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ABSTRACT: A macroscopic model, macro plate model, was proposed to represent a wall
member of RC walls. Both in-plane and out-of-plane behavior were considered for
numerical derivations of macro plate model. For out-of-plane behavior, bending
deformation was incorporated with shear deformation to consider out-of-plane deformation
as same as in-plane behavior. The hysteretic behavior of macro plate model can be directly
expressed by stress-strain relationships in any conventional hysteretic rules, which have
been proposed by other researchers, for member level. Unless nonlinear analysis of RC
walls was proposed in case of earthquake, macro plate model can be proposed for nonlinear
analysis of those in case of wind and tsunami by converting distributed force to nodal
force.

Key Words: macro plate model, RC walls, in-plane, out-of-plane, distributed force

1. INTRODUCTION

In RC buildings, RC walls are widely used to increase resistance against lateral loads imposed by
earthquake, wind, and tsunami. For such buildings, RC walls and beam-column frames are combined
in nonlinear structural analysis, so a proper modeling of RC walls is very important for structural
engineering applications. Many analytical models have been proposed for nonlinear analysis of RC
walls. These analytical models are classified as microscopic and macroscopic models, representing
local and overall behavior of RC walls respectively. For microscopic models, finite element model
(FEM) is conducted to predict local behavior of RC walls using a constitutive model of materials. On
the other hand, various macroscopic models have been proposed for RC walls verified with
experimental results and these macroscopic models can be used practically for wall-frame structural
analysis. These macroscopic models in Fig. 1, such as the three-vertical-line element model (TVLEM
proposed by Kabeyasawa et al., 1983), the multi-vertical-line element model (MVVLEM proposed by
Volcano et al., 1988), the 2-D nonlinear plane element model (Milev, 1996), and the iso-parametric
element model (IPEM proposed by Chen et al., 2000), have been proposed for modeling RC walls.
Due to state-of-the-art constitutive models and less computation time, macroscopic models are more
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practical and efficient than microscopic models for structural engineering applications. However,
macroscopic models have been developed based on a simplifier idealization and restricted validity
upon derivation models. In addition, only in-plane behavior of RC walls have been studied in these
macroscopic models.
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Fig. 1 Macroscopic models

This study proposes macro plate model, a macroscopic model representing a wall member of RC
walls. Macro plate model was a four-node element model which was developed originally from the
theory of elasticity (Timoshenko et al., 1970) for in-plane behavior and the theory of plate bending
(Zienkiewicz et al., 2005) for out-of-plane behavior. Since macro plate model was developed from
elastic theory of plate element, stress-strain relationships in macro plate model was derived to simulate
inelastic response of RC walls using hysteretic stress-strain relationships in hysteretic rules, which
have been proposed by other researchers.

2. DESCRIPTION OF APROPOSED MACROSCOPIC MODEL

Macro plate model, a proposed macroscopic model for a wall member of RC walls, was a four-node
element with rectangular shape in the x-y plane, consisting of nodes i, j, k, and I shown in Fig. 2(a).
The entire wall member was modeled as a rectangular plane member assuming uniform concrete plate
and uniformly orthogonal bar arrangement in order to consider in-plane and out-of-plane behavior. The
origin of the coordinate system was on the center of macro plate model. For the dimensions of macro
plate model, I, and I, were defined as the length of a wall member and thickness t was constant within
each wall member. As shown in Fig. 2(b), macro plate model was formulated to describe a one-story
wall member of RC walls.
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(a) Wall member and coordinate system (b) Modeling of a wall

Fig. 2 Macro plate model

For each node of macro plate model, a total of five degrees of freedoms were considered: three
translational components along the x-, y-, and z-axes and two rotational components about the x- and
y-axes. Of these, macro plate model had twenty degrees of freedom, in which eight components were
defined as in-plane degrees of freedom and twelve as out-of—plane degrees of freedom in Fig. 3.
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In-plane and out-of-plane displacement of nodes i, j, k, and | are shown in Fig. 3(a) and Fig. 3(b)
respectively. As can be seen in Fig. 3(a), two translational displacements along the x- and y- axes (u
and v) were assigned to nodes i, j, k, and |, whereas one translational displacement along the z-axis (w)
and two rotational displacements around the x- and y-axes (8 and 6,) were assigned to nodes i, j, K,
and | shown Fig. 3(b).
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(2) DOFs of in-plane displacement (b) DOFs of out-of-plane displacement

Fig. 3 Degree of freedoms (DOFs) of macro plate model

3. IN-PLANE BEHAVIOR OF MACRO PLATE MODEL

As aforementioned above, in-plane behavior of macro plate model was derived originally from the
theory of elasticity using the plane-sections-remain-plane assumption. Axial deformation in the x- and
y-directions (3 and &), in-plane bending deformation in the x-y plane (t, and t,), and in-plane shear
deformation in the x-y plane (t,) are expressed in Fig. 4(a), Fig. 4(b), and Fig. 4(c) respectively.
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Fig. 4 (a) Axial deformation, (b) Bending deformation, and (c) Shear deformation

In relation with in-plane deformation, axial forces in the x- and y-directions (Nyand Ny), in-plane
bending moments in the x-y plane (Myand M), anti-symmetric in-plane bending moment in the x-y
plane (M,) are expressed in Fig. 5(a), Fig. 5(b), and Fig. 5(c) respectively.
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Fig. 5 (a) Axial force, (b) Bending moment, and (c) Anti-symmetric bending moment

For in-plane behavior, in-plane deformation in Fig. 4 is expressed in term of in-plane displacement
in Fig. 3(a) as Eqg. (1) and the stiffness matrix were derived based on the theory of elasticity

(Timoshenko et al., 1970) as Eq. (1).
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Fig. 6 (a) Macro plate model, (b) A four-node element of FEM, and (c) A wall member of FEM

Anti-symmetric in-plane bending deformation of macro plate model is shown in Fig. 6(a). The
effect of in-plane shear deformation was incorporated as shown in the last row of stiffness matrix in Eq.
(1), whereas anti-symmetric in-plane bending deformation is usually not considered in a four-node
element of FEM shown in Fig. 6(b). Therefore, a wall member of FEM is finely divided to consider
the effect of anti-symmetric in-plane bending deformation by axial deformation of each divided
element shown in Fig. 6(c).
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Fig. 7 In-plane deformation of macro plate model

As shown in Fig. 7(a), macro plate_model can obtain high accuracy solution with large element
division. If a wall member was modeled with several elements of macro plate model, anti-symmetric
in-plane bending deformation of individual elements occurred independently instead of entire
deformation of a wall member shown in Fig. 7(b). However, the entire deformation shown in Fig. 7(c)
can be obtained by using I, instead of I, at the last row of stiffness matrix in Eq. (1) in which I, can
be calculated by full length of a wall member.

Fig. 8 Modeling of complicated shape

The benefit of macro plate model is a modeling of complicated shape shown in Fig. 8. As can be
seen in Fig. 4, macro plate model can express in-plane deformation in both x- and y-directions, which
was different from macroscopic models only y-direction shown in Fig. 1. As can be seen in Fig. 8, this
wall was divided to eight elements of macro plate model in order to connect with beams and columns,
so stiffness matrix of each element can be modified using I’ and I, at the last row. In addition, the
combination in the last row of stiffness matrix can express the deformation shape of a wall shown in
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Fig. 6(a). Therefore, any complicated shapes of a wall can be modeled using macro plate model.

4. OUT-OF-PLANE BEHAVIOR OF MACRO PLATE MODEL

As aforementioned above, out-of-plane behavior of macro plate model was derived originally from the
theory of plate bending. Out-of-plane bending and anti-symmetric out-of-plane bending deformation
are expressed in term of rotational deformations about the x- and y-axes (t and t,) shown in Fig. 9(a)
and Fig. 9(b) respectively. Out-of-plane torsional deformation (¢,,) are expressed in Fig. 9(c).

Txk = W

Fig. 9 (a) Out-of-plane bending deformation, (b) Anti-symmetric out-of-plane bending deformation,
and (c) Out-of-plane torsional deformation

The deformation-displacement relationship of out-of-plane behavior was derived as Eqg. (2).
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Theory of plate bending (Zienkiewicz et al., 2005) was conducted to derive out-of-plane stiffness
matrix of macro plate model from out-of-plane shape function of plate bending as Eq. (3).

Wi = @+ @+ azy; + apx? + asxy; + agy? + apxd + agxlfy + agxy? + aryi + anxly; + anpxy? 3)

In order to derive out-of-plane stiffness matrix of macro plate Fay, Foy,
model, out-of-plane nodal forces are defined shown in Fig. 10. Based IR IR
on out-of-plane shape function in Eq. (3), the out-of-plane nodal F,; , Fuk
force-displacement relationship is expressed as Eq. (4) referring to a )_’X
component of out-of-plane bending deformation about x-and y- axes, 2
secondary deformation due to Poisson effect, and out-of-plane Foug Fog - »
torsional deformation respectively shown in Fig. 11. / —
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Fig. 10 Out-of-plane nodal force
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Fig. 11 (a) Out-of-plane bending deformation about x-axis, (b) bending deformation about y-axis, (c)
Secondary deformation due to Poisson effect, and (d) Out-of-plane torsional deformation

Referring to modes of out-of-plane deformation in Fig. 11, the first term of Eq. (4) is a component
of out-of-plane bending deformation about the x-axis shown in Fig. 11(a). The second term is a
component of out-of-plane bending deformation about the y-axis shown in Fig. 11(b). The third term is
a component of secondary deformation due to Poisson effect shown in Fig. 11(c). The fourth term is a
component of out-of-plane torsional deformation shown in Fig. 11(d).
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Fig. 12 (a) Out-of-plane bending moment about x- and y-axis and (b) Out-of-plane torsional moment

According to modes of out-of-plane deformation in Fig. 11, out-of-plane bending moment is
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expressed in Fig. 12(a) including the effect of secondary and torsional deformation in Fig. 11(c) and
Fig. 11(d) respectively. In addition, out-of-plane torsional moment is expressed in Fig. 12(b).

The decomposition of out-of-plane bending moment shown in Fig. 12(a) is expressed as Eg. (5).
The first term was a component of out-of-plane pure bending moment about the x- and y-axes. The
second term was a component of out-of-plane bending moment due to Poisson effect. The third term
was a component of out-of-plane bending moment due to torsional effect. In addition, out-of-plane
torsional moment shown in Fig. 12(b) is expressed as Eq. (6).
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In order to obtain stiffness matrix of each component in Eq. (5), the nodal force-displacement
relationship in Eq. (4) can be solved from Eq. (2). Referring to Fig. 11(a) and Fig. 11(b), the stiffness
matrices of out-of-plane bending moment from pure deformation about the x- and y-axes respectively
are expressed as Eq. (7).
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Referring to Fig. 11(c), the stiffness matrix of out-of-plane bending moment due to Poisson effect
is expressed as Eq. (8).
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Referring to Fig. 11(d), the stiffness matrix of out-of-plane bending moment due to torsional effect
is expressed as Eq. (9).
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For out-of-plane deformation, it is necessary to incorporate out-of-plane pure bending deformation
in Fig. 13(a) with out-of-plane shear deformations in Fig. 13(b) in order to obtain more realistic
behavior, in which out-of-plane behavior of a wall member should be more softening.
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Fig. 13 (a) Out-of-plane pure bending deformation and (b) Out-of-plane shear deformation

Using flexibility matrix, out-of-plane pure bending deformation in Fig. 13(a) was incorporated
with out-of-plane shear deformation in Fig. 13(b). The flexibility matrix due to out-of-plane pure
bending deformation is expressed as Eq. (10).

Ty 4 -2 1 -2 M{cil Tyi 4 -2 1 -2 [Myi
Tl b |2 4 -2 1||My il b [—2 4 —2 1||My, 10)
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Incorporating out-of-plane bending deformation with out-of-plane shear deformation (xA / Gtl,l,),
the flexibility matrix is expressed as Eq. (11).
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From the flexibility matrix in Eg. (11), the stiffness matrix of out-of-plane pure bending
deformation incorporating with out-of-plane shear deformation is expressed as Eq. (12).
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5. EQUILIBRIUM CONDITION OF MACRO PLATE MODEL

From aforementioned derivation, it is necessary to satisfy member force of macro plate model in Fig. 5
with equilibrium condition in Fig. 14(b).
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Fig. 14 (a) In-plane nodal force and (b) Member forces in equilibrium condition

From Fig. 14(a) and Fig. 5, the nodal force-member force relationship is expressed as Eq. (13)
using the transpose matrix in Eq. (1).

Fy1 [~1/2 0 =1/, 0 1/21,
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As shown in Fig. 14, member force in equilibrium condition can be converted to in-plane nodal
force. With the relationship in Eq. (13), member force in equilibrium condition is expressed as Eqg.
(14).

N, M, M, N, M, M M
X X 0 X X O>:_MX+0 (14)

ly ly
Mo = 5 (P =Fy) = 5 (‘7‘?%7*7‘?*7

Ny = _in_ijz

Other member forces in equilibrium condition are expressed as Eq. (15).

M, M, M, M, M, M,
My = My+=0, Ny = Ny, Qo = ——2, Myy = =My ==, Ny = Ny, Qpy = —2, My = My ——>, Ny = N,, Q= = (15)
2 [ 2 L 2 L

Therefore, equilibrium condition of axial forces was satisfied as Eq. (16)

le = NXZ = NX N

y1 =N

y2 =Ny (16)
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Also, equilibrium condition of bending moments was satisfied as Eq. (17)

M, M, M, M,
My, — My My + 50 4+M =50 My, — My, My +=04+M, =50
2 - 2 = My 2 - 2 =M,

a7

For in-plane shear deformation, shear forces can be determined from bending moments as Eq. (18).
Then, shear stresses in Eq. (19) are equal to satisfy equilibrium condition.
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x x " N , B
Qx KMO Qy KMO
AT wL, T a, T o, (19)

6. DERIVATION OF STRESS AND STRAIN FOR HYSTERETIC RULES

For nonlinear analysis of RC walls represented MVLEM and IPEM, hysteretic behavior of a wall
member have been described using hysteretic constitutive models of steel and concrete. As same as
TVLEM, hysteretic behavior of macro plate model can be simulated in the level of a wall member in
order to predict inelastic response of the entire RC wall. For macro plate model, hysteretic behavior of
a wall member was described by conventional hysteretic rules, such as Takeda model in Fig. 15(a),
peak-oriented model, origin-oriented model, and axial-stiffness model (Kabeyasawa et al., 1983) in
Fig. 15(b), and other hysteretic models from experimental results in order to track inelastic responses.
Therefore, numerical derivation of stress and strain in macro plate model is necessary for application
of hysteretic models, in which the cracking, yielding, and ultimate strength of back-bone curves in Fig.
15(c) were determined using empirical equations recommended by building design standards. For
nonlinear analysis of macro plate model, nodal displacements in Fig. 3 were obtained to calculate
member deformations in Fig. 4 and Fig. 9. Then, member deformations were converted to member
strain in order to track a hysteretic model and return the stiffness degrading factor to next analysis step.
This was an iteration method for solving nonlinear problem in macro plate model.
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Fig. 15 (a) Takeda model, (b) Axial-stiffness model, and (c) Back-bone curve

6.1 In-plane behavior

Axial stress and strain of macro plate model can be derived based on the theory of elasticity (N, =
EAcex, Ny = EAyey) and the relationship in Eq. (1). The axial stress-strain relationships of macro plate
model are expressed as Eq. (20).

1 [EA, EA
S +v

B 8, 1 [ EA EA
12| L,

1 16 1 [6 6.
=5, ,sxz—[—x+v— Ny=——|v=25,+—265,|, e, =—— —y+v—x] (20)
1-v2ll, L,

N, =
x L, L, 1-vZ| I, L, 1-v2|l,
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In-plane bending moment and curvature of macro plate model can be derived based on the theory
of elasticity (My = Elgy, My = Ely¢y) and the relationship in Eq. (1). The bending moment-curvature
relationships of macro plate model are expressed as Eqg. (21).

El T El T
Mx=_xTXl ¢x=_x My=_yTyr ¢y=_y (21)
l L L, L,

X

In-plane shear stress and strain of macro plate model can be derived based on the theory of
elasticity (Mo = Gtliyy / k) and the relationship in Eq. (1). The shear stress-strain relationship of
macro plate model is expressed as Eq. (22).

Ty To
ey =
% L L TG, Gl
Gel T, T T2ET; T T2ET; 2Bk T 12ELc 1

M, =

(22)

In order to propose nonlinear analysis of macro plate model for in-plane behavior, a nonlinear
analytical model assembled by macro plate model of shear walls was compared with a full-scale
shaking table test on a six-story RC wall-frame building carried out at E-Defense in 2006 and TVLEM
(Kim et al., 2008). Three ground motion components in the east-west, north-south, and up-down
direction of Kobe earthquake recorded by Japan Meteorological Agency (JMA 1995) were an input
ground motion as same as the test at E-Defense. In order to neglect strength degradation in post-peak
response, 25% and 50% of input ground motion were applied to verify macro plate model. For
nonlinear analysis of macro plate model in this verification, Takeda model in Fig. 15(a) was applied to
simulate in-plane flexural and shear behavior and axial-stiffness model in Fig. 15(b) was applied to
simulate axial behavior. The back-bone curves of a wall member were determined using empirical
equations recommended by AlJ standards. From analysis and experimental results, the relationship
between base shear and relative displacement at 2nd floor in x- and y-directions was considered for
this verification. The verification results of macro plate model (MPM) in Fig. 16 show a good
correlation with the TVLEM results and the experimental results at E-Defense for 25% and 50% of
input ground motion.
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Fig. 16 Verification results of macro plate model (MPM)
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6.2 Out-of-plane behavior

Out-of-plane curvature occurring in a wall member is varied Qou—=> i
depending on location. For the same nonlinear behavior as in-plane
bending, member-end moments are averaged to determine | e
curvature shown in Fig. 17. Average moment and shear force can be Y ot
evaluated from member-end moments shown in Eq. (23). Z
Mxi<k?/szll Mxi
Fig. 17 Average moment
M,y -1/2 1/2 0 0 M,;
[szl]_[l/ly 1/1, 0 0 ]Mx}-
(M|~ | 0 0 1/2 —1/2||My (23)
Q. L o 0o 11, 171, [lM,

Out-of-plane bending moment and curvature of macro plate model can be derived based on the
theory of elasticity (My: = Eyil,y¢,1 / 2) and the relationship of pure bending deformation in Eq. (7).
The bending moment-curvature relationships of macro plate model are expressed as Eq. (24).

Eyil,y Eyil,y Eyil,y Eyil,y 1
M1=—y Toi Tyi Tk — Taty a1 = 5 (2T + 2T + Toge — Tot) (24)
zy 3ly xi 3ly xj ﬁly X 6ly X zy 3ly xi xj x. x

Out-of-plane shear stress and strain of macro plate model can be derived based on the theory of
elasticity (Q1 = Gytly,y1/ 2xy) and the relationship of bending deformation incorporating with shear
deformation in Eq. (12). The shear stress-strain relationship of macro plate model is expressed as Eq.
(25).

My My  Eply, 2+ Ay, 1-1,,
Quy1 = + = (T T Tyj) t (T + Tx) (25)
7, . Bo{1+ A+, ™ 7 1+2,+4, *
1
2 [(2 + 2'yz)("'—xi + ij) + (1 - 2'yz)("'—xk + Txl)]

Vot = 314 2,, + 4y)

7. PROBLEM OF DISTRIBUTED FORCE IN MACRO PLATE MODEL

In order to simulate out-of-plane behavior in nonlinear analysis, the stress-strain
relationship of macro plate model was derived by out-of-plane deformation. Since
out-of-plane behavior was derived starting from the nodal force-displacement relationship and
the deformation-displacement relationship, it is necessary to convert distributed force in case
of wind and tsunami to nodal force for nonlinear analysis. The shape function (N) for each node
is expressed in terms of normalized coordinates (§ and n) as Eq. (26) (Zienkiewicz et al., 2005).

No=gHEDA+mm  a=ijkl (26)

. . k
For normalized coordinates: G

Gon)=0G-1L-10  Enp=-11) (Cend)=Q1D  En)=01-D

The general form of distributed force (qg), such as wind and a
tsunami, is expressed in Fig. 18.

Fig. 18 Distributed force

- 56 -



From the shape function in Eq. (26), nodal forces acting on each node of macro plate model can be
computed from Eq. (27).

—

[ NyNpqp
I

2N, aNoqp (M0 — n)ldfdn @7

AN
[ZN Npqy($q = J

From Eq. (27), distributed force can be converted to nodal forces shown in Eq. (28).

. 4‘11‘ +2q; + qxt+2q; o [ 2q; +4q; +2q,+q,
wi wj l
Fy ‘ = 3l —(qu +2q;+aktq) Fo| = l;i -7 (24 + 2q;+qc+a) 28)
Xt X, 6
Fg i Fg . l
i - (qu +qtqct2q)| T = @+ 20;+2q+a) |
‘ ql +2q; +4q+2q, - [ Zqi +4;+2q+4q,
Wi wi
Fo, | = ——(ql + q,+2qk+2qz)| Fo,| = ﬁ 7@+ Qj+ZQk+2ql)|
Fo,| 3610, | (R, 301 |
[ - (@ +2q;+2q,+q) | |5 a0+ a;+ac+2q) |

8. CONCLUSIONS

For modeling of RC walls, macro plate model was proposed to describe in-plane and out-of-plane
behavior of a wall member. Based on theory of elasticity and theory of plate bending, numerical
derivations of macro plate model are presented in this paper. Out-of-plane bending deformation was
incorporated with out-of-plane shear deformation for more softening of out-of-plane behavior. In order
to predict inelastic response of a wall member, hysteretic behavior of macro plate model can be
simulated by stress-strain relationships in hysteretic models. From the verification results, the analysis
results show a good correlation with the TVLEM results and the experimental results at E-Defense, so
macro plate model is adequate to represent shear walls for in-plane behavior. Comparing with TVLEM,
MVLEM, and IPEM, macro plate model can represent any complicates shape of a wall and also can
simulate out-of-plane behavior. However, strength degradation in post-peak behavior and interactions
between axial, bending, and shear deformation as IPEM will be studied further.

Implementation of macro plate model, a practical model, into a computational platform will
provide structural design engineers and researchers improved analytical capabilities to model and
study nonlinear behavior of RC walls and their interaction with other structural members. The
practical model can be used for nonlinear structural analysis of RC buildings represented by a
wall-frame model. The reliability of a wall-frame model depends on hysteretic models of structural
members and member interaction. This practical model allows for possible further model
improvements including applications to other structural members. For out-of-plane behavior,
verification and calibration using observe damage will be presented in a future publication. Moreover,
nonlinear structural analysis of a wall-frame model from earthquake and subsequent tsunami, in which
distributed force can be converted to nodal forces presented in this paper, will be studied further.
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