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ABSTRACT: A macroscopic model, macro plate model, was proposed to represent a wall 

member of RC walls. Both in-plane and out-of-plane behavior were considered for 

numerical derivations of macro plate model. For out-of-plane behavior, bending 

deformation was incorporated with shear deformation to consider out-of-plane deformation 

as same as in-plane behavior. The hysteretic behavior of macro plate model can be directly 

expressed by stress-strain relationships in any conventional hysteretic rules, which have 

been proposed by other researchers, for member level. Unless nonlinear analysis of RC 

walls was proposed in case of earthquake, macro plate model can be proposed for nonlinear 

analysis of those in case of wind and tsunami by converting distributed force to nodal 

force. 
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1. INTRODUCTION 

 

In RC buildings, RC walls are widely used to increase resistance against lateral loads imposed by 

earthquake, wind, and tsunami. For such buildings, RC walls and beam-column frames are combined 

in nonlinear structural analysis, so a proper modeling of RC walls is very important for structural 

engineering applications. Many analytical models have been proposed for nonlinear analysis of RC 

walls. These analytical models are classified as microscopic and macroscopic models, representing 

local and overall behavior of RC walls respectively. For microscopic models, finite element model 

(FEM) is conducted to predict local behavior of RC walls using a constitutive model of materials. On 

the other hand, various macroscopic models have been proposed for RC walls verified with 

experimental results and these macroscopic models can be used practically for wall-frame structural 

analysis. These macroscopic models in Fig. 1, such as the three-vertical-line element model (TVLEM 

proposed by Kabeyasawa et al., 1983), the multi-vertical-line element model (MVLEM proposed by 

Volcano et al., 1988), the 2-D nonlinear plane element model (Milev, 1996), and the iso-parametric 

element model (IPEM proposed by Chen et al., 2000), have been proposed for modeling RC walls. 

Due to state-of-the-art constitutive models and less computation time, macroscopic models are more 
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practical and efficient than microscopic models for structural engineering applications. However, 

macroscopic models have been developed based on a simplifier idealization and restricted validity 

upon derivation models. In addition, only in-plane behavior of RC walls have been studied in these 

macroscopic models. 
 

 

                                  
 

        TVLEM                                                    IPEM 

 

MVLEM                        

 

Fig. 1 Macroscopic models 

 

This study proposes macro plate model, a macroscopic model representing a wall member of RC 

walls. Macro plate model was a four-node element model which was developed originally from the 

theory of elasticity (Timoshenko et al., 1970) for in-plane behavior and the theory of plate bending 

(Zienkiewicz et al., 2005) for out-of-plane behavior. Since macro plate model was developed from 

elastic theory of plate element, stress-strain relationships in macro plate model was derived to simulate 

inelastic response of RC walls using hysteretic stress-strain relationships in hysteretic rules, which 

have been proposed by other researchers.  

 

 

2. DESCRIPTION OF A PROPOSED MACROSCOPIC MODEL 

 

Macro plate model, a proposed macroscopic model for a wall member of RC walls, was a four-node 

element with rectangular shape in the x-y plane, consisting of nodes i, j, k, and l shown in Fig. 2(a). 

The entire wall member was modeled as a rectangular plane member assuming uniform concrete plate 

and uniformly orthogonal bar arrangement in order to consider in-plane and out-of-plane behavior. The 

origin of the coordinate system was on the center of macro plate model. For the dimensions of macro 

plate model, lx and ly were defined as the length of a wall member and thickness t was constant within 

each wall member. As shown in Fig. 2(b), macro plate model was formulated to describe a one-story 

wall member of RC walls. 

 

                                              
       (a) Wall member and coordinate system              (b) Modeling of a wall 

 

Fig. 2 Macro plate model 

 

For each node of macro plate model, a total of five degrees of freedoms were considered: three 

translational components along the x-, y-, and z-axes and two rotational components about the x- and 

y-axes. Of these, macro plate model had twenty degrees of freedom, in which eight components were 

defined as in-plane degrees of freedom and twelve as out-of—plane degrees of freedom in Fig. 3. 

 
 

 
 

 
  

 

 
 

 
 

 
 

 
  

 

 
 

i 

k 

l 

lx 

ly x 

y 

o 

j 

- 46 -



In-plane and out-of-plane displacement of nodes i, j, k, and l are shown in Fig. 3(a) and Fig. 3(b) 

respectively. As can be seen in Fig. 3(a), two translational displacements along the x- and y- axes (u 

and v) were assigned to nodes i, j, k, and l, whereas one translational displacement along the z-axis (w) 

and two rotational displacements around the x- and y-axes (θx and θy) were assigned to nodes i, j, k, 

and l shown Fig. 3(b). 

 

                                      
(a) DOFs of in-plane displacement           (b) DOFs of out-of-plane displacement 

 

Fig. 3 Degree of freedoms (DOFs) of macro plate model 

 

 

3. IN-PLANE BEHAVIOR OF MACRO PLATE MODEL 
 

As aforementioned above, in-plane behavior of macro plate model was derived originally from the 

theory of elasticity using the plane-sections-remain-plane assumption. Axial deformation in the x- and 

y-directions (δx and δy), in-plane bending deformation in the x-y plane (ηx and ηy), and in-plane shear 

deformation in the x-y plane (η0) are expressed in Fig. 4(a), Fig. 4(b), and Fig. 4(c) respectively. 

 

 
 

Fig. 4 (a) Axial deformation, (b) Bending deformation, and (c) Shear deformation 

 

In relation with in-plane deformation, axial forces in the x- and y-directions (Nx and Ny), in-plane 

bending moments in the x-y plane (Mx and My), anti-symmetric in-plane bending moment in the x-y 

plane (M0) are expressed in Fig. 5(a), Fig. 5(b), and Fig. 5(c) respectively. 

 

     
Fig. 5 (a) Axial force, (b) Bending moment, and (c) Anti-symmetric bending moment 

 

For in-plane behavior, in-plane deformation in Fig. 4 is expressed in term of in-plane displacement 

in Fig. 3(a) as Eq. (1) and the stiffness matrix were derived based on the theory of elasticity 

(Timoshenko et al., 1970) as Eq. (1). 
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Fig. 6 (a) Macro plate model, (b) A four-node element of FEM, and (c) A wall member of FEM 

Anti-symmetric in-plane bending deformation of macro plate model is shown in Fig. 6(a). The 

effect of in-plane shear deformation was incorporated as shown in the last row of stiffness matrix in Eq. 

(1), whereas anti-symmetric in-plane bending deformation is usually not considered in a four-node 

element of FEM shown in Fig. 6(b). Therefore, a wall member of FEM is finely divided to consider 

the effect of anti-symmetric in-plane bending deformation by axial deformation of each divided 

element shown in Fig. 6(c). 

 

 

          
 

Fig. 7 In-plane deformation of macro plate model 

As shown in Fig. 7(a), macro plate model can obtain high accuracy solution with large element 

division. If a wall member was modeled with several elements of macro plate model, anti-symmetric 

in-plane bending deformation of individual elements occurred independently instead of entire 

deformation of a wall member shown in Fig. 7(b). However, the entire deformation shown in Fig. 7(c) 

can be obtained by using Ix’ instead of Ix at the last row of stiffness matrix in Eq. (1) in which Ix’ can 

be calculated by full length of a wall member. 

 

 
 

Fig. 8 Modeling of complicated shape 

 

The benefit of macro plate model is a modeling of complicated shape shown in Fig. 8. As can be 

seen in Fig. 4, macro plate model can express in-plane deformation in both x- and y-directions, which 

was different from macroscopic models only y-direction shown in Fig. 1. As can be seen in Fig. 8, this 

wall was divided to eight elements of macro plate model in order to connect with beams and columns, 

so stiffness matrix of each element can be modified using Ix’ and Iy’ at the last row. In addition, the 

combination in the last row of stiffness matrix can express the deformation shape of a wall shown in 

(a) (b) (c) 

(a) (b)  (c) 
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Fig. 6(a). Therefore, any complicated shapes of a wall can be modeled using macro plate model.  

 

 

4. OUT-OF-PLANE BEHAVIOR OF MACRO PLATE MODEL 
 

As aforementioned above, out-of-plane behavior of macro plate model was derived originally from the 

theory of plate bending. Out-of-plane bending and anti-symmetric out-of-plane bending deformation 
are expressed in term of rotational deformations about the x- and y-axes (ηx and ηy) shown in Fig. 9(a) 

and Fig. 9(b) respectively. Out-of-plane torsional deformation (ϕxy) are expressed in Fig. 9(c). 

        
 

Fig. 9 (a) Out-of-plane bending deformation, (b) Anti-symmetric out-of-plane bending deformation, 

and (c) Out-of-plane torsional deformation   

 

The deformation-displacement relationship of out-of-plane behavior was derived as Eq. (2). 
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Theory of plate bending (Zienkiewicz et al., 2005) was conducted to derive out-of-plane stiffness 

matrix of macro plate model from out-of-plane shape function of plate bending as Eq. (3).  
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In order to derive out-of-plane stiffness matrix of macro plate 

model, out-of-plane nodal forces are defined shown in Fig. 10. Based 

on out-of-plane shape function in Eq. (3), the out-of-plane nodal 

force-displacement relationship is expressed as Eq. (4) referring to a 

component of out-of-plane bending deformation about x-and y- axes, 

secondary deformation due to Poisson effect, and out-of-plane 

torsional deformation respectively shown in Fig. 11.  

 

    

Fig. 10 Out-of-plane nodal force 
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1

𝑙𝑦
−1 0

1

𝑙𝑦
0 0

−
2

𝑙𝑥𝑙𝑦

1

𝑙𝑥
0

2

𝑙𝑥𝑙𝑦
0 0 −

2

𝑙𝑥𝑙𝑦
0

1

𝑙𝑦

2

𝑙𝑥𝑙𝑦
−

1

𝑙𝑥
−

1

𝑙𝑦
1

𝑙𝑥
0 0 0 0 0 0 0 0 −

1

𝑙𝑥
0 1

0 0 0 0 0 0
1

𝑙𝑦
0 0 −

1

𝑙𝑦
1 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+
𝐺𝑡3
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0 −
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−

𝑙𝑦
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−
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𝑙𝑥
3𝑙𝑦

1

𝑙𝑦
0 −
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−
1

𝑙𝑦
0

4𝑙𝑥
3𝑙𝑦

1

𝑙𝑦
0 −

4𝑙𝑥
3𝑙𝑦

−
14

𝑙𝑥𝑙𝑦

1

𝑙𝑥
−

1

𝑙𝑦

14

𝑙𝑥𝑙𝑦

1

𝑙𝑥

1

𝑙𝑦
−

14

𝑙𝑥𝑙𝑦
−

1

𝑙𝑥

1

𝑙𝑦

14

𝑙𝑥𝑙𝑦
−

1

𝑙𝑥
−

1

𝑙𝑦
1

𝑙𝑥
−

4𝑙𝑦
3𝑙𝑥

0 −
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𝑙𝑥
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0
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−
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3𝑙𝑥

0 −
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𝑙𝑥
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3𝑙𝑥

0

1

𝑙𝑦
0 −

𝑙𝑥
3𝑙𝑦

−
1

𝑙𝑦
0

𝑙𝑥
3𝑙𝑦

1

𝑙𝑦
0 −

4𝑙𝑥
3𝑙𝑦

−
1

𝑙𝑦
0

4𝑙𝑥
3𝑙𝑦 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑤𝑖

𝜃𝑥𝑖

𝜃𝑦𝑖

𝑤𝑗

𝜃𝑥𝑗

𝜃𝑦𝑗

𝑤𝑘

𝜃𝑥𝑘

𝜃𝑦𝑘

𝑤𝑙

𝜃𝑥𝑙

𝜃𝑦𝑙 ]
 
 
 
 
 
 
 
 
 
 
 
 

      (4) 

 

                     
 

Fig. 11 (a) Out-of-plane bending deformation about x-axis, (b) bending deformation about y-axis, (c) 

Secondary deformation due to Poisson effect, and (d) Out-of-plane torsional deformation  

 

Referring to modes of out-of-plane deformation in Fig. 11, the first term of Eq. (4) is a component 

of out-of-plane bending deformation about the x-axis shown in Fig. 11(a). The second term is a 

component of out-of-plane bending deformation about the y-axis shown in Fig. 11(b). The third term is 

a component of secondary deformation due to Poisson effect shown in Fig. 11(c). The fourth term is a 

component of out-of-plane torsional deformation shown in Fig. 11(d).  

 

                        
Fig. 12 (a) Out-of-plane bending moment about x- and y-axis and (b) Out-of-plane torsional moment 

 

According to modes of out-of-plane deformation in Fig. 11, out-of-plane bending moment is 

Myj Myk 

Myi Myl 

Mxj 

Mxi Mxl 

Mxk 

Mxy 

(a) (b) (c) (d) 

(a) (b) 
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expressed in Fig. 12(a) including the effect of secondary and torsional deformation in Fig. 11(c) and 

Fig. 11(d) respectively. In addition, out-of-plane torsional moment is expressed in Fig. 12(b). 

The decomposition of out-of-plane bending moment shown in Fig. 12(a) is expressed as Eq. (5). 

The first term was a component of out-of-plane pure bending moment about the x- and y-axes. The 

second term was a component of out-of-plane bending moment due to Poisson effect. The third term 

was a component of out-of-plane bending moment due to torsional effect. In addition, out-of-plane 

torsional moment shown in Fig. 12(b) is expressed as Eq. (6). 

 

[
 
 
 
 
 
 
 
 
𝑀𝑥𝑖

𝑀𝑥𝑗

𝑀𝑥𝑘

𝑀𝑥𝑙

𝑀𝑦𝑖

𝑀𝑦𝑗

𝑀𝑦𝑘

𝑀𝑦𝑙 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑀𝑥𝑖

′

𝑀𝑥𝑗
′

𝑀𝑥𝑘
′

𝑀𝑥𝑙
′

𝑀𝑦𝑖
′

𝑀𝑦𝑗
′

𝑀𝑦𝑘
′

𝑀𝑦𝑙
′

]
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
𝑀𝑥𝑖

′′

𝑀𝑥𝑗
′′

𝑀𝑥𝑘
′′

𝑀𝑥𝑙
′′

𝑀𝑦𝑖
′′

𝑀𝑦𝑗
′′

𝑀𝑦𝑘
′′

𝑀𝑦𝑙
′′

]
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
𝑀𝑥𝑖

′′′

𝑀𝑥𝑗
′′′

𝑀𝑥𝑘
′′′

𝑀𝑥𝑙
′′′

𝑀𝑦𝑖
′′′

𝑀𝑦𝑗
′′′

𝑀𝑦𝑘
′′′

𝑀𝑦𝑙
′′′

]
 
 
 
 
 
 
 
 
 

                                                                                          (5)       

 

       

𝑀𝑥𝑦 =
𝐺𝑡3𝑙𝑥𝑙𝑦

3
𝜙𝑥𝑦                                                                                                       (6) 

 

In order to obtain stiffness matrix of each component in Eq. (5), the nodal force-displacement 

relationship in Eq. (4) can be solved from Eq. (2). Referring to Fig. 11(a) and Fig. 11(b), the stiffness 

matrices of out-of-plane bending moment from pure deformation about the x- and y-axes respectively 

are expressed as Eq. (7).    
 

[
 
 
 
𝑀𝑥𝑖

′

𝑀𝑥𝑗
′

𝑀𝑥𝑘
′

𝑀𝑥𝑙
′ ]

 
 
 

=
𝐸𝐼𝑧𝑦
3𝑙𝑦

[

4 2
2 4

1 2
2 1

1 2
2 1

4 2
2 4

] [

𝜏𝑥𝑖
𝜏𝑥𝑗

𝜏𝑥𝑘

𝜏𝑥𝑙

]                             

[
 
 
 
 
𝑀𝑦𝑖

′

𝑀𝑦𝑗
′

𝑀𝑦𝑘
′

𝑀𝑦𝑙
′

]
 
 
 
 

=
𝐸𝐼𝑧𝑥
3𝑙𝑥

[

4 2
2 4

1 2
2 1

1 2
2 1

4 2
2 4

] [

𝜏𝑦𝑖

𝜏𝑦𝑗

𝜏𝑦𝑘

𝜏𝑦𝑙

]                                            (7) 

 

Referring to Fig. 11(c), the stiffness matrix of out-of-plane bending moment due to Poisson effect 

is expressed as Eq. (8). 

 

[
 
 
 
 
 
 
 
 
 
𝑀𝑥𝑖

′′

𝑀𝑥𝑗
′′

𝑀𝑥𝑘
′′

𝑀𝑥𝑙
′′

𝑀𝑦𝑖
′′

𝑀𝑦𝑗
′′

𝑀𝑦𝑘
′′

𝑀𝑦𝑙
′′

]
 
 
 
 
 
 
 
 
 

= 𝜈𝐸
𝑡3

12

[
 
 
 
 
 
 
 

0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0]

 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
𝜏𝑥𝑖
𝜏𝑥𝑗

𝜏𝑥𝑘

𝜏𝑥𝑙
𝜏𝑦𝑖

𝜏𝑦𝑗

𝜏𝑦𝑘

𝜏𝑦𝑙 ]
 
 
 
 
 
 
 

                                                                       (8) 

 

Referring to Fig. 11(d), the stiffness matrix of out-of-plane bending moment due to torsional effect 

is expressed as Eq. (9). 

 

[
 
 
 
𝑀𝑥𝑖

′′′

𝑀𝑥𝑗
′′′

𝑀𝑥𝑘
′′′

𝑀𝑥𝑙
′′′]

 
 
 

=
𝐺𝑡3𝑙𝑥
90𝑙𝑦

[

4 −1 1 −4
−1 4 −4 1
1 −4 4 −1

−4 1 −1 4

] [

𝜏𝑥𝑖
𝜏𝑥𝑗

𝜏𝑥𝑘

𝜏𝑥𝑙

]                    

[
 
 
 
 
𝑀𝑦𝑖

′′′

𝑀𝑦𝑗
′′′

𝑀𝑦𝑘
′′′

𝑀𝑦𝑙
′′′

]
 
 
 
 

=
𝐺𝑡3𝑙𝑦
90𝑙𝑥

[

4 −4 1 −1
−4 4 −1 1
1 −1 4 −4

−1 1 −4 4

] [

𝜏𝑦𝑖

𝜏𝑦𝑗

𝜏𝑦𝑘

𝜏𝑦𝑙

]                              (9) 

 

For out-of-plane deformation, it is necessary to incorporate out-of-plane pure bending deformation 

in Fig. 13(a) with out-of-plane shear deformations in Fig. 13(b) in order to obtain more realistic 

behavior, in which out-of-plane behavior of a wall member should be more softening.    
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Fig. 13 (a) Out-of-plane pure bending deformation and (b) Out-of-plane shear deformation   

 

Using flexibility matrix, out-of-plane pure bending deformation in Fig. 13(a) was incorporated 

with out-of-plane shear deformation in Fig. 13(b). The flexibility matrix due to out-of-plane pure 

bending deformation is expressed as Eq. (10). 

 

[

𝜏𝑥𝑖
𝜏𝑥𝑗

𝜏𝑥𝑘

𝜏𝑥𝑙

] =
𝑙𝑦

3𝐸𝐼𝑧𝑦
[

4 −2
−2 4

1 −2
−2 1

1 −2
−2 1

4 −2
−2 4

]

[
 
 
 
𝑀𝑥𝑖

′

𝑀𝑥𝑗
′

𝑀𝑥𝑘
′

𝑀𝑥𝑙
′ ]

 
 
 

                  [

𝜏𝑦𝑖

𝜏𝑦𝑗

𝜏𝑦𝑘

𝜏𝑦𝑙

] =
𝑙𝑥

3𝐸𝐼𝑧𝑥
[

4 −2
−2 4

1 −2
−2 1

1 −2
−2 1

4 −2
−2 4

]

[
 
 
 
 
𝑀𝑦𝑖

′

𝑀𝑦𝑗
′

𝑀𝑦𝑘
′

𝑀𝑦𝑙
′

]
 
 
 
 

                              (10) 

 

Incorporating out-of-plane bending deformation with out-of-plane shear deformation (κM / Gtlxly), 

the flexibility matrix is expressed as Eq. (11). 

 

[

𝜏𝑥𝑖
𝜏𝑥𝑗

𝜏𝑥𝑘

𝜏𝑥𝑙

] =

[
 
 
 
 
 
 
 
 
 

4𝑙𝑦
3𝐸𝑦1𝐼𝑧𝑦

+
𝜅𝑥

𝐺𝑦1𝑡𝑙𝑥𝑙𝑦
−

2𝑙𝑦
3𝐸𝑦1𝐼𝑧𝑦

+
𝜅𝑥

𝐺𝑦1𝑡𝑙𝑥𝑙𝑦

−
2𝑙𝑦

3𝐸𝑦1𝐼𝑧𝑦
+

𝜅𝑥

𝐺𝑦1𝑡𝑙𝑥𝑙𝑦

4𝑙𝑦
3𝐸𝑦1𝐼𝑧𝑦

+
𝜅𝑥

𝐺𝑦1𝑡𝑙𝑥𝑙𝑦
𝑙𝑦

3𝐸𝑦1𝐼𝑧𝑦
+

𝜅𝑥

𝐺𝑦1𝑡𝑙𝑥𝑙𝑦
−

2𝑙𝑦
3𝐸𝑦1𝐼𝑧𝑦

+
𝜅𝑥

𝐺𝑦1𝑡𝑙𝑥𝑙𝑦

−
2𝑙𝑦

3𝐸𝑦1𝐼𝑧𝑦
+

𝜅𝑥

𝐺𝑦1𝑡𝑙𝑥𝑙𝑦

𝑙𝑦
3𝐸𝑦1𝐼𝑧𝑦

+
𝜅𝑥

𝐺𝑦1𝑡𝑙𝑥𝑙𝑦

    

𝑙𝑦
3𝐸𝑦2𝐼𝑧𝑦

+
𝜅𝑥

𝐺𝑦2𝑡𝑙𝑥𝑙𝑦
−

2𝑙𝑦
3𝐸𝑦2𝐼𝑧𝑦

+
𝜅𝑥

𝐺𝑦2𝑡𝑙𝑥𝑙𝑦

−
2𝑙𝑦

3𝐸𝑦2𝐼𝑧𝑦
+

𝜅𝑥

𝐺𝑦2𝑡𝑙𝑥𝑙𝑦

𝑙𝑦
3𝐸𝑦2𝐼𝑧𝑦

+
𝜅𝑥

𝐺𝑦2𝑡𝑙𝑥𝑙𝑦
4𝑙𝑦

3𝐸𝑦2𝐼𝑧𝑦
+

𝜅𝑥

𝐺𝑦2𝑡𝑙𝑥𝑙𝑦
−

2𝑙𝑦
3𝐸𝑦2𝐼𝑧𝑦

+
𝜅𝑥

𝐺𝑦2𝑡𝑙𝑥𝑙𝑦

−
2𝑙𝑦

3𝐸𝑦2𝐼𝑧𝑦
+

𝜅𝑥

𝐺𝑦2𝑡𝑙𝑥𝑙𝑦

4𝑙𝑦
3𝐸𝑦2𝐼𝑧𝑦

+
𝜅𝑥

𝐺𝑦2𝑡𝑙𝑥𝑙𝑦 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
𝑀𝑥𝑖

′

𝑀𝑥𝑗
′

𝑀𝑥𝑘
′

𝑀𝑥𝑙
′ ]

 
 
 

                  (11) 

 

[

𝜏𝑦𝑖

𝜏𝑦𝑗

𝜏𝑦𝑘

𝜏𝑦𝑙

] =

[
 
 
 
 
 
 
 
 
 

4𝑙𝑥
3𝐸𝑥1𝐼𝑧𝑥

+
𝜅𝑦

𝐺𝑥1𝑡𝑙𝑥𝑙𝑦
−

2𝑙𝑥
3𝐸𝑥2𝐼𝑧𝑥

+
𝜅𝑦

𝐺𝑥2𝑡𝑙𝑥𝑙𝑦

−
2𝑙𝑥

3𝐸𝑥1𝐼𝑧𝑥
+

𝜅𝑦

𝐺𝑥1𝑡𝑙𝑥𝑙𝑦

4𝑙𝑥
3𝐸𝑥2𝐼𝑧𝑥

+
𝜅𝑦

𝐺𝑥2𝑡𝑙𝑥𝑙𝑦
𝑙𝑥

3𝐸𝑥1𝐼𝑧𝑥
+

𝜅𝑦

𝐺𝑥1𝑡𝑙𝑥𝑙𝑦
−

2𝑙𝑥
3𝐸𝑥2𝐼𝑧𝑥

+
𝜅𝑦

𝐺𝑥2𝑡𝑙𝑥𝑙𝑦

−
2𝑙𝑥

3𝐸𝑥1𝐼𝑧𝑥
+

𝜅𝑦

𝐺𝑥1𝑡𝑙𝑥𝑙𝑦

𝑙𝑥
3𝐸𝑥2𝐼𝑧𝑥

+
𝜅𝑦

𝐺𝑥2𝑡𝑙𝑥𝑙𝑦

    

𝑙𝑥
3𝐸𝑥2𝐼𝑧𝑥

+
𝜅𝑦

𝐺𝑥2𝑡𝑙𝑥𝑙𝑦
−

2𝑙𝑥
3𝐸𝑥1𝐼𝑧𝑥

+
𝜅𝑦

𝐺𝑥1𝑡𝑙𝑥𝑙𝑦

−
2𝑙𝑥

3𝐸𝑥2𝐼𝑧𝑥
+

𝜅𝑦

𝐺𝑥2𝑡𝑙𝑥𝑙𝑦

𝑙𝑥
3𝐸𝑥1𝐼𝑧𝑥

+
𝜅𝑦

𝐺𝑥1𝑡𝑙𝑥𝑙𝑦
4𝑙𝑥

3𝐸𝑥2𝐼𝑧𝑥
+

𝜅𝑦

𝐺𝑥2𝑡𝑙𝑥𝑙𝑦
−

2𝑙𝑥
3𝐸𝑥1𝐼𝑧𝑥

+
𝜅𝑦

𝐺𝑥1𝑡𝑙𝑥𝑙𝑦

−
2𝑙𝑥

3𝐸𝑥2𝐼𝑧𝑥
+

𝜅𝑦

𝐺𝑥2𝑡𝑙𝑥𝑙𝑦

4𝑙𝑥
3𝐸𝑥1𝐼𝑧𝑥

+
𝜅𝑦

𝐺𝑥1𝑡𝑙𝑥𝑙𝑦 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑀𝑦𝑖

′

𝑀𝑦𝑗
′

𝑀𝑦𝑘
′

𝑀𝑦𝑙
′

 

]
 
 
 
 

 

 

From the flexibility matrix in Eq. (11), the stiffness matrix of out-of-plane pure bending 

deformation incorporating with out-of-plane shear deformation is expressed as Eq. (12). 

 

[
 
 
 
𝑀𝑥𝑖

′

𝑀𝑥𝑗
′

𝑀𝑥𝑘
′

𝑀𝑥𝑙
′ ]

 
 
 

=

[
 
 
 
 
 
 
 
 
 
8 + 2𝜆𝑦1 + 5𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦1𝐼𝑧𝑦
𝑙𝑦

4 − 2𝜆𝑦1 + 𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦1𝐼𝑧𝑦
𝑙𝑦

4 − 2𝜆𝑦1 + 𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦1𝐼𝑧𝑦
𝑙𝑦

8 + 2𝜆𝑦1 + 5𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦1𝐼𝑧𝑦
𝑙𝑦

2 − 4𝜆𝑦1 − 𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦2𝐼𝑧𝑦
𝑙𝑦

4 − 2𝜆𝑦1 + 𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦2𝐼𝑧𝑦
𝑙𝑦

4 − 2𝜆𝑦1 + 𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦2𝐼𝑧𝑦
𝑙𝑦

2 − 4𝜆𝑦1 − 𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦2𝐼𝑧𝑦
𝑙𝑦

     

2 − 𝜆𝑦1 − 4𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦1𝐼𝑧𝑦
𝑙𝑦

4 + 𝜆𝑦1 − 2𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦1𝐼𝑧𝑦
𝑙𝑦

4 + 𝜆𝑦1 − 2𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦1𝐼𝑧𝑦
𝑙𝑦

2 − 𝜆𝑦1 − 4𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦1𝐼𝑧𝑦
𝑙𝑦

8 + 5𝜆𝑦1 + 2𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦2𝐼𝑧𝑦
𝑙𝑦

4 + 𝜆𝑦1 − 2𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦2𝐼𝑧𝑦
𝑙𝑦

4 + 𝜆𝑦1 − 2𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦2𝐼𝑧𝑦
𝑙𝑦

8 + 5𝜆𝑦1 + 2𝜆𝑦2

6(1 + 𝜆𝑦1 + 𝜆𝑦2)

𝐸𝑦2𝐼𝑧𝑦
𝑙𝑦 ]

 
 
 
 
 
 
 
 
 

[

𝜏𝑥𝑖
𝜏𝑥𝑗

𝜏𝑥𝑘

𝜏𝑥𝑙

]         (12) 

 

             

[
 
 
 
 
𝑀𝑦𝑖

′

𝑀𝑦𝑗
′

𝑀𝑦𝑘
′

𝑀𝑦𝑙
′

]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
8 + 2𝜆𝑥1 + 5𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥1𝐼𝑧𝑥
𝑙𝑥

4 + 𝜆𝑥1 − 2𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥1𝐼𝑧𝑥
𝑙𝑥

4 − 2𝜆𝑥1 + 𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥2𝐼𝑧𝑥
𝑙𝑥

8 + 5𝜆𝑥1 + 2𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥2𝐼𝑧𝑥
𝑙𝑥

2 − 4𝜆𝑥1 − 𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥2𝐼𝑧𝑥
𝑙𝑥

4 + 𝜆𝑥1 − 2𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥2𝐼𝑧𝑥
𝑙𝑥

4 − 2𝜆𝑥1 + 𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥1𝐼𝑧𝑥
𝑙𝑥

2 − 𝜆𝑥1 − 4𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥1𝐼𝑧𝑥
𝑙𝑥

    

2 − 𝜆𝑥1 − 4𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥1𝐼𝑧𝑥
𝑙𝑥

4 − 2𝜆𝑥1 + 𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥1𝐼𝑧𝑥
𝑙𝑥

4 + 𝜆𝑥1 − 2𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥2𝐼𝑧𝑥
𝑙𝑥

2 − 4𝜆𝑥1 − 𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥2𝐼𝑧𝑥
𝑙𝑥

8 + 5𝜆𝑥1 + 2𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥2𝐼𝑧𝑥
𝑙𝑥

4 − 2𝜆𝑥1 + 𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥2𝐼𝑧𝑥
𝑙𝑥

4 + 𝜆𝑥1 − 2𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥1𝐼𝑧𝑥
𝑙𝑥

8 + 2𝜆𝑥1 + 5𝜆𝑥2

6(1 + 𝜆𝑥1 + 𝜆𝑥2)

𝐸𝑥1𝐼𝑧𝑥
𝑙𝑥 ]

 
 
 
 
 
 
 
 

[

𝜏𝑦𝑖

𝜏𝑦𝑗

𝜏𝑦𝑘

𝜏𝑦𝑙

] 

 

(a) (b) 
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𝜆𝑥1 =
6𝐸𝑥1𝐼𝑧𝑥𝜅𝑦

𝐺𝑥1𝑡𝑙𝑥
2𝑙𝑦

             𝜆𝑥2 =
6𝐸𝑥2𝐼𝑧𝑥𝜅𝑦

𝐺𝑥2𝑡𝑙𝑥
2𝑙𝑦

            𝜆𝑦1 =
6𝐸𝑦1𝐼𝑧𝑦𝜅𝑥

𝐺𝑦1𝑡𝑙𝑥𝑙𝑦
2

             𝜆𝑦2 =
6𝐸𝑦2𝐼𝑧𝑦𝜅𝑥

𝐺𝑦2𝑡𝑙𝑥𝑙𝑦
2

 

 

 

5. EQUILIBRIUM CONDITION OF MACRO PLATE MODEL 

 

From aforementioned derivation, it is necessary to satisfy member force of macro plate model in Fig. 5 

with equilibrium condition in Fig. 14(b).   
  

 
Fig. 14 (a) In-plane nodal force and (b) Member forces in equilibrium condition 

From Fig. 14(a) and Fig. 5, the nodal force-member force relationship is expressed as Eq. (13) 

using the transpose matrix in Eq. (1).  

 

[
 
 
 
 
 
 
 
 
𝐹𝑥𝑖

𝐹𝑦𝑖

𝐹𝑥𝑗

𝐹𝑦𝑗

𝐹𝑥𝑘

𝐹𝑦𝑘

𝐹𝑥𝑙

𝐹𝑦𝑙 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
−1 2⁄ 0 −1 𝑙𝑦⁄ 0 1 2𝑙𝑦⁄

0 −1 2⁄ 0 1 𝑙𝑥⁄ 1 2𝑙𝑥⁄

−1 2⁄ 0 1 𝑙𝑦⁄ 0 −1 2𝑙𝑦⁄

0 1 2⁄ 0 −1 𝑙𝑥⁄ 1 2𝑙𝑥⁄

1 2⁄ 0 −1 𝑙𝑦⁄ 0 −1 2𝑙𝑦⁄

0 1 2⁄ 0 1 𝑙𝑥⁄ −1 2𝑙𝑥⁄

1 2⁄ 0 1 𝑙𝑦⁄ 0 1 2𝑙𝑦⁄

0 −1 2⁄ 0 −1 𝑙𝑥⁄ −1 2𝑙𝑥⁄ ]
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑁𝑥

 𝑁𝑦

𝑀𝑥

𝑀𝑦

𝑀0]
 
 
 
 

                                                           (13) 

 

As shown in Fig. 14, member force in equilibrium condition can be converted to in-plane nodal 

force. With the relationship in Eq. (13), member force in equilibrium condition is expressed as Eq. 

(14).  

 

𝑀𝑥1 = 
𝑙𝑦
2

(𝐹𝑥𝑖 − 𝐹𝑥𝑗) =  
𝑙𝑦
2

 (–
𝑁𝑥

2
−

𝑀𝑥

𝑙𝑦
+

𝑀0

2𝑙𝑦
+

𝑁𝑥

2
−

𝑀𝑥

𝑙𝑦
+

𝑀0

2𝑙𝑦
)    =  −𝑀𝑥 +

𝑀0

2
                                        (14) 

 

𝑁𝑥1 = −𝐹𝑥𝑖 − 𝐹𝑥𝑗 = 
𝑁𝑥

2
+

𝑀𝑥

𝑙𝑦
−

𝑀0

2𝑙𝑦
+

𝑁𝑥

2
−

𝑀𝑥

𝑙𝑦
+

𝑀0

2𝑙𝑦
   =  𝑁𝑥 

 
𝑄𝑥1 = −𝐹𝑦𝑖 − 𝐹𝑦𝑗 = = −𝑀0 𝑙𝑥⁄  

 

Other member forces in equilibrium condition are expressed as Eq. (15). 

 

𝑀𝑥2 = 𝑀𝑥 +
𝑀0

2
,  𝑁𝑥2 = 𝑁𝑥 ,  𝑄𝑥2 = −

𝑀0

𝑙𝑥
,  𝑀𝑦1 = −𝑀𝑦 −

𝑀0

2
,  𝑁𝑦1 = 𝑁𝑦,  𝑄𝑦1 = 

𝑀0

𝑙𝑦
,  𝑀𝑦2 = 𝑀𝑦 −

𝑀0

2
,  𝑁𝑦2 = 𝑁𝑦, 𝑄𝑦2 = 

𝑀0

𝑙𝑦
       (15) 

 

Therefore, equilibrium condition of axial forces was satisfied as Eq. (16) 

 
𝑁𝑥1 = 𝑁𝑥2 = 𝑁𝑥          𝑁𝑦1 = 𝑁𝑦2 = 𝑁𝑦                                                                                 (16)   

 

 

Fyj 

 
Fxj 

 

Fxk 

 

Fyk 

 

Fxi 

 

Fyi 

 
Fxl 

 

Fyl 

 

x 

y 

x 

y 

Ny2 

 

Ny1 

 

Nx1 

 

Nx2 

 

Qy2 

 

My2 

 

Qx2 

 

Qx1 

 

Qy1 

 

Mx2 

 

Mx1 

 

My1 
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Also, equilibrium condition of bending moments was satisfied as Eq. (17) 

 

𝑀𝑥2 − 𝑀𝑥1

2
=  

𝑀𝑥 +
𝑀0

2
+𝑀𝑥 −

𝑀0

2
2

= 𝑀𝑥                 
𝑀𝑦2 − 𝑀𝑦1

2
=  

𝑀𝑦 +
𝑀0

2
+𝑀𝑦 −

𝑀0

2
2

= 𝑀𝑦                                (17) 

 

For in-plane shear deformation, shear forces can be determined from bending moments as Eq. (18). 

Then, shear stresses in Eq. (19) are equal to satisfy equilibrium condition.   

 

𝑄𝑥 =
𝑀𝑥1 + 𝑀𝑥2

𝑙𝑥
= 

−𝑀𝑥 +
𝑀0

2
+𝑀𝑥 +

𝑀0

2
𝑙𝑥

=
𝑀0

𝑙𝑥
                𝑄𝑦 =

−𝑀𝑦1 − 𝑀𝑦2

𝑙𝑦
= 

𝑀𝑦 +
𝑀0

2
−𝑀𝑦 +

𝑀0

2
𝑙𝑦

=
𝑀0

𝑙𝑦
               (18) 

𝑞𝑥𝑦 =
𝑄𝑥

𝐴𝑠𝑥

= 
𝜅𝑀0

𝑡𝑙𝑥𝑙𝑦
         𝑞𝑦𝑥 =

𝑄𝑦

𝐴𝑠𝑦

= 
𝜅𝑀0

𝑡𝑙𝑦𝑙𝑥
                                                                              (19) 

 

 

6. DERIVATION OF STRESS AND STRAIN FOR HYSTERETIC RULES 

 

For nonlinear analysis of RC walls represented MVLEM and IPEM, hysteretic behavior of a wall 

member have been described using hysteretic constitutive models of steel and concrete. As same as 

TVLEM, hysteretic behavior of macro plate model can be simulated in the level of a wall member in 

order to predict inelastic response of the entire RC wall. For macro plate model, hysteretic behavior of 

a wall member was described by conventional hysteretic rules, such as Takeda model in Fig. 15(a), 

peak-oriented model, origin-oriented model, and axial-stiffness model (Kabeyasawa et al., 1983) in 

Fig. 15(b), and other hysteretic models from experimental results in order to track inelastic responses. 

Therefore, numerical derivation of stress and strain in macro plate model is necessary for application 

of hysteretic models, in which the cracking, yielding, and ultimate strength of back-bone curves in Fig. 

15(c) were determined using empirical equations recommended by building design standards. For 

nonlinear analysis of macro plate model, nodal displacements in Fig. 3 were obtained to calculate 

member deformations in Fig. 4 and Fig. 9. Then, member deformations were converted to member 

strain in order to track a hysteretic model and return the stiffness degrading factor to next analysis step. 

This was an iteration method for solving nonlinear problem in macro plate model.      

  

       
 

Fig. 15 (a) Takeda model, (b) Axial-stiffness model, and (c) Back-bone curve 

 

6.1 In-plane behavior 

 

Axial stress and strain of macro plate model can be derived based on the theory of elasticity (Nx = 

EAxεx, Ny = EAyεy) and the relationship in Eq. (1). The axial stress-strain relationships of macro plate 

model are expressed as Eq. (20). 

          

𝑁𝑥 =
1

1 − 𝜈2
*
𝐸𝐴𝑥

𝑙𝑥
𝛿𝑥 + 𝜈

𝐸𝐴𝑥

𝑙𝑦
𝛿𝑦+ ,  𝜀𝑥 =

1

1 − 𝜈2
[
𝛿𝑥

𝑙𝑥
+ 𝜈

𝛿𝑦

𝑙𝑦
+                   𝑁𝑦 =

1

1 − 𝜈2
*𝜈

𝐸𝐴𝑦

𝑙𝑥
𝛿𝑥 +

𝐸𝐴𝑦

𝑙𝑦
𝛿𝑦+ ,  𝜀𝑦 =

1

1 − 𝜈2
*
𝛿𝑦

𝑙𝑦
+ 𝜈

𝛿𝑥

𝑙𝑥
]     (20) 

 

ζc 

ζu 
ζy 

εc εy εu 

(a) (b) (c) 
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In-plane bending moment and curvature of macro plate model can be derived based on the theory 

of elasticity (Mx = EIxϕx, My = EIyϕy) and the relationship in Eq. (1). The bending moment-curvature 

relationships of macro plate model are expressed as Eq. (21). 

 

𝑀𝑥 =
𝐸𝐼𝑥
𝑙𝑥

𝜏𝑥,  𝜙𝑥 =
𝜏𝑥

𝑙𝑥
                            𝑀𝑦 =

𝐸𝐼𝑦
𝑙𝑦

𝜏𝑦,  𝜙𝑦 =
𝜏𝑦

𝑙𝑦
                                                                   (21) 

 

In-plane shear stress and strain of macro plate model can be derived based on the theory of 

elasticity (M0 = Gtlxlyγxy / κ) and the relationship in Eq. (1). The shear stress-strain relationship of 

macro plate model is expressed as Eq. (22). 

 

𝑀0 =
𝜏0

𝜅
𝐺𝑡𝑙𝑥𝑙𝑦

+
𝑙𝑥

12𝐸𝐼𝑥′
+

𝑙𝑦
12𝐸𝐼𝑦′

,  𝛾𝑥𝑦 =
𝜏0

𝐺𝑡𝑙𝑥2𝑙𝑦
12𝐸𝐼𝑥

′𝜅
+

𝐺𝑡𝑙𝑥𝑙𝑦2

12𝐸𝐼𝑦
′ 𝜅

+ 1

                                                                  (22) 

 

In order to propose nonlinear analysis of macro plate model for in-plane behavior, a nonlinear 

analytical model assembled by macro plate model of shear walls was compared with a full-scale 

shaking table test on a six-story RC wall-frame building carried out at E-Defense in 2006 and TVLEM 

(Kim et al., 2008). Three ground motion components in the east-west, north-south, and up-down 

direction of Kobe earthquake recorded by Japan Meteorological Agency (JMA 1995) were an input 

ground motion as same as the test at E-Defense. In order to neglect strength degradation in post-peak 

response, 25% and 50% of input ground motion were applied to verify macro plate model. For 

nonlinear analysis of macro plate model in this verification, Takeda model in Fig. 15(a) was applied to 

simulate in-plane flexural and shear behavior and axial-stiffness model in Fig. 15(b) was applied to 

simulate axial behavior. The back-bone curves of a wall member were determined using empirical 

equations recommended by AIJ standards. From analysis and experimental results, the relationship 

between base shear and relative displacement at 2nd floor in x- and y-directions was considered for 

this verification. The verification results of macro plate model (MPM) in Fig. 16 show a good 

correlation with the TVLEM results and the experimental results at E-Defense for 25% and 50% of 

input ground motion.  

 

 
 

Fig. 16 Verification results of macro plate model (MPM) 

 

TVLEM TVLEM 

MPM MPM 
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6.2 Out-of-plane behavior 

 

Out-of-plane curvature occurring in a wall member is varied 

depending on location. For the same nonlinear behavior as in-plane 

bending, member-end moments are averaged to determine 

curvature shown in Fig. 17. Average moment and shear force can be 

evaluated from member-end moments shown in Eq. (23). 
 

 

  

 Fig. 17 Average moment 

[
 
 
 
𝑀𝑧𝑦1

𝑄𝑧𝑦1

𝑀𝑧𝑦2

𝑄𝑧𝑦2 ]
 
 
 

=

[
 
 
 
−1 2⁄ 1 2⁄ 0 0
1 𝑙𝑦⁄ 1 𝑙𝑦⁄ 0 0

0 0 1 2⁄ −1 2⁄

0 0 1 𝑙𝑦⁄ 1 𝑙𝑦⁄ ]
 
 
 

[

 𝑀𝑥𝑖

𝑀𝑥𝑗

𝑀𝑥𝑘

𝑀𝑥𝑙

]                                                                                                    (23) 

 

Out-of-plane bending moment and curvature of macro plate model can be derived based on the 

theory of elasticity (Mzy1 = Ey1Izyϕzy1 / 2) and the relationship of pure bending deformation in Eq. (7). 

The bending moment-curvature relationships of macro plate model are expressed as Eq. (24). 

 

𝑀𝑧𝑦1 = −
𝐸𝑦1𝐼𝑧𝑦
3𝑙𝑦

𝜏𝑥𝑖 +
𝐸𝑦1𝐼𝑧𝑦
3𝑙𝑦

𝜏𝑥𝑗 +
𝐸𝑦1𝐼𝑧𝑦
6𝑙𝑦

𝜏𝑥𝑘 −
𝐸𝑦1𝐼𝑧𝑦
6𝑙𝑦

𝜏𝑥𝑙 ,  𝜙𝑧𝑦1 =
1

3𝑙𝑦
(−2𝜏𝑥𝑖 + 2𝜏𝑥𝑗 + 𝜏𝑥𝑘 − 𝜏𝑥𝑙)                       (24) 

 

Out-of-plane shear stress and strain of macro plate model can be derived based on the theory of 

elasticity (Qzy1 = Gy1tlxγzy1 / 2κx) and the relationship of bending deformation incorporating with shear 

deformation in Eq. (12). The shear stress-strain relationship of macro plate model is expressed as Eq. 

(25). 

 

𝑄𝑧𝑦1 =
𝑀𝑥𝑖

𝑙𝑦
+

𝑀𝑥𝑗

𝑙𝑦
=

𝐸𝑦1𝐼𝑧𝑦
𝑙𝑦
2

*
2 + 𝜆𝑦2

1 + 𝜆𝑦1 + 𝜆𝑦2

(𝜏𝑥𝑖 + 𝜏𝑥𝑗) +
1 − 𝜆𝑦2

1 + 𝜆𝑦1 + 𝜆𝑦2

(𝜏𝑥𝑘 + 𝜏𝑥𝑙)+                                       (25) 

𝛾𝑧𝑦1 =
𝜆𝑦1

3(1+𝜆𝑦1 + 𝜆𝑦2)
[(2 + 𝜆𝑦2)(𝜏𝑥𝑖 + 𝜏𝑥𝑗) + (1 − 𝜆𝑦2)(𝜏𝑥𝑘 + 𝜏𝑥𝑙)] 

 

 

7. PROBLEM OF DISTRIBUTED FORCE IN MACRO PLATE MODEL 
 

In order to simulate out-of-plane behavior in nonlinear analysis, the stress-strain 

relationship of macro plate model was derived by out-of-plane deformation. Since 

out-of-plane behavior was derived starting from the nodal force-displacement relationship and 

the deformation-displacement relationship, it is necessary to convert distributed force in case 

of wind and tsunami to nodal force for nonlinear analysis. The shape function (N) for each node 

is expressed in terms of normalized coordinates (ξ and η) as Eq. (26) (Zienkiewicz et al., 2005). 
 

𝑁𝑎 =
1

4
(1 + 𝜉𝑎𝜉)(1 + 𝜂𝑎𝜂)          𝑎 = 𝑖, 𝑗, 𝑘, 𝑙                                                                             (26) 

 

For normalized coordinates: 

 
(𝜉𝑖 , 𝜂𝑖) = (−1,−1)         (𝜉𝑗 , 𝜂𝑗) = (−1, 1)        (𝜉𝑘, 𝜂𝑘) = (1, 1)         (𝜉𝑙 , 𝜂𝑙) = (1, −1) 

 

The general form of distributed force (q), such as wind and 

tsunami, is expressed in Fig. 18. 
 

 

Fig. 18 Distributed force 
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From the shape function in Eq. (26), nodal forces acting on each node of macro plate model can be 

computed from Eq. (27). 

 

[

𝐹𝑤𝑎

𝐹𝜃𝑥𝑎

𝐹𝜃𝑦𝑎

] =
𝑙𝑥𝑙𝑦
4

∑ ∫ ∫

[
 
 
 
 

𝑁𝑎𝑁𝑏𝑞𝑏

𝑙𝑦
4

𝑁𝑎𝑁𝑏𝑞𝑏(𝜂𝑎 − 𝜂)

𝑙𝑥
4

𝑁𝑎𝑁𝑏𝑞𝑏(𝜉𝑎 − 𝜉)]
 
 
 
 1

−1

1

−1

𝑘

𝑏=𝑖

𝑑𝜉𝑑𝜂                                                                    (27) 

 
From Eq. (27), distributed force can be converted to nodal forces shown in Eq. (28).  

 

[

𝐹𝑤𝑖

𝐹𝜃𝑥𝑖

𝐹𝜃𝑦𝑖

] =
𝑙𝑥𝑙𝑦
36

[
 
 
 
 

4𝑞𝑖 + 2𝑞𝑗 + 𝑞𝑘+2𝑞𝑙

𝑙𝑦
4

(2𝑞𝑖 + 2𝑞𝑗+𝑞𝑘+𝑞𝑙)

−
𝑙𝑥
4

(2𝑞𝑖 + 𝑞𝑗+𝑞𝑘+2𝑞𝑙)]
 
 
 
 

        [

𝐹𝑤𝑗

𝐹𝜃𝑥𝑗

𝐹𝜃𝑦𝑗

] =
𝑙𝑥𝑙𝑦
36

[
 
 
 
 

2𝑞𝑖 + 4𝑞𝑗 + 2𝑞𝑘+𝑞𝑙

−
𝑙𝑦
4

(2𝑞𝑖 + 2𝑞𝑗+𝑞𝑘+𝑞𝑙)

−
𝑙𝑥
4

(𝑞𝑖 + 2𝑞𝑗+2𝑞𝑘+𝑞𝑙)]
 
 
 
 

                                       (28) 

[

𝐹𝑤𝑘

𝐹𝜃𝑥𝑘

𝐹𝜃𝑦𝑘

] =
𝑙𝑥𝑙𝑦
36

[
 
 
 
 

𝑞𝑖 + 2𝑞𝑗 + 4𝑞𝑘+2𝑞𝑙

−
𝑙𝑦
4

(𝑞𝑖 + 𝑞𝑗+2𝑞𝑘+2𝑞𝑙)

𝑙𝑥
4

(𝑞𝑖 + 2𝑞𝑗+2𝑞𝑘+𝑞𝑙) ]
 
 
 
 

       [

𝐹𝑤𝑙

𝐹𝜃𝑥𝑙

𝐹𝜃𝑦𝑙

] =
𝑙𝑥𝑙𝑦
36

[
 
 
 
 

2𝑞𝑖 + 𝑞𝑗 + 2𝑞𝑘+4𝑞𝑙

𝑙𝑦
4

(𝑞𝑖 + 𝑞𝑗+2𝑞𝑘+2𝑞𝑙)

𝑙𝑥
4

(2𝑞𝑖 + 𝑞𝑗+𝑞𝑘+2𝑞𝑙)]
 
 
 
 

 

 

 

8. CONCLUSIONS 

 

For modeling of RC walls, macro plate model was proposed to describe in-plane and out-of-plane 

behavior of a wall member. Based on theory of elasticity and theory of plate bending, numerical 

derivations of macro plate model are presented in this paper. Out-of-plane bending deformation was 

incorporated with out-of-plane shear deformation for more softening of out-of-plane behavior. In order 

to predict inelastic response of a wall member, hysteretic behavior of macro plate model can be 

simulated by stress-strain relationships in hysteretic models. From the verification results, the analysis 

results show a good correlation with the TVLEM results and the experimental results at E-Defense, so 

macro plate model is adequate to represent shear walls for in-plane behavior. Comparing with TVLEM, 

MVLEM, and IPEM, macro plate model can represent any complicates shape of a wall and also can 

simulate out-of-plane behavior. However, strength degradation in post-peak behavior and interactions 

between axial, bending, and shear deformation as IPEM will be studied further. 

Implementation of macro plate model, a practical model, into a computational platform will 

provide structural design engineers and researchers improved analytical capabilities to model and 

study nonlinear behavior of RC walls and their interaction with other structural members. The 

practical model can be used for nonlinear structural analysis of RC buildings represented by a 

wall-frame model. The reliability of a wall-frame model depends on hysteretic models of structural 

members and member interaction. This practical model allows for possible further model 

improvements including applications to other structural members. For out-of-plane behavior, 

verification and calibration using observe damage will be presented in a future publication. Moreover, 

nonlinear structural analysis of a wall-frame model from earthquake and subsequent tsunami, in which 

distributed force can be converted to nodal forces presented in this paper, will be studied further.  
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