SUPPLEMENTARY DATA

Versatility of One-pot, Single-step Synthetic Approach for Spherical Porous

(Metal) Oxide Nanoparticles Using Supercritical Alcohols

Pengyu Wang^{*}, Kimiyoshi Ueno, Hikaru Takigawa, Kazuya Kobiro^{*}

School of Environmental Science and Engineering, Kochi University of Technology,

185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan

Table of Contents

1.	Synthesis of MARIMO SiO ₂ nanoparticles in the presence of phthalic acid in supercritical EtOH	.S2
2.	Synthesis of MARIMO ZrO ₂ nanoparticles in the presence of formic acid in supercritical MeOH	.S4
3.	Synthesis of MARIMO CeO ₂ nanoparticles in the presence of formic acid in supercritical MeOH	.S7
4.	Synthesis of MARIMO ZnO nanoparticles in the presence of formic acid in supercritical MeOH	S10
5.	Synthesis of MARIMO TiO ₂ nanoparticles in the presence of phthalic acid in different reaction tin supercritical MeOH	nes S12
6.	Synthesis of hollow MARIMO TiO ₂ nanoparticles in the presence of phthalic acid in supercritical MeOH with slow heating	. S 14
7.	Effect of reaction media	. S 21
8.	Effect of carboxylic acid amount	.S23
9.	Photocatalytic reaction by MARIMO TiO ₂ nanoparticles	.S25

1. Synthesis of MARIMO SiO₂ nanoparticles in the presence of phthalic acid in supercritical EtOH

Scheme S1 Reaction of $Si(OEt)_4$ with phthalic acid in scEtOH at 400 °C for 10 min and 0.28 g mL⁻¹ EtOH density.

Fig. S1. TEM and FESEM images of MARIMO SiO_2 nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ EtOH density in the presence of phthalic acid.

Fig. S2. DLS spectrum of MARIMO SiO₂ nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ EtOH density in the presence of phthalic acid.

Fig. S3. FTIR spectrum of MARIMO SiO₂ nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ EtOH density in the presence of phthalic acid.

2. Synthesis of MARIMO ZrO_2 nanoparticles in the presence of formic acid in supercritical MeOH

Scheme S2 Reaction of $ZrO(NO_3)_2 \cdot 2H_2O$ with formic acid in scMeOH at 300 or 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density.

Fig. S4. TEM images of MARIMO ZrO_2 nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S5. TEM images of MARIMO ZrO_2 nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S6. XRD pattern of MARIMO ZrO_2 nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S7. FTIR spectra of MARIMO ZrO_2 nanoparticles prepared at (a) 300 °C and (b) 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S8. Nitrogen adsorption–desorption isotherm and Barret Joyner Halenda (BJH) pore size distribution plots of MARIMO ZrO_2 nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S9. DLS spectra of MARIMO ZrO_2 nanoparticles prepared at (a) 300 °C and (b) 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

3. Synthesis of MARIMO CeO_2 nanoparticles in the presence of formic acid in supercritical MeOH

Scheme S3 Reaction of $Ce(NO_3)_3 \cdot 6H_2O$ with formic acid in scMeOH at 300 or 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density.

Fig. S10. TEM images of MARIMO CeO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S11. TEM images of MARIMO CeO₂ nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S12. XRD pattern of MARIMO CeO₂ nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S13. FTIR spectra of MARIMO CeO₂ nanoparticles prepared at (a) 300 °C and (b) 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S14. Nitrogen adsorption–desorption isotherm and BJH pore size distribution plots of MARIMO CeO₂ nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S15. DLS spectra of MARIMO CeO₂ nanoparticles prepared at (a) 300 °C and (b) 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

4. Synthesis of MARIMO ZnO nanoparticles in the presence of formic acid in supercritical MeOH

Scheme S4 Reaction of $Zn(OCOCH_3)_2 \cdot 2H_2O$ with formic acid in scMeOH at 300 or 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density.

Fig. S16. TEM images of MARIMO ZnO nanoparticles prepared at 300 $^{\circ}$ C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S17. TEM images of MARIMO ZnO nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S18. XRD patterns of MARIMO ZnO nanoparticles prepared at (a) 300 °C and (b) 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

Fig. S19. DLS plots of MARIMO ZnO nanoparticles prepared at (a) 300 and (b) 400 $^{\circ}$ C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of formic acid.

5. Synthesis of MARIMO TiO₂ nanoparticles in the presence of phthalic acid in different reaction times in supercritical MeOH

Scheme S5 Reaction of $Ti(O^{i}Pr)_{4}$ with phthalic acid in scMeOH at 300 °C for 30 or 60 min in 0.28 g mL⁻¹ MeOH density.

Fig. S20. TEM images of MARIMO TiO₂ nanoparticles prepared at 300 °C for 30 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid.

Fig. S21. TEM images of MARIMO TiO_2 nanoparticles prepared at 300 °C for 60 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid.

Fig. S22. XRD pattern of MARIMO TiO₂ nanoparticles prepared at 300 °C for (a) 30 min and (b) 60 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid.

6. Synthesis of hollow MARIMO TiO₂ nanoparticles in the presence of phthalic acid in supercritical MeOH with slow heating

The reaction was performed under the conditions of 200-300 °C, 10 min, and 0.28 g mL⁻¹ MeOH density with slow heating (ca. 2.0, 5.4, and 10.0 °C/min) from room temperature (Scheme S5). Then, the reaction was quenched by putting the reactor into ice-water bath or slow cooling (5.4 °C/min) to room temperature.

Scheme S5 Reaction of $Ti(O^{i}Pr)_{4}$ with phthalic acid in scMeOH at 200-400 °C for 10 min in 0.28 g mL⁻¹ MeOH density with slow heating.

6.1 Reaction of Ti(O^{*i*}Pr)₄ with phthalic acid in scMeOH at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density with slow heating (5.4 °C/min).

Fig. S23. TEM and FESEM images of MARIMO TiO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid (slow heating: 5.4 °C/min and slow cooling: 5.4 °C/min).

Fig. S24. XRD patterns of MARIMO TiO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid with slow heating: 5.4 °C/min and slow cooling: 5.4 °C/min.

Fig. S25. Nitrogen adsorption–desorption isotherm and BJH pore size distribution plots of MARIMO TiO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid. (slow heating: 5.4 °C/min and slow cooling: 5.4 °C/min).

Fig. S26. DLS spectra of MARIMO TiO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid; (a) slow heating: 5.4 °C/min and the reaction was quenched by ice water and (b) slow heating: 5.4 °C/min and slow cooling: 5.4 °C/min.

6.2 Reaction of Ti(O^{*i*}Pr)₄ with phthalic acid in scMeOH at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density with slow heating (5.4 °C/min).

Fig. S27. TEM and FESEM images of MARIMO TiO₂ nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid. (slow heating: 5.4 °C/min and slow cooling: 5.4 °C/min)

Fig. S28. XRD pattern of MARIMO TiO₂ nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid. (slow heating: 5.4 °C/min and slow cooling: 5.4 °C/min)

Fig. S29. DLS spectra of MARIMO TiO₂ nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid, (a) slow heating: 5.4 °C/min and the reaction was quenched by putting the reactor into ice-water bath; (b) slow heating: 5.4 °C/min and slow cooling: 5.4 °C/min.

6.3 Reaction of $Ti(O^{i}Pr)_{4}$ with phthalic acid in scMeOH at 200 °C for 10 min and 0.28 g mL⁻¹ density with slow heating (5.4 °C/min).

Fig. S30. TEM images of MARIMO TiO₂ nanoparticles prepared at 200 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid (slow heating: 5.4 °C/min and the reaction was quenched by putting the reactor into ice-water bath).

Fig. S31. XRD pattern of MARIMO TiO₂ nanoparticles prepared at 200 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid (slow heating: 5.4 °C/min and the reaction was quenched by putting the reactor into ice-water bath).

6.4 Reaction of Ti(O^{*i*}Pr)₄ with phthalic acid in scMeOH at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density with slow heating (2 and 10 °C/min).

Fig. S32. DLS spectrum of MARIMO TiO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid (slow heating: 2 °C/min and the reaction was quenched by putting the reactor into ice-water bath).

Fig. S33. DLS spectrum of MARIMO TiO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid (slow heating: 10 °C/min and the reaction was quenched by putting the reactor into ice-water bath).

7. Effect of reaction media

The reaction was performed in supercritical 2-propanol in the presence of HCOOH or phthalic acid under the conditions of 400 °C, 10 min, and 0.28 g mL⁻¹ 2-propanol density (Scheme S6).

Scheme S6 Reaction of $Ti(O^{i}Pr)_{4}$ with phthalic acid in supercritical 2-propanol at 400 °C for 10 min in 0.28 g mL⁻¹ 2-propanol density.

Fig. S34. TEM images of prepared TiO₂ nanoparticles at 400 °C for 10 min in 0.28 g mL⁻¹ 2-propanol density, (a and b) in the presence of phthalic acid; (c and d) in the presence of HCOOH.

Fig. S35. XRD patterns of TiO₂ nanoparticles prepared at 400 °C for 10 min in 0.28 g mL⁻¹ 2-propanol density, (a) in the presence of phthalic acid; (b) in the presence of HCOOH.

8. Effect of carboxylic acid amount

Scheme S7 Reaction of $Ti(O^{i}Pr)_{4}$ with different amount of HCOOH or phthalic acid in scMeOH at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density.

Fig. S36. TEM images of TiO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in scMeOH without carboxylic acid.

Fig. S37. TEM images of TiO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in scMeOH in the presence of HCOOH, (a, b, and c) $Ti(O^{i}Pr)_{4}$:HCOOH = 1:1; (d, e, and f) $Ti(O^{i}Pr)_{4}$:HCOOH = 1:10.

Fig. S38. TEM images of TiO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in scMeOH, (a, b, and c) Ti(O^{*i*}Pr)₄:phthalic acid = 1:1; (d, e, and f) Ti(O^{*i*}Pr)₄:phthalic acid = 1:10.

9. Photocatalytic reaction by MARIMO TiO₂ nanoparticles

Fig. S39. UV-vis spectrum of MARIMO TiO₂ nanoparticles prepared at 300 °C for 10 min in 0.28 g mL⁻¹ MeOH density in the presence of phthalic acid.