1↑ MAE↓ F1↑
model1(FD η=0.1) 0.049 0.879 0.047 0.895
model2(FD η=0.01) 0.051 0.878 0.046 0.898
model3(FD η=0.001) 0.043 0.896 0.047 0.905
model4(FD η=0.0001) 0.040 0.906 0.051 0.888
model5(SD η=0.1) 0.048 0.884 0.048 0.900
model6(SD η=0.01) 0.048 0.885 0.050 0.886
model7(SD η=0.001) 0.051 0.877 0.046 0.899
model8(SD η = 0.0001) 0.047 0.885 0.045 0.904
no-filter 0.061 0.855 0.057 0.862

segmentation map and the ground truth.

MAE =
1

H ×W

H∑
h=1

W∑
w=1

|P (h,w)−G(h,w)|, (4.7)

where P (h,w) andG(h,w) denote the predicted results and ground truth, respectively. The

F-measure is determined from the precision (proportion of relevant instances among all

obtained instances) and recall (proportion of obtained relevant instances among all relevant

instances) as follows:

F1 =
2× precision× recall
precision+ recall

. (4.8)

Ablation Study on illumination

At the real application stage, the illumination condition in the captured scene largely

varies[105]. To effectively verify our proposed method in the different illumination conditions,

we created a synthetic mixed illumination dataset (MIX dataset) with different spectral

emission of black body radiators at different temperatures: under early evening (4,000

K), daylight (6,500 K), and unknown illumination from our original dataset. The selected

illumination provides adequate approximations to light conditions in real natural environments.

As presented in Table 4.1, under different illumination conditions, the MAE and
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sRGB Ground Truth model1 model2 model3 model4 model5 model6 model7 model8 no-filter

Figure 4.7: Comprehensive segmentation results of our proposed method under different
parameter settings. For each test image, we show the segmentation results in three different
color temperatures in our MIX dataset
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no-filter model3 model8 no-filter model3 model8 no-filter model3 model8

(a) 4000K (b) 6500K (c) unknown

Figure 4.8: Example Rendered sRGB image under different illumination conditions. Each
row shows different test images. Best viewed in color.

F-measure were lower and higher, respectively, in our proposed method than in the no-filter

method, confirming that our filter improved the model performance. Besides, MIX dataset

results show better performance in the most experimental configuration than the only 6,500

K dataset. These improvements in the MIX dataset could be attributed to:

1) The MIX dataset is a relatively larger dataset than the 6,500 K dataset.

2) The MIX dataset contains a variety of illumination conditions. In particular, the

non-uniformity of lighting conditions in the scenes, e.g., the upper and lower sides

of the peppers or shading, affects the lighting conditions at each part of the scene.

Therefore, it is inferred the MIX dataset compensates for such illumination variations

and improves the performance of our proposed methods.

Our proposed method can achieve better results in both datasets than those of the

no-filter setting, showing the importance of spectral selection. To prove the effectiveness

of our proposed method, we also plot the (precision, recall) pairs of the nine models in

Fig. 4.5. The PR curve is a traditional machine learning measure for imbalanced data.
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Compared with the no-filter setting, all of the proposed methods show better results. Evidently,

the learned optical filter improved the green pepper segmentation ability.

Under the non-negative and smooth constraint described in the previous section, we

can obtain the spectral transmission curve of our optical filter that satisfies the physical

requirement. In our loss function, the parameter η controls the smoothness, and G is the

first- or second-derivative matrix of the depth-wise convolution kernel. Figure 4.6 compares

the model results under different settings of η and G in the MIX dataset.

Obviously, different η and derivative matrices yield different spectral transmission

curves. According to the curves in Fig. 4.6, spectral transmission curves in the blue

channel are lower or keep similar to the CSR in the different settings. It turns out to be

the wavelength from 400 nm to 450 nm is not crucial for identifying the green pepper

and foliage. When the η is 0.1 in both FD and SD, the shape of the spectral transmission

curve has proven to satisfy the smooth constraint with less concern for critical wavelength

because of large η. Expect for the setting FD η = 0.1, the maximum response for most

spectral transmission curve is around 550 nm. Interestingly, however, both FD and SD for

the η = 0.0001 can yield a similar spectral transmission curve, and there are four similar

local maxima. Empirically, it is suggested that with low smoothness constraint, the spectral

transmission curve has selected maximum local responses across wavelengths to generate

blue, green, and red information. Apparently, according to these graphs, it can be inferred

that the most critical wavelength is around 550 nm. And there are also other essential

wavelengths around 460 nm, 620 nm, and 660 nm. However, it seems that wavelength near

500 nm makes a little contribution to distinguish green pepper and foliage.

Figure 4.7 compares the pepper segmentation results of test input by our proposed

method under different parameter settings. The results of the no-filter system are also

presented. In our experiments, the no-filter system describes the system with the naked

RGB camera (no optical filter). Comparing each column in Fig. 4.7, we observe that our
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proposed method significantly improved the segmentation result of most test images. The

result implies that along with the spatial domain, the spectral domain is vitally important

for green pepper detection. Unlike the traditional RGB camera, our proposed system

can effectively and fully utilize the spectral information at visible-light wavelengths. We

inferred that the optical filter captures the prior knowledge of green pepper segmentation in

the spectral domain. The present research suggests that combining the spatial and spectral

information is an economical approach for detecting and identifying objects with similar

colors. To illustrate color imaging by our proposed method, we rendered the simulated

RGB images of the no-filter method and the optical filter method under different settings

of η. The images are presented in Fig. 4.8. Each row in Fig. 4.8 represents the different test

images in our dataset. As illustrated in Fig. 4.8, the optical filter changes the image’s color

information compared with the no-filter setting. And combining the results of Fig. 4.7 and

Fig. 4.8, the green pepper segmentation results are improved by such modification of the

test images.

4.5 Realization of the Designed Optical Filter

This section exhibits the proposed spectral-aware RGB camera system with a proof-of-concept

prototype by fabricating an optical filter that can be attached as an add-on device to a

camera lens. As demonstrated in Fig. 4.9, we asked Chroma Technology Corp. to implement

our designed Optical filter for the Lucid Vision Labs TRI050S-CC camera [106]. Our

designed optical filter can be easily used for the camera. We installed our optical filter in

front of the camera lens. Here, we chose FUJINON HF12XA-5M F1.6/12mm C-mount

fixed focal Len for the TRI050S-CC camera.

Fig. 4.10 shows the transmittance curve of our implemented optical filter. The optic

manufacturer try their best to closely our design transmittance curve. As illustrated in

Fig. 4.11, We took photo with optical filter and without optical filter for the color check
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(a) Prototype

Optical Filter

Lens

Camera

(b) Optical Filter

Figure 4.9: (a)Lucid Vision Labs Camera, (b) Manufactured Optical Filter.

Figure 4.10: The transmittance curve of our implemented Optical Filter

broad.
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(a) (b)

Figure 4.11: (a)With Optical Filter, (b)Without Optical Filter.

4.6 Conclusions

We proposed a spectral-aware RGB camera system that enhances the performance of

green pepper segmentation by installing an optical filter on the RGB camera. The spectral

transmission curve of the optical filter was designed by an end-to-end deep neural network.

Our framework explicitly simulates the transmission curve of the optical filter and the

CSR of the RGB camera by assigning trainable depth-wise convolution weights and freeze

convolution weights, respectively. Our system exploits the full spectral information in

RGB camera images for object identification in a straightforward manner, and provides a

data-driven approach for optical device design. This study improves our prior work[1] by

composing an end-to-end structure with a non-negative and smooth constraint for optical

filter design and enlarging dataset under different illumination conditions. Our proposed

system is technically feasible and demonstrates the benefits of a spectral-aware system for

identifying near-color objects.

The most significant benefit for agricultural applications is that we improved the

green pepper segmentation by adding an optical filter to an RGB camera, negating the

need for expensive and specialized equipment. To our knowledge, this solution has not
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been previously reported. Replacing the expensive hyperspectral camera with a cheaper

camera-filter system, we can greatly reduce the cost of automatic harvesting systems for

farmers. Although the deep neural network can design the transmission curve of the optical

filter, the actual optical filter has not been demonstrated. In a follow-up study, we will

evaluate the physical implementation of the optical filter and its performance in green

pepper segmentation.
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5 Color-Ratio Maps Enhanced Optical Filter Design and

its application

5.1 Introduction

Improving the quality and production efficiency of the economic crop while aiding

the management and marketing strategy is one of the critical aims of precision agriculture.

Precision agriculture can provide useful information in the early stage to enable better

decisions to make on the management system. In recent years, computer vision and artificial

intelligence technology have developed to meet the growing demand for fast and accurate

grain crop production [7] [8]. As reviewed by a previous study [9], machine learning

techniques have been widely used for the early and precise detection of biotic stress in the

crop, specifically for the detection of weeds, plant diseases, and insect pests.

Green pepper is one of the chief crops in Kochi Prefecture, which contributes to

approximately 11% of the total production in Japan. Therefore, there is a significant need

for using the latest precision agricultural technology to improve the production efficiency of

green pepper. Developing automated green pepper harvest and growth prediction technology

is essential for farmers to enhance their carriage efficiency and aid their marketing strategies.

However, due to the same color of green pepper and its leaves, there remains a need for

developing robust methods to recognize and segment green pepper. Recently, a new sensor

system [107] for the detection and localization of green pepper has been proposed by

utilizing multiple camera positions and viewing angles. Li et al. [108] proposed a novel

pose estimation algorithm for sweet pepper.
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Figure 5.1: Our proposed computational optics framework incorporates both optics and
image segmentation algorithm designs. Rather than optimizing these two parts separately
and sequentially, the whole framework was treated as one neural network and establish a
simultaneous end-to-end optimization framework. Explicitly, the first layer of the network
corresponds to the physical optical filter, the second layer of the network is related to RGB
camera spectral response, and all subsequent layers represent the segmentation algorithm.
Inspired by previous research, instead of generating red-green-blue(RGB) three channels
for the segmentation module, we augment the RGB three channels by color-ratio maps
to exploit useful spectral information for green pepper segmentation. All the parameters
of the framework are optimized based on segmentation loss on our hyperspectral dataset.
Once the transmittance curve is optimized, we can fabricate the corresponding optical filter
using multilayer thin-film technology. The fabricated optical filter is mounted in front of the
camera lens, and the optimized segmentation network is integrated with the whole system.

Instead of independently optimizing the optical device and relevant image segmentation

algorithm, we proposed the optical filter designing method for segmentation neural networks

whose input is enhanced by color ratio maps. The transmittance curve(TR curve) of the

optical filter can be treated as the weight of the neural network, and we can simultaneously

optimize both an optical element and green pepper segmentation module by back-propagation.

We illustrate the overview of our proposed method in Figure 5.1. Recently, Yu et al. [109]

proposed an end-to-end deep learning optimization algorithm to search the optimal TR

curve of an optical filter in the smooth and non-negative space. However, their method

didn’t fully utilize all the color-ratio maps from the R, G, B channels captured by the

RGB camera. Historically, agricultural studies investigating color ratios and their linear

combinations have shown the effectiveness for fruits and vegetables distinguish [110].
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In this study, we enhanced the method by adopting the color-ratio maps as input for

segmentation neural network. Color is one of important clue of object surface property.

The benefit of the color-ratio maps is that it can help us to retrieve the adequate ratio of

three chromatics in chromaticity space to derive the optimal TR curve for a specific CSR.

In our segmentation module, a U-Net-like structure network [98] is utilized for extracting

the spatial features of the RGB images captured by the optimal TR curve of our designed

optical filter. After optimization, the designed optical filter can be implemented by optical

technology and is attached in front of the camera lens. The spectral property of the incident

light is changed by our designed optical filter.

The main contributions of our study conclude as follows:

• We developed the computational optics framework for co-design an optical filter

and segmentation algorithm that can achieve a better image sensor system for green

pepper segmentation. The whole framework simultaneously optimize the front-end

optical device(optical filter) and the back-end green pepper segmentation algorithm.

• We introduced the color-ratio maps as additional input feature maps to improve the

green pepper segmentation results. The experimental results demonstrate the benefits

of the improved performance by color-ratio maps.

The rest of this chapter is organized as follows. Section 5.2 presents the research works

related to our work. Section 5.3 presents the details of our proposed methods. Section 5.4

describes our green pepper dataset and experimental results. Lastly, Section 5.5 concludes

our presented work and our future work.
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5.2 Related Work

5.2.1 Color space

Color space is the fundamental research topic in colour image processing and has

various computer vision applications. One of the major currents focuses in the advanced

driving assistant system is to find appropriate color space for the detection of the traffic

light. In their study, various color spaces were applied for their deep learning model,

and the experimental results showed the RGB and normalized RGB color spaces [111]

achieved the best performance. In an earlier study, Kondo et al. [110] established to

utilize the color ratio map to search the most suitable wavelength to distinguish fruits

and leaves. In precision agriculture, Zhao et al. [112] proposed to use an adaptive RB

chromatic aberration map(ARB) based on OHTA color space [113] and the sum of absolute

transformed difference feature in RGB camera to detect immature green citrus. Recently,

a novel global image enhancement method, Neural Curve layers [114], was developed by

exploiting global image adjustment curves in three different colors spaces, e.g., CIELLab,

HSV, RGB.

5.2.2 Application of optical filter

The color filter array(CFA) or multispectral filter array [115] plays an essential role in

acquiring the color information or spectral information in the RGB camera and multispectral

camera. One of the early and intuitive studies of the optical filter is filter-wheel camera [116].

A series of special optical filters are installed in the rotating filter wheel, where each

optical filter can be placed in the optical path of a monochrome camera by rotating the

filter wheel. A complete multispectral image is constructed by multiple exposures for

different optical filters at a time. Inspired by the CFA in the RGB camera, a multispectral

filter array approach was proposed in both academic and industrial areas [117]. Lapray et
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al. [118] reported a detailed study of the snapshot multispectral imaging and the analysis of

spectral filter array. In the real application, Nakauchi [119] proposed a data-driven selection

algorithm of a set of bandpass optical filters for ice detection by using hyperspectral imaging.

They implemented their proposed optical filter by installing two bandpass filters with

a near-infrared camera. Another important application of spectral optical filter array is

skin oxygenation measurement for medical monitor and diagnosis [120]. Recently, Ono

proposed an innovative multi-spectral imaging system using a polarization camera that

captures nine bands at once [121].

5.2.3 Computational optics

Computational optics, which can be interpreted as jointly optimization optics elements

(i.e. Bayer color filter, lenses and optical filters), image processing, and computer vision

task, have generated considerable research interest [122] [19]. Chang et al. [20] proposed

the end-to-end optimization paradigm by combining a differentiable optical image formation

layer and a depth estimation network for jointly optimizing both camera lens and neural

network weights. Inspired by the recent deep optics approach, A.Metzler et al. [73] developed

an end-to-end method to jointly optimize the point spread function of the custom diffractive

optical element(DOE) and the deep neural network for High-dynamic-range imaging. Nie

et al. [76] reported the relationship between the 1×1 convolution operation and the camera

spectral response(CSR) function. They developed a data-driven method to design a camera

spectral filter array for hyperspectral reconstruction. Zou et al. [123] proposed the CSR-Net,

which can effectively design the optimal CSR to achieve high classification accuracy with

limited image bands. A mathematical approach [124] to improve the color measurement

of the camera was developed by designing the spectral sensitivity of an optical filter. Their

study demonstrated a numerical computation way of optical filter design based on both the

Luther condition and the Vora-Value.
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5.3 Proposed Method

In this section, we elaborate on our proposed method. We first introduce the filtered

RGB camera module. Then, we report the green pepper segmentation module. Lastly, we

describe the loss function and physical constraint.

5.3.1 Filtered RGB camera module

As illustrated in Figure 5.1, our proposed filtered RGB camera module is consists

of two major parts: 1) A differentiable optical filter layer, whose trained weight is the

transmittance curve of the optical filter, that can take in as input radiance and output a

modified spectral radiance; 2) The frozen weights of a convolutional layer with three filters

represent the camera spectral response function of the Bayer color filter array.

Optical filter layer

As the same with the photographic filter(e.g., UV filter, ND filter), the designed optical

filter is mounted directly on the camera lens. Hence, the spectral information of the incident

light at different wavelength is selectively filtered by the TR curve of the optical filter. We

can describe the wavelength-wise product as:

L(x, y, λ) = R(x, y, λ) ◦ T (λ), (5.1)

where the R(x, y, λ) denotes the radiance data in the captured scenes, T (λ) represents the

transmittance curve of the optical filter, and the L(x, y, λ) represents the output radiance

data of the designed optical filter, respectively. The range of x and y is 1 ≤ x ≤ W ,

1 ≤ y ≤ H , W and H represent the width and height, respectively, of the captured image

in the spatial domain. According to the equation (5.1), we found the similarity between

the depth-wise convolution layer without bias and the TR curve of the optical filter. The
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depth-wise convolution layer was proposed in the Xeption network structure [97], which

the purpose is to reduce the computation resources. By utilizing the depth-wise convolution

layer without bias, the TR curve of the optical filter can be regarded as one layer of the

whole neural network structure. One feature of the TR curve is the spatially invariant, i.e.,

it only works in the spectral dimension and keeps the same transmittance across the spatial

dimension in the captured radiance R(x, y, λ). Due to the above feature of the TR curve,

we chose the 1 × 1 as the kernel size of the depth-wise convolution kernel. Each weight

in the depth-wise convolution kernel only works on the corresponding wavelength, which

selectively transmits the input incident light. Also, the filter keeps the same weights across

all the spatial domains.

CSR layer

Considered the output radiance data L(x, y, λ) at position (x, y), the captured intensity

by a fabricated image sensor equipped with CFA is calculated by

Pk(x, y) =

∫
λ

Ck(λ)L(x, y, λ)dλ, k = R,G,B (5.2)

where λ denotes the wavelength, and Ck is the corresponded CSR function of the CFA,

where k denotes the red, green, blue channels . Pk(x, y) is the pixel intensity of the captured

scenes. Essentially, we can discretely formulate the above equation by this equation

Pk(x, y) =
N∑
i=1

Ck(λi)L(x, y, λi), k = R,G,B (5.3)

where the CSR function is represented by the vector form ofCk(λi) = (C(λ1), C(λ2), C(λ3),

· · · , C(λN)) at different sampled wavelength, and N represents the total number of the

spectral bands. As reported by previous research [76], the CSR function can be represented

by three kernels with weights of 1× 1 convolutional layer. Consequently, the Pk(x, y) can
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be calculated by the feature map generated by the 1×1 convolution layer with three kernels.

In our approach, the simulated image pixel intensity is determined by three factors, i.e., the

TR curve of the optical filter, the CSR function of specific CFA and the radiance of the

captured scenes. To account for specular highlights and dark current in the simulated RGB

image, we normalized the simulated sensor image as follows equation( 5.4). The actual

values for min and max are determined from the training dataset. We add a small number ε

to avoid the division by zero in the color-ratio maps introduced in the following subsection.

In our experiment, through trial and error, we set the ε = 0.01.

Pk(x, y) =
Pk(x, y)−min

max−min
+ ε k = R,G,B (5.4)

We presume the camera has a linear response function, which commonly clips the

simulated image sensor RGB value to emulate sensor saturation by the following equation.

f (c) =


0, if c < 0,

c, if 0 ≤ c ≤ 1,

1, if c > 1.

(5.5)

5.3.2 Color-ratio maps

Unlike the previous research [109] to utilize only generated RGB images, we augment

the simulated RGB image by combing different color-ratio maps. The simulated RGB

sensor images are determined by the three main chromatics, red(R), green(G), and blue(B).

Inspired by previous research that the color component ratio could help to distinguish

fruits and leaves [110], we utilize the color-ratio maps as additional color cues to help the

whole framework search the optimal TR curve of the optical filter. To solve the numerous
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illumination condition in the green pepper grove, we utilized the normalized RGB color

maps [125] in our augment color-ratio map. The normalized RGB color-ratio maps are

expressed as d1, d2, and d3, in later. They can be computed by the following equations:

d1 =
G

R +G+B

d2 =
R

R +G+B

d3 =
B

R +G+B

(5.6)

To efficiently derive the adequate transmittance curve of the optical filter, we applied

multiple color-ratio maps. Our proposed multiple color-ratio maps are shown in the equation( 5.7),

respectively. 

d4 =
G

(G+B)

d5 =
G

(G+R)

d6 =
B

(B +R)

d7 =
B

(G+B)

d8 =
R

(G+R)

d9 =
R

(R +B)

(5.7)

We extract features from multiple input(RGB+color-ratio maps) to exploit the valuable

information of different color ratio. Specifically, we concatenate the simulated RGB sensor

image and their color-ratio maps as a tensor. We send it to the segmentation module

that takes the RGB sensor image with the color-ratio maps as input to generate the final

segmentation result.
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5.3.3 Segmentation module

For green pepper segmentation, we attach the segmentation module to our filtered

RGB camera module. Note that the principal goal of our research is not to propose the

state-of-the-art neural network structure for green pepper segmentation, but to explore the

relative benefit of color-ratio maps enhancement and co-design optical filter with segmentation

module. In particular, we adopt the U-Net-like structure [98] in this work because it

is commonly used for pixel-wise estimation(e.g., image segmentation, image-to-image

translation) and great generalization performance on various tasks.

Table 5.1 summarizes the overall structure of the segmentation module. Followed by

the filtered RGB camera module, the segmentation module accepts tensors of sizeH×W×

12 and lastly yields the corresponding green pepper segmentation results of sizeH×W×1.

In the encoder part, the basic block is a convolution layer followed by a batch normalization

layer [99] and rectified linear unit activation function [100]. We can express the building

block in the segmentation module formed as follows: (Conv −BN −ReLU) × 2. The

spatial size of the feature maps in the encoder part is reduced by the max-pooling layer. In

the decoder part, the transposed convolution layer [126] is utilized to increase the spatial

size of the feature maps while reducing the number of feature maps. In the end, a 1 × 1

convolution layer handles the feature maps to generate the final green pepper segmentation

map. The skip connection design lets the feature maps in the encoder part directly share

with the decoder part to avoid to lose essential spatial information. In our experiment,

the only difference for the segmentation module in each model is the number of the input

channel. Unlike the color-ratio maps enhancement methods, the model without color-ratio

maps only needs three channels of input.
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Table 5.1: The ”U-Net-like” based segmentation module.

U-Net-like encoder U-Net-like decoder
Layer Details Size Layer Details Size

input
R,G,B feature map+

color-ratio map
256x256

x12 upsampling1
2x2 upsample of block5
concatenate with block4

32x32
x1024

block1
{conv(3x3, pad=1)+Batch Norm

ReLU}x2
256x256

x64 block6 1
{conv(3x3, pad=1)+Batch Norm

ReLU}x2
32x32
x256

pool1 2x2 max pool; stride 2
128x128

x64 upsampling2
2x2 upsample of block6
concatenate with block3

64x64
x512

block2
{conv(3x3, pad=1)+Batch Norm

ReLU}x2
128x128

x128 block7
{conv(3x3, pad=1)+Batch Norm

ReLU}x2
64x64
x128

pool2 2x2 max pool; stride 2
64x64
x128 upsampling3

2x2 upsample of block7
concatenate with block2

128x128
x256

block3
{conv(3x3, pad=1)+Batch Norm

ReLU}x2
64x64
x256 block8

{conv(3x3, pad=1)+Batch Norm
ReLU}x2

128x128
x64

pool3 2x2 max pool; stride 2
32x32
x256 upsampling4

2x2 upsample of block8
concatenate with block1

256x256
x128

block4
{conv(3x3, pad=1)+Batch Norm

ReLU}x2
32x32
x512 block9

{conv(3x3, pad=1)+Batch Norm
ReLU}x2

256x256
x64

pool4 2x2 max pool; stride 2
16x16
x512 outconv 1x1x1

256x256
x1

block5
{conv(3x3, pad=1)+Batch Norm

ReLU}x2
16x16
x512

5.3.4 Loss function and physical constraint

As illustrated in Fig 5.1, we simultaneously optimize the TR curve and the segmentation

module via the end-to-end system. The total loss function can be described as

Ltotal = Lbce + ηLsmooth (5.8)

where Lbce denotes the binary cross-entropy loss for green pepper segmentation. It is

defined as:

Lbce = −
(H,W )∑
(x,y)

[G(x, y) logP (x, y) + (1−G(x, y)) log(1− P (x, y))] (5.9)

where (x, y) is the pixel coordinates and (H,W ) is image size: height and width. G(x, y)

and P (x, y) denote the pixel values of the ground truth and the predicted segmentation

probability map, respectively.
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To aid the physical requirements of the TR curve in the optical filter fabrication, we

introduce specific physical constraints for optical filter layer. As the filtered incident light

should be positive, all the weights in the TR curve are non-negative. Besides, from the

manufacturing perspective, the TR curve of the designed optical filter should avoid arbitrary

and sudden variation between adjoining wavelengths. Hence, we proposed the physical

constraint which can satisfy non-negative and smooth features as follows:

Lsmooth = ‖GW‖22 s.t. W ≥ 0 (5.10)

where the G denotes the second derivative matrix for optical filter layer, the W represents

the weights of the 1 × 1 depth-wise convolution layer. The parameter η controls the

smoothness of the TR curve for the optical filter. Due to the non-negative property of the

optical filter weights, we enforced the non-negative W ≥ 0 to the depth-wise convolution

kernel of optical filter layer in the backward training procedure. In our experimental setting,

we verified the different smoothness parameter η, e.g. η = 0.1, η = 0.01, η = 0.001. By

explicitly modeling the TR curve of the optical filter with the specific physical constraint,

our proposed optical filter layer can represent the property of a physical device in the real

world. The actual optical filter will be fabricated to have the same transmittance curve as

the learned weights in a further study.

5.4 Experimental Results and Analysis

To clearly explain our proposed method and determine the suitable parameters in the

design space, we conduct several experiments and report in this section. In this section, we

report the details of our experimental results and identify the essential parts that contribute

to the overall system.
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5.4.1 Hyperspectral dataset

Up to now, there is no public green pepper dataset in the research community and the

Internet. Consequently, to construct a green pepper dataset for our research, we collected

hyperspectral images at Next Generation Green House of the Kochi University of Technology

and Kochi Agriculture Center, Kochi Prefecture, Japan. We selected a portable push-broom

hyperspectral camera(Specim IQ, Specim Ltd., Finland) [127] as our data acquisition device.

Hyperspectral images of green pepper were collected four times during May 2021 under

sunny and cloudy weather conditions. The Specim IQ camera was set to Default Recording

Mode(without any processing). In our workflow for image recording progress, we fixed

the camera on the tripod, adjusted the camera position and white reference plate position.

After that, we manually changed the camera focus and the integration time according to the

captured scene. To accurately measure the illumination conditions in the captured scene,

we put a standard white reference plate next to our target green pepper in the camera field

of view. Sample images are illustrated in Figure 5.2.

Our hyperspectral camera can record 512× 512 pixels image, with 204 spectral bands

ranging from 400 nm to 1000 nm. The recording time of our hyperspectral camera for one

image is from 40 seconds to 2 minutes in the different captured scenes. Compared with the

laboratory illumination setting, natural illumination is always inconstant. On the one hand,

various factors can affect the spectral power distribution of the illumination, e.g., climate,

solar elevation [128]. On the other hand, mutual reflections between different surfaces,

occlusions also lead to illumination variation in the natural environment [129]. In the end,

we rendered the hyperspectral image to the sRGB image and made the ground truth for

green pepper segmentation using the annotation tool LabelMe [102].
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(a) The next generation Green House in KUT (b) Sample sRGB image and Ground Truth

Figure 5.2: The photograph of the Next Generation Green House in Kochi University of
Technology(KUT) and Sample sRGB image and Ground Truth.

5.4.2 Experimental settings

As mentioned above, we collected green pepper hyperspectral dataset in our university

Green House. Totally, we have 133 hyperspectral images. We randomly selected 101

images as our training set, 16 images as our validation set and 16 images as our test set.

In our experiment, we apply the random crop 256 × 256 image patch from the original

hyperspectral image and random horizontal flip to augment the dataset size of our training

dataset. As a result, we obtained 7116 training patches for our experiment. Due to the

spectral response of our camera is in the visible wavelength, we only used the hyperspectral

image from 400 nm to 700 nm. Our experiment was conduct on an NVIDIA Tesla V100

GPU with the deep learning framework PyTorch [45]. The batch size is set to 32. The Adam

optimizer [44] with beginning learning rate of 0.001 and β = 0.5, β = 0.999 was used in

our experiment. We dynamic changed the learning rate by monitoring the performance on

the validation set. The total epoch was set to 50, and the best model in the validation set is

evaluated on the test dataset. The CSR of Lucid Triton 5.0 MP Model [106] was used in

our experiment.
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5.4.3 Experimental results

In this section, we compare the performance of different settings of our proposed

method with the optical filter(without the color-ratio map) and no optical filter. After that,

we illustrate the TR curve of the different settings of our proposed method. Lastly, we

evaluate the effectiveness of the color-ratio maps.

Evaluation results

We refer to our proposed method as OF-CRM, Yu et al. [109] as OF, and no optical

filter setting as NF, respectively. To evaluate and compare different setting approaches, we

compute the mean intersection over union(mIoU) and F1 measure as following equations.

mIoU =
1

Nclass

∑
i

pii
ti +

∑
j pij − pii

(5.11)

F1 = 2× precision× recall
precision+ recall

(5.12)

where the pij be the number of pixels of class i predicted to belong to class j, there

are totally Nclass different classes, and let ti =
∑

j pij be the total number of pixels of

class i. In our experiment, the number of classes is set to 2 (pepper or non-pepper).

We evaluated different settings of max value in the normalization step, which is used to

simulate camera saturation, and smoothness value η, which constraint transmittance curve

smoothness. Table 5.2 shows the results of different maximum values and smoothness η

settings. Empirically, we find the proposed model with η = 0.001 and max = 4.470

achieves the best performance in all the settings.

Remarkably, we notice that both the color-ratio maps and smoothness have influenced

the shape of the designed TR curve. Looking at Figure 5.3, it is apparent that the optimal

TR curve of η = 0.1, η = 0.01 turns to be the multiple bandpass optical filter. Intuitively,

there is a clear trend of increasing η to generate more clear bandpass wavelength with the
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Table 5.2: Quantitative comparison of different models. Our model outperform the optical
filter design without color-ratio maps and no filter settings in the test dataset. The minimum
value in Eq.( 5.4) is same in all setting(min=0.008).
Models smoothness max mIoU F1

OF-CRM

η = 0.001
1.725 0.877 0.864
2.615 0.878 0.874
4.470 0.899 0.891

η = 0.01
1.725 0.884 0.875
2.615 0.866 0.853
4.470 0.887 0.869

η = 0.1
1.725 0.877 0.862
2.615 0.874 0.862
4.470 0.877 0.864

OF[109]

η = 0.001
1.725 0.875 0.858
2.615 0.870 0.855
4.470 0.869 0.846

η = 0.01
1.725 0.850 0.823
2.615 0.865 0.849
4.470 0.877 0.862

η = 0.1
1.725 0.864 0.841
2.615 0.868 0.845
4.470 0.852 0.822

NF N/A
1.725 0.867 0.853
2.615 0.857 0.832
4.470 0.823 0.815

color-ratio map. Closer inspection of Figure 5.3, the transmittance in wavelength around

510 nm and 650 nm is almost zero in all settings, which is not helpful for green pepper

segmentation.

In general, most plants look green in our human eyes due to Chlorophyll, which is

vital for photosynthesis. There are two types of Chlorophyll in the land plants, Chlorophyll

a and b. As reported in the previous study [130], they have different absorption spectrums.

For example, the absorption peak of chlorophyll b is just below 650 nm. Interestingly,

we can observe that the TR curves of all models are suppressed at wavelengths just below

650 nm. It can thus be suggested that the content of ChlorophyII a and b is different in
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green pepper and leaves. The present study raises the possibility that our optical filter has

found this Chlorophyll ratio differences in the same green color. This difference appears

in the red channel, and it has proven to play an essential role in distinguishing green

pepper and leaves, as we review in the following subsection. However, until now, we

haven’t found related studies to support this hypothesis, which supports the Chlorophyll

ratio difference between green pepper and leaves. A further study with more focus on the

ratio of Chlorophyll a and b is therefore suggested.
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Figure 5.3: The TR curves of each model is illustrated in the above image. The top row

shows the proposed model(with CRM), bottom row shows the optical filter design without

CRM. In each η setting, we only demonstrate the best model among different max values.

Effectiveness of color-ratio maps

To empirically analyze how our proposed color-ratio maps work, we demonstrate the

color-ratio maps on the test data. As shown in Figure 5.5, it is apparent that in the color-ratio

map of d5 and d8, the green pepper is more distinguished. In the color-ratio map d5, the

green pepper is highlighted. On the contrary, in d8, the green pepper looks dark than other
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(a) RGB (b) label (c) OF-CRM (d) OF (e) NF

Figure 5.4: Segmentation results of each model in the test dataset. We only illustrate the
best performance of each settings. (c) shows the best model in OF-CRM with smoothness
η = 0.001 and max value 4.470. (d) illustrates the best model in OF with smoothness
η = 0.001 and max value 1.725. (e) shows the best model in NF setting with max value
1.725.
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parts of that color-ratio map. However, there are some of leaves also look dark, which is

similar to the green pepper.

Figure 5.5: The above figures illustrate color-ratio maps of each test data. All color-ratio
maps are shown in the same range [0,1].
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Figure 5.6: (a) The boxplot of the distribution of the input tensor of test dataset for
OF-CRM(η = 0.001, 4.470). (b) Sum of absolute value of all kernels for the input
features of segmentation module in OF-CRM(η = 0.001, 4.470). R channel and d2 =
R/(R + G + B), d6 = B/(B + R), d9 = R/(B + R) are more important than the other
features and channels.

To analyze the importance of each input feature, especially color-ratio maps, we

adopted the idea of the sum of absolute values of kernels used in filter pruning [131].
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In figure 5.6(a), the distribution of each input feature is demonstrated by the boxplot. As

can be seen from the figure, the distribution of the green channel and its corresponding

color-ratio maps have slightly larger values than the other channels. However, since the

differences are small, we introduced the sum of the absolute values of the kernels into the

analysis to interpret the importance of each input feature. Figure 5.6(b) illustrates the sum

of the absolute values of all kernels for input features, including R, G, B, and all color ratio

maps. It seems that the red channel, d2, d6 and d9 are essential inputs for the segmentation

module. It turns out that the ratio of the red channel to other channels can provide more

meaningful information than other color-ratio maps. A critical hypothesis that emerged

from the figure is the red channel is vital for green pepper segmentation. These results

provide further support for the hypothesis that the red channel is vital for green pepper

segmentation as mentioned in the previous part. We also illustrate the sum of the absolute

value of each kernel for each input feature in Figure 5.7. As we know, each kernel in the

convolutional layer pays attention to different input features. The fact that some kernels

show large weights for CRM features indicates that the CRM features play an important

role in distinguishing green peppers from leaves.
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Figure 5.7: The sum of the absolute values of each input channel for each kernel. The
horizontal axis represents the different input features of the segmentation module, R, G, B,
d1, d2, d3, d4, d5, d6, d7, d8, d9 from left to right. The vertical axis of all subfigures are
shown in the same range [0, 0.5]. The graph above shows that the color-ratio maps play an
essential role, with some kernels showing larger in the color-ratio maps than in the R, G, B
feature map.

5.5 Conclusions

In this chapter, we present an end-to-end optimization approach for the simultaneous

design of optical filters and green pepper segmentation neural networks. We aim to leverage

an end-to-end deep learning framework to find the optimal TR curve for green pepper

segmentation. To accomplish this purpose, we model the critical components inside our
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end-to-end framework, including the TR curve of the optical filter, CSR of the RGB camera,

and our proposed color-ratio maps. Throughout our experiments, we demonstrate the

proposed method achieved the best performance in mIoU and F1 measure.

As opposed to any deep learning based methods that operate directly on hyperspectral

image or RGB image, our proposed approach has the ability to optimize the both TR curve

of an optical element and weight of segmentation module simultaneously. Particularly, the

design of TR curve of an optical element is enhanced by the color-ratio maps, which is

useful for exploiting the spectral information. This study has been one of the first attempts

to thoroughly examine the enhancement of color-ratio maps for optical filter optimization.

Our future study will fabricate the optical filter according to the designed weights and

evaluate its performance in a real application scenario.
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6 Conclusion

This thesis has reported several works targeting research related to the attention-based

approach and computational optics. The thesis presented to leverage the attention-based

method to pain facial expression estimation for older people with moderate and severe

dementia. In addition, we also propose a computational optics technique to jointly optimize

the transmission curve of the optical filter and segmentation algorithm. In chapter 1, we

introduced the background information about our research. Specifically, we introduced

the importance of pain facial expression estimation for the elderly and the concept of

computational optics and deep optics.

In chapter 2, we demonstrated the details of our proposed attention-based method

for pain facial expression estimation. Because not all the facial areas contribute to the

pain facial expression, we developed the spatial attention model to exploit the critical area

in the human face for pain expression estimation. However, there is still a limitation of

our proposed method. The facial expression happened not only in the spatial domain but

also temporal domain. In the follow-up study, we will explore combining both spatial

attention and temporal attention method. Until now, most facial pain expression database

has provided 2D facial landmark to measure the geometry change of human face. However,

the 2D landmark regards the face as a 2D object, which is frontal and planar. Some research

reported the large head-poses would occur when patients feel pain. It will lead to the 2D

landmark localization failed due to the self-occlusion. We will utilize the recently advanced

3D landmark localization method for pain facial expression estimation in future work.

Chapte 3 proposed the attention-based LSTM network structure for green pepper
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segmentation by using hyperspectral imaging. Due to the accumulation effect of the cone

cell in our eyes and camera spectral response function, the difference in spectral reflectance

of the object surface will lead to the same color in our eyes and RGB cameras, such as

green pepper and green leave. Hyperspectral imaging can provide much more details of the

reflectance of the object surface than RGB camera. We treat each pixel of the hyperspectral

image as sequence data. The proposed channel attention module can automatic select

the important hyperspectral band for distinguishing green pepper and leave. Then, the

LSTM network can effectively analyze and determine the input pixel categories via network

training. Considering that hyperspectral imaging is a data cube, it has abundant spectral

information and spatial information. Our future study will utilize spatial and spectral

information to distinguish similar color fruits and vegetables.

Chapter 4 and Chapter 5 proposed the computational optics method for the vegetable

segment, which can aid the automatic harvest, fruit and leave ratio estimation, and marketing

strategy. Our proposed method successfully achieves the three critical problems mentioned

in Chapter 1. Firstly, we utilized the depth-wise convolutional layer without bias and

activation function to represent the optical filter in the whole network. Secondly, we

proposed the physical-based constraint, which lets the weight of the optical filter layer

be non-negative and smooth. Lastly, we leverage the binary classification loss function to

optimize the whole structure. In addition, we successfully fabricate the designed optical

filter. Furthermore, we propose to use the color-ratio map to enhance the optical filter

design. It seems the color-ratio map can help us to exploit the different ratios of Chlorophyll

a and b in green pepper and leave. In the future study, we will explore the new color space

to enhance the optical filter design.
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[75] G. Côté, J.-F. Lalonde, and S. Thibault, “Deep learning-enabled framework for

automatic lens design starting point generation,” Optics Express, vol. 29, no. 3, pp.

3841–3854, 2021.

[76] S. Nie, L. Gu, Y. Zheng, A. Lam, N. Ono, and I. Sato, “Deeply learned filter response

functions for hyperspectral reconstruction,” in Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition. Salt Lake City, Utah: IEEE, June 2018,

pp. 4767–4776.

[77] S. Kitamura and K. Oka, “Recognition and cutting system of sweet pepper for

picking robot in greenhouse horticulture,” in Proc. of IEEE International Conference

Mechatronics and Automation, vol. 4. Niagara Falls, ON, Canada: IEEE, 2005, pp.

1807–1812.
91



[78] C. Hung, J. Nieto, Z. Taylor, J. Underwood, and S. Sukkarieh, “Orchard

fruit segmentation using multi-spectral feature learning,” in Proc. of IEEE/RSJ

International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE,

2013, pp. 5314–5320.

[79] A. Borji, M.-M. Cheng, H. Jiang, and J. Li, “Salient object detection: A benchmark,”

IEEE transactions on image processing, vol. 24, no. 12, pp. 5706–5722, 2015.

[80] J. Liang, J. Zhou, L. Tong, X. Bai, and B. Wang, “Material based salient object

detection from hyperspectral images,” Pattern Recognition, vol. 76, pp. 476–490,

2018.

[81] N. Imamoglu, Y. Oishi, X. Zhang, G. Ding, Y. Fang, T. Kouyama, and R. Nakamura,

“Hyperspectral image dataset for benchmarking on salient object detection,” in Proc.

of Tenth International Conference on Quality of Multimedia Experience (QoMEX).

IEEE, 2018, pp. 1–3.
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