
Noname manuscript No.
(will be inserted by the editor)

An Automatic Fusion Mechanism
for Variable-Length List Skeletons in SkeTo

Kento Emoto · Kiminori Matsuzaki

Received: date / Accepted: date

Abstract Skeletal parallel programming is a promising approach to easy par-
allel programming in which users can build parallel programs simply by com-
bining parts of a given set of ready-made parallel computation patterns called
skeletons. There is a trade-off for this easiness in the form of an efficiency prob-
lem caused by the compositional style of the programming. One solution to
this problem is fusion transformation that optimizes naively composed skele-
ton programs by eliminating redundant intermediate data structures. Several
parallel skeleton libraries have automatic fusion mechanisms. However, there
have been no automatic fusion mechanisms proposed for variable-length list
(VLL) skeletons, even though such skeletons are useful for practical problems.
The main difficulty is that previous fusion mechanisms are not applicable to
VLL skeletons, and so the fusion cannot be completed. In this paper, we pro-
pose a novel fusion mechanism for VLL skeletons that can achieve both an
easy programming interface and complete fusion. The proposed mechanism
has been implemented in our skeleton library, SkeTo, by using the expression
templates technique, experimental results have shown that it is very effective.

Keywords Algorithmic skeletons · Fusion equipped library

1 Introduction

As the use of parallel computers becomes more widely spread, parallel pro-
gramming has become increasingly more important. However, in general, par-

K. Emoto
Kyushu Institute of Technology
680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
E-mail: emoto@ai.kyutech.ac.jp

K. Matsuzaki
Kochi University of Technology
185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
E-mail: matsuzaki.kiminori@kochi-tech.ac.jp

2 Kento Emoto, Kiminori Matsuzaki

allel programming is much more difficult than sequential programming, be-
cause programmers have to consider extra factors such as complicated schedul-
ing of tasks, data distribution, communication and synchronization between
processors, etc. There is therefore a demand for easy parallel programming.

Skeletal parallel programming has been proposed and studied as a promis-
ing approach to easy parallel programming in which users build parallel pro-
grams by combining parts of a given set of ready-made parallel computation
patterns called skeletons [6–8]. These include a map to apply a function to
every element of a list and a reduce to take the summation of a list with a
binary operator. For example, we can easily build a parallel program for com-
puting the variance of list x with its average ave by using the skeletons with
user-defined simple functions plus, square, and sub as

double var = reduce(plus, map(square, map(sub(ave), x)));

Although they enjoy easiness of programming, skeleton programs suffer
from inefficiency caused by the production of intermediate data structures be-
tween successive skeletons due to the compositional style of the programming.
For example, the skeleton program above has three local loops for two maps
and the final reduce, and two intermediate lists are produced between suc-
cessive loops, although we can compute the variance sequentially in a single
loop.

Fusion transformation has been studied and used to optimize skeleton pro-
grams by removing redundant intermediate data structures, which dramati-
cally improves the efficiency of naively composed skeleton programs. Indeed,
optimization mechanisms based on fusion transformation have been imple-
mented in several skeleton libraries and systems [5–7], including our own li-
brary, SkeTo1, and fusion transformation has been shown to be actually effec-
tive. For example, although the skeleton program above appears to have three
loops, it can be optimized into the following SPMD program with a single loop
followed by the final global communication.

double r = 0.0;

for(int i = 0; i < x.local_size(); i++)

r = plus(r, square(sub(ave)(x.local_get(i))));

global_reduce(plus, r);

Variable-length list (VLL) skeletons, such as concatmap to concatenate the
results of applying a function to every element and filter to discard elements
that do not satisfy a given predicate, are useful in practice [10]. These skeletons
generate lists with different lengths from those of the input. For example, we
can easily build a parallel program for the n-queen problem [10] by using these
two skeletons:

1 http://sketo.ipl-lab.org/

An Automatic Fusion Mechanism for Variable-Length List Skeletons in SkeTo 3

dist_list<board> x; x.push_back(emptyBoard);

for(int i = 0; i < n; i++)

x = filter(invalidBoard, concatmap(putNewQueen, x));

long answer = x.length();

Starting from an empty board, the program repeatedly generates a list of new
valid boards by putting one more queen in every board in the current list. In
each iteration, it first generates all possible boards by using concatmap with
putNewQueen to generate a list of new boards, each of which has a new queen in
the top row. It then discards invalid boards by using filter with invalidBoard

that returns true if the given board contains no collision of queens. Although
this program is clear, it is inefficient due to the intermediate list generated
between concatmap and filter. We hope that an automatic fusion mechanism
can improve the efficiency.

Although they have great potential, no fusion mechanism has been pro-
posed for VLL skeletons, mainly because previous fusion mechanisms for fixed-
length list skeletons cannot be applied to VLL skeletons. Therefore, naively
composed programs with VLL skeletons suffer from inefficiency caused by re-
dundant intermediate data structures.

In this study, we designed and implemented a novel fusion mechanism for
VLL skeletons that enables users to take advantage of both VLL skeletons
and automatic fusion transformations to obtain efficient parallel programs for
various problems in an easy way. We offer three main technical contributions:

– We propose a novel design for a collector-based fusion mechanism that
enables both a simple programming interface and complete fusion results,
which cannot be achieved by the previous mechanisms.

– The new fusion mechanism is implemented by using expression templates [11],
so users need only a C++ compiler to use it.

– Our proposed mechanism can be used together with previous fusion mecha-
nism in SkeTo, thus significantly broadening the application range of fusion
optimization.

The rest of this paper is organized as follows. Section 2 reviews our previ-
ous fusion mechanism for fixed-length list skeletons, and in Section 3 we review
VLL skeletons, the target of our proposed fusion mechanism. Section 4 dis-
cusses several approaches to designing a fusion mechanism for VLL skeletons,
and Section 5 presents and evaluates an implementation of the proposed mech-
anism. Finally, Section 6 discusses related work, and in Section 7 we conclude
the paper.

2 Preliminaries

After introducing the notation we used for formal discussion, we briefly review
the previous fusion mechanism for fixed-length list skeletons. It is worth noting

4 Kento Emoto, Kiminori Matsuzaki

that the skeletons in this paper are based on data-parallelism and that we use
single program, multiple data (SPMD) programs for their implementation.

The notation used in this paper is reminiscent of Haskell [2]. Function appli-
cation is denoted by a space and the argument can be written without brackets,
so f a means f(a) in ordinary notation. Functions are curried: they always take
one argument and return a function or a value, and the function application
associates to the left and binds more strongly than any other operator, so f a b
means (f a) b and f a⊗b means (f a)⊗b. Function composition is denoted by
◦, and (f ◦ g) x = f (g x) according to its definition. Binary operators can be
used as functions by sectioning, as a⊕ b = (a⊕) b = (⊕b) a = (⊕) a b. A list
is denoted by enclosing its elements with square brackets, e.g., [a] represents
a singleton list of element a, and [a, b, c] a list of elements a, b, and c. The list
concatenation operator is denoted by ++, so that [a, b]++[c, d] = [a, b, c, d]. An
empty list is denoted by [].

2.1 Fixed-Length List Skeletons and Their Fusion

Here, we briefly review a small subset of our fixed-length list (FLL) skele-
tons [7]. Their intuitive definitions are

map f [a1, . . . , an] = [f a1, . . . , f an]
reduce (⊕) [a1, . . . , an] = a1 ⊕ · · · ⊕ an

The skeleton map applies the given function f to every element of the given
list to produce the new list. The skeleton reduce takes a summation of the
given list by using the given associative binary operator ⊕.

For example, if we want to take a summation of a given list after doubling
its even numbers, we can easily make the following parallel program for this
by combining the skeletons. Here, map doubles even numbers by applying user
function evenDbl , and reduce takes the summation of the results.

evenDblSum = reduce (+) ◦map evenDbl
where evenDbl a = if even a then a+ a else a

We designed our FLL skeletons based on a special recursive function called
homomorphism so that they have good optimizability by fusion. The intuitive
definition of homomorphism is given as

hom (⊕) f [a1, . . . , an] = f a1 ⊕ · · · ⊕ f an
It is easily seen that map and reduce are its special cases. Homomorphisms
have good fusability [1], and thus our skeletons have good fusability too.

For example, we have the following fusion rules for the skeletons:

map f ◦map g = map (f ◦ g)
reduce (⊕) ◦map f = hom (⊕) f

In each rule, the left-hand side has two skeletons with an intermediate list
between them and the right-hand side has only one skeleton (homomorphism)

An Automatic Fusion Mechanism for Variable-Length List Skeletons in SkeTo 5

and no intermediate list. The right-hand side is therefore expected to be
faster than the left-hand side, and indeed, this has been shown to be true
in experiments [7]. For example, we can write the example skeleton program
evenDblSum to obtain a faster program evenDblSumopt = hom (+) evenDbl
by using the second rule.

2.2 Implementation of FLL Skeleton Fusion via Expression Templates

The fusion of FLL skeletons has been implemented in our skeleton library,
SkeTo [7], by using expression templates (ETs) [11] with an index-based access
method. Here, we briefly review the mechanism by using the following example
user code implementing the example program evenDblSum. It uses map and
reduce skeletons with the STL plus operator and user-defined function object
evenDbl that implements evenDbl , in which evenDbl extends the base class
to inform the library of its function type.

long evenDblSum(dist_list<long> z) {

return reduce(plus<long>(), map(evenDbl, z));

}

struct evenDbl_t : function_base<long(long)> {

long operator()(long a) const { return even(a)? a + a : a;}

} evenDbl;

In the ET-based library, production of the resulting list is postponed and
a skeleton returns an expression object representing its computation so that it
(the computation) can be fused into successive computations. Figure 1 shows
the implementation of the skeleton map. It is defined to build an object of
MapObj that has two fields, f and x, to represent the computation of map f x.
The object also has an index-based access method local get that returns the
result of applying f to the ith element of x, which is the ith element of the
resulting list computed by this expression. This method is used to generate
elements on demand, thus avoiding storing the intermediate results and leading
to the fusion.

A skeleton like reduce that does not produce a list receives an expres-
sion object and carries out the fusion in its computation. Figure 2 shows
the implementation of the skeleton reduce. It is implemented as a single lo-
cal loop followed by a global communication. In the local loop, it utilizes the
method local get to get the ith element of the given expression x. For ex-
ample, in the program evenDblSum, the function reduce receives an object
MapObj(evenDbl, z) built by map(evenDbl, z), and thus the whole code
becomes

long r = 0;

for(int i = 0; i < z.local_size(); i++)

r = plus<long>()(r, evenDbl(z.local_get(i)));

global_reduce(plus<long>(), r);

6 Kento Emoto, Kiminori Matsuzaki

template <typename F, typename X>

struct MapObj {

const F& f; const X x;

MapObj(const F& f, const X& x) : f(f), x(x) { }

typename F::result_type local_get(int i) const { return f(x.local_get(i)); }

int local_size() const { return x.local_size(); }

};

template <typename F, typename X>

MapObj<F, X> map(const F& f, const X& x) { return MapObj<F, X>(f, x); }

Fig. 1 ET implementation of skeleton map, which returns an expression object MapObj.

template <typename OP, typename X>

typename OP::result_type reduce(const OP& op, const X& x) {

typename OP::argument_type r = identity_element<OP>::val;

for(int i = 0; i < x.local_size(); i++) r = op(r, x.local_get(i));

global_reduce(op, r);

return r;

}

Fig. 2 ET-based SPMD implementation of skeleton reduce, which does fusion by using the
index-based access method local get.

This code does not produce the resulting list of map evenDbl z, rather it
implements the fused computation evenDblSumopt .

An important observation here is that the fused code uses the user-defined
function object evenDbl as is. This point makes the fusion mechanism simple
enough to be implemented by the index-based access method. Unfortunately,
this does not hold true for variable-length list skeletons.

3 Variable-Length List Skeletons

In this section, we introduce variable-length list (VLL) skeletons [10] and
briefly show some examples and their programming interface.

3.1 Definition and Example Use

Intuitive definitions of the VLL skeletons are given as

concatmap f [a1, . . . , an] = f a1 ++ · · ·++ f an
filter p [a1, . . . , an] = [ai1 , . . . , aik]

where (∀i, i 6∈ {i1, . . . , ik} ⇔ p ai = false) ∧ (∀j, ij < ij+1)
append x y = x++ y

The skeleton concatmap, taking a function f to produce a list from the given
argument, applies f to every element of the given list and concatenates the
resulting lists. The skeleton filter, taking a predicate (a function returning a

An Automatic Fusion Mechanism for Variable-Length List Skeletons in SkeTo 7

dist_list<board> x; x.push_back(emptyBoard);

for(int i = 0; i < n; i++) x = filter(invalidBoard, concatmap(putNewQueen, x));

long answer = x.length();

Fig. 3 Examples use of VLL skeletons: n-queens problem.

dist_list<int> quicksort(const dist_list<int> &x) {

if(x.get_global_size() < 2) return x;

int pv = x.get(0);

return append(quicksort(filter(less_than(pv), x))

append(filter(equal(pv), x),

quicksort(filter(greater_than(pv), x))));

}

Fig. 4 Examples use of VLL skeletons: Quicksort.

Boolean value) and a list, removes its elements not satisfying the predicate.
It is easily seen that filter p = concatmap (λa.if p a then [a] else []). The
skeleton append simply concatenates the two given lists.

VLL skeletons are useful in practice [10], broadening the application range
of skeletal parallel programming. For example, we can easily build a parallel
program for the n-queen problem by using two skeletons, as shown in Fig. 3.
Here, given a board, putNewQueen generates a list of new boards, each of which
has a new queen in the top row, and invalidBoard returns true if the given
board contains no collision of queens. In general, we can easily implement a
parallel breadth-first search in a similar way.

Another important application of VLL skeletons is irregular divide-and-
conquer algorithms, including the convex hull, the quicksort, and others. For
example, the quicksort is implemented by using filter and append, as shown in
Fig. 4.

3.2 Programming Interface of Naively Implemented VLL Skeletons

Here, we briefly review the programming interface of concatmap proposed in
our previous work [10], in which the VLL skeletons are implemented naively
without fusion.

The interface of the skeleton concatmap is

template<typename F, typename T, typename S>

dist_list<T> concatmap(const F&f, const dist_list<S> &l);

Here, the function object f (of type F) is expected to return an instance of
vector<T>, as function f in concatmap f returns a list.

For example, if we want to duplicate every even number in a given list x,
we can use concatmap with the user-defined function object evenDup (Fig. 5)
of user function evenDup a = if even a then [a, a] else [a] as follows.

8 Kento Emoto, Kiminori Matsuzaki

struct evenDup_t {

vector<long> operator()(long a) const {

vector<long> v;

if(even(a)) { v.push_back(a); v.push_back(a) } else { v.push_back(a); };

return v;

}

} evenDup;

Fig. 5 Vector-based implementation of evenDup a = if even a then [a, a] else [a].

x = concatmap(evenDup, x);

The function object evenDup implements straightforwardly the function evenDup
in the functional style: it simply returns a vector of one or two elements, as
evenDup does. Since the functional style has been shown to be suitable for par-
allel programming [6–9] and our skeletons have been designed in the functional
style, we conclude that this simple programming interface is effective.

4 Fusion Mechanism for Variable-Length List Skeletons

In this section, we discuss three approaches to designing the fusion mecha-
nism of the VLL skeletons in order to find the one that achieves the best
programmability and efficiency. Since filter is a special case of concatmap, and
append simply concatenates two given lists, we focus on a fusion mechanism
for concatmap.

4.1 Target Fusion Transformation

First, we clarify our target fusion transformation of concatmap by using the
example program evenDupSum. Given a list, it first duplicates every even
number in the list by using concatmap with user function evenDup and then
creates a summation of the resulting list by using reduce.

evenDupSum = reduce (+) ◦ concatmap evenDup
where evenDup a = if even a then [a, a] else [a]

It is easily seen that evenDupSum is equivalent to evenDblSum in Section 2.1.
The intermediate list that the evenDupSum program generates between

reduce and concatmap seems inefficient, so we want to fuse these skeletons to
obtain an efficient program. What should the resulting program of fusion be?
Since evenDupSum is equivalent to evenDblSum, we expect the result of fusion
to be the following evenDupSumopt , which is the same as evenDblSumopt ,
which does not produce any intermediate list:

evenDupSumopt = hom (+) evenDup′

where evenDup′ a = if even a then a+ a else a

An Automatic Fusion Mechanism for Variable-Length List Skeletons in SkeTo 9

The goal of our fusion mechanism is to obtain an efficient evenDupSumopt

from the naive evenDupSum, but this fusion has a problem that did not appear
in the previous fusion (Section 2.1).

The problem of this fusion is that in the fused program evenDupSumopt ,
the user function evenDup is not used as is, which means that the fusion
mechanism needs to create the new function evenDup′ from the definition
of evenDup and +. However, in many programming languages it is difficult
to obtain the body of a user function and create a new function from it, so
the fusion mechanism has to use a user function as is. Therefore, we need a
certain trick to define a user function to implement a fusion mechanism for
VLL skeletons. This situation is quite different from that of the FLL skeletons,
in which the fusion mechanism can use a user function as is. This is one of the
reasons the previous fusion mechanism is not applicable to VLL skeletons.

In the following sections, we discuss three approaches to the fusion mecha-
nism of VLL skeletons, focusing on how users define their functions and what
code a fusion mechanism can produce, e.g., from the following main user code
for evenDupSum:

long evenDupSum(dist_list<long> z) {

return reduce(plus<long>(), concatmap(evenDup, z));

}

It is worth noting that in ET implementation, the skeleton concatmap pro-
duces an expression object holding the user function evenDup and the input
z, and the skeleton reduce receives the object and uses it in the main loop.

4.2 Vector-based Approach

In this approach, a user function f used in concatmap f is implemented by a
function object f that returns a concrete vector, which is a straightforward im-
plementation of f that returns a list. For example, the user function evenDup
is implemented as the function object evenDup (Fig. 5), where it returns a
concrete vector of one or two elements.

This approach has the key advantage of good programmability: it provides
a simple, functional programming style for defining a user function. In fact,
this style is the same as the previous mechanism and is quite natural for use
in programming with our skeletons that have functional style definitions.

However, this approach does have one big disadvantage: it suffers from
incomplete fusion. Figure 6 shows a C++ SPMD program2 equivalent to the
fused program of evenDupSum that can be generated in this approach. In the
main loop, the user-defined evenDup creates a small vector v at every iteration
and the inner loop then runs on this vector to sum up its elements to the
accumulator r. Since we cannot change the definition of evenDup at compile

2 Since we use the expression technique to carry out fusions, the result of the fusion is not
a C++ program but an assembly program. We show its discompiled version for readability.

10 Kento Emoto, Kiminori Matsuzaki

long r = 0;

for(int i = 0; i < z.local_size(); i++) {

vector<long> v = evenDup(z.local_get(i));

for(int j = 0; j < v.size(); j++) r = plus<long>()(r, v[j]);

}

global_reduce(plus<long>(), r);

Fig. 6 C++ SPMD program equivalent to the fused version of evenDupSum in the vector-
based approach.

time, this production of small vectors is unavoidable. Therefore, the fusion is
incomplete. Actually, the code does not implement our goal evenDupSumopt

but rather the incompletely fused program evenDupSum ′′:

evenDupSum ′′ = hom (+) evenDup′′

where evenDup′′ a = reduce (+) (evenDup a)

At a glance, this program looks successfully fused because the composition of
reduce and concatmap has been replaced with hom (+) evenDup′′. However,
the fusion is incomplete in the sense that it creates intermediate data structures
(lists) inside the new function evenDup′′. This incompleteness creates a serious
efficiency problem when a user function returns a big list.

The main problem of this approach is that the fused program produces
many vectors—some of which are possibly quite big—inside the main loop,
and we cannot avoid this as long as a user-defined function object returns a
concrete vector. To avoid this incompleteness of the fusion, we need a user
function that does not return a concrete vector.

4.3 Iterator-based Approach

In this approach, to avoid the production of vectors in the fused program,
a user function is implemented to return an iterator (an object that yields
elements one by one) instead of a concrete vector. Use of iterators to avoid
intermediate data structures is natural in practical C++ programming.

Although this approach is advantageous in that we can achieve complete
fusion, thus avoiding the problem faced by the vector-based approach, there
are two disadvantages. The main disadvantage is the difficulty of user pro-
gramming: implementing a user function to return an iterator is much more
difficult than one to return a concrete vector. The other disadvantage is the
risk of incomplete fusion. To avoid the difficulty of user programming, users
may take the easy way: creating a vector and returning its iterator. Then,
the fused program produces many vectors implicitly inside the calls of the
user function, and the fusion is incomplete. We have limited space here, but
interested readers can find the details with concrete codes in our technical
report [4].

An Automatic Fusion Mechanism for Variable-Length List Skeletons in SkeTo 11

struct evenDup_t {

template <typename Collector>

void operator()(long a, Collector &c) const {

if(even(a)) { c.push_back(a); c.push_back(a) } else { c.push_back(a); };

}

} evenDup;

Fig. 7 Collector-based implementation of user function evenDup.

The main problem of this approach is the difficulty of the user program-
ming, which stems from adopting the functional style such that a function
object returns something. To achieve both good programmability and good
efficiency, we need a slightly imperative style.

4.4 Collector-based Approach

In this approach, a user function is implemented to receive a collector, which
is an object that receives elements one by one. It then puts elements into the
collector. This is a dual approach of the iterator-based approach, adopting a
slightly imperative style in the sense that the user function does not return
anything. This approach can achieve both good programmability and good
efficiency.

Figure 7 shows an implementation of the user function evenDup. The func-
tion object evenDup receives a collector c and puts elements into the collector
by calling c.push back(a). Here, the type of collector c is generalized as the
template type parameter Collector, so this user function can be used in var-
ious contexts. The code looks almost the same as the code in the vector-based
approach (Fig. 5). The only difference is the place to which the elements are
emitted: The former puts elements into the given collector while the latter
puts elements into its created vector. Therefore, the programmability of this
approach is as good as the vector approach, and much better than the iterator
approach.

Figure 8 shows a C++ SPMD program equivalent of the fused program
of evenDupSum. The fused program uses a collector defined as a new struc-
ture ReduceCollector in which the push back method adds the given ele-
ment a into its accumulator variable r. In each iteration of the main loop,
the user function evenDup receives the collector c as well as the ith element
z.local get(i) of the input list z and puts one or two copies of the ele-
ment into the collector. Since the collector immediately adds the given el-
ement into the accumulator, there is no production of intermediate vectors
in this code. Therefore, this code successfully implements our goal program
evenDupSumopt .

This approach can fuse multiple concatmaps. To explain this, we use the
following program with two concatmaps to compute a doubled summation of

12 Kento Emoto, Kiminori Matsuzaki

struct ReduceCollector {

long &r; ReduceCollector(long &r) : r(r) { }

void push_back(int a) { r = plus<long>()(r, a); }

};

long r = 0;

ReduceCollector c(r);

for(int i = 0; i < z.local_size(); i++) evenDup(z.local_get(i), c);

global_reduce(plus<long>(), r);

Fig. 8 C++ SPMD program equivalent to the fused version of evenDupSum in the collector-
based approach.

struct noOdd_t {

template <typename Collector>

void operator()(long a, Collector &c) const { if(even(a)) c.push_back(a); }

} noOdd;

Fig. 9 Collector-based implementation of user function noOdd .

only even numbers by using noOdd a = if even a then [a] else [] :

evenDupNoOddSum = reduce (+) ◦ concatmap noOdd ◦ concatmap evenDup

Figure 9 shows a collector-based implementation of the user function noOdd .
Our desired fused program is basically the following program:

evenDupNoOddSumopt = hom (+) (λa.if even a then a+ a else 0)

In order to fuse multiple concatmaps, we simply need to build new collectors
from user functions. We use a new structure, CombinedCollector (Fig. 10)
that has two fields to hold a user function f and to hold another collector
c. The method push back of CombinedCollector simply supplies the given
element a and the collector c to the user function f.

Figure 11 shows the main loop of the fused program of evenDupNoOddSum,
which simply supplies elements to the new collector built from the user func-
tions. Figure 12 shows the computation flow of the new collector, in which zi

corresponds to z.local get(i) in the main loop. When zi is an even num-
ber (the solid line), by definition, c2.push back(zi) calls evenDup(zi, c1)

once, and the call of evenDup makes two calls of c1.push back(zi). Each call
of c1.push back(zi) invokes noOdd(zi, c) once, and this noOdd makes one
call of c.push back(zi). Therefore, when zi is even, it is added to accumu-
lator r twice. On the other hand, when zi is odd (the dashed line), the call
of evenDup makes one call of c1.push back(zi) and invokes noOdd(zi, c)

once. Since noOdd(zi, c) does nothing when zi is odd, the accumulator r is
kept unchanged in this case. Clearly, the main loop implements our desired
fused program.

We now have a good design for a fusion mechanism that can achieve both an
easy programming interface and complete fusion. Its concrete implementation
with the expression templates technique [11] is explained in the next section.

An Automatic Fusion Mechanism for Variable-Length List Skeletons in SkeTo 13

template<typename NextCollector, typename F>

struct CombinedCollector {

NextCollector c; const F f;

CombinedCollector(const F&f, NextCollector &c) : f(f), c(c) {}

void push_back(const long& a) { f(a, c); }

};

Fig. 10 Structure of combined collectors for fusing multiple concatmaps.

long r = 0; ReduceCollector c(r);

CombinedCollector<ReduceCollector, noOdd_t> c1(noOdd, c);

CombinedCollector<CombinedCollector<ReduceCollector, noOdd_t>, evenDup_t>

c2(evenDup, c1);

for(int i = 0; i < z.local_size(); i++) c2.push_back(z.local_get(i));

Fig. 11 The main loop of the fused program of evenDupNoOddSum.

c2.push back(zi);

c2::push back(int zi) { evenDup(zi, c1); }

evenDup(int zi, Collector c1){ c1.push back(zi); if(even(zi)) c1.push back(zi); }

c1::push back(int zi) { noOdd(zi, c); }

noOdd(int zi, Collector c) { if(even(zi)) c.push back(zi); }

c::push back(int zi) { r = plus<int>()(r, zi); }

even
odd

Fig. 12 The call chain of collectors inside the fused program of evenDupNoOddSum.

5 Implementation and Evaluation

We have implemented the fusion mechanism for VLL skeletons in our SkeTo
library [7] by using expression templates [11]. We briefly describe this imple-
mentation and report some experimental results to show the effect of the fusion
mechanism.

5.1 ET Implementation of the Fusion Mechanism for VLL Skeletons

Figure 13 shows the implementation of the fusion mechanism of the collector-
based approach using the expression templates technique [11]. In the explana-
tion below, we use as an example the following code straightforwardly imple-
menting evenDupNoOddSum:

long eDNOSum = reduce(plus<long>(),

concatmap(noOdd, concatmap(evenDup, z)));

The skeleton function concatmap returns an expression object of CMapObj
in order to postpone its computation and enable the fusion. The object has

14 Kento Emoto, Kiminori Matsuzaki

two fields, a user function f and an expression object x that represents its
target list. It also has several methods and type declarations, which will be
explained later. For example, concatmaps in the example program create an
object CMapObj(noOdd, CMapObj(evenDup, z)).

The skeleton function reduce receives a CMapObj object that represents its
target list as well as an associative binary operator op. Before executing the
main loop, it asks the object to find the initial list in the chain of concatmaps
and build a combined collector from the initial collector ic of the general-
ized ReduceCollector that accumulates given elements to the accumulator
res by op. For example, the initial list of the example above is z, and the
combined collector is (equivalent to) the one explained at the end of Sec-
tion 4.4. The extraction of the initial list and construction of the combined
collector can be implemented by the simple recursive methods getCollector
and getInitialList on expression objects. The main loop then supplies each
element of the initial list to the combined collector.

The above mechanism implements our desired fusion for concatmaps.
It is easily seen that we can use the previous fusion mechanism for FLL

skeletons in the main loop of the fused program because it uses the index-
based access method local get. This means that we can fuse FLL skeletons
followed by a chain of VLL skeletons into one loop.

Finally, we should note that the resulting list of a chain of concatmap can
be computed efficiently with fusion in a similar way: we simply use a vector

as the initial collector instead of ReduceCollector.

5.2 Experiment Results

To evaluate the implemented fusion mechanism, we measured the execution
time of skeleton programs with and without the fusion on a cluster consisting
of 32 nodes, each of which has Intel(R) Xeon(R) E5645 and 12 GB memory and
is connected to Gigabit Ethernet. We used one core per node. The programs
were compiled with GCC 4.6.3.

Table 1 shows the measured execution time. An empty cell means that
the program was not run due to the memory shortage. The size means the
number of elements of the input or the board size n for an n-queens problem.
The suffix “(lnr)” means that the input is the list [0, 1, . . . , (size − 1)], while
“(rnd)” means a list of random numbers. Skeleton programs basically showed
good scalability regardless of the fusion, unless their computation was too
lightweight compared with synchronization-communication overheads.

The measured execution time of fused evenDupSum compared with that of
the non-fused version shows the basic impact of the proposed fusion mecha-
nism. The fusion improved the efficiency dramatically, achieving a 5× to 20×
speedup. For the linear list [0, 1, . . . , , (size− 1)], the fused program achieved
an absolute speed slightly faster than the fused version of evenDblSum gen-
erated by the previous fusion mechanism, and evenDupSumHand, which is the
following hand-written single sequential loop:

An Automatic Fusion Mechanism for Variable-Length List Skeletons in SkeTo 15

template <typename F, typename X>

struct CMapObj {

const F f; const X x; CMapObj(const F &f, const X &x) : f(f), x(x) { }

typedef typename X::InitialType InitialType;

const InitialType &getInitialList() const { return x.getInitialList(); }

template <typename NextCollector>

/∗ omit the type ∗/ getCollector(NextCollector &c) const {

return x.getCollector(CombinedCollector<NextCollector>(f, c));

}

};

template <typename F, typename X>

CMapObj<F, X> concatmap(const F& f, const X& x){ return CMapObj<F, X>(f, x); }

template <typename OP, typename A>

struct ReduceCollector {

const OP& op; A &r; ReduceCollector(const OP&op, A &r) : op(op), r(r) { }

void push_back(const A& a) { r = op(r, a); }

};

template <typename OP, typename F, typename X>

typename OP::result_type

reduce(const OP &op, const CMapObj<F, X> &cmobj) {

const typename X::InitialType &l = cmobj.getInitialList();

typename OP::result_type res = get_identity<OP>();

ReduceCollector<OP, typename OP::result_type> ic(op, res);

/∗ omit the type ∗/ c = cmobj.getCollector(ic);

for(int i = 0; i < l.local_size(); i++) c.push_back(l.local_get(i));

global_reduce(op, res);

return res;

}

Fig. 13 Expression templates implementation of the collector-based fusion mechanism

Table 1 Measured execution time (seconds) of skeleton programs

#processes
program fusion size 1 2 4 8 16 32

evenDupSum w/o 400M (lnr) 9.64 4.59 2.30 1.17 0.63 0.34
w/ 400M (lnr) 0.50 0.27 0.15 0.11 0.09 0.08
w/ 2G (lnr) 0.67 0.35 0.20 0.15

evenDblSum w/ 400M (lnr) 0.59 0.32 0.18 0.12 0.10 0.09
w/ 2G (lnr) 0.80 0.40 0.28 0.16

evenDblSumHand w/ 400M (lnr) 0.59 — — — — —
evenDupSum w/o 400M (rnd) 11.92 5.74 2.85 1.44 0.75 0.41

w/ 400M (rnd) 2.30 1.17 0.61 0.33 0.20 0.13
w/ 2G (rnd) 2.91 1.47 0.77 0.42

evenDblSum w/ 400M (rnd) 0.59 0.32 0.16 0.09 0.07 0.04
w/ 2G (rnd) 0.78 0.42 0.23 0.14

evenDblSumHand w/ 400M (rnd) 0.59 — — — — —
evenDupFibSum w/ 400M (rnd) 132.30 66.10 33.18 16.52 8.28 4.20
evenDblFibSum w/ 400M (rnd) 134.44 67.19 33.55 16.80 8.42 4.25
nqueen w/o 14 44.34 22.05 12.22

w/ 14 123.22 61.85 36.51 18.77 9.63 5.55

16 Kento Emoto, Kiminori Matsuzaki

for(i=0; i < n; i++) r += (x[i]&1) ? x[i] : x[i] + x[i];

In contrast, for the list of random numbers, the fused evenDupSum was slower
than the others. This performance difference was caused by the compiler’s
choice of instructions for branching: The compiled assembly code (Fig. 14)
of evenDupSum uses a conditional branch instruction jne for the branch on
the judgment if(even(a)), while the assembly code (Fig. 15) of evenDblSum
and evenDupSumHand uses a conditional move instruction cmovne. Therefore,
evenDupSum is faster than the others for such a regular input on which the
branch prediction works well and slower for an irregular input such as the
random list. It seems that the complicated ET implementation of the VLL
fusion mechanism disturbs the compiler’s analysis and optimization because
it is expected that code with a conditional move instruction is faster than
code with a conditional branch instruction, and the compiler must try the
optimization to replace the latter with the former. We could tune the ET
implementation in order to not disturb the compiler’s work, but this is beyond
the scope of this paper. In any case, the results show that the proposed fusion
mechanism produces efficient code comparable to hand-written code.

Figure 16 shows two simple programs, evenDupFibHand and evenDblFibSum,
that map heavy function fibWeight that computes and adds the tenth Fi-
bonacci number to the given element before the computation of evenDupSum
and evenDblSum, respectively. Their measured execution times show that the
performance decline caused by the compiler’s different choice of instructions
and the synchronization-communication overheads is ignorable for non-lightweight
computation.

Comparison of the measured times of nqueen with and without fusion
shows the effect of the fusion on practical programs: it achieves a more than
2× speedup for the practical program.

Interested readers can find additional experiment results about mixed use
of FLL and VLL skeletons in our technical report [4]. The proposed fusion
mechanism works well with our previous one.

6 Related Work

Skeletal parallel programming was first proposed by Cole [3], and a number of
systems (libraries) have been proposed since then. Among them, OSL [6] and
SaC [5]—as well as our own library, SkeTo [7]—are the ones equipped with
fusion mechanisms to optimize skeleton programs. OSL is a skeleton library
based on the BSP model implemented using MPI and C++, and its fusion
mechanism is implemented using the expression templates technique [11]. Its
set of its fusion rules is almost the same as our previous fusion mechanism [7].
SaC is an array programming language mainly suited for areas such as numer-
ically intensive applications and signal processing. It has the with-loop fusion
mechanism combining high-level program specifications with runtime efficiency

An Automatic Fusion Mechanism for Variable-Length List Skeletons in SkeTo 17

.L567:

addq $1, %rax

addq %rsi, %rdx

cmpl %eax, %edi

movq %rdx, (%r8)

jle .L566

.L569:

movq (%r10,%rax,8), %rsi

testb $1, %sil

jne .L567

leaq (%rdx,%rsi,2), %rdx

addq $1, %rax

cmpl %eax, %edi

movq %rdx, (%r8)

jg .L569

.L566:

this is then-block

i++

r += %rsi

#

write r back to the cache

if(i >= n) goto .L566

#

%rsi = x[i]

#

if(%rsi & 1) goto .L567

r += %rsi + %rsi # else-block

i++

#

write r back to the cache

if(i < n) goto .L569

#

Fig. 14 Compiled assembly code of fused evenDupSum

.L569:

movq (%r9,%rax,8), %rsi

leaq (%rsi,%rsi), %rdx

testb $1, %sil

cmovne %rsi, %rdx

addq $1, %rax

addq %rdx, %rbx

cmpl %eax, %edi

jg .L569

.L566:

#

%rsi = x[i]

%rdx = %rsi + %rsi

#

if(%rsi & 1) %rdx = %rsi

i++

r += %rdx

#

if(i < n) goto .L569

#

Fig. 15 Compiled assembly code of fused evenDblSum and evenDupSumHand

long fib(int a) { return (a < 2) ? 1 : fib(a-1) + fib(a-2); }

struct fibWeight_t : sketo::functions::base<long(long)>{

long operator()(const long &a) const {

return a + fib(N);

}

} fibWeight;

long evenDupFibSum(dist_list<long> z) {

return reduce(plus<long>(), concatmap(evenDup, map(fibWeight, z)));

}

long evenDblFibSum(dist_list<long> z) {

return reduce(plus<long>(), map(evenDbl, map(fibWeight, z)));

}

Fig. 16 Simple programs with heavy computation.

18 Kento Emoto, Kiminori Matsuzaki

similar to that of hand-optimized low-level specifications. Unfortunately, none
of them provide VLL skeletons with a fusion mechanism.

7 Conclusion

We proposed a novel fusion mechanism for variable-length list (VLL) skeletons
with a collector-based approach for defining user functions that achieves both
good programmability and good performance. We implemented the proposed
mechanism in our skeleton library, SkeTo, by using expression templates, and
its impact on efficiency has been shown via experiment results. In addition,
it can be used in conjunction with our previous fusion mechanism, so a wide
variety of skeleton programs can take advantage of our fusion optimizations.

A VLL skeleton may cause an imbalance of distributed data, and in such
cases we might need to rebalance data between successive VLL skeletons to
achieve good parallelism. However, to avoid performance decline caused by
intermediate data structures, we want to fuse successive VLL skeletons, which
removes the chance of rebalancing. Therefore, we need to be careful with fusing
VLL skeletons in order to achieve the best performance. Automatic control of
fusion in such cases and an accompanying cost model are a part of our future
work.

Acknowledgements This work was partially supported by Japan Society for the Pro-
motion of Science, Grant-in-Aid for Young Scientists (B) 24700025, and PaPDAS project
supported by ANR (ANR-2010-INTB-0205-02) and JST (10102704). The authors would like
to thank Liu Yu and Shigeyuki Sato for fruitful discussions in the early stages of this work.

References

1. Bird, R.: An introduction to the theory of lists. In: Proceedings of NATO Advanced
Study Institute on Logic of Programming and Calculi of Discrete Design, pp. 5–42
(1987)

2. Bird, R.: Introduction to Functional Programming using Haskell. Prentice-Hall (1998)
3. Cole, M.: Algorithmic Skeletons : A Structured Approach to the Management of Parallel

Computation. Research Monographs in Parallel and Distributed Computing. Pitman
Publishing (1989)

4. Emoto, K., Matsuzaki, K.: An automatic fusion mechanism for variable-length list skele-
tons in sketo. Tech. Rep. METR2013–04, University of Tokyo (2013). Available on web:
http://www.keisu.t.u-tokyo.ac.jp/research/techrep/

5. Grelck, C., Scholz, S.B.: Merging compositions of array skeletons in SaC. Parallel Com-
puting 32(7-8), 507–522 (2006)

6. Javed, N., Loulergue, F.: OSL: Optimized bulk synchronous parallel skeletons on dis-
tributed arrays. In: Advanced Parallel Processing Technologies, Lecture Notes in Com-
puter Science, vol. 5737, pp. 436–451. Springer Berlin Heidelberg (2009)

7. Matsuzaki, K., Emoto, K.: Implementing fusion-equipped parallel skeletons by expres-
sion templates. In: Implementation and Application of Functional Languages, Lecture
Notes in Computer Science, vol. 6041, pp. 72–89. Springer Berlin Heidelberg (2011)

8. Rabhi, F.A., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Distributed
Computing. Springer-Verlag (2002)

An Automatic Fusion Mechanism for Variable-Length List Skeletons in SkeTo 19

9. Skillicorn, D.B.: The Bird-Meertens formalism as a parallel model. In: J. Kowalik,
L. Grandinetti (eds.) Software for Parallel Computation, NATO ASI Series, vol. 106,
pp. 120–133. Springer Berlin Heidelberg (1993)

10. Tanno, H., Iwasaki, H.: Parallel skeletons for variable-length lists in sketo skeleton li-
brary. In: Euro-Par 2009 Parallel Processing, Lecture Notes in Computer Science, vol.
5704, pp. 666–677. Springer (2009)

11. Veldhuizen, T.: Expression templates. C++ Report 7, 26–31 (1995)

