Simultaneous Finite Automata:
An Efficient Data-Parallel Model
for Regular Expression Matching

Ryoma Sin'ya Kiminori Matsuzaki Masataka Sassa
Department of Mathematical School of Information, Department of Mathematical
and Computing Sciences, Kochi University of Technology and Computing Sciences,
Tokyo Institute of Technology Email: matsuzaki.kiminori@kochi-tech.ac.jp Tokyo Institute of Technology
Email: shinya.raa@m.titech.ac.jp Email: sassa@is.titech.ac.jp

Abstract—Automata play important roles in wide area of noting that usually automata are considerably smaller than data

computing and the growth of multicores calls for their efficient and the runtime speedup outstrips the enlargement of automata.
parallel implementation. Though it is known in theory that we . .
can perform the computation of a finite automaton in parallel by We can systematically construct an SFA from either an

simulating transitions, its implementation has a large overhead ~NFA or a DFA by a technique similar to the so-called subset
due to the simulation. In this paper we propose a new automaton ~construction technique. In general, such a construction may
called simultaneous finite automator(SFA) for efficient parallel increase the number of states exponentially. However, for
computation of an automaton. The key idea is to extend an widely-used regular expressions, the number of states in SFA
automaton so that it involves the simulation of transitions. Since js no more than the square of that in the original automata. We
an SFA itself has a good property of parallelism, we can develop show the effectiveness of SFA with the experiment results of
935:'3’ a padrallel |m;|3|ementat|o_n W|thoutt1 ovgrhezds. vglg Ahave ., the SFA-based parallel regular expression matching. Our SFA-
implemented a regular expression matcher based on , an ; : ;
it has achieved over 10-times speedups on an environment with based implementation has almost no overhead and achieved
) : : over 10-times speedups on an environment with dual hexa-core
dual hexa-core CPUs in a typical case. . L
CPUs with respect to the DFA-based sequential implementa-
tion in a typical case.
. INTRODUCTION The contributions of this paper are summarized as follows.

Automata play important roles in theory and practice in o \We proposed a new automaton, simultaneous finite

a wide area of computing. For example the use of non- automaton, for parallel regular expression matching
deterministic or deterministic automata is crucial in regular ex- (Sect. IV). By using SFA, we can compute regular
pression matching. Under the growth of multicores, parallelism expression matching simply in parallel without over-
becomes more and more important. In previous studies [1], heads (Algorithm 5). This SFA-based parallel regular-
[2], computations of automata are naively executed in parallel expression matcher is available online [9].

when both/either of queries and/or data are multiple, while a i)
single computation of an automaton is executed in sequential. ® e developed an algorithm for constructing SFA from

To extract more parallelism, parallelizing an automaton itself NFA or DFA (Algorithm 4). Since the algorithm is a
would be important. It has been known for a long time natural extension of the subset construction algorithm,
in theory that we can perform the computation of a finite- we can apply known implementation techniques for it.
state automaton in parallel [3], [4]. The basic idea of the e The only concern of SFA is the size explosion with
parallelization is to simulate all the transitions from all the respect to DFA or NFA. We show that almost all the
possible states speculatively. However, as reported in previous SFA are small enough for practical regular expressions
studies [5], [6], [7], [8], such a parallel implementation has a in the SNORT rulesets. We also discuss the cases that
large overhead due to the speculative simulation. SFA have as many states as the upper bound.

In this paper, we propose a novel approach for parallelizing The rest of the paper is organized as follows. We introduce
the computation of automata. The key idea is to extendhe basic idea of automata in Sect. Il, and we review the
automata so that they involve the speculative simulation fronparallelization method based on the speculative simulation
all the states. We develop new automata namietlltaneous in Sect. Ill. In Sect. IV, we define the simultaneous finite
finite automata(SFA in short) as extensions of finite-state automata and discuss their properties. In Sect. V, we develop
automata where the states in SFA are given as mappings frothe implementation of SFA: a construction method and an
states to states of the original automata. The key property application to parallel regular expression matching. In Sect.
the SFA is that they essentially involve parallelism and thusV/I, we show the experimental results on SFAs size, scala-
we can straightforwardly implement the computation of SFAbility, and overheads. In Sect. VI, we discuss the algebraic
in parallel. Though such an extension may increase the sizeharacterization of SFA for the theoretical upper bound of the
of automata, we can remove the runtime overhead. It is wortimumber of states. Finally, we conclude the paper in Sect. VIII.

Remarks on automata theorjwtomata theory has been @Q — (@) defined by follows:
deeply studied for a long time and there exist many extended

models of automata in terms of parallelism. Some examples are fa(Q) i(% a),
parallel finite automatg10], concurrent finite automatfl1], 0“(q) = d(q,w) .

and alternating finite automatl2]. These models are exten-

sion for dealing with parallel/concurrent events, and they are |t), ¢ §(q,w) is a transition of automatont, w is said
not for implementing parallel matching of an automaton. They, pe thejabel of the transition and we will writey % p (or
SFA in this paper is a new automata for discussing data-paralle? A

regular expression matching. simply ¢ — p if it is unambiguous).

Definition 3 A computationc in A is a sequence of transi-

II. PRELIMINARIES - . X
tions, which can be written as follows:

A. Notation

On

ci=q0 g g I g, .
In this paper, we describe definitions and algorithms with

; ; ; . A word in X* is acceptedby A if it is the label of a
symbols in the basic set theory. Some things to ndts: : ; oy ,
denotes the size of set (number of their elementsi(A) computation that begins at an initial state and ends at a final

is the power set ofd and [3(A4)] = 2/4! holds. F(A, B) state inA. ©
denotes all the mappings fromd to B (f : A — B) i
and [§(A, B)| = |B|I4 holds. In particular,§(A, A) is E;Tmon 4 L(A) denotes the set of all the words accepted

called atransformationof A, and F(A,(A)) is called a
correspondencef A. We definefunction compositioro on

transformations and correspondences as follows: L(A) = {w | Jgel,FpelF [q i)% p} } . ©
,g€F(A,A),Vac A og)(a) = flg(a)),])
frg €8) (fe9)a) flg(a)) We say two automatal and A’ are equivalent ifL(A) =
f,9€3(AB(A),Vac A (fog)la) := f(®)- (A" holds. The following theorem shows that there exists
be€g(a) an equivalent DFA to every automaton.

We also defingeverse compositiom as f e g := g o f. Here,

note that function composition and reverse composition ard "€orem 1 (Rabin and Scot[14]) Every automaton.A is
always associative. equivalent to a DFAD. If A is finite with n states,D can

be constructed with at mo&t* states.

B. Finite Automata Proof: Let A = (Q,%,6,1,F) be an automaton. We
consider an automatoP = (Qq, %, dq, 14, Fy): Qq is P(Q);
We briefly introduce some basics of automata theory acs, is the additive extension of
cording to [13]. First we give the definition of nondeterministic
and deterministic finite automata. SeP@),oer ba(S,0):=]dq0);
q€eS

Definition 1 A nondeterministic finite automatqiNFA) N'is [, is a singleton of se{}; final states are given by, =
a quintupleN' = (Q,%,4,1,F), where@Q is a finite set of (g ¢ P3(Q)|S N F # 0}. The automatorD is deterministic.
states,X is a set of input symbolsj is a transition function Furthermore, it is equivalent td since we have the following

of type Q@ x X — P(Q), I C Q is a set of initial states, and series of equivalences:
F C Q is a set of final states. o

we LA < quf[g(q,w)ﬂF;é@
Definition 2 A deterministic finite automato(DFA) D is a >
special case of NFA, wheré and every image ob are < idHI}ﬂU)mF#@
singletons: & 04(Ig,w) € Fy & w e L(D). .

Il=1 A ¥ M [l =1]. . . L
i 4 € Qo € lo(g o)l =1] ® C. Subset Construction and Sequential Computation in DFA

We may say the number of states in an automaton as the Itis often faster to perform the computation with DFA than
size of the automaton, and we denote the size of automatof do with NFA. Given an NFA, we can determinize it by the
A as|A|. We introduces for an extended transition function Subset constructiotechnique shown in Algorithm 1. Starting

over input texts: from the set of initial states, we compute the accessible subset
of DFA step by step considering only those states obtained by
g(q, ow) = U g(q/’ w), applying the transition function to the states already calculated.

q'€8(q,0) Sequential implementation of the computation in DFA is

S(CL e = {q}. straightforward. Algorithm 2 shows the sequential program for

B the computation in DFA, in which we use a tallgq, o] for
The symbole denotes empty word and transition ovedoes the transition function. Note that we store only a single state
nothing. We also introduce bound transition functin 6% : and reuse it during the computation.

Algorithm 1 Subset construction Algorithm 3 Parallel computation of DFA

Require: AutomataAd = (Q,%,6,1, F) Require: DFA D = (Q4, X, d4,{q0}, F), number of threads
Ensure: DFA D = (Qq4, %, 04, 14, Fy) is equivalent tad D,
1 Qd.<_ ®7thp<_ {I}’ Wordw:011"'01m1021"'027n2"'Upl"'apm,,,
2: while Q7) do ENsure: qyina is destination such thak = ¢inai
3: choose and remove a s€tfrom Q. . D
4 Qqt QuU{S) 1: for all i € [1,2,...,p] parallel do
) 2. forall g€ Qg do
5. forall o €Xdo s Tilg
6: Sneat UqES 5((], U) 4 for j]qz 1 —q> m; do
5 0alS, 0] < Snea 5: for all ¢ € @, do
8: if Snezt ¢ Qd then thp <~ thp U {Snezt} 6: T [q] — §(T [q] o)
9: end fpr 7j end for ' tHED
1(1) ?:?_V\f{%G 8: // parallel reduction /I sequential reduction
) 90T+ Tielye.. .07, Gfinal < qo
12: Fy {5 € QuISNF #0} 10: qfinat <+ Tqo] fori=1—pdo
11: qfinal < Ti[qfinal]

Algorithm 2 Sequential computation of DFA
Require: DFA D = (Qq4, 2,04, {q0}, Fa), and

word w = o109 -+ -0y, , IV. SIMULTANEOUS FINITE AUTOMATA
Ensure: qfinq is the destination such thag % Qfinal

The simulation-based parallel computation of DFA has a

Lg < qo large overhead linear to the size of DFA. In this section, we
2. for i =1-—n do propose a new model of automata that involve the simulation
3 ¢ dalg, 0] of transitions in the definition. The key idea is that we can
4 dfinal <4 evaluate the simulation in advance in the same way as we

evaluate the set of transitions during the construction of DFA
from NFA. The proposed model have a good property for data

Let D be the DFA,X be the set of input symbols, and parallel computation.
be the size of input word. Then, the sequential computation
in DFA takesO(n) time, and the number of elements in the A Formal Definition

table of the transition function i®(|D||X]).
We call the automatosimultaneous finite automat¢8FA

in short). A state in SFA corresponds to a mapping from states
IIl. PRIORWORKS: PARALLEL COMPUTATION IN DFA to sets of states in the normal finite automata.
WITH SPECULATIVE SIMULATION

It has been known for a long time that the computationD€finition 5 Let A = (Q,%,4,1, F') be an automaton. A

in DFA can be performed in parallel on parallel randomsimu_ltaneous finite automatofSFA) constructed fromA is
access machines (PRAMs) [3], [4]. The fundamental idea is th@ GUINtUPIE(Qs, 5, 9, I, F):

speculative simulation of transitions in which we consider all . Lo

thpe states as initial states. Such simulation of transitions forms ° Qs € §(Q,°B(Q)) is a set of mappings;

a finite-sized mapping (between sets of states) and composition e ¥ is the same set of symbols af

of finite-sized mappings is associative. This associativity in , ") i i)
the composition of mappings enables us to perform parallel ds is the additive extension af in A that is defined
reduction for the computation of DFA. asf €Qs,0€X, 6:(f,0):={fed"}

e I, C (Q,is asingleton of identity mappingf;} that

Algorithm 3 shows a parallel implementation of the compu-

tation of DFA based on speculative simulation [5], [6], [7], [8]. satisfiesf1(q) = {¢} for any ¢ € Q;
The following two points are important in this algorithm. First, o g c (, is defined asF, = {f € Q, | 3¢ € I
the mappingsT;[] are computed on subwords independently [f(qjﬁp £ 0]} o

in parallel and they contain transitions from all the states.
Secondly, we can reduce the subresults either in parallel with

associative binary operateror in sequential. By definition, SFA are entirely deterministic. As described

later, SFA can be regarded as DFA with simultaneity.
Let D be the DFA,n be the size of input wordy be the
number of processors. The time complexities of Algorithm 3Thegrem 2 Every automatomd is equivalent to an SF4S. If

are O(|DJn/p + [D|logp) when parallel reduction is used s finite with n states,S can be constructed with at mat’

or O(|P[n/p + p) when sequential reduction is used [5]. giates. In particular, it is deterministic,S can be constructed
The coefficientD| comes from the speculative simulation of \ it 4t mostn” states.

transitions, and it means that the parallel implementation no
longer runs faster than the sequential implementation when the Proof: Let the original automaton hd = (Q,%,6,1, F),
size of the DFA is large. and the SFA constructed fromh be S = (Qs, 2, 05, {f1}, Fs)-

W C. Data-Parallel Property of SFA
b

a We finally show an important property of SFA: the data-
a parallel nature in SFA. For any input text, we can divide it at
5 any points and apply the computation of SFA in parallel.
Fig. 1. D : L(D1) = L((ab)#) Lemma 1 Let S be an SFA,f be a state irS, f,, and f,,

be the states satisfying % fw, and f; % f1w,- Then the
following equation holds:

w1 w
f 182 fwlwgﬁfwl.flwg f’w1w2 .

Proof: By definition, we have
F 222 furwe € 05(funsw2) = {furws} (1)

where &(f,uu) ={fw.} -

Fig. 2. S1: L(S1) = L(D1) = L((ab)*) We can transform the left-hand side as follows by applying
the definition of SFA.

bs(fuwiswa) = {fun @037} = {fur @ (fr o0y}

Jo f1 f2 J3 fa 5 = {fu, ® flu,} 2)
0—{0}[0—{1}|0—~{2}[0— {2} |0~ {0}]|0— {2}
I {1} 1= {2} [1—={0}|1— {2} |1~ {2} |1~ {1} We used the fact tha is an identity function and the equation

TABLE I. THE STATE MAPPINGS OFFIG.2

2 {2} 2= {2} 2= {2} 2= {2} |2 {2} |2 {2} Os(frow2) ={fre 62} = { f1u, }. The lemma follows from
Equations (1) and (2). []
In addition to the fact thaf is deterministic,S is equiva- This lemma enables us to introduce the following important
lent to A since we have the following series of equivalences:theorem about the data-parallelism of the SFA.
weLA) & 3Jgel {g(q,w) NE# @} Theorem 3 The computation in SFA; % f can be derived
o Jgel { S(f1,w)(q) N F # 0} by any division of labekw = wyws ... w,.
- 5s(f1,w) €F, o weL(S). Proof: Computationf; T f can be decom-

posed into the following equation by Lemma 1:

The size of the set of mappings is bounded|@s| < f=fu,9fw,® ofu where fr -5 fo. (i=1,...,n).
13(Q,B(Q))| = 2197 If Ais deterministic, transition function s
is one-to-one correspondence da| < |§(Q, Q)| = |Q|'“l. Each computatiorf; % fw, has no dependency on the other

u computations and these composition is associative. Hence,
computation in SFA can be performed in a data-parallel
B. Example manner. We call this methoplarallel computationn SFA. &

Here we give an example of an SFA, which corresponds to

a DFA. Notice that, though the states in SFA have meaning§ In the following of the paper, we may classify the SFA in

rms of the original automaton. We call the SFA constructed

of mappings from states to sets of states in correspondin om NFA asN-SFA and that from DFA aD-SFA

automaton, we need not to mind it when we compute th
transitions in SFA. In other words, we can compute all the
transitions in a finite automaton simultaneously by simply

computing the transitions in SFA. A. Construction of SFA from Finite Automaton

V. |IMPLEMENTING SFA

Algorithm 4 shows how we can construct an SFA from a
finite automaton. We name the algorittoorrespondence con-
(ti:ructionafter the subset construction algorithm (Algorithm 1)

at constructs a DFA from an NFA. The correspondence con-
struction algorithm is very similar to the subset construction

Consider the computation df; overabab. By following algorithm, and the main difference in line 6 of Algorithm 4: we
the states in Fig. 2, we have transitiofbsi> fi L> fa i> compute a mapping,..:(¢) for all the states in the original

automaton. If the original automaton is deterministic, then the
f1 —> fa. Here, f4(0) = {0} implies 0 ﬂ 0. Smce the image of the transition function is a singleton and we can

stateO is an accepted state By, f, is also an accepted state simplify the line 6 as follows.
in Si. © qeq fnewt(Q) = 6(‘]/’ U) where {q/} = f(Q)

Example 1 Figure 1 shows DFAD; that acceptd.((ab) *).
Figure 2 shows SF#&, equivalent taD; where the states ifi;
imply the mappings listed in Table I. Final states are denote
with doubled circles in these figures.

Algorithm 4 Correspondence construction Algorithm 5 Parallel computation of SFA

Require: AutomatonA = (Q,%,6,1, F) Require: SFAS = (Qs, %, ds,{f1}, Fs) which is constructed
Ensure: SFA S = (Qs, 2,05, I, Fs) is equivalent to an from automatond = (Q, %, 6, I, F), number of threads,
automatonA Word w = 011+ 01y, 021+ * O2my = Op1 *** Opm,
1 Qs 0, Qump — {f1} Ensure: Sy, is a set of destinations such thap ¢
2 wie G, L0 Sm31e1[s 2
3: choose and remove a mappifigrom Q..] A
4 Q.+ Q.U{f} 1: for all i € [1,2,...,p] parallel do
5. forall o €Xdo 2 ifl(*il .
6: q € Q fnemt(q) = Uq/ef(q) 6((]’,0’) 3: or jy = 1 — m; do
7 5S[fa U] — fnemt ;1 d ffZ «— 6[fi70-ij]
. ; : end for
g: enlzi {gﬁ“ # Qs then Qunp < Qump U {fneat} 6: // parallel reduction Il sequential reduction
10: end while 7 frin = fre.. e fp Stin 1
11: I, + {f1} 8 Spin + Uyes frinlg) fori=1-pdo
12 Fy « {f € Q3q € I|f(q) N F # 0} % Srin < Upes,,, fi(p)

As is the case of the subset construction, the number ¢tep 1 For each subwordy;, we compute transitions b§,

the states in the constructed SFA may increase exponentially independently in parallel. For example, on the first
compared with that in the original automaton. As we have processor, we gefy = fi LN f+ > f1. In the same
stated in Theorem 2, in the worst case, from an NFA with manner, we gef, 222 f. £, X372« and

states the number of the states in an N-SFA becdfiesand

from a DFA with n states the number of the states in a D-
SFA becomesi™. You might consider that these numbers of
states dismiss the practical use, but it is not true. From DFA
that correspond to typical regular expressions, fortunately, the

f(] w4 =abab f4-
step 2 We calculate the reduction in parallel on the results
of step 1, that is, we calculatef;, e f5) e (f2 e f4).
Here, we can compute the function composition with
the mappings in Table I. For example, we ¢¢t o

number of states in the constructed D-SFA is no more than the o
; ; : : f5)(0) = (fs o f1)(0) = f5(1) = {1}, and similarly,
square of that in DFA (we will show this fact in Sect. VI-A). (fre f:)(1) = {2} and (f1'e f5)(2) = {2): as a
The on-the-fly constructiois a well known technique [15] consequence we g¢i e f5 = f, from these results.
in the implementation of an advanced DFA-based matcher. Evaluating the othes operators, we getfi o f5) o
The idea of the on-the-fly construction is to construct DFA (f2 0 fa) = f1 e fo = f4 as desired. o

during the matching only for the required states, instead of

construct!ng full DFA before the matching. Since .on-the-fly It is worth remarking that in Algorithm 5 each thread

construction generates states one by one after reading symbo(lfmy deals with a single state in SFA and just looks up the

it generates at most states for input text of length even yansition table once for each character. In Algorithm 5, we

if the number of states in DFA explodes. We can easilyhaye therefore no overhead linear to the number of states

apply on-the-fly construction to an SFA-based matcher becausg prEa. which is the defect of Algorithm 3. The possible

the correspondence construction is a natural extension of therhead is unfortunate cache misses due to the enlargement of

subset construction. the transition table, but the overhead is quite small for practical
regular expressions is discussed later.

B. Parallel Computation in SFA We can also compute the reduction sequentially: starting
As we can see from Definition 5, SFA is deterministic from the initial state in the original automaton, we simply
in the sense that the image of the transition function is £ompute the states by picking up the states from the mappings

singleton. Therefore, we can simply and efficiently implementoPtained in step 1. In the case of Example 2, we Hgye /5o

the computation of SFA by the table-look-up technique. In/5°/1)(0) = (fio fa o f5)(1) = --- = {0}. We can compute
addition, from Lemma 1, we can split the input word at anythls sequential reduction i®(p) time, which is independent

point and perform the computation of SFA independently infrom the number of states in SFA.
parallel. After local computation over subtexts, we reduce the Taple 11 lists the maximum number of states and the

results either in parallel with associative binary operatorin ayecytion time. The last four lines in the table differ in terms
sequential. Algorithm 5 shows the pseudo code of the parallgl the cost of the reduction. In parallel reduction for N-SFA,
computation of SFA. the computation 0é operator corresponds to the logical matrix

multiplication (O(|NV]?)). In sequential reduction for N-SFA,
Example 2 We show how Algorithm 5 runs using the SFA we evaluate the function one by one, which corresponds to
S; given in Example 1. Let the number of processprbe sequential computation of NFAX(|A])). In parallel reduction
4, and the input wordv be ababababababab that is split as for D-SFA, we need to simulate the transitions for all the
w = wiwowsw, Such thatw; = aba, wy = baba, ws = bab, states in DFA, and it means we neéd|D|) time for each
andw, = abab. In the following, step 1 corresponds to lines computation ofe. The sequential reduction for D-SFA is the
1-5 in Algorithm 5 and step 2 corresponds to lines 6-9. same as the transition of DFAO(1)).

TABLE II. C OMPARISON OF COMPLEXITY

Model State complexity Computation time complexity
NFA N [[NT=O(m) O([NTn) ([16] p.165)
DFAD | |D|=0(2WV) O(n) (Algorithm 2)
O(|D|n/p + |D|logp) (Algorithm 3)
O(|D|n/p + p) (sequential reduction)
N-SFAS, | [Sa| =0@2WT*) | O(n/p+ |N|*logp)
O(n/p + |Nlp) (sequential reduction)
D-SFA Sy | |Sal = O(ID|IP!) | O(n/p +|D|logp)
O(n/p+p) (sequential reduction)

m 1S length of regular expression, is length of input wordp is number of threads

VI. EXPERIMENTAL RESULTS 1e+07

We have implemented an SFA-based parallel regular ex-
pression matcher [9]. It runs in the following four steps: first
it converts a regular expression into an NFA by McNaughton 100000 |
and Yamada’s algorithm [17]; secondly into a DFA by the
subset construction (Algorithm 1); thirdly into a SFA by the
correspondence construction (Algorithm 4); finally it executes
Algorithm 5 (with the sequential reduction) specialized to the
constructed SFA.

1e+06 F

10000

SFA's size

1000 |

D

100 ¢ .
In the following, we show experiment results conducted

to confirm the good scalability and small overhead of parallel 10 p 0

computation of SFA. The experiment environment is a PC with * - -

two Intel Xeon E5645 CPUs (2.40 GHz, 6 physical cores, 10 100 1000

SpeedStep/TurboBoost off) and 12 GB DDR3-SDRAM (1333 DFA's size

MHz). We used CentOS release 5.5 for OS and pthread for o _ o

the thread library. In the following results, the throughput andf9. % ruTlgsetds'St”b““O” of the size of the minimal DFA and D-SFA on

the execution time are of computation of DFA or SFA, and '

exclude construction of automata.

. practical regular expressions, we can use D-SFA for efficient
A. The size of SFA parallel matching.

The first question that may concern the reader the most)
would be ‘How large SFA are compared with original DFA Secondly, for almost all the regular expressions, the number
for practical regular expressior®8 To answer this question, Of states in the D-SFA is not more than the square of the
we have constructed SFA and DFA for over 20000 regular exnumber of states in the minimal DFA. Only 279 (1.4%) regular
pressions included in the rulesets of SNORT network intrusiorgxpressions lead to a D-SFA of over-square si&g|(> |D|?),

prevention and detection systéif18], and compared the sizes and just 6 regular expressions lead to a D-SFA of over-cubed
of automata. size (Sq4| > |D|?). These 6 regular expressions have a pattern

)] _ similar to:
The details of the experiments are as follows. The version

of the rulesets we used was “snortrules-snapshot-2940 (03

Feb, 2013)”. We extracted about 24000 regular expressions (T T.# Y. %Pk Pk Rk 0. % M.+ Pk Tx)

from the rulesets, and used 20312 regular expressions for the

experiments. (We did not used too large expressions for whicfh which several * appear in sequence. For the above regular
DFA has more than 1000 states, nor extended expressiogspression, the size of the minimal DFA is 10 but the size of
that include back referencesc) For each regular expression, D-SFA is 3739. It is worth noting thato regular expressions in

we constructed a minimized DFA and then a D-SFA bythe rulesets lead to a D-SFA of over-quadruplicate sigg| (>
Algorithm 4. Figure 3 plots the sizes of D-SFA to the sizes of|p|4),

minimized DFA.

- : - In theory, the size of a D-SFAS,| is bounded by/D|I”!
We would like to discuss the number of states in D-SFA X . . .
from two viewpoints: absolute size of D-SFA and relative WN€ré|D| is the size of the DFA from which the D-SFA is con-

size of D-SFA compared with DFA. Firstly, only 102 (0.5%) structed (Table II). .From the experiment results, however,_ we
regular expressions lead to D-SFA that have more than 100 nclude that the size of D-SFA never grows up exponentially

states. As we discuss later, current CPUs efficiently computfP! Practical regular expressions. Of course, in a theoretical
automata with 10000 states. Therefore, for almost all th@€rSPective, there exist regular expressions that lead to N-SFA
or D-SFA of near upper-bound sizes. We will discuss them in

Lhttp://snort.org/ Sect. VII-B.

RO O y
[5-91 @
Fig. 4. The DFA of the regular expression = ([0-4] {2}[5-9] {2}) *

=10, OIS
[0-4] @/ O [0-4] © @

591 _ [5-9] [0-4 [0-4]
RO e T

O 11028 591 o
o O/ Lo-21 @ O 2 4 6 8 10 12
@@ [0-4] 04 @\ Number of threads
O O,

Throughput [GB/sec]

Fig. 6. 75 =([0-4] {5}[5-9] {5})*, |D| = 10,|S4| = 109

Fig. 5. The D-SFA of the regular expression= ([0-4] {2}[5-9] {2}) * 5
45t
o 4T
B. Scalability % 35 |
Second question id¥oes the SFA-based parallel matching o 37
scale?” We confirmed the scalability of the parallel computa- 2 2571
tion of SFA with regular expressions in the following form:] 12 I
= ([0 —4[{n}[5 — 9l{n})« oo
for n = 5, 50, and 500. It is worth noting that the sizes of 0'2 ,))))
D-SFA for these expressions are almost the square of those of 2 4 6 8 10 12
DFA. For better understanding, we illustrate the minimal DFA Number of threads

in Fig. 4 and the correspondlng D-SFA in Fig. 5 for the case_
n = 2. The DFA han states in a single loop, but the D-SFA F19- 7+ 750 =(0-4] {50}(5-9] {50}), || =100, |Sa| = 10099
has2n loopsto distinguish from which state (in DFA) we start.

This is a typical case when we have square-sized D-SFA. 0.35
Figures 6 to 9 show the throughput of the DFA or D-SFA. = 03}
Note that the results with one thread were of DFA (and not & o025¢
D-SFA). The input texts were 1GB string accepted by those a o2 |
automata, and every character was read exactly once. The input 5 '
texts were stored on the memory before the execution. 5 0.15 |
As seen in Figures 6 and 7, the SFA-based parallel 'cf oLt
matching scales well up to 12 threads (with respect to the 0.05 |
sequential DFA-base matching). However, in Fig. 8, the SFA-
based parallel matching ran slower (even with 12 threads) than 0 2 4 6 8 10 12
sequential DFA-based matching. The difference between them Number of threads

was the size of SFA (and DFA). For = 50, the number of
states in SFA was 10099 and parallel matching performed we
for this size. Forr = 500, the number of states in SFA was
1000999 while the number of states in DFA was 1000. In our 14
implementation, the transition table occupied 1KB for each 12 +
state (256 symbols times 4 bytes). Foe= 500 the transition
table for SFA was 1GB and thus it overflowed the CPU cache
(The L3 cache of the CPU was 12MB).

It is worth noting that the large size of SFA does not
always mean the poor performance. It is often the case
that transitions are done among small number of states,
and then we can avoid cache misses fortunately. Figure 9
shows the experiment results for the regular expression 0 : : : : :
([0-41{500}[5-9]{500}) x|a = and input text being a 2 4 6 8 10 12
repetition of ‘a”. Although the number of states in SFA was Number of threads
the biggest (1001000), it achieved the best throughput. In thigig. 9. 7, =([0-4] {500}[5-9] {500})+*|a *, |D| = 1002,|S4| =
case, the transitions were done in a single state and cacheo1000, input text is the repetition of “a” (1GB)
misses were avoided.

000999

10

Throughput [GB/sec]

ig. 8. rso0 =(0-4] {500}[5-9] {500})+, [D| = 1000,|S,| =

2.5 : : : :
DFA ——— a,p

SFA (2 threads) Q

- %

B 2t / 1 a,l /\a,l,pma,l,p a,l,pO
A — (===)
% 1t /] Fig. 11. The NFAN,.3 of the regular expression= [ap] * [al][alp]{n —
2y 2}

8

05t

200 400 600 800 1000

m m
e N e el
Input size (KB) t U
Fig. 10. Execution times on small inputs @ n
c,m,t

TABLE Ill. TIMES (IN SEC) FOR CONSTRUCTINGDFA AND D-SFA
FORTy, = ([0 — 4]{n}[5 — 9]{n})*

Fig. 12. The minimal DFAD..4 of the regular expressior =

(m[(t]c(mt] * c){n — 2})[cmt])«

s 50 7500
DFA D 0.0003| 0.0019| 0.0187
|D| 10 100 1000 The size of a syntactic monoid for a regular language is
D-SFA S, | 0.0020| 0.2020| 23.937 called syntactic complexityindeed, syntactic complexity of a
|Sal 109 | 10099 | 1000999 regular language is also the size of a minimal SFA of the

identical language. So far, syntactic complexity has received
less attention than state complexity that is the size of a minimal

C. Overheads DFA [20].

We conducted another set of experiments using a smaller AS we have shown in this paper, SFA provide a data-
input to evaluate the overhead. Figure 10 shows the execigparallel model of regular expression matching, and thus we
tion times of the sequential computation of DFA and thecan say that syntactic complexity is alparallel complexity
parallel computation of SFA with two threads. The executionOf regular expressions. We expect that syntactic complexity
times of the parallel computation includes the creation ofgets more attentions for establishing the theory over automata
threads and the reduction. Here we used regular expressi@nd their parallelization.

(([02468][13579]){5}) * (the size of DFA is 10, and
the size of SFA is 21). Though the execution time of the parB. The state explosion problem: an algebraic approach
allel computation swings caused by interfere between threads,

but the parallel computation runs faster in average over 600KB, I-:e:e we dissgxsslzthettheoretical upper bou:’ld of th(;_nﬁmber
and completely over 800KB. states in . First, we see an example in which we

construct a DFA from an NFA followed by a D-SFA from
Finally we briefly remark on the cost of constructing SFA. the DFA.

Table Ill shows the time required to constructing DFA and SFA

for the regular expressions, = ([0 —4[{n}[5—9]{n})x. Example 3 Considers = {a,1,p} and the regular expression

Though the correspondence construction of D-SFA from DFA; — [ap] * [al][alp]{n — 2}. Figure 11 shows the NFA/,.;

is slower than construction of DFA because we need t®f the regular expression

calculate the mapping between states, it is fast enough to _)

generate about 50000 states per second. As we have seen in Let us represent the set of states in NFA by a bit-sequence

Fig. 3, D-SFA for almost all the practical regular expressions°f lengthn. Then, the initial set of states in Fig. 1110 - - - 0.

are smaller than 10000 states, and thus we can construct them _ N n—1
in less than 0.2 seconds. The symbolsa and1 make the following transitions from the

initial set of states:

VIl. DiscussioN 100...0 2 1100...0 , and
. . N—_—— N—_——
A. Syntactic monoid n—1 n—2
In this paper, we proposed simultaneous finite automaton 100...0 3 0100...0 ,
N—_—— N—_——

(SFA) as a data-parallel model of regular expression matching.
SFA are natural extensions of finite automata on the automata . -
theory. In addition, SFA can be regarded as special cases gf'd the symbop makes the following transitions:
DFA that include the structure of a syntactic monoid [19], 1100...0 2 10100...0 . and
[13], which is an algebraic characterization of the regular —— ——
language. We would like to emphasize that SFA will bridge
the gap between the practice of automata and abstract theory 0100...0 2 00100...0 .
of syntactic monoid. o o3

n—1 n—2

n—2 n—3

Notice that the symbola and1 correspond to arithmetic shift
and logical shift and the symbel corresponds to partial shift

applied to bit-sequences from second bit. With these three shi
operations, we can generate all the bit-sequences of length

from the initial sequence. Hence the minimal DFA,; of
Neg;?) SatiSfiES|Dew3‘ = 2|Nem3|_ o

By Example 3, we obtain the following fact.

Fact 1 If |[X| > 3, then there exists a regular expressiaver
> whose NFAN and minimal DFAN satisfies|D| = 210

VIIl. CONCLUSION

We have defined a novel class of automata called simul-
&meous finite automata, and developed an implementation of
them for efficient data-parallel regular expression matching.
The parallel computation of SFA runs (n/p + p) time or
in O(n/p + |D|logp) time where|D| is the number of states
in DFA, n is the length of input word ang is the number of
threads.

We tackled SFAs size issue in Sect. VI-A, made exper-
iments in real world regular expressions (SNORT rulesets),
and show that SFA's size is fully practical in typical case. We

Based on a similar idea, we can find a regular expressioalso made experiments with the SFA-based regular expression
for which a D-SFA has as many states as the theoretical upp#&natcher, and confirmed good scalability by a factor of over

bound from the size of DFA.

10 on an environments with dual hexa-core CPUs and small
overhead such that execution with two threads outperforms for

Example 4 Consider: = {c,m, t} and the regular expression input data over 600KB.

e = (m/(t|c([mt] * c){n — 2})[cmt])*. Figure 12 shows the
minimal DFA D.., of the regular expression The minimal
D-SFA D,y Of S,y Satisfies|Seps| = |Depa| el o

By Example 4, we obtain the following fact.

Fact 2 If |X| > 3, then there exists a regular expressiaver
3 whose minimal DFAD and minimal D-SFAS, satisfies
|Sq| = |D|IP. o

Our implementation of the SFA-based parallel regular
expression matcher is available as an open-source software [9],
hence anyone can verify the experimental results in Sect. VI.

Acknowledgments

We would like to thank Kazuhiro Inaba for the helpful
discussion with him on the prior works described in Sect. Ill
and Sect. VII-B.

This work was partly supported by the joint project be-

Facts 1 and 2 mean the existence of regular expressiorﬂ\%

een ANR (France) and JST (Japan) (project PaPDAS ANR-

with three symbols that lead to state explosion in the CON% 1 0 INTB-0205-02 and JST 10102704).

struction of DFA or D-SFA. Here, we have another questlen:
there a regular expression with a constant number of symbols
that lead to state explosion in the construction of N-SFA from
NFA? The following fact on the semigroup theory gives a I[1
negative answer to this question.

Fact 3 (Devadze [21], [22])The size of a minimal generat-
ing set of the semigroup ofi x n boolean matrices grows 2]
exponentially withn. o

This fact was first presented by Devadze in 1968, and he
described minimal sets of generators of the semigroup>of. 3]
boolean matrices without a proof. Its was proved very recently
by Konieczny in 2011 [22].

We stated in the previous section that the states in SFA
correspond to elements in syntactic monoid. Since the syntactic®]
monoid can be represented with boolean matrices and their
multiplication 2, the theorem also applies to the syntactic
monoid. [6]

(4]

The following fact follows from Devadze’s theory.

Corollary 3.1 To denote a regular expression that leads to an
N-SFA S, with |S,,| = 2*" states, we require an exponential [7]
number of states with respect ko o

Corollary 3.1 means that it is unrealistic to find a large regular [€]
expression that leads to state explosion in the construction of
N-SFA. [9]

2See [23], [19] for the relation between the syntactic monoid and boolean
matrices. Theorem 3 in [23] is a proof for Fact 2. In the semigroup theory, thg10]
problem corresponding to Fact 2 is one of basic propositions ([24], Exercise
6).

REFERENCES

S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner,
“Algorithms to accelerate multiple regular expressions matching
for deep packet inspection, 5IGCOMM Comput. Commun. Rev.

vol. 36, no. 4, pp. 339-350, Aug. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1151659.1159952

B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture
for high-throughput regular-expression pattern matchirg§iGARCH
Comput. Archit. Newsvol. 34, no. 2, pp. 191-202, May 2006.
[Online]. Available: http://doi.acm.org/10.1145/1150019.1136500

R. E. Ladner and M. J. Fischer, “Parallel prefix computatidiofirnal
of the ACM vol. 27, no. 4, pp. 831-838, 1980.

W. D. Hillis and G. L. Steele, Jr., “Data parallel algorithm€dbmmun.
ACM, vol. 29, no. 12, pp. 1170-1183, Dec. 1986. [Online]. Available:
http://doi.acm.org/10.1145/7902.7903

J. Holub and SStekr, “On parallel implementations of deterministic
finite automata,” inmplementation and Application of Automata, 14th
International Conference, CIAA 2009, Proceedinger. Lecture Notes
in Computer Science, vol. 5642. Springer, 2009, pp. 54-64.

D. Luchaup, R. Smith, C. Estan, and S. Jha, “Multi-byte regular
expression matching with speculation,” Proceedings of the 12th
International Symposium on Recent Advances in Intrusion Detection
ser. RAID '09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 284-303.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-04342LD

——, “Speculative parallel pattern matching;Trans. Info. For.
Sec, vol. 6, no. 2, pp. 438-451, Jun. 2011. [Online]. Available:
http://dx.doi.org/10.1109/TIFS.2011.2112647

Y. Ko, M. Jung, Y.-S. Han, and B. Burgstaller, “A speculative parallel

DFA membership test for multicore, SIMD and cloud computing

environments,"CoRR vol. abs/1210.5093, 2012.

R. Sin'ya, “Regen: regular expression generator, engine, JIT-compiler.”
[Online]. Available: http://sinya8282.github.com/Regen/

P. D. Stotts and W. Pugh, “Parallel finite automata for modeling
concurrent software systemggurnal of Systems and Softwawel. 27,

pp. 27-43, 1994.

(1]

[12]

[13]

[14]

[15]
[16]

[17]

(28]

M. Jantzen, M. Kudlek, and G. Zetzsche, “Concurrent finite automata,”[19]
in Tagungsband 17. Theorietag Automaten und Formale Sprachen
M. Droste and M. Lohrey, Eds., 2007, pp. 84—88.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, “Alternation,” [20]
J. ACM vol. 28, no. 1, pp. 114-133, Jan. 1981. [Online]. Available:
http://doi.acm.org/10.1145/322234.322243

J. SakarovitchElements of Automata Theory Cambridge University

Press, 2009.

M. O. Rabin and D. Scott, “Finite automata and their decision prob- [21]
lems,” IBM Journal of Research and Developmewsl. 3, no. 2, pp.
114-125, 1959. [22]
R. Cox, “Regular expression matching can be simple and fast,” 2009.
[Online]. Available: http://swtch.comfrsc/regexp/regexpl.html

A. V. Aho, R. Sethi, and J. D. UllmarCompilers: Principles, Tech-
niques, and Toolssecond edition ed. Prentice Hall, 2006.

R. McNaughton and H. Yamada, “Regular expressions and state graphs
for automata,”IRE Transactions on Electronic Computeml. EC-9, (24]
no. 1, pp. 39-47, 1960.

M. Roesch, “Snort: Lightweight intrusion detection for networks,” in
Proceedings of the 13th Conference on Systems Administration (LISA-
99). USENIX, 1999, pp. 229-238.

(23]

J.-E.Pin, Syntactic Semigroups Springer-Verlag, 1997, vol. 1, ch. 10,
pp. 679-746, g. Rozenberg and A. Salomaa (ddahdbook of Formal
Languages

J. A. Brzozowski, B. Li, and Y. Ye, “Syntactic complexity of prefix-,
suffix-, and bifix-free regular languages,” Descriptional Complexity

of Formal Systems — 13th International Workshop, DCFS 2011, Pro-
ceedingsser. Lecture Notes in Computer Science, vol. 6808, 2011, pp.
93-106.

H. M. Devadze, “Generating sets of the semigroup of all binary relations
on a finite set.” 1968, pp. 765-768, russian.

J. Konieczny, “A proof of Devadze’s theorem on generators of the
semigroup of boolean matricesSemigroup Forumvol. 83, no. 2, pp.
281-288, 2011.

M. Holzer and B. Kinig, “On deterministic finite automata and syntactic
monoid size,"Theoretical Computer Scienceol. 327, no. 3, pp. 319—
347, 2004.

J. M. Howie, Fundamentals of Semigroup Theory (London
Mathematical Society Monographs New SeriesPxford University
Press, USA, Feb. 1996. [Online]. Available: http://www.amazon.com/
exec/obidos/redirect?tag=citeulike07\2path=ASIN/0198511949

