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Abstract: MapReduce programming model attracts a lot of enthusiasm among both industry and academia, largely
because it simplifies the implementations of many data parallel applications. In spite of the simplicity of the program-
ming model, there are many applications that are hard to be implemented by MapReduce, due to their innate characters
of computational dependency. In this paper we propose a new approach of using the programming pattern accumulate
over MapReduce, to handle a large class of problems that cannot be simply divided into independent sub-computations.
Using this accumulate pattern, many problems that have computational dependency can be easily expressed, and then
the programs will be transformed to MapReduce programs executed on large clusters. Users without much knowledge
of MapReduce can also easily write programs in a sequential manner but finally obtain efficient and scalable MapRe-
duce programs. We describe the programming interface of our accumulate framework and explain how to transform a
user-specified accumulate computation to an efficient MapReduce program. Our experiments and evaluations illustrate
the usefulness and efficiency of the framework.
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1. Introduction

MapReduce [10] is a popular parallel programming frame-
work, which is designed for parallel data processing such as clus-
tering, mining or statistical analysis on large-scale data. The
programming model of MapReduce is inspired by the functional
programming languages and algorithms in MapReduce model
are mainly restricted to using map and reduce functions*1. The
MapReduce framework executes such functions in a massively
parallel manner while dealing with failures automatically.

In spite of the simplicity, many problems are still difficult to
be expressed in MapReduce model. As an example, consider
the elimSmallers problem of eliminating all the smaller elements
of a list to produce an ascending list (if an element is less than
someone in the previous, it is smaller). For instance, given a
list [11, 15, 8, 9, 20, 25, 12, 23] , then 8, 9, 12 and 23 are smaller
ones, and thus the result is [11, 15, 20, 25]. A recursive function
that solves this problem can be defined as follows, in Haskell [5].

elimSmallers [ ] c = [ ]

elimSmallers (x : xs) c

= (if x < c then [ ] else [x]) ++

elimSmallers xs (if x < c then c else x).
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*1 The map and reduce functions in MapReduce are inspired by but not

equivalent to those in Lisp or Haskell.

In this function, recursively, numbers of input are compared
with an accumulative parameter c (with initial value −∞). The ac-
cumulative parameter c always holds the current maximum value
and is used in the next recursion. If a number is no less than c then
it is appended to the tail of the result, and otherwise dropped.
In functional programming, such kind of computation pattern
with accumulative parameters is called accumulative computa-
tion [15], [16], [18].

The recursive function elimSmallers clearly describes the com-
putation (in O(n) work, n is the length of input), but it cannot be
easily mapped to MapReduce, because in the recursive function
elimSmallers, every inner step of the recursion relies on the cur-
rent maximum value, which is computed at the outer step. Such
kind of recursive functions do not correspond to a simple divide-
and-conquer algorithm. Developing an O(n) work MapReduce al-
gorithm for elimSmallers needs to resolve such computational de-
pendency and avoid unnecessary and expensive I/O, which is not
easy for many programmers. There are many applications (e.g.,
the prefix-sum/scan related problems [6]) having similar charac-
ters with elimSmallers and thus are also difficult to be resolved in
MapReduce model.

In this paper, we propose a new programming framework for
simplifying MapReduce programming on accumulative compu-
tations that cannot be expressed by using map and reduce func-
tions in only one iteration of MapReduce processing. The pro-
gramming interface*2 is designed to help users defining recur-
sive functions in the accumulative form, and then efficient and
scalable MapReduce solutions can be automatically gained. Our
main technical contributions can be summarized as follows.

*2 The accumulate skeleton has been implemented using MPI that is more
flexible in programming model and does not have same constants as
MapReduce has.
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• We implemented a parallel programming framework mod-
eled by the accumulate computation pattern [15], [16],
[18]*3 for accumulative computations. The framework can
produce efficient and scalable MapReduce jobs for dealing
with large data. Two important technical points in the im-
plementations are: (1) dealing with accumulative computa-
tions on ordered lists, in spite of the massively parallel exe-
cution manner of MapReduce and (2) providing generic and
high-level programming interfaces for wrapping the low-
level MapReduce APIs.

• We evaluated the framework with many interesting exam-
ples, e.g., tag match, elimSmallers, maximum prefix sum,
and line-of-sight, on MapReduce clusters dealing with big
input data. The experimental results show good efficiency
and scalability of our accumulation framework.

The organization of this paper is as follows. In Section 2, we
briefly explain the MapReduce model and accumulative compu-
tation patterns. In Section 3, we introduce our MapReduce al-
gorithms for accumulative computations and describe the library
we developed on Hadoop. We present the experimental results in
Section 4, introduce the related work in Section 5, and conclude
the paper in Section 6.

2. Background

2.1 Notations
To make our descriptions precise and clear, notations in this

paper are mainly based on the functional language Haskell [5].
Function application is denoted with a space with its argument
without parentheses, i.e., f a equals to f (a). Functions are cur-
ried and bound to the left, and thus f a b equals to ( f a) b. Func-
tion application has higher precedence than using operators, so
f a ⊕ b = ( f a) ⊕ b. We use the operator ◦ over functions and
( f ◦ g) x = f (g x). Function id is the identity function. Tuples
are written like (a, b) or (a, b, c). Function fst (snd) extracts the
first (the second) element of the input tuple, and top xs returns
the first element of a stack xs. Function drop m xs drops the first
m elements from a list xs. The binary operator ↑ applies on two
numbers and returns the larger one. We denote lists with square
brackets, and use [ ] to denote an empty list, and ++ to denote
the list concatenation: [3, 1, 4] ++ [1, 5] = [3, 1, 4, 1, 5]. Func-
tion [·] takes a value and returns a singleton list with the value.
The scan, map, reduce, zip are standard skeletons in the Bird-
Meertens formalism [4], [26]. To distinguish the map / reduce

functions in MapReduce form above skeletons, we use fMAP and
fREDUCE for the parameter functions used in the MapReduce.

2.2 MapReduce
Google’s MapReduce [10] is a popular programming model for

processing large data sets in a massively parallel manner. In the
MapReduce programming model, parallel computations are rep-
resented in the paradigm of a parallel Map processing followed
by a Reduce processing*4. Between the Map and Reduce phases,
there is a Shuffle/Sort phase. Figure 1 shows the typical data-
processing flow of MapReduce. Note that Map tasks are exe-

*3 http://code.google.com/p/diffusion-mapreduce/
*4 The Reduce processing can be done in parallel or sequentially.

Fig. 1 Data-processing Flow of MapReduce.

cuted independently (no direct way for one Map task to commu-
nicate/synchronize with another one, and so do the Reduce tasks.
The only global synchronization in MapReduce is the barrier be-
tween Map and Reduce. Usually an instance of Map (Reduce)
task is also called a mapper (reducer). The types of the two basic
functions of MapReduce are defined as follows.
• Function fMAP.

fMAP :: (k1, v1)→ (k2, v2)

This function is invoked during the Map phase, and it is applied
on each key-value pair of input and returns an intermediate key-
value pair.
• Function fREDUCE.

fREDUCE :: (k2, [v2])→ (k3, v3)

This function is invoked during the Reduce phase, and it takes
a key and a list of values associated to the key and merges the
values.

Nowadays, several free, realistic implementations of MapRe-
duce are available. In particular, Hadoop [2] is a famous open-
source implementation using Java as its primitive language. Our
implementation is based on Hadoop.

2.3 Accumulative Computations
Accumulative computation [15] plays an important role in de-

scribing a computation on an ordered list from left or right, when
a later computation depends more or less on this computation.
The innate character of data dependency can be captured by using
an accumulative parameter that holds and delivers some informa-
tion through the whole computation.

2.4 General Accumulative Computation Pattern
The accumulate skeleton abstracts a typical pattern of recur-

sive functions with an accumulative parameter, which can be de-
fined as a function h in the following form.

h [ ] c = g c

h (x : xs) c = p (x, c) ⊕ h xs (c ⊗ q x).

This definition provides a natural way to describe computations
with data dependencies and can be understood as follows.
• If the input list is empty, the result is computed by applying
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some function g to accumulative parameter c.
• If the input list is not empty and its head and tail parts are x

and xs respectively, then the result is generated by combining
the following two values using some binary operator ⊕: the
result of applying p to x (head value) and c (the accumula-
tive parameter), and the recursive call of h to xs (the rest part
of the input list) with its accumulative parameter updated to
c ⊗ q x.

Because h is uniquely defined by g, p, ⊕, q, and ⊗, so we write h

with special parentheses [[ ]] as:

h xs c = [[ g, (p,⊕), (q,⊗) ]] xs c.

Note that (p,⊕) and (q,⊗) correspond to two basic recursive
forms foldr and foldl [14] respectively. The elimSmallers dis-
cussed in the introduction can be also written as follows.

elimSmallers xs c = [[ g, (p,⊕), (q,⊗) ]] xs c

where g c = [ ]

p (x, c) = if x < c then [ ] else [x], ⊕ = ++,
q = id, ⊗ = ↑ .

Since the function h in the above form represents the most nat-
ural recursive definition on lists with a single accumulative pa-
rameter, it is general enough to capture many algorithms [15] as
seen below.
Scan

Given a list [x1, x2, x3, x4] and an associative binary operator
	 with an identity element ı	, a function scan computes all its
prefix sums yielding

[ı	, x1, x1 	 x2, x1 	 x2 	 x3, x1 	 x2 	 x3 	 x4].

As mentioned in the introduction, scan can be defined in terms
of accumulate (by giving an initial value ı	 to the accumulative
parameter c):

scan [ ] c = [·] c

scan (x : xs) c = ([·] ◦ snd)(x, c) ++ scan xs (c 	 (id x)).

The function scan is very useful in algorithm design and is also a
primitive operator in lots of parallel computations [6]. For exam-
ple, lexical analysis, quick sort, and regular-expression matching
can be implemented by using scan.
Line-of-Sight Problem

The well known line-of-sight problem [6] is that given a terrain
map in the form of a grid of altitudes and an observation point,
find which points are visible along a ray originating at the obser-
vation point. For instance, we use a pair (d,a) to represent a point,
where a is the altitude of the point and d is its distance from the
observation point. The function ∠ (d, a) = a/d computes the tan-
gent of an angle. If the list is [(1, 1), (2, 5), (3, 2), (4, 10)], then the
point (3,2) is invisible. The function los [18] solves a simplified
line-of-sight problem which counts the number of visible points.

los xs c = [[ g, (p,+), (q, ↑) ]] xs c

where g c = 0

p (x, c) = if c ≤ ∠ x then 1 else 0

q x = ∠ x.

Maximum Prefix Sum Problem
Intuitively, the maximum prefix sum problem is to compute

the maximum sum of all the prefixes of a list. Given a list
[3,−4, 9, 2,−6] the maximum of the prefix sums is 10, to which
the underlined prefix corresponds. We can define a function mps

that solves this problem, in terms of accumulate.

mps xs c = [[ id, (snd, ↑), (id,+) ]] xs c

Tag Matching Problem
The tag matching problem is to check whether the tags are well

matched or not in a document, e.g., an XML file. There is an ac-
cumulative function tagmatch introduced by Ref. [18] for the tag
matching problem.

tagmatch xs cs = [[ isEmpty, (p,∧), (q,⊗) ]] xs cs

where

p (x, cs)

= if isOpen x then True

else if isClose x then

notEmpty cs ∧ match x (top cs)

else True

q x = if isOpen x then ([x], 1, 0)

else if isClose x then ([ ], 0, 1)

else ([ ], 0, 0)

(s1, n1,m1) ⊗ (s2, n2,m2)

= if n1 ≤ m2 then (s2, n2, m1 + m2 − n1)

else (s2 ++ drop m2 s1,

n1 + n2 − m2, m1).

3. Parallel Accumulation on MapReduce

Due to the different infrastructures of MapReduce and MPI,
doing parallel accumulative computation on MapReduce is quite
different and challenging. In typical MapReduce programming
environments like Hadoop, or some MapReduce-like ones such as
Dryad [17] and Spark [28], there is no option for users to use peer-
to-peer communication like MPI Send or MPI Recv, and the syn-
chronization of parallel processes can be only implemented by
making use of the barrier between Map phase and Reduce phase.

There are two strategies for implementation of the accumulate

skeleton. One is extending the existing MapReduce framework,
by adding new peer-to-peer communication functions and barrier
functions, so that we can do implementation in a similar way as
Ref. [18] did. The other way is just making use of existing high-
level API of a MapReduce framework such as map and reduce

functions (and the necessary API of the distributed file system).
Actually we have implemented and evaluated both, based on
the state-of-the-art open-source MapReduce framework Hadoop.
The prior one has advantages in the performance (several times
faster) but significantly affected the fault tolerance mechanisms
of MapReduce and it is not compatible with vanilla MapReduce
frameworks [10]. On the contrary, the latter way, although it is not
as fast as the prior one, enjoys all features of MapRedce’s system
design and has good portability (between different instances of
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MapReduce frameworks). In this paper we select the latter way
as our main solution and introduce the algorithm and implemen-
tation of it. The readers who are interested in the solution of prior
way can refer the source code in the package of our framework.

Users of our framework can directly use the accumulate as a
building block to solve their computations. Our implementation
is based on Hadoop but could be easily ported to other MapRe-
duce engines such as Spark [28].

3.1 Input Data Model
The accumulative computations take lists as input and obey

the order of elements in the input list, while the input data of
MapReduce are represented as a set of records (key-value pairs)
stored in the distributed file system. This means we need a file-
based list data structure for computations of accumulate. One
issue for processing a file-based list is that the massively parallel
processing manner of MapReduce could cause the accumulative
computations being out-of-order.

For simplicity of discussion, we suppose the input data to an
accumulative computation are stored as a list of records in one bi-
nary file (could be very huge) in the distributed file system (DFS).
Each record of the file is a serialized Java object*5 that represents
an element of input list, and when detribalized to memory, each
record will be transformed to a key-value pair. The key part of
the pair is the corresponding Java object and the value part is a
null object.

If big enough, the input file will be split to several splits by
DFS (each split is called a chunk in the DFS) [13] and distributed
to several DataNodes, and the DFS knows the offsets of each
splits [10], [13], which can be seen as the indices of the splits.
When data are loaded to multiple mappers, users of MapReduce
cannot control which mapper to load which splits. In order to
keep the total order of computation, the output of each mapper
must be associated with the offset of its input, so that when merg-
ing the results from mappers, the order can be carefully manipu-
lated by making use of such offsets and the sorting function.

3.2 A 2-pass MapReduce Algorithm for Accumulation
From the diffusion theorem [15], [18], an accumulative func-

tion h = [[ g, (p,⊕), (q,⊗) ]] can be transformed into the follow-
ing compositional form using the parallel skeletons scan, map,
reduce and zip.

h xs c = reduce (⊕) (map p as) ⊕ g b

where bs ++ [b] = map (c ⊗) (scan (⊗) (map q xs))

as = zip xs bs.

In this form, map (c ⊗) (scan (⊗) (map q xs)) can be firstly
computed to get bs ++ [b], then zip xs bs to obtain as, and finally
reduce (⊕) (map p as) ⊕ g b to get the result. However, directly
doing in this way will generate a lot of intermediate data such
as bs ++ [b], as (these are much bigger than the input), so that
it is uncomputable in the MapReduce-like environments where
input data are usually in terabytes. The previous MPI implemen-

*5 In practice, serialization systems like Avro [1] can be used to improve
performance.

tation [18] was based on this form but using a fusion technique
to avoid generating large intermediate data, but mapping that fu-
sion to MapReduce is difficult because MapReduce lacks flexible
communication/synchronization mechanisms as MPI. So we de-
veloped a new “fusion” algorithm on MapReduce to efficiently
compute the above compositional form.
3.2.1 The MapReduce Implementation for General Accu-

mulation
Our approach is to divide the computation into two MapRe-

duce phases and restrain the data transportation between the two.
Suppose input list xs is split to p sublists, i.e., xs = chk1++chk2++

. . . chkp. The kth split chkk has m elements [xk
1, x

k
2, ..., x

k
m] and

its offset is segk. Our two-pass MapReduce algorithm (shown
in Fig. 2) actually avoids generating large intermediate data and
thus it is efficient. We introduce the details in the following para-
graphs.
The first MapReduce job

There are p Map tasks spawned for each split, in the first
MapReduce job. In general, for each sublist chkk (k ∈ [1, p]),
the first MapReduce computes:

mapRedmap chkk = reduce (⊗) (map q chkk).

We do the above computation during Map phase and just use one
reducer to collect the result. In detail, each Map task iterates over
the elements of its input and applies the following fMAP function
on each input record (xk

i , ) (i ∈ [1,m]).

fMAP (xk
i , ) = ( (0, segk) , q(xk

i )).

Fig. 2 The 2-pass MapReduce Accumulation.
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Different with general MapReduce applications, here once the
fMAP function was applied on an input pair (xk

i , ), the output
did not be emitted immediately, but aggregated to a value vk:
vk = ı⊗ ⊗ q(xk

1) ⊗ q(xk
2) ⊗ ... ⊗ q(xk

m). After the iterations, each
Map task emits only one key-value pair: ( (0, segk) , vk). Here
the key itself is a pair consisting of a constant value 0 and the off-
set segk. The outputs of Map tasks are grouped (by the constant
value) and sorted by the offset.

In the reduce phase we only spawn one reducer. We use a spe-
cial group function that groups records by first element of keys,
so that the reducer collects all ( (0, segk) , vk)) (k ∈ [1, p]) and sort
them by the offsets segk. Then the reducer just emits a key-value
pair ([v1, v2, ..., vp], ) (the key is a list and value part is useless)
to the distributed file system. The fREDUCE function is defined as
follows.

fREDUCE (0, [v1, v2, ..., vp] ) = ([v1, v2, ..., vp], ).

Then the final result of the first MapReduce is a list that con-
tains p elements, say vs = [v1, v2, ..., vp], and vs is guaranteed
being in the correct order.
The second MapReduce job

After the first MapReduce, we initialize the second MapRe-
duce: each second-Map task reads vs = [v1, v2, ..., vp] (the result
list of the first reducer*6) from HDFS, in addition to the same
input data as the first Map task. After initialization, in general,
for each sublist chkk each Map task in the second MapReduce
computes:

mapRedmap chkk = map p (zip chkk ws)

where

ws = map (vk ⊗) (scan (⊗) (map q chkk))

vk = reduce (⊗) [c, v1, v2, . . . vk−1].

The only one Reduce task in the second MapReduce computes:

mapRedred ss = (reduce (⊕) (ss)) ⊕ g(vp)

where

ss = [s1, s2, . . . sp]

vp = reduce (⊗) [v1, v2, . . . vp].

In detail, each Map task computes in a loop sk = p(xk
1, w

k) ⊕
p(xk

2, w
k ⊗ q(xk

1)) ⊕ ... ⊕ p(xk
m, w

k ⊗ q(xk
1) ⊗ q(xk

2)... ⊗ q(xk
m−1)),

where wk = c ⊗ v1 ⊗ ... ⊗ vk−1.
The output of a Map task is a nested key-value pair whose key

is the same (0, segk), and the value is (vk, sk). The fMAP function
is defined as follows.

fMAP ((xk
i , ) = ( (0, segk) , p(xk

i , w
k ⊗ q(xk

i−1)) ).

Similar to the first pass MapReduce, the outputs of all Map tasks
are grouped/sorted, and we spawn a single reducer in the second
MapReduce. The final result is s1 ⊕ s2 ⊕ · · · ⊕ sp ⊕ g(c⊗ v1 ⊗ v2 ⊗
· · · ⊗ vp). The fREDUCE function is defined as follows.

fREDUCE (0, ss) = (reduce (⊕) (ss ++ g(vp) ), ).

Here ss = [s1, s2, . . . sp], and vp = reduce (⊗) [v1, v2, . . . vp].

*6 We use the DistributedCache function of Hadoop to implement such ini-
tialization.

An example
As a concrete example, let us demonstrate the above algorithm

to compute the elimSmallers problem on a two-nodes cluster. An
input list is given as [11, 15, 8, 9, 20, 25, 12, 23], the initial value
of parameter c = −∞, and the list is split to two (with the off-
set 0 and 10, respectively). The processing is represented in the
following tabular form, step by step.

node1 node2

input 0 : [11, 15, 8, 9] 10 : [20, 25, 12, 23])

1st Map −∞ ↑ 11 ↑ 15 ↑ 8 ↑ 9 = 15 −∞ ↑ 20 ↑ 25 ↑ 12 ↑ 23 = 25
output = ((0, 0), 15) output =((0, 10), 25)

1st Reduce emit directly
output = ([15, 25], ) N/A

2nd Map p(11 ↑ −∞) ++ p(15 ↑ 11) ++
p(8 ↑ 15) ++ p(9 ↑ 15) =
[11, 15]

p(20 ↑ −∞) ++ p(25, ↑ 20) ++
p(12 ↑ 25) ++ p(23 ↑ 25) =
[20, 25]

output =((0, 0), (15, [11, 15])) output=((0, 10), (25, [20, 25]))

2nd Reduce [11, 15] ++ [20, 25] ++ g(−∞ ↑
15 ↑ 25)
output =([11, 15, 20, 25], ) N/A

Discussions on efficiency
Our two-pass MapReduce algorithm for accumu-

late [[ g, (p,⊕), (q,⊗) ]] has two parallel Map phases and
two sequential Reduce phases, and it only generates p interme-
diate data (v1, v2, ..., vp) and duplicates them p times through
networks (copied to p Map tasks using parallel-copy). Consider
that p i.e., the number of input splits, is not a very huge value
(for 1 TB data, if the chunk size of HDFS is 128 MB then the
p is 7813), so that if all vk and sk are in small constant size,
then the two Reduce phases will not be bottlenecks and also the
communication cost is low. This algorithm has been proved to
be efficient and scalable by our evaluations shown in Section 4.2.
However, there is still a restriction on operators ⊗ and ⊕, in
practice. Under the assumption that the input data are larger than
the storage capability of any single node in the cluster, that ⊗
must not be ++ (or any other that has similar effect), otherwise
in the Map phases of the first MapReduce job, the result of
vk = ı⊗ ⊗ q(xk

1) ⊗ q(xk
2) ⊗ ... ⊗ q(xk

m) may be too large to be
stored in the DistributedCache nor be transported via networks,
unless function q can filter out (returns an empty list) most of the
elements of the input. If ⊗ is not ++ but ⊕ is ++, then whether
the accumulate is efficient depends on the size of sk. Here
sk = p(xk

1, w
k) ⊕ p(xk

2, w
k ⊗ q(xk

1)) ⊕ ... ⊕ p(xk
m, w

k ⊗ q(xk
1) ⊗

q(xk
2)... ⊗ q(xk

m−1)), and wk = c ⊗ v1 ⊗ ... ⊗ vk−1. For function p,
if it can filter out most of its input then using only one reducer in
the second MapReduce will not be a big problem, otherwise we
have to do special optimization for such case by using multiple
reducers.
3.2.2 The Optimized MapReduce Implementation for Spe-

cialized Accumulation
If the emitted intermediate data are small enough, then they

can be efficiently transferred to one reducer via network other-
wise the computation will be very costive or the data are too large
to be manipulated by only one reducer.

In order to improve the performance for some special cases
such that (in the Map phase of the second MapReduce job),
sk = p(xk

1, w
k) ++ p(xk

2, w
k ⊗ q(xk

1)) ++ ... ++ p(xk
m, w

k ⊗ q(xk
1) ⊗

q(xk
2)...⊗q(xk

m−1)) is a long list (suppose the input is split to p sub-
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Listing 1: Scan Representation
public class Scan<T> {

public AssociativeBinaryOP <T> oplus;

public Scan(AssociativeBinaryOP <T> op) {

this.oplus = op;

}

}

lists), we have optimized the implementation. We do not group all
output of Map phase to one reducer but use multiple reducers in-
stead. The number of reducers can be adjusted to fit the practical
problems and data. Same as the general case in Subsection 3.2.1,
output of Map are sorted by segk (k ∈ [1, p]), but grouped to t

reducers. Intuitively, let r = p/t, reducerk receives [sk∗r+1, sk∗r+2

..., s(k+1)r], and emits sk∗r+1 ++ sk∗r+2 . . . ++ s(k+1)r, (k ∈ [0, r − 1)).
The reducert receives [sp−r+1, sp−r+2 ..., sp] and reads [v1, ..., vp]
from DistributedCache, and computes w = c⊗v1⊗v2⊗· · ·⊗vp. At
last the reducert emits sk∗r+1 ++ sk∗r+2 . . . ++ s(k+1)r ++ g(w),. Each
output from the t reducers contains part of the final result.
The Optimized Implementation for Scan

The scan skeleton is a special case of accumulate: scan =

[[ [·], ([·] ◦ snd,++), (id,⊗) ]], i.e., g = [·], p = [·] ◦ snd, ⊕ = ++,
and q = id. The MapReduce implementation of scan can be opti-
mized and efficiently computed, if ⊗ is not ++. Because the result
of scan is s1 ++ s2 ++ · · ·++ sp we do not need the Reduce phase in
the second MapReduce, and just let each mapper emit (segk, sk)
(k ∈ [1, p]). The segk denotes the offset of sublist handled by the
kth mapper, so that these pairs can be sorted by segk and form the
final result.

3.3 The Programming Interfaces
We provide two parallel skeletons scan and accumulate in our

framework. These two skeletons and also the related binary oper-
ators are represented as Java classes, in the object-oriented style.
3.3.1 Scan Interface

Listing 1 shows the representation Java class for scan. Users
need to define the associative binary operator to create an instance
of the scan computation. There is an example of an associative
binary operator Plus in Listing 2, which adds two integers and
returns the sum. The evalute method takes two arguments and
returns one value. The ie method returns the identity element.
To execute a scan on MapReduce cluster, users need to write
the client codes like Listing 2. The Java class ScanExample ex-
tends ScanMRHelper and overrides the method createScanIns
which creates an instance of the scan computation. In the main
function, the method runScanMR which takes two arguments —
one is an instance of scan, and the other is the args (the input,
output paths given by users) from main, — will execute the scan

computation on the Hadoop cluster.
3.3.2 Accumulation Interface

An accumulate can be defined by implementing the ab-
stract class Accumulation (as shown in Listing 3). There
are five functions/operators according to the definition of the
accumulate, and an accumulative parameter c. The Java class
MapReduceExample (Listing 4) which extends MRAccHelper
shows how to write the client code. Similarly to scan, the method

Listing 2: An Example of Using the Scan Programming Interface
public class ScanExample extends MRScanHelper <Int> {

// type Int is a wrapping class for Java int

public class Plus extends AssociativeBinaryOP <Int> {

public Int evaluate(Int a, Int b) {

return new Int(a.val + b.val);

}

public Int id() {

return new Int(0);

}

}

@Override

public void createScanIns() {

// instance an scan computation

this.scan = new Scan(new Plus());

}

public static void main(String[] args) throws

Exception {

// Create and run on MapReduce

int res = runScanMR(new ScanExample(), args);

System.exit(res);

}

}

Listing 3: Accumulation Representation
public abstract class Accumulation <T0, T1, T2> {

public T1 c;

public UnaryFunction <T1, T2> g;

public AssociativeBinaryOP <T2> oplus;

public AssociativeBinaryOP <T1> otimes;

public BinaryOperator <T0, T1, T2> p;

public UnaryFunction <T0, T1> q;

}

Listing 4: An Example of Using the Accumulation Programming
Interface
public class MapReduceExample extends MRAccHelper <Int,

Int,IntList> {

public void createAccuIns( ) {

//instance an accumulate computation

this.accumulate = new ElimSmallers(new Int(50));

}

public static void main(String[] args)

throws Exception {

//Create and run on MapReduce

int res = runAccMR( new AExample(), args);

System.exit(res);

}

}

}

createAccuIns needs to be override, in which an instance of
accumulate is created. In the main function, the runAccMR
method should be invoked to execute the accumulate. The List-
ing 5 shows an example to define the elimSmallers computation.

4. Programming Examples and Evaluations

We have developed several examples by using the parallel
skeletons scan and accumulate provided by our framework, and
evaluated them on Hadoop clusters.

4.1 Example Programs
Table 1 lists five examples developed on our framework. More

examples of accumulative computations can be found in the
source packages of the framework. The scan (+) is an applica-
tion of prefix-sum on numbers using the binary operator +. The
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Listing 5: Difination of Accumulation for ElimSmallers
public class ElimSmallers extends Accumulation <Int, Int,

IntList> {

public ElimSmallers(Int x) {

c = x;// new Int(50);

oplus = new AccociBinaryOP <IntList >() {

@Override

public IntList evaluate(IntList left, IntList

right) {

if (left == null || left.get() == null)

left = new IntList(new ArrayList <Int>());

if (right != null && right.get() != null

&& right.get().size() > 0) {

left.get().addAll(right.get());

}

return left;

}

@Override

public IntList id() {

return new IntList();

}

};

otimes = new AccociBinaryOP <Int>() {

@Override

public Int evaluate(Int left, Int right) {

if (right.get() < left.get())

return left;

else

return right;

}

@Override

public Int id() { // id * x = x

return new Int(Integer.MIN_VALUE);

}

};

g = new UnaryFunction <Int, IntList >() {

@Override

public IntList evaluate(Int obj) {

return new IntList();

}

};

p = new BinaryOperator <Int, Int, IntList >() {

@Override

public IntList evaluate(Int x, Int c) {

ArrayList <Int> val = new ArrayList <Int>();

if (x.get() < c.get()) {

return null;

} else {

val.add(x);

return new IntList(val);

}

}

};

q = new UnaryFunction <Int, Int>() {

@Override

public Int evaluate(Int da) {

return da;

}

};

}

}

elimSmallers, los, tagmatch and mps are those introduced in Sec-
tion 2. Each program requires a particular type of input list, such
as list of numbers, list of tags or list of pairs. Table 1 also gives
the type of the input lists for each program.

4.2 Evaluation
We evaluated the performance and scalability of the example

programs with manually generated data sets shown in Table 1.

Table 1 Example programs for five problems and data types of their input.

Problem scan (+) elimSmallers los tagmatch mps
Input Data Numbers Numbers Pairs Tags Numbers

Fig. 3 Running Times of Each Accumulative Programs.

Fig. 4 Relative Speedup Calculated with Respect to The Result on 8 CPUs.

Table 2 Data sets for evaluating examples on Hadoop clusters with different
number of working nodes.

Program Input Length Input Size

scan (+) 5,000 × 220 9.77 GB
elimSmallers 5,000 × 220 9.77 GB
los 5,000 × 220 10.54 GB
tagmatch 5,000 × 220 9.77 GB
mps 5,000 × 220 9.77 GB

We configured Hadoop (cdh3u5) clusters with up to 32 virtual
machines (VMs) inside the EdubaseCloud system in National In-
stitute of Informatics. Each VM has 2 CPUs (a CPU is one core of
the Xeon E5530@2.4 GHz), 6 GB RAM. The total parallel-task
slots in Hadoop are configured to be equal to the total number of
CPUs in the cluster*7.
Scalability

The experiment results are summarized in Figs. 3 and 4. Let-
ting the input data be fixed size (shown as Table 2) while increas-
ing the working nodes of the cluster (i.e., increasing VMs), all
programs have almost twice speedup when the number of CPUs
increases from 8 to 16. This indicates the good scalability of
our framework. When the number of CPUs keeps increasing, the
running-time becomes shorter and approaches to a constant value

*7 We made this configuration in order to simplify the analysis of scalabil-
ity. In fact, optimizing the configurations of the Haddop cluster, e.g.,
allowing more mappers running simultaneously in each VM, can obtain
much better performance.
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Table 3 Large data sets for comparing two kinds of implementation: with/
without using our framework.

Input Data Length Size

Numbers 1×105× 220 195.32 GB
Pairs 1×104× 220 233.21 GB
Tags 1×105× 220 195.32 GB

Table 4 In comparison of length of code and performance to vanilla Hadoop
programs (using the data sets listed in Table 3).

Problems Lines (vanilla) Lines Time (vanilla) Time
scan (+) 163 29 1,995 s 1,988 s
elimSmallers 368 107 2,012 s 2,013 s
los 348 81 1,583 s 1,587 s
tagmatch 346 107 2,902 s 2,903 s
mps 347 75 1,793 s 1,791 s

which is the time of fixed sequential parts computation and sys-
tem overhead of Hadoop. As a summary, the relation between
speedup (y) and number of CPUs (x) approximately fits to a lin-
ear curve y = Ax + B, e.g, in case of scan (+), A = 6.49 × 10−2,
B = 0.779.
In Comparison with Vanilla Hadoop Programs

Finally we discuss the programmability and relative efficiency
by comparing the programs written by using our framework and
those written by directly using the Hadoop API. As mentioned
before, programs written by using our accumulate API will be
transformed to programs that are exactly equivalent to those man-
ually written by using vanilla Hadoop (i.e., without using our
framework). The comparison we gave just shows the benefits
that how much our framework saves programmers efforts and low
overhead of the high-level abstraction in our framework.

For each problem in Table 1, we made a new version using
only vanilla Hadoop, which implemented the same two-phases
MapReduce algorithm in Section 3.2. Table 4 shows the com-
parison of length of source code and running times of the two
classes of programs (on the same 64-CPU cluster). The source
code is formatted by the Eclipse code formatter, and counted by
using Google CodePro Analytix*8. We used much larger data sets
listed in Table 3 as input for the evaluation.

In Table 4, the column Lines (vanilla) is for the lengths of pro-
grams implemented without using our framework, and the col-
umn Lines is for the lengths of programs implemented by using
our framework. The column Time (vanilla) and the column Time

are running times of the two versions.
The results show that all vanilla Hadoop programs are much

longer than programs written by using our accumulate API (3.2–
5.6 times longer). The system overhead caused by the generic
abstraction and wrapping of Hadoop API can be almost negligi-
ble. In addition, programs implemented by using our framework
can still handle the larger input data (nearly 20 times larger com-
pared to each data set in Table 2) very well.

Generally, the main difficulty for a Hadoop programmer to im-
plement a MapReduce algorithm for problems such as elimSmall-

ers, is about finding the scalable divide-and-conquer algorithm.
Furthermore, even when he knows the algorithm, the implemen-
tation of the cumbersome Hadoop code is still probably very time
consuming.

*8 https://developers.google.com/java-dev-tools/codepro/

5. Related Work

Algorithmic skeletons for parallel programming have been
well studied from 1989 [9], and a lot of frameworks have been de-
veloped to provide those algorithmic skeletons [3], [7], [8], [21],
[24]. Not only the programming frameworks, we have studied a
systematic way to develop parallel programs using those skele-
tons. In particular, scan is a very useful skeleton because it en-
ables us to reuse the partial results in reduce. For example, In
[19] we showed that we can solve a set of maximum marking

problems on lists with scan skeletons. We also showed that we
can perform the matching of a regular expression over a single
large document in parallel [20]. With the scan or accumulate

computations developed in this paper, we can extend the tech-
nique to retreive substrings.

The MapReduce was firstly introduced by Google to handle
very large raw data form Internet. The programming model of
MapReduce is inspired by the concepts from functional program-
ming [10], [22]. MapReduce gains a big success in both industry
and academia, because of its functionality and simplicity. But
there is still a gap between a nontrivial problem and the MapRe-
duce paradigm because MapReduce programming model is rela-
tively low-level that leads many difficulties in piratical program-
ming. Many studies such as Sawzall [25], PigLatin [12], and
DryadLINQ [27] tried to provide more user-friendly domain spe-
cific languages to address the programmability problem, and our
previous work [11], [23] introduced the approaches of calculation
theorems for list homomorphisms into MapReduce, for the simi-
lar purpose but in different methodology.

The accumulate as an algorithmic parallel computation pattern
has been implemented by using MPI [18] and now is a part of the
Sketo library [24] that provides a simple programming interface
and efficient parallel implementation. To our knowledge, there
was no completable MapReduce implementation for the accumu-
lative computing*9 before present study.

6. Conclusion

The research on parallel skeletons [9], [15], [18] and list ho-
momorphisms [23] illustrates a systematic and constructive way
to high-level parallel programming, by which this work was in-
spired. In this paper, we have described how to implement and
use the two parallel skeletons scan and accumulate, in MapRe-
duce. We provide a Hadoop-based framework with high-level
programming interfaces. A large class of computations that are
originally difficult to be programmed directly with MapReduce
APIs can be easily implemented on our framework and enjoy
the merits of MapReduce. The implementation is efficient and
scalable, because it is based on the result of applying the fusion
transformation to accumulate, which eliminates unnecessary in-
termediate data structures.

Although we limited our discussion to lists in this paper, the
diffusion theorem can be extended to trees [16] and other general
recursive data types. We plan to implement more algorithmic

*9 Some MapReduce frameworks, Pig [12] and Spark [28] also have so-
called “accumulate” interface, but such “accumulate” is not in the same
sense of the functional programming pattern accumulate.
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skeletons on MapReduce to simplify the parallel programming
and large-scale data processing.
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