
IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

Regular Paper

Dividing Huge XML Trees Using the m-bridge Technique
over One-to-one Corresponding Binary Trees

Takayuki Kawamura1 KiminoriMatsuzaki1,a)

Received: November 15, 2013, Accepted: March 19, 2014

Abstract: Tree data such as XML trees have recently been getting larger and larger. Parallel and distributed process-
ing is a promising way of dealing with big data, but we need to divide the data in the first step. Since computation
over trees often requires relationships between parents and children and/or among siblings, we should pay attention to
such relationships. There is a technique called the “m-bridge” for dividing trees. We can easily compute m-bridges
for trees of any shape. However, division with the m-bridge technique is sometimes unsatisfactory for shallow XML
trees. We propose a method of tree division for XML trees in this study, in which we apply the m-bridge technique
to a one-to-one corresponding binary tree. We implement the tree division algorithm using the Simple API for XML
(SAX) Parser. An important feature of our algorithm is that we transform and divide XML trees in the order that the
SAX parser reads the trees. We carried out experiments and discuss the properties of the tree division algorithm we
propose. In addition, we discuss how we can use the divided trees with query examples.

Keywords: XML, distributed computing, data division, binary-tree representation, SAX

1. Introduction

A large amounts of data have recently been widely used, which
calls for methods of processing such huge amounts of data. Tree
data (or semi-structured data) like XML documents are also be-
coming larger [4].

It is often the case that a single computer has insufficient mem-
ory or storage to process such large amounts of data. Therefore,
it is important to execute parallel or distributed computing with
multiple computers. The first step in parallel or distributed com-
puting is data division.

Many applications, which involve tree structures like XML,
utilize the relations between parents and children. This means
that tree division should focus on the relations between nodes.
There is a tree division algorithm that holds some properties
on the relations between parents and children, i.e., a tree divi-
sion using m-bridges [14], [27]. We can divide a tree of any
shape through simple computations with this tree division with
m-bridges. A problem with tree division with m-bridges is that we
sometimes have segments that are too small after shallow XML
documents are divided.

To resolve this problem, we propose a tree-division algorithm
in this study, by applying the m-bridge technique to a binary tree
that has one-to-one correspondence to the XML tree. We can
appropriately divide a tree even if the tree is very wide and shal-
low by computing m-bridges over binary-tree representations. We
also implemented an existing tree division with m-bridges and the
proposed division with m-bridges over the binary-tree represen-
tations by using the Simple API for XML (SAX) library [5]. We
then conducted experiments with these programs and investigated

1 Kochi University of Technology, Kami, Kochi 782–8502, Japan
a) matsuzaki.kiminori@kochi-tech.ac.jp

the properties of tree division based on the binary-tree represen-
tations.

The three main contributions of the paper are summarized be-
low.
• Based on the existing tree-division method with m-bridges

(Section 2), we propose a new tree-division method with m-
bridges over binary-tree representations (Section 3). We can
apply the proposed tree-division method to XML trees of any
shape. The number of parts divided by the proposed method
is much smaller than that by the existing method.

• We implemented each of the existing tree divisions with m-
bridges and the proposed tree division with m-bridges over
the binary-tree representations as a one-pass algorithm using
the SAX library (Section 4). The results from experiments
demonstrated that our implementation with m-bridges over
binary-tree representations could divide a tree sufficiently
fast (Section 5).

• We also discuss how we can use the data divided by the pro-
posed method in distributed computing (Section 6).

Distributed Processing Model That We Assume in This Study
The final goal of our research was to develop a tree-processing

framework that could be used in cloud-computing environments.
Except for cases where we have data in the cloud environment
we use, we are generally required to send data to the cloud en-
vironment through networks. We implemented m-bridge-based
tree-division with a one-pass algorithm using SAX in this study,
so that we could divide the tree at the gateway of the cloud envi-
ronment in a streaming-processing manner *1.

We assumed MapReduce/Hadoop or related models as the dis-

*1 If the algorithm consists of with more than one pass, then we need to
store the data somewhere. This becomes a problem when we cannot
place the (whole) data on the gateway.

c© 2014 Information Processing Society of Japan 40

IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

tributed processing model. Data are split into blocks of constant
size (64 MB in default) and managed by blocks in the Hadoop
distributed file system (HDFS). We stored parts of data in dif-
ferent files in this study. Parts of data in HDFS are copied to
some other nodes in the background, but we did not take into
account the cost of this replication. Computation in the MapRe-
duce programming model is performed in two phases: a function
is applied independently to each part of the data (the map phase)
followed by a process that merges the intermediate results (the
reduce phase). The number of parts after division (number of di-
visions) strongly affects the performance of parallel computing:
too few divisions may reduce the degree of parallelism; too many
divisions may increase the overheads of calling the function in the
map phase and the cost of the merge process in the reduce phase.
The authors demonstrated in a previous study [17] that we could
compute MapReduce faster on a divided binary tree transformed
from a wide tree than on the original tree.

We assumed in the target computations of this study that we
could merge the partial results locally among siblings. Note that
such computations include the general tree reduction given in
Ref. [23]. The example discussed in Section 6, i.e., an XPath
query, also has this property.

2. Tree Division with m-bridges

First, we will introduce the existing method of tree division
with m-bridges and its properties [14], [27]. In the rest of the pa-
per, we denote the size of the subtree rooted at x as x.size. Since
we dealt with XML in this study, the size of the subtree is the
number of characters in the text representation. In terms of the
up-down relation over trees, we call the side near the root up, and
the side near the leaves down.

Definition 1 (m-critical node) Let N be the size of a tree,
and m be an integer satisfying 1 < m ≤ N. Node x of the tree
is called m-critical, if it satisfies the following conditions:
• x is an internal node and
• for each child c of x, inequality
⌈ x.size

m

⌉
>
⌈c.size

m

⌉

holds. �
We can obtain m-bridges by dividing the tree beneath the m-
critical nodes *2.

Definition 2 (m-bridge) Let N be the size of a tree, and m be
an integer satisfying 1 < m ≤ N. An m-bridge is a maximal seg-
ment that includes an m-critical node at the bottom (it becomes a
leaf in the segment). �

Definition 3 (Global tree) When we divide a tree with m-
bridges, we can obtain a tree by reducing each segment into a
single node. We call the tree a global tree. �

As an example, we explain how we can divide an XML docu-
ment
<a><a><c><a>text1</c>

<a><c></c><a>

*2 The definition of m-bridges in this paper is a bit different from that given
in Refs. [14], [27]. An m-critical node is included in multiple segments
by the tree division in Refs. [14], [27], but it is only included in the parent
segment in this paper.

Fig. 1 Example XML tree. Numbers at upper right on nodes denote sizes
of subtrees rooted by nodes. Doubled circles denote m-critical nodes
for m = 35.

Fig. 2 Tree division immediately beneath m-critical nodes in Fig. 1.

Fig. 3 Global tree corresponding to tree division in Fig. 2.

text2<d><c></c></d><b a="1">

with parameter m = 35. The tree is shown in Fig. 1 where each
number on the upper right of the node denotes the size of the sub-
trees rooted at the node, and where the size is equal to the length
from the opening tag to the closing tag. For example, the size of
the subtree in Fig. 1 rooted at node <c> at the leftmost in the third
row is the length of <c><a>text1</c>, i.e., 26.
The m-critical nodes in the tree in Fig. 1 are the two denoted by
doubled circles. For example, at node in the second from the
left in the second row, two inequalities �47/35� > �26/35� and
�47/35� > �14/35� hold. We divide the tree in tree division with
m-bridges immediately beneath m-critical nodes (Fig. 2). The
tree in the example is divided at the dashed line into segments
(a set of connected nodes) in Fig. 2 rooted by the nodes denoted
by A to I. These segments form a global tree in Fig. 3.

The tree division with m-bridges has the following properties.
We have omitted the proofs from the lemmas below, since they
are given in Refs. [14], [27].

Lemma 1 For each segment given by the tree division with
m-bridges, the sum of the sizes of nodes is at most m. Here, we
have excluded nodes larger than m. �

Lemma 2 When we divide a tree of N nodes with m-bridges,
the number of m-critical nodes is no more than 2N/m − 1. �

Lemma 3 Each segment given by tree division with m-
bridges has at most one m-critical node. �

Lemma 1 shows that we can limit the size of each segment

c© 2014 Information Processing Society of Japan 41

IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

Fig. 4 Finding m-critical nodes for binary-tree representation of tree in Fig. 1. Numbers at upper right
on nodes denote sizes of subtrees rooted by nodes in binary-tree representation. Doubled circles
denote m-critical nodes for m = 35.

by m. On the other hand, the number of segments is limited by
(2N/m − 1)d + 1 from Lemma 2 where d is the maximum num-
ber of children of a node. As is often the case with XML trees,
d becomes large for shallow and wide trees and the number of
segments also increases.

When the number of segments is too large, we have signif-
icant overheads in the distributed computing with MapReduce
and related models. We may resolve this problem by merging
segments given with m-bridges and reducing the number of divi-
sions: e.g., a method of merging the sibling segments under an
m-critical node is presented in Refs. [14], [27].

Lemma 3 is an important property for parallel computation
over divided data. We will discuss this in Section 6.

3. Tree Division with m-bridges over One-to-
one Corresponding Binary Tree

The existing tree division with m-bridges in Section 2 has a
problem in that it yields too many segments particularly for shal-
low trees. This section explains our computation of m-bridges on
a binary tree that has a one-to-one correspondence to the input
tree. By computing m-bridges over the binary-tree representa-
tion, we find the resulting parts of the division are similar to the
segments merged among siblings after the existing division with
m-bridges.

3.1 Binary-tree Representation
First, we specify the binary-tree representation used in this

study, which has one-to-one correspondence to a tree of any
shape. We have presented the binary-tree representation in Fig. 4
as an example for the tree in Fig. 1. Note that the m-critical nodes
denoted by doubled circles do not match.

Definition 4 (Binary-Tree Representation) For the binary-
tree representation used in this study, the nodes in the binary-tree
representation and those in the original tree have the following re-
lation. We denote a node in original tree x and the corresponding
node in binary-tree representation x′.
• If node x is the rightmost child of p in the original tree, then

node x′ is the right child of p′ in the binary-tree representa-
tion.

• If node x is the immediate left sibling of y in the original
tree, then node x′ is the left child of y′ in the binary-tree
representation. �

The parent-child relation in the original tree is a rightward
parent-child relation in the binary-tree representation. The sib-
ling relation in the original tree is a leftward parent-child relation
in the binary-tree representation. Therefore, when the original
tree is a shallow and wide tree, its binary-tree representation is a
tall tree (in the direction to the left down). Note that the compu-
tation of m-bridges is independent of the shape of the tree, and
there are no problems with how tall the binary-tree representation
is.

This binary-tree representation is not the same as the well-
known left-child right-sibling representation [9], but is its left-
right reversal. We need the sizes of subtrees to determine whether
a node is m-critical in tree division with m-bridges, and the sizes
are computed in a bottom-up manner. The left node among sib-
lings in the original tree is located near the root in the left-child
right-sibling representation. This means that the order in the
XML text representation and the order in the bottom-up computa-
tion are opposite, and we need to store all the intermediate results
among sibling. These orders are the same in the binary-tree rep-
resentation defined in this section, and we can reduce the amount
of intermediate data (by writing out the fixed results to files).

3.2 Tree Division with m-bridges in Binary-Tree Represen-
tation

We divide the tree based on m-critical nodes computed on the
binary-tree representation above.

We do the same computation for m-critical nodes as that with
the existing algorithm. Here, note that the size of a subtree rooted
at node x in the binary-tree representation is the sum of the fol-
lowing: the size of a subtree rooted at node x in the original tree,
and the sizes of subtrees rooted at left-sibling nodes of x. As an
example, the size of the subtree in Fig. 4 rooted at lower node

c© 2014 Information Processing Society of Japan 42

IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

Fig. 5 Tree divided with m-critical nodes in binary-tree representation in
Fig. 4.

denoted by a doubled circle is the sum of lengths 14 (for the sub-
tree rooted at the node, <a>) and 26 (for the sub-
tree rooted at the left sibling, <c><a>text1</c>),
which is equal to 40.

We then divide the tree based on m-critical nodes. Here, we di-
vide the tree as we do immediately beneath m-critical nodes in the
binary-tree representation. Cutting a lower-right edge of a node in
the binary-tree representation means cutting all the parent-child
relations in the original tree. Cutting a lower-left edge of a node
in the binary-tree representation means cutting the sibling relation
in the original tree. Therefore, for each m-critical node, we cut
the sibling relation on the left as well as the parent-child relations.
We have illustrated tree division with m-critical nodes computed
on the binary-tree representation in Fig. 5.

After tree division with m-bridges in the binary-tree represen-
tation, some parts may not be connected components. More pre-
cisely, it consists of a set of trees whose root nodes are siblings of
each other. Since we call the data structure that consists of mul-
tiple trees a forest, after this we will also call the parts obtained
after tree division forests. In the forests given by the tree division,
m-critical nodes have the following properties.

Lemma 4 For each forest given by tree division with m-
bridges in the binary-tree representation, there is at most one m-
critical node.
Proof A forest corresponds to a segment in the binary-tree rep-
resentation. It follows from the fact that Lemma 3 holds for the
segment. �

Lemma 5 If a forest given by tree division with m-bridges
in the binary-tree representation includes an m-critical node, then
the m-critical node is the leftmost one among siblings and has no
children (i.e., it is a leaf).
Proof The m-critical node is a leaf in the corresponding seg-
ment in the binary-tree representation. Since it has no child on
the left in the binary-tree representation, it has no siblings on the
left in the original tree. Since it has no child on the right in the
binary-tree representation, it has no children in the original tree,
either. �

In the same manner as we did in the existing tree division with
m-bridges, we can form a global tree by reducing each segment
into a node in the binary-tree representation. For the tree divi-
sion in Fig. 5, we present the global tree in Fig. 6. Note that the
global tree is a binary tree that is given from the binary-tree rep-
resentation. Since m-critical nodes may not be on the uppermost
layer as we can see from forest C in Fig. 5, it is not appropriate to

Fig. 6 Global tree corresponding to tree division in Fig. 5.

represent a global tree in a similar manner as the original tree.

3.3 Properties on Divided Tree
In addition to the properties given in Section 2, tree division

with m-bridges in the binary-tree representation has the follow-
ing property.

Lemma 6 When we divide a tree of N nodes with m-bridges
in the binary-tree representation, the number of forests is no more
than 4N/m − 1.
Proof For each m-critical node, the number of forests increases
by at most two. From Lemma 2, the number of forests is at most
1 + 2 × (2N/m − 1) = 4N/m − 1. �

Tree division with m-bridges in the binary-tree representation
guarantee the number of parts as well as the size of each part,
which is different from existing tree division with m-bridges.

4. Implementation with SAX

We implemented existing tree division and proposed tree di-
visions with m-bridges in the binary-tree representation in this
study using a Simple API for XML (SAX) library [5] and Java.

4.1 SAX
Simple API for XML (SAX) [5] is an XML parser library that

provides a set of event-driven APIs. It reads an XML docu-
ment from its head, and triggers events according to the types
of elements. SAX is different from the Document Object Model
(DOM) that puts the whole tree structure on the memory, and is
not suitable for processes requiring random access to elements,
but it has strong advantages that it can perform computations
with a rather small memory in streaming processing. Since we
assumed a very large XML as a target whose whole structure can-
not be read on the memory, we developed a one-pass algorithm
using the SAX library.

We need to implement a handler for each event in program-
ming with the SAX library. The five handlers to be implemented
are listed below. The tag name and attributes or text in the SAX
library provided by org.xml.sax are passed as parameters for
the events of opening tag, closing tag, or text element. We denote
p for the position of the tag or text, and tag for the content of the
tag name or text, for the parameter of the event handlers.
• Start of document (startDocument)
• Opening tag (startElement(p, tag))
• Closing tag (endElement(p, tag))
• Text element (characters(p, tag))
• End of document (endDocument)

4.2 Implementation of Existing Tree Division with m-
Bridges

We will first discuss implementation using the SAX library for

c© 2014 Information Processing Society of Japan 43

IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

procedure startElement(p, tag)

ys <- stack.pop()

yL <- ys.last()

o <- Node(pos = p,

text = tag,

size = tag.length,

sum = yL.sum

max = yL.max)

ys.add(o)

stack.push(ys)

stack.push(empty_list)

end

Fig. 7 Event handler for opening tag in implementation of existing m-bridge
tree division.

existing tree division with m-bridges discussed in Section 2.
We represent an opening tag, a closing tag, or text in the im-

plementation by an instance of the Node class that has seven at-
tributes.
• pos: The position of the tag or text.
• text: The string that represents the tag or the text.
• size: The size of the subtree (the length of text).
• sum: The sum of sizes of the siblings on the left.
• max: The maximum size of the siblings on the left.
• isMC: Is the node an m-critical node?
• children: The list of child tags or texts.

We can implement tree division with m-bridges using a stack,
whose elements are vectors (variable-length lists) of the Node in-
stances. The following explains the implementation of the han-
dlers of the SAX parser.
Opening Tag

Figure 7 shows the procedure when an opening tag is read.
(Exceptional processing for the case of no elements in the vector
is omitted in the pseudo-code.)

When an opening tag is read, we add a new instance of the
Node class to the top list ys of the stack. After the opening tag
is read, the depth of nodes increases by one, and thus we add an
empty list to the stack.
Closing Tag

Figure 8 shows the procedure when a closing tag is read. (Ex-
ceptional processing for the case of no elements in the vector is
omitted in the pseudo-code.) This handler for a closing tag de-
termines whether the read node is m-critical and outputs the seg-
ments.

When a closing tag is read, we wind back the stack by one and
obtain the list of children. Then, we compute the size of the sub-
tree including the sum of the size of the child subtrees, and add
a new instance of the Node class to the top list ys of the stack.
Finally, we determine whether the node and its parent node are
m-critical, and if they are m-critical nodes we then output the chil-
dren and siblings on the left as resulting segments, respectively.
The function, outputTrees, in Fig. 8 is the function that outputs
the segments. The function outputTrees takes a list of subtrees
(represented by pairs of an opening tag and a closing tag) as its
input, and outputs each subtree to a file with a sequence number
in XML format.

procedure endElement(p, tag)

cs <- stack.pop(); cL <- cs.last()

ys <- stack.pop(); o <- ys.last()

c <- Node(pos = p,

text = tag,

size = o.size + cL.sum + tag.length,

sum = o.sum + size,

max = max(o.max, size),

children = cs)

if (isCritical(c.size, cL.max))

c.isMC <- true

outputTrees(cs)

c.children.clear()

endif

if (isCritical(c.sum, c.max))

outputTrees(ys)

ys.clear(); ys.add(o)

endif

ys.add(c)

stack.push(ys)

end

Fig. 8 Event handler for closing tag in implementation of existing m-bridge
tree division.

The function isCritical that determines whether the node
itself and its parent are m-critical is defined as

isCritical(size, cmax) = (�size/m� > �cmax/m�).
Note that we pass the sum of sizes of sibling subtrees to the
first argument when we determine whether the parent node is m-
critical. With this assessment of whether the parent is m-critical,
we can output some segments before reading all the siblings,
which helps us to reduce memory usage. This improvement is
particularly effective for a wide XML tree.
Text

We can handle a text as a consecutive pair of an opening tag
and a closing tag. Here, since a text has no children, we can omit
the addition of an empty list to the stack and determine whether
the text itself is m-critical.
End of Document

We output the segment including the root node that remains on
top of the stack as clean up. We also output the global tree.

The procedure for computing the global tree is as follows.
When we output each segment, we store a triple (GNode) that
consists of the ID (NID), the first position (spos), and the last po-
sition of the segment. We sort the list of these triples at the end of
the document and reconstruct the global tree. The pseudo-code
for computing the global tree is shown in Fig. 9. The argument
gnlist is a list of GNode triples, sorted by spos in increasing
order.
Output Format

A segment given by tree division may only consist of text data,
and such a segment is beyond the definition of XML. To enable us
to use existing XML processors for such a segment, we output the

c© 2014 Information Processing Society of Japan 44

IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

procedure getGTree(gnlist)

n <- gnlist.get(0)

output the opening tag for n

stack.push(n)

for (i <- 1; i < gnlist.length; i <- i+1)

n <- gnlist.get(i)

while (stack.peek().epos < n.spos)

o <- stack.pop(); output the closing tag for o

endwhile

output the opening tag for n

stack.push(n)

endfor

while (!stack.isEmpty())

o <- stack.pop(); output the closing tag for o

endwhile

end

Fig. 9 Procedure to obtain global tree in existing m-bridge tree division.

segment after enclosing it with <TEXTONLY> and </TEXTONLY>.
The m-critical node that is included (at most one) in a seg-

ment is important information. Therefore, we add attribute
mCritical="true" to the m-critical node when we output seg-
ments.

4.3 Tree division with m-Bridges on Binary-Tree Represen-
tation

Now, we will discuss implementation using the SAX library of
tree division with m-bridges in the binary-tree representation pro-
posed in Section 3. The implementation is almost the same as that
of existing tree division with m-bridges. We use the same class
Node (we did not use max in the implementation that follows).
Opening Tag

The procedure for an opening tag is the same as that in Fig. 7.
Note that the size of the subtree in the binary-tree representation
is given by sum.
Closing Tag

Figure 10 shows the procedure when a closing tag is read.
(Exceptional processing for cases with no elements or a short-
age of elements in the vector is omitted in the pseudo-code.) This
handler for a closing tag determines whether the read node is m-
critical and outputs forests.

This handler is also almost the same as that for existing tree
division (Fig. 8), and thus we only focus on the differences from
that. First, we obtain the sibling on the left and the rightmost
child, which are two children in the binary-tree representation,
from the lists in the stack. We apply the assessments of whether
the node is m-critical to both nodes. We can use the same func-
tion for the assessments, but note that we should pass the size
of the subtree in the binary-tree representation, sum, as the ar-
gument of the function. If the node is an m-critical node, we
output the forests for the siblings on the left and children. The
function, outputForest, in Fig. 10 outputs forests that corre-
spond to segments in the binary-tree representation. The function
outputForest takes a list of subtrees (represented as pairs of an

procedure endElement(p, tag)

cs <- stack.pop(); cL <- cs.last()

ys <- stack.pop(); o <- ys.last();

yL <- ys.last2()

c <- Node(pos = p,

text = tag,

size = o.size + cL.sum + tag.length,

sum = o.sum + size,

children = cs)

if (isCritical(c.sum, cL.sum) &&

isCritical(c.sum, yL.sum))

c.isMC <- true

outputForest(cs); cs.clear();

outputForest(ys); ys.clear();

ys.add(o)

endif

ys.add(c)

stack.push(ys)

end

Fig. 10 Event handler for closing tag in implementation of m-bridge in
binary-tree representation.

procedure getGTree(gnlist)

n <- gnlist.get(0)

output the opening tag for n

stack.push(n)

for (i <- 1; i < gnlist.length; i <- i+1)

n <- gnlist.get(i)

while (stack.peek().cpos < n.epos)

o <- stack.pop(); output the closing tag for o

endwhile

output the opening tag for n

stack.push(n)

endfor

while (!stack.isEmpty())

o <- stack.pop(); output the closing tag for o

endwhile

end

Fig. 11 Procedure to obtain global tree in m-bridge in binary-tree represen-
tation.

opening tag and closing tag), and outputs them in XML format
into a file whose name includes a sequence number.
Text

We can handle a text as a consecutive pair of an opening tag
and a closing tag. Here, we can omit the addition of an empty
list to the stack since a text has no children. However, it can be
an m-critical node in the binary-tree representation and thus we
cannot omit the assessment of whether the text itself is m-critical.
End of Document

We output the forest including the root node that remains on
top of the stack as clean up. We also output the global tree.

The procedure for computing the global tree is as follows.
When we output each forest, we store a tuple of four elements

c© 2014 Information Processing Society of Japan 45

IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

Table 1 Experiment data.

Data name Acquisition height No. of characters

DBLP.xml DBLP Computer Science Bibliography 6 1.21 × 109

XMark2.xml XMLCompBench http://xmlcompbench.sourceforge.net/Dataset.html 12 1.16 × 108

Random-R3.xml XMLCompBench http://xmlcompbench.sourceforge.net/Dataset.html 30 1.32 × 107

f8i.xml XMLGEN (http://www.xml-benchmark.org/generator.html) with parameter -f 8 13 1.01 × 109

Table 2 Tree division time (in milliseconds) and number of segments by existing m-bridge division.

Data Input Compute Output Total No. of segments

DBLP.xml 10,246 30,131 126,591 166,968 3,619,811

XMark2.xml 697 2,041 2,623 5,361 70,013

Random-R3.xml 366 1,398 496 2,260 911

f8i.xml 4,957 14,034 20,359 39,350 560,013

Table 3 Tree division time (in milliseconds) and number of segments by the m-bridge in binary-tree
representation.

Data Input Compute Output Total No. of segments

DBLP.xml 10,246 35,284 13,038 58,568 202

XMark2.xml 697 2,301 818 3,816 214

Random-R3.xml 366 1,500 322 2,188 258

f8i.xml 4,957 15,550 5,189 25,696 210

(GNode) that consists of the ID (NID), the first position (spos),
the last position (epos), and the position of the m-critical node
(cpos) of the forest. At the end of the document, we sort the list
of these tuples and reconstruct the global tree. The pseudo-code
for computing the global tree is given in Fig. 11. The argument
gnlist is a list of GNode tuples, sorted by epos in decreasing
order.
Output Format

Each part is a forest after tree division with m-bridges in the
binary-tree representation. Therefore, we output the forest in
XML format after enclosing it with a pair of dummy tags. We
deal with m-critical nodes in the same way as what we discussed
for existing tree division with m-bridges.

5. Experiments

We evaluated the execution time and the number of segments
or forests with implementations using the SAX library discussed
in Section 4 through experiments for existing tree division with
m-bridges and the proposed tree division with m-bridges in the
binary-tree representation.

The hardware we used for the experiments had a CPU Core i7-
4770, 32 GB of memory, and solid state drive (SSD) was the stor-
age device. The software we used was Ubuntu 13.04 and Java8.

5.1 Execution Times
We compared the execution times of existing tree division with

m-bridges and the proposed tree division with m-bridges in the
binary-tree representation. We used the test data listed in Ta-
ble 1. Parameter m was set by using one-hundredth the number
of characters.

Tables 2 and 3 and Fig. 12 present the experimental results.
The execution times are the average of five executions. We have
plotted the execution time per character in Fig. 12 in units of
ms/MB. The breakdown is categorized into three functions.
• Read: The time consumed by the SAX parser to read the

XML file and call the handler functions. We measured this

Fig. 12 Execution times for existing m-bridge division and m-bridge in
binary-tree representation for 1 MB input. Bars at left indicate
results for existing m-bridge division and those at right indicate
m-bridge in binary-tree representation.

time by executing a program with empty handler functions.
• Compute: The main computation time of tree division that

excludes the input and output of data. We calculated this
time by subtracting the read/write times from the whole ex-
ecution time.

• Write: The time for outputting the segments or forests and
the global tree to the files. We measured the execution time
with a program that output nothing and calculated the differ-
ence from the whole execution time.

The whole execution times in Fig. 12 indicated that the pro-
posed tree division with m-bridges in the binary-tree representa-
tion processes data faster than the existing tree division with m-
bridges. Looking at the execution times in detail, while the main
computation time of the proposed tree division with m-bridges in
the binary-tree representation is a bit larger than that of the exist-
ing tree division with m-bridges, the writing time by the former
is much smaller than that by the latter. These results are most no-
table for DBLP.xml, and thus we can see that tree division with m-
bridges in the binary-tree representation achieves better speedup

c© 2014 Information Processing Society of Japan 46

IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

Table 4 Execution times for DBLP.xml (in milliseconds).

Existing Proposed

(A) Original program 168,444 12,273

(B) No global tree 163,430 13,366

(C) Same output filename 130,239 17,815

(D) Appending in same file 10,482 16,083

for shallower and wider trees.
To check the details, we obtained a breakdown of the execution

times of the existing and proposed tree divisions for DBLP.xml.
We used four programs.
• (A) Used the original program.
• (B) Omitted the computation and output of the global tree.
• (C) (B) + Used the same filename for the outputs.
• (D) (B) + Appended the outputs in the same file.

We could compute the time for computing the global tree and
outputting it from the difference between (A) and (B). We could
find the overheads caused by too many output files from the dif-
ferences between (B), (C), and (D). In particular, the differences
between (C) and (D) revealed the overheads caused by the open-
ing/closing of files, and the differences between (B) and (C) re-
vealed the OS-level overheads. We have summarized the writing
times of the programs in Table 4 *3. These results indicate the
time for computing and outputting the global tree is about 5 sec-
onds in existing tree division. We can also see the main reason for
the long writing time is the overhead caused by too many output
files.

The execution time per character is longer in Random-R3.xml
than that for the other data. Random-R3.xml has too many tags
compared with the data size, and the handler functions were
called once per 4.4 characters on average. We considered that
the reason for the long execution time was this cost of calling
handler functions.

The numbers of divisions in Tables 2 and 3 indicate that while
the existing tree division with m-bridges has very many divisions,
the number of divisions in the proposed tree division with m-
bridges in the binary-tree representation is stable over the data.
This implies that we can easily set value m appropriately accord-
ing to the required number of divisions for tree division with m-
bridges in the binary-tree representation.

5.2 Properties of Tree Division
We investigated the distribution of the sizes of segments or

forests after existing tree division with m-bridges and the pro-
posed tree division with m-bridges in the binary-tree representa-
tion. We used a set of randomly-generated trees in this experi-
ment, which was generated by a program developed by the au-
thors. We set the number of nodes at 10,000,000 (about 100 MB)
and the average branch factors at 4 and 20. We generated 10 trees
with different random seeds for each set of parameters. We di-
vided the tree by using the existing and proposed methods with
m-bridges with parameter m = 100,000, and we plotted the sizes
of segments or forests in cumulative frequency graphs. The re-
sults were averaged for 10 trees.

*3 The execution times were counter to our expectations for the proposed
tree division. We could not clarify what the reasons were.

Fig. 13 Cumulative frequency of segment sizes for input tree with
10,000,000 nodes (size approx. 100 MB) and an average
branch factor of 4, with m = 100,000.

Fig. 14 Cumulative frequency of segment sizes for input tree with
10,000,000 nodes (size approx. 100 MB) and an average
branch factor of 20, with m = 100,000.

Figures 13 and 14 present the experimental results. The hori-
zontal axes plot the percentage for m = 100,000. The results for
the average branch factor of 4 in Fig. 13 indicate that the num-
ber of divisions with the existing method is larger than that with
the proposed method, particularly for segments with sizes under
40% of m. The average branch factor of 20 in Fig. 14 indicates
that there are too many small segments in existing tree division
with m-bridges compared with the proposed tree division with
m-bridges in the binary-tree representation. Since the trees were
wide, a node with many children became an m-critical node yield-
ing a lot of small segments after division. These results reveal that
the existing tree division with m-bridges is affected by the shape
of trees. However, the plots for the proposed tree division with
m-bridges in the binary-tree representation are similar for the av-
erage branch factors of 4 and 20, and we can see that it is stable
against the shapes of trees.

6. Application to Distributed Computing

This section discusses how we can use the data, which are di-
vided by tree division with m-bridges in the binary-tree represen-
tation proposed in Section 3, in distributed computing.

c© 2014 Information Processing Society of Japan 47

IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

6.1 Expected Usage
Expected usage could be tree processing with the MapReduce

framework [10] in cloud environments.
We generally need to upload data before we use cloud envi-

ronments. Here, when users upload tree structures like XML, it
is useful for them if the cloud systems automatically divide the
trees based on the tree division proposed in this study. We de-
veloped one-pass tree division algorithms with this application in
mind. In fact, of the experimental results in Fig. 12, all the results
except for Random-R3.xml indicate that we can divide trees with
a speed of more than 20 MB/s, and the authors consider this is
fast enough compared with the network speed in cloud environ-
ments. Therefore, users can upload tree-structured data without
any overheads, and then execute MapReduce programs for the
divided tree data.

6.2 A Query Example for Divided Data
Since tree division with m-bridges yields independent seg-

ments (or forests), we can compute them independently in par-
allel. When we utilize the MapReduce framework [10], we can
compute partial results independently on each set of nodes in the
map phase, and then merge the partial results based on the global
tree in the reduce phase.

Here, we present the idea of MapReduce computation of an
XPath query //b[following-sibling::d && child::c] for
the divided data in Figs. 5 and 6. This XPath query points to node
b that has at least one child c and at least one sibling d on the
right.

We independently compute values or functions for each forest
in the map phase. For a forest that corresponds to a leaf in the
global tree, we compute a value as the result; for a forest that
corresponds to an internal node in the global tree, we compute a
function that takes values from the sibling on the left and from
the children.

The value computed from forest x for our running example is
either a triple (xc, xb, xd) defined as follows or a function that re-
turns the triple. The values in the triple have the three meanings.
• xc: Is there a node c in the top layer of the forest?
• xb: Is there a node c that has at least one child c in the top

layer of the forest?
• xd: Is there a node that satisfies the whole XPath query?

We denote the function that computes these values or functions
as f . The results are given as follows. Here, T and F represent
true and false.

f (A) = (T, F, F)

f (B) = (F, F, F)

f (C) = λ(lc, lb, ld)(cc, cb, cd).(T, lc, ld ∨ cd)

f (D) = (F, F, F)

f (E) = λ(lc, lb, ld)(cc, cb, cd).(lc, lb ∨ cc, ld ∨ cd ∨ lb)

f (F) = λ(lc, lb, ld)(cc, cb, cd).(F, F, ld ∨ cd)

Here, the property in Lemma 4 that there is at most one m-
critical node in the forest plays an important role. If a forest
includes multiple m-critical nodes, then function f should take
more than two parameters. Since a forest includes at most one

m-critical node, we can guarantee that function f returns either a
value or a binary function.

We finally compute the final results by assigning these results
to the global tree in Fig. 6 and reducing them in a bottom-up man-
ner. We assume value (F, F, F) for the missing child in the global
tree (e.g., the root node in Fig. 6). We can compute the value for
C as (T,T, F), then for E as (T,T, T), and finally for F as (F, F, T)
in our running example. The final result of the query is given as
the third element, which is T .

7. Related Work

7.1 Parallel Processing on Tree Structures
Tree contraction algorithms [1], [24], [27], which apply tree-

contraction operators in parallel to a set of independent local
nodes, are important parallel algorithms for tree structures. Tree
division with m-bridges was first proposed within the context of
these tree contraction algorithms [14], [27].

Tree division has been performed in shared-memory environ-
ments in Refs. [14], [27]. It is sufficient to enumerate m-critical
nodes in shared-memory environments, and an algorithm for enu-
meration has been proposed based on the list-ranking algorithm
on an Euler tour of trees. Since the text representation of XML
corresponds to the Euler tour of trees, the SAX-based algorithm
for the existing tree division in this paper is almost the same as the
algorithm in Refs. [14], [27]. We devised the algorithm so that we
could write out the m-bridges in one pass while limiting memory
usage. The authors [14], [27] also discussed how we could deal
with trees of unbound degree: in particular, the algorithm divided
trees with m-bridges and then merged at most n segments among
siblings.

Gibbons et al. [15] and Skillicorn [29] abstracted tree contrac-
tion algorithms based on a functional programming approach, and
proposed a set of parallel tree-computational patterns called par-
allel tree skeletons. Since the concrete order of computation is
hidden behind the parallel tree skeletons, users can perform par-
allel computation just by passing the operators used in the com-
putation. The authors developed a parallel skeleton library called
SkeTo [12], [22], and it included efficient parallel tree skeletons
for binary trees [20] and even for general trees [23]. In partic-
ular, we [23] implemented parallel general-tree skeletons based
on a left-child right-sibling binary-tree representation and paral-
lel binary-tree skeletons. The left-right relation among siblings
is not essential in computational patterns [23], and thus we can
implement them in the same way on the binary-tree representa-
tion explained in this paper. Compared with the implementation
in Ref. [23], the proposed tree division has an advantage in that it
does not require any dummy nodes in the binary-tree representa-
tion.

Another approach to parallel computation on tree structures is
to apply flattening [18] to transform a tree into a one-dimensional
array. The main advantage of flattening transformation is that we
can easily divide the flattened array. We can consider the text rep-
resentation of XML as an flattened tree. Parallel algorithms for
these flattened trees were proposed by Sevilgen et al. [28] and by
Kakehi et al. [16]. We place the intermediate results on the stack
in these algorithms and these results are communicated among

c© 2014 Information Processing Society of Japan 48

IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

processors. Therefore, the MapReduce implementation [11] of
the tree reduction algorithm by Kakehi et al. was more compli-
cated than the MapReduce algorithm discussed in this study.

7.2 Distributed Queries for Tree Structure and Tree Divi-
sion

The methods of distributing XML data and conducting dis-
tributed queries on them have been studied intensively in the
XML-database community.

Bremer et al. [4] proposed a method of data-distribution with
the RepositoryGuide, where each part of data consists of a com-
mon path from the root to a node and the subtrees rooted at the
node. If the data are distributed in this manner, we can rather eas-
ily conduct distributed queries that retrieve a node from the root.
Ma et al. [19] categorized the distribution of XML databases from
the viewpoint of object-oriented databases into three: split, hori-
zontal, and vertical.

We can categorize studies on distributed queries into two
groups in terms of data division. The first is about distributed
queries that deal with divided data evenly, and these studies have
been well summarized by Morihata [25]. Suciu [30] proposed
a method of conducting path queries that were specified with
automata on the divided graph structures. Nomura et al. and
one of the authors [21], [26] proposed a method of implement-
ing XPath queries with predicates using parallel tree skeletons.
Cong et al. formalized computation with a partial-evaluation tech-
nique [6], [8].

The second group involves distributed queries for data dis-
tributed in similarly to those by as Bremer et al. These queries
basically consist of two parts: the first is for the path from
the root and the second is for the subtree rooted at the node.
Many studies have been done on the efficient implementation of
queries that scan the tree from the root [2], [3], [13]. For exam-
ple, Bordawekar et al. [2], [3] proposed a method of conducting
queries in parallel based on the division of queries as well as the
division of XML data. Toyonaga [31] evaluated its performance
and improved it. Parallel queries that utilize paths from the root
to some nodes have also been implemented in HadoopXML [7].

8. Conclusion

Data division is the first step in the distributed computing. We
improved the existing method of tree division with m-bridges in
this study and tree division with the proposed method was fast
and stable for general XML trees. We also implemented algo-
rithms using the SAX library and confirmed that we could divide
trees sufficiently fast. We discussed the use of data divided with
the proposed method for distributed computing using an XPath
query as an example.

The proposed tree division with m-bridges in binary-tree rep-
resentation has two main advantages.
• The number of parts yielded by division is small and is stable

against the shapes of the trees.
• Since the number of parts is small, the total time for tree

division is short.
Our future work includes implementing query applications and

designing a MapReduce framework over divided trees.

Acknowledgments Part of this work was supported by
JST/ANR Grants Numbered 10102704/ANR-2010-INTB-0205-
02.

References

[1] Abrahamson, K.R., Dadoun, N., Kirkpatrick, D.G. and Przytycka,
T.M.: A Simple Parallel Tree Contraction Algorithm, Journal of Al-
gorithms, Vol.10, No.2, pp.287–302 (1989).

[2] Bordawekar, R., Lim, L., Kementsietsidis, A. and Kok, B.W.-L.:
Statistics-based parallelization of XPath queries in shared memory
systems, EDBT 2010, Proc. 13th International Conference on Extend-
ing Database Technology, pp.159–170, ACM (2010).

[3] Bordawekar, R., Lim, L. and Shmueli, O.: Parallelization of XPath
queries using multi-core processors: Challenges and experiences,
EDBT 2009, Proc. 12th International Conference on Extending
Database Technology, pp.180–191, ACM (2009).

[4] Bremer, J.-M. and Gertz, M.: On Distributing XML Repositories, In-
ternational Workshop on Web and Databases, pp.73–78 (2003).

[5] Brownell, D.: SAX2, O’Reilly Media (2002).
[6] Buneman, P., Cong, G., Fan, W. and Kementsietsidis, A.: Using Partial

Evaluation in Distributed Query Evaluation, Proc. 32nd International
Conference on Very Large Data Bases, pp.211–222, ACM (2006).

[7] Choi, H., Lee, K.-H., Kim, S.-H., Lee, Y.-J. and Moon, B.:
HadoopXML: A Suite for Parallel Processing of Massive XML Data
with Multiple Twig Pattern Queries, Proc. 21st ACM International
Conference on Information and Knowledge Management (CIKM’12),
pp.2737–2739, ACM (2012).

[8] Cong, G., Fan, W., Kementsietsidis, A., Li, J. and Liu, X.: Partial
Evaluation for Distributed XPath Query Processing and Beyond, ACM
Trans. Database Syst., Vol.37, No.4, pp.32:1–32:43 (2012).

[9] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C.: Introduc-
tion to Algorithms, MIT Press, 3rd edition (2009).

[10] Dean, J. and Ghemawat, S.: MapReduce: Simplified Data Processing
on Large Clusters, 6th Symposium on Operating System Design and
Implementation (OSDI2004), pp.137–150 (2004).

[11] Emoto, K. and Imachi, H.: Parallel Tree Reduction on MapReduce,
Proc. International Conference on Computational Science, ICCS
2012, Procedia Computer Science, Vol.9, pp.1827–1836, Elsevier
(2012).

[12] Emoto, K. and Matsuzaki, K.: An Automatic Fusion Mechanism for
Variable-Length List Skeletons in SkeTo, International Journal of
Parallel Programming (2013). Available online.

[13] Figueiredo, G., Braganholo, V. and Mattoso, M.: Processing Queries
over Distributed XML Databases, Journal of Information and Data
Management, Vol.1, No.3, pp.455–470 (2010).

[14] Gazit, H., Miller, G.L. and Teng, S.-H.: Optimal Tree Contraction in
EREW Model, Proc. Princeton Workshop on Algorithms, Architec-
tures, and Technical Issues for Models of Concurrent Computation,
pp.139–156 (1987).

[15] Gibbons, J., Cai, W. and Skillicorn, D.B.: Efficient Parallel Algo-
rithms for Tree Accumulations, Science of Computer Programming,
Vol.23, No.1, pp.1–18 (1994).

[16] Kakehi, K., Matsuzaki, K. and Emoto, K.: Efficient Parallel Tree Re-
ductions on Distributed Memory Environments, ICCS 2007: Proc. 7th
International Conference, Part II, Lecture Notes in Computer Science,
Vol.4488, pp.601–608, Springer (2007).

[17] Kawamura, T. and Matsuzaki, K.: Evaluation of Tree Processing
based on the m-bridge Technique over Hadoop, Proc. 29th JSSST Con-
ference (2012). In Japanese.

[18] Keller, G. and Chakravarty, M.M.T.: Flattening Trees, Euro-Par ’98
Parallel Processing, Proc. 4th International Euro-Par Conference,
1998, Lecture Notes in Computer Science, Vol.1470, pp.709–719,
Springer (1998).

[19] Ma, H. and Schewe, K.-D.: Fragmentation of XML Documents, Jour-
nal of Information and Data Management, Vol.1, No.1, p.21 (2010).

[20] Matsuzaki, K.: Efficient Implementation of Tree Accumulations on
Distributed-Memory Parallel Computers, ICCS 2007: Proc. 7th In-
ternational Conference, Part II, Lecture Notes in Computer Science,
Vol.4488, pp.609–616, Springer (2007).

[21] Matsuzaki, K.: Parallel Programming with Tree Skeletons, PhD The-
sis, Graduate School of Information Science and Technology, The
University of Tokyo (2007).

[22] Matsuzaki, K., Akashi, Y., Emoto, K., Iwasaki, H. and Hu, Z.: SkeTo:
A Library for Parallel Programming with Constructive Skeletons,
Proc. 22nd JSSST Conference (2005). In Japanese.

[23] Matsuzaki, K., Hu, Z. and Takeichi, M.: Parallel Skeletons for Manip-
ulating General Trees, Parallel Computing, Vol.32, No.7–8, pp.590–
603 (2006).

c© 2014 Information Processing Society of Japan 49

IPSJ Transactions on Programming Vol.7 No.3 40–50 (July 2014)

[24] Miller, G.L. and Reif, J.H.: Parallel Tree Contraction and its Appli-
cation, 26th Annual Symposium on Foundations of Computer Science,
pp.478–489, IEEE Computer Society (1985).

[25] Morihata, A.: Work Efficient Distributed XPath Querying, Proc. 30th
JSSST Conference (2013). In Japanese.

[26] Nomura, Y., Emoto, K., Matsuzaki, K., Hu, Z. and Takeichi, M.: Par-
allelization of XPath Queries with Tree Skeletons, Computer Software,
Vol.24, No.3, pp.51–62 (2007). In Japanese.

[27] Reif, J.H. (Ed.): Synthesis of Parallel Algorithms, Morgan Kaufmann
Publishers (1993).

[28] Sevilgen, F.E., Aluru, S. and Futamura, N.: Parallel algorithms for
tree accumulations, Journal of Parallel and Distributed Computing,
Vol.65, No.1, pp.85–93 (2005).

[29] Skillicorn, D.B.: Parallel Implementation of Tree Skeletons, Jour-
nal of Parallel and Distributed Computing, Vol.39, No.2, pp.115–125
(1996).

[30] Suciu, D.: Distributed query evaluation on semistructured data, ACM
Trans. Database Syst., Vol.27, No.1, pp.1–62 (2002).

[31] Toyonaga, S.: Parallelization of XML Queries by multicore-
processors, Master’s thesis, Graduate School of Information Science,
Nara Institute of Science and Technology (2012). In Japanese.

Takayuki Kawamura received his B.E.
and M.E. degrees from Kochi University
of Technology in 2012 and 2014, respec-
tively.

Kiminori Matsuzaki is an Associate
Professor of Kochi University of Technol-
ogy in Japan. He received his B.E., M.S.
and Ph.D. from The University of Tokyo
in 2001, 2003 and 2007, respectively. He
was an Assistant Professor (2005–2009)
in The University of Tokyo, before join-
ing Kochi University of Technology as an

Associate Professor in 2009. His research interest is in parallel
programming and algorithm derivation. He is a member of ACM,
JSSST, IEEE.

c© 2014 Information Processing Society of Japan 50

