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Exotic quantum holonomy and higher-order exceptional points in quantum kicked tops
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The correspondence between exotic quantum holonomy, which occurs in families of Hermitian cycles, and
exceptional points (EPs) for non-Hermitian quantum theory is examined in quantum kicked tops. Under a suitable
condition, an explicit expression of the adiabatic parameter dependencies of quasienergies and stationary states,
which exhibit anholonomies, is obtained. It is also shown that the quantum kicked tops with the complexified
adiabatic parameter have a higher-order EP, which is broken into lower-order EPs with the application of small
perturbations. The stability of exotic holonomy against such bifurcation is demonstrated.
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I. INTRODUCTION

Along adiabatic time evolution, the state of a closed quan-
tum system stays within an eigenspace of the Hamiltonian,
when the system is initially prepared to be in a stationary
state [1]. It is nevertheless possible that an adiabatic cycle
induces nontrivial change. The most famous example reported
by Berry is the appearance of the geometric phase factor [2]. A
non-Abelian version of the quantum phase holonomy was sub-
sequently reported by Wilczek and Zee [3]. Later, it was shown
that an adiabatic cycle can induce the interchanges of eigenen-
ergies and eigenspaces [4]. Namely, under the presence of such
an exotic quantum holonomy, the initial and final states of an
adiabatic cycle belong to different eigenspaces. The exotic
quantum holonomy has been studied both in one-body [5–10]
and in many-body systems [11]. Applications of the exotic
quantum holonomy to quantum state manipulation and adia-
batic quantum computation [12] were also proposed [5,6,13].

Quantum maps describing periodically kicked systems [14]
are useful to investigate the exotic quantum holonomy. An
adiabatic cycle for a family of the quantum maps induces a
permutation among quasienergies, which are determined by
the eigenvalues of Floquet operators [15], instead of their
eigenenergies [5]. We believe the experimental verification
of the exotic quantum holonomy is now feasible considering
the recent development of technology [16–19]. The exotic
quantum holonomy in autonomous systems, in contrast to
periodically driven systems, requires either the divergence of
the eigenenergies [4] or the exact crossing of eigenenergies [8].

It was recently pointed out that the exotic quantum
holonomy is closely associated with Kato’s exceptional points
(EPs) located at the complexified parameter space outside the
adiabatic cycle [20]. An EP is a degeneracy of a non-Hermitian
square matrix. Two eigenvalues and eigenvectors of the
2 × 2 non-Hermitian matrix are interchanged after parametric
evolution along the cycle encircling the EP, which resembles
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the holonomic behavior of the exotic quantum holonomy.
However, the time evolution along the cycle in the adiabatic
limit generally does not induce the “flip” of stationary states
due to the presence of the the decay process, which is inherent
to non-Hermitian systems [21–23]. On the other hand, if a
Hermitian cycle can be smoothly shrunk to the non-Hermitian
one so that the time spent in encircling the cycle is short
enough, such an interchange of eigenspace can take place
within adiabatic time evolution. An example is a family of
quantum kicked spin- 1

2 [24], where the interchange between
two eigenspaces in the two-level system due to the exotic
quantum holonomy corresponds to the EP that resides in the
complexified parameter space of the quantum kicked spin.

As far as many interacting levels are concerned, the
situation becomes very complicated since it is possible to
find multiple degeneracies. However, it is much easier to
deal with the case that the adiabatic cycle encircles several
EPs associated with only two levels. It means that the cycle
contains many EPs, but each EP is doubly degenerate. This has
been recently studied in Refs. [25,26] by using a 3 × 3 non-
Hermitian matrix. The exotic quantum holonomy associated
with multiple EPs is also studied in the two-body Lieb-Liniger
model [27]. However, the multiply degenerated EP has been
rarely investigated (see Ref. [28] for triple EPs and Ref. [29]
for higher-order EPs).

In this paper, we show that highly degenerate EPs can be
systematically constructed by using the quantum kicked top
with appropriate parameters chosen. The degeneracy of the
EPs is given as 2J + 1, where J is the magnitude of angular
momentum J of the top. We show that the exotic quantum
holonomy of the kicked quantum top is intimately related to
the highly degenerate EP.

The plan of this paper is the following. In Sec. II, we
introduce a quantum top under a rank-1 kick. We briefly
explain the consequence of the existence theorem of the exotic
quantum holonomy [6]. In Sec. III, we show the presence of
the exotic quantum holonomy using an explicit expression
of the solution of the eigenvalue problem, instead of the
existence theorem. This is possible only when the parameter
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of the system satisfies a solvable condition. This condition
implies the presence of EPs with higher order, as shown in
Sec. IV. We show that the higher-order EP is fragile against
perturbations in Sec. V. We also explain the correspondence
between the exotic quantum holonomy and the remnants of
broken higher-order EPs. A summary is found in Sec. VI.

II. QUANTUM TOP UNDER A RANK-1 KICK

We introduce a quantum top (or spin) under a rank-1 kick
[30] in this section. We show the quasienergy and eigenspace
anholonomies of this model with the help of a theorem that
ensures the existence of the exotic quantum holonomy for
quantum map under a rank-1 perturbation [5,6].

Let Ĵ denote the angular momentum of the top. In the
absence of kick, we suppose that the top rotates around the
z axis with an angular frequency ω. A rank-1 kick λ|v〉〈v| is
applied periodically in time, where λ is the strength of the kick
and |v〉 is a normalized vector. The time is normalized by the
period of the kick. The system is described by the Hamiltonian

Ĥ (t) = ωĴz + λ|v〉〈v|
∞∑

n=−∞
δ(t − n). (1)

We set � = 1 throughout this paper. We assume that |v〉 belongs
to d-dimensional eigenspace of Ĵ2 = J (J + 1), where J is
either an integer or half integer, and d = 2J + 1.

The Hamiltonian (1) can be experimentally implemented by
using nuclear magnetic moment Ĵ under the influence of static
magnetic field ωĴz and the periodic kick |v〉〈v| composed by a
polynomial of Ĵy [18,31]. The polynomial depends on J . For
example, the rank-1 terms for J = 1

2 ,1, and 3
2 are

Ĵy + 1
2 , 1

2 (Ĵy + 1)Ĵy,
1
6

(
Ĵy + 3

2

) (
Ĵy + 1

2

) (
Ĵy − 1

2

)
, (2)

respectively. These represent quadrupolar or higher-order
multipole interactions of nuclear momentum. We may replace
Ĵy with Ĵ · n for the above examples as long as a normalized
vector n is not parallel to the z axis.

We examine how the stationary states of the kicked top
evolve when the kick strength λ adiabatically varies. Since
the kicked top is a periodically driven system, the stationary
states are the eigenvectors of the Floquet operator describing
a unitary time evolution during a unit time interval:

Û (λ) ≡ e−iωĴz e−iλ|v〉〈v|. (3)

The real parameter λ is geometrically equivalent to a circle
because of the 2π periodicity of Û (λ) [5], which can be easily
seen with the expansion

Û (λ) = e−iωĴz [(1 − |v〉〈v|) + �−1|v〉〈v|] (4)

with

� = eiλ. (5)

Here λ runs from 0 to 2π along a unit circle denoted by C. Let
|ϕn(λ)〉 (n = 0, . . . ,d − 1) be an eigenvector of Û (λ), i.e.,

Û (λ)|ϕn(λ)〉 = zn(λ)|ϕn(λ)〉, (6)

where zn(λ) is the corresponding eigenvalue. Since Û (λ) is
unitary, zn(λ) lies in the unit circle of the complex plane. We

introduce the quasienergy of En(λ) so as to satisfy

zn(λ) = e−iEn(λ). (7)

According to the theorem shown in Refs. [5,6], the adiabatic
cycle C induces quasienergy and eigenspace anholonomies
when two conditions are satisfied: (1) exp(−iωĴz) has no
spectral degeneracy and (2) all eigenvectors of exp(−iωĴz) are
neither parallel nor orthogonal to |v〉. The first is equivalent to
a nonresonant condition,

ω /∈
{

2πq

p

∣∣∣ q and p are integer and 0 < |p| < d

}
. (8)

The first condition together with the assumption 〈J,M|v〉 �= 0
for all M = −J, . . . ,J implies the second condition, where
|J,M〉 is the standard basis of the angular momentum. A
typical example of |v〉 is

|v〉 ≡ 1√
d

J∑
M=−J

|J,M〉, (9)

which will be employed below.
We now explain the permutation of quasienergies induced

by the adiabatic cycle C. We arrange the quasienergies
{En(λ)}d−1

n=0 in the following order:

0 � E0(λ) < E1(λ) < · · · < Ed−1(λ) < 2π (10)

at λ = 0. The increment of λ by 2π results in

En(λ + 2π ) =
{
En+1(λ) for n = 0, . . . ,d − 2

E0(λ) + 2π for n = d − 1.
(11)

Thus an adiabatic cycle C increases the quantum number
by unity (with modulo d). We emphasize that such a

0

0

λ

E

(a)

(b)

0

0

λ

E

FIG. 1. (Color online) Parametric evolution of quasienergies of
the quantum top under a rank-1 kick (3) along the unitary cycle C.
(a) J = 1 case. Thick and dashed curves correspond to ω = 2π/3
and π/6, respectively. (b) J = 3/2 case. Thick and dashed curves
correspond to ω = π/2 and π/4, respectively. As shown later in the
main text, thick curves and dashed curves correspond to (2J + 1)-EP
cases (Sec. IV) and 2EP cases (Sec. V), respectively.
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rearrangement of quasienergies occurs irrespective of ω and
|v〉, as long as both the nonresonant condition (8) and the cyclic
condition are satisfied. Several examples of the quasienergy
anholonomy are shown in Fig. 1.

The quasienergy anholonomy directly implies the anholon-
omy in eigenspaces. Let us suppose that the state of the
system is prepared in |J,M〉, which is a stationary state of the
unperturbed Floquet operator Û (λ) at λ = 0. Equation (11)
then implies that, after the completion of the adiabatic cycle
along C, the state vector arrives at |J,s(M; C)〉 up to a phase
factor, where s(M; C) is the eigenvalue of Ĵz of the final state.

In order to determine s(M; C), we need to explicitly solve
the eigenvalue problem of Û (λ) at λ = 0. It is straightfor-
ward to see that |J,M〉 (M = −J, . . . ,J ) is an eigenvector
corresponding to a quasienergy ωM . Note that the mapping
between the set of quasienergies {ωM}JM=−J and {En(λ)}d−1

n=0,
which satisfies Eq. (10), depends on ω. We explore it with
some specific examples of J = 1

2 ,1, and 3
2 below.

First, we examine the case of J = 1
2 . For example, in the

interval 0 < ω < 2π where the nonresonant condition (8) is
always satisfied, we have

E0(0) = 1
2ω, E1(0) = 2π − 1

2ω, (12)

which correspond to M = 1
2 and − 1

2 , respectively. According
to Eq. (11), E0(λ) arrives at E1(0) at λ = 2π . Hence, the
quantum state initially prepared to be in |1/2,1/2〉 at λ = 0 is
delivered to |1/2,−1/2〉 after the completion of the adiabatic
cycle C. Similarly, the adiabatic cycle C delivers |1/2,−1/2〉
to |1/2,1/2〉. This implies s(± 1

2 ; C) = ∓ 1
2 .

Second, we examine the case J = 1. We show that two
intervals 0 < ω < π and π < ω < 2π provide different types
of s(M,C). Note that the nonresonant condition (8) is always
satisfied in both intervals. In the former case,

E0(0) = 0, E1(0) = ω, and E2(0) = 2π − ω, (13)

which correspond to M = 0, 1, and −1, respectively. Using a
similar argument applied to the J = 1

2 case mentioned above,
we find s(0; C) = 1, s(1; C) = −1, and s(−1; C) = 0, which
comprise a cyclic permutation. Namely, the itinerary of |J,M〉
induced by the adiabatic cycle C is

|J,0〉 
→ |J,1〉 
→ |J,−1〉. (14)

For another interval π < ω < 2π , we have

E0(0) = 0, E1(0) = 2π − ω, E2(0) = ω (15)

to satisfy Eq. (10). Hence the corresponding adiabatic itinerary
of |J,M〉 is

|J,0〉 
→ |J,−1〉 
→ |J,1〉. (16)

Hence the itinerary is suddenly changed around a critical point
ω = π . In this sense, we may choose the itinerary by varying
ω. Now it is straightforward to extend the present analysis to
arbitrary J and ω.

III. EXPLICIT EXPRESSIONS OF EIGENVALUES
AND EIGENVECTORS

So far we have explained the exotic quantum holonomy
of the kicked tops (1) using the general theorem shown in

Refs. [5,6]. In this section, we explain the details of the
anholonomies with the help of the explicit expressions of
quasienergy and eigenvectors for an arbitrary J . This is
possible when we choose a “solvable” value of ω. This also
helps us to examine the complexification of λ, as shown in the
following sections.

We here examine the case ω = 2π/d. Note that the
following argument is also applicable to the case ω = 2πr/d

with an integer 0 � r < d. We assume that |v〉 satisfies Eq. (9).
This allows us to introduce a mapping of the kicked top into a
kicked particle in a periodic lattice (or, a kicked tight-binding
model). We introduce basis vectors

|m〉 ≡ 1√
d

J∑
M=−J

ei2πMm/d |J,M〉, (17)

which describes a localized state at the “mth site” for 0 � m <

d. From the assumption ω = 2π/d, the unperturbed Floquet
operator Û (0) is

Û (0) =
d−1∑
m=0

|m − 1〉〈m|, (18)

which describes a nondispersive motion of a particle in a
one-dimensional periodic lattice. Since we have chosen |v〉 =
|m = 0〉 [see Eq. (9)], we obtain the Floquet operator in the
|m〉 representation:

Û (λ) =
d−1∑
m=1

|m − 1〉〈m| + �−1|d − 1〉〈0|. (19)

This implies that an extra phase factor �−1 is added along a
“hopping” from the zeroth to the (d − 1)th site. Equation (19)
is represented in the matrix representation with basis vectors
{|m〉}d−1

m=0 as follows:

U (λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

0 1

. . .
. . .

0
. . . 1

�−1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

It is straightforward to obtain the characteristic equation of
Û (λ),

det{z − U (λ)} = zd − �−1 = 0, (21)

whose solution is

zM (λ) = e−i(2πM+λ)/d , (22)

and the corresponding quasienergy is

EM (λ) = λ + 2πM

d
, (23)

with M = −J, . . . ,J . We also find the corresponding normal-
ized eigenvector

|ξM (λ)〉 = 1√
d

d−1∑
n=0

e−inEM (λ)|n〉. (24)
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In terms of basis |ξM (λ)〉, the eigenspace holonomy is
regarded as an increment of quantum number M , i.e.,

|〈ξM ′(λ + 2π )|ξM (λ)〉|2 = δM ′,M+1 mod d . (25)

On the other hand, we need to identify which |J,M〉 is
parallel to |ξM ′(0)〉 for a given M ′ to completely understand
the eigenspace anholonomy. We show that |ξM (0)〉 is parallel
to |J,M ′〉 only if M − M ′ = 0 mod d, i.e.,

〈J,M ′|ξM (0)〉 = δM,M ′ mod d . (26)

We emphasize that this is applicable to any arbitrary J .

IV. HIGHER-ORDER EXCEPTIONAL POINTS BEHIND
EXOTIC QUANTUM HOLONOMY

In this section, we examine the EPs in the kicked quantum
tops (1) under the specific choice of parameter ω = 2π/d,
which is examined in the previous section. We will show that
the degree or the multiplicity of the EP is d, the highest possible
value of the degree. We denote such an EP as dEP to distinguish
it from conventional EPs whose order is 2.

So far, we have assumed that λ is real or, equivalently,
|�| is unity [see Eq. (5)]. From now on, we complexify λ

to investigate EPs. This makes Û (λ) a nonunitary operator,
which may be regarded as an effective time evolution operator
that describes conditional measurement processes [32,33].
The expression of the eigenvalues [Eq. (22)] remains intact
regardless of the complexification of λ. On the other hand,
because Û (λ) is no longer unitary when λ is not real, the left
and the right eigenvectors of Û (λ) become different so that the
left eigenvector is separately introduced as 〈ξL

M (λ)| [34]. Both
eigenvectors read

|ξM (λ)〉 = 1√
d

d−1∑
m=0

{zM (λ)}m|m〉,
(27)〈

ξL
M (λ)

∣∣ = 1√
d

d−1∑
m=0

{zM (λ)}−m〈m|,

which satisfy 〈ξL
M ′(λ)|ξM (λ)〉 = δM ′M .

The spectral degeneracy of Û (λ) occurs when Im λ = −∞,
where all eigenvalues accumulate at z = 0. This can be easily
understood from the matrix representation U (λ) [Eq. (20)],
which converges to the d × d nilpotent Jordan block in the
limit Im λ → −∞:

U (λ) →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

0 1

. . .
. . .

. . . 1

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

Hence we conclude that � = ∞ is an EP of the order d.
Also, we find that, from the characteristic equation [Eq. (21)],
there is another dEP at � = 0, where the eigenvalues of Û (λ)
accumulate at z = ∞.

An EP is the branch point of eigenvalues. We choose the
line from the dEP at the origin to −∞ in the � plane as the

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Re

Im

FIG. 2. (Color online) A contour plot of Re E−1 in the � plane [�
is defined in Eq. (5)]. Lighter (darker) color indicates large (smaller)
value of Re E−1. Parameters are J = 1 and ω = 2π/(2J + 1). There
is a 3EP at � = 0, which is indicated by the filled circle. A branch cut,
which emanates from the 3EP, is drawn by a bold line. A dash-dotted
curve C ′ is a smooth deformation of C. The exotic quantum holonomy
induced by C can be emulated by the non-Hermitian cycle C ′.

branch cut represented by the thick horizontal line in Fig. 2.
This choice is consistent with the analytic continuation of
zM (λ) considered below. We start from the unit circle in the �

plane, where λ is real valued. Because of the presence of the
eigenvalue anholonomy, we need to introduce a discontinuous
point of zM (λ) in the unit circle of �. Here we suppose zM (π +
0) = zM+1 mod 1(π − 0). Hence zM (λ) is discontinuous at � =
−1 in C. For each point in the unit circle of �, we extend
zM (λ) along the radial direction in the � plane. This uniquely
specifies zM (λ) in the whole � plane.

The variation of � along C (Fig. 2) induces permutation of
the quasienergies,

EM=−1 
→ EM=0 
→ EM=1. (29)

This is an extension of the EP interpretation of the quasienergy
anholonomy originally introduced in Ref. [24] to a family of
multiple-level systems.

We explain an emulation of the exotic quantum holonomy
with EPs by deforming the unitary cycle C into non-Hermitian
cycles, say, C ′. Suppose C ′ enclose the dEP and connect
between the dEP and the initial point of the cycle C. This
is depicted in Fig. 2, as for the d = 3 case. Since the change of
eigenvectors essentially occurs along the small cycle around
the dEP, we may say that only the contribution from the dEP
is relevant.

V. CORRESPONDENCE BETWEEN THE EXOTIC
QUANTUM HOLONOMY AND THE FRAGMENTS OF dEP

Even a small perturbation can destroy a dEP (d > 2). In this
section, we examine the stability of the dEPs of the quantum
kicked top (3) at ω = 2π/d, for d = 3 and 4. We show that the
dEP is broken into 2EPs, the number of which is d − 1, when
we slightly vary ω from 2π/d. In contrast to such a catastrophe
of the dEPs, the exotic quantum holonomy is stable against
such small perturbations. This raises another question of how
the correspondence between the exotic quantum holonomy
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FIG. 3. (Color online) Parametric evolution of EPs of the quan-
tum kicked top J = 1 within the unitary cycle C in the � plane. ω

is varied within the interval [0,π ]. There is a triple degeneracy point
�0(= 1) at ω = 0. Note that the system is unitary (diagonalizable)
at � = �0. As ω is increased in the interval (0,2π/3), two 2EPs
evolve along the curves that pass �1 and �2 at ω = π/6. These 2EPs
merge at ω = 2π/3 to form a 3EP, which locates at �3(= 0). If ω

is increased further (2π/3 < ω < π ), there are two 2EPs, which are
fragments of the 3EP �3, in the real axis. Finally, at ω = π , a 2EP
arrives at �0 to become a diabolic point, and the other arrives at
�4(< 0).

and the fragments of the dEP is established, which is also
examined in this section.

We show a detailed analysis of the J = 1 (i.e., d = 3) case.
In Fig. 3, we depict numerically obtained ω dependence of
EPs. At ω = 0, we have a triple degeneracy point at � = 1,
marked as �0, where the Floquet operator is unitary. In the
interval 0 < ω < 2π/3, there are two 2EPs within the unit
circle |�| < 1 (e.g., �1 and �2 in Fig. 3). These two 2EPs
merge to form a 3EP (�3 in the figure) at ω = 2π/3. When
ω is increased further, the 3EP again split into two 2EPs. One
of them evolves along the positive real axis and finally arrives
at � = 0 at ω = π . The other 2EP evolves along the negative
real axis and arrives at �4. We note that it suffices to examine
the interval 0 � ω � π due to a reflection symmetry about
ω = π in the ω dependence of the configuration of EPs.

We provide an analytic argument to the above numerical
findings. We examine the characteristic polynomial of the
Floquet operator (3) given as

f (z) ≡ det |z − Û (λ)| = z3 + f2z
2 + f1z + f0, (30)

where f2 ≡ (2 + �−1)μ, f1 ≡ −(1 + 2�−1)μ, f0 ≡ −�−1

and

μ ≡ − 1
3 (1 + 2 cos ω). (31)

Note that −1 � μ � 1
3 holds for real ω. Following the standard

prescription to solve cubic equations [35], we introduce p and
q:

p ≡ 3f1 − f 2
2

9
, q ≡ 2f 2

2 − 9f2f1 + 27f0

27
, (32)

from which the discriminant is defined as

D ≡ −27(q2 + 4p3). (33)

The presence of spectral degeneracy in Û (λ) is equivalent to
the condition D = 0. Indeed, when D = 0 holds, the solutions
of the characteristic equation f (z) = 0 are, according to the

Cardano formula [35],

z = zc + 2
(
−q

2

)1/3
and zc −

(
−q

2

)1/3
, (34)

where zc ≡ −f2/3. The latter solution is doubly degenerated.
Hence, the spectrum of Û (λ) is triply degenerate if and only if
both D = 0 and q = 0 hold.

We show that there are, at most, four spectral degeneracy
points, which are either the diabolical or exceptional point, in
the � plane. This is because the discriminant D [Eq. (33)] is
a fourth-order polynomial in �−1:

D =
4∑

n=0

Dn(�−1)4−n, (35)

with D0 = D4 = 4(μ + 1)μ3, D1 = D3 = 4(μ + 1)(9 +
5μ)μ2, and D2 = −3(μ + 1)(9 − 9μ − 21μ2 − 11μ3).

We also show that degeneracy points form a “conjugate
pair”: If � is a degeneracy point, then so is �−1. The reason is
that D = 0 is a reciprocal equation, whose coefficients satisfy
symmetry relations D0 = D4 and D1 = D3.

We now show that the triple degeneracy, obtained by solving
D = 0 and q = 0, occurs at (ω,�) = (0,1) and (2π/3,0), as
shown in Fig. 3. q is expressed as a polynomial of �−1,

q =
3∑

n=0

qn(�−1)3−n, (36)

with q0 = 2μ3/27, q1 = 2μ2(3 + 2μ)/9, q2 = −(9 − 15μ2 −
8μ3)/9, and q3 = 2μ2(9 + 8μ)/27. D and q vanish simulta-
neously if and only if the resultant (Sylvester’s determinant)
R(D,q) of these polynomials vanish [36]:

R(D,q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D0 D1 D2 D3 D4 0 0 0
0 D0 D1 D2 D3 D4 0 0
0 0 D0 D1 D2 D3 D4 0
0 0 0 D0 D1 D2 D3 D4

q0 q1 q2 q3 0 0 0 0
0 q0 q1 q2 q3 0 0 0
0 0 q0 q1 q2 q3 0 0
0 0 0 q0 q1 q2 q3 0
0 0 0 0 q0 q1 q2 q3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(37)

= 16

27
(3 − μ)3μ9(1 + μ)9. (38)

The resultant R(D,q) vanish only when μ equals either 0 or
−1. This is the condition of the triple degeneracy. These two
cases (T1) and (T2) are examined in the following.

Case (T1) ω = 2π
3 (μ = 0): As shown in Sec. III, the

characteristic polynomial is f (z) = z3 − �−1. Hence a 3EP
locates at � = ∞, whose conjugate pair � = 0 is also a 3EP.

Case (T2) ω = 0 (μ = −1): Because the characteristic
polynomial is f (z) = (z − 1)2(z − �−1), the Floquet operator
has eigenvalues 1 and �−1, the former of which is doubly
degenerate, and corresponding quasienergy is real. The degree
of the “Hermitian” degeneracy at � = 1, which corresponds
to �0 in Fig. 3, is 3. Otherwise the degree is 2.

In the following, we examine the cases (D1)–(D3) where
there are, at most, doubly spectral degeneracies.
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Case (D1) ω = π (μ = 1
3 ): There are three doubly degen-

erate points � = �± and 1, which are the solutions of D = 0.
We have a conjugate pair of 2EPs �± = −(17 + 12

√
2)±1,

which satisfy �+�− = 1. Note that �− is located inside the
unit circle and corresponds to �4 in Fig. 3. Also, there are a
Hermitian degeneracy point at � = 1.

Case (D2) 2π
3 < ω < π (0 < μ < 1

3 ): We explain that a pair
of EPs lies in the positive real axis, and the other pair lies in
the negative real axis. The solution of D = 0 of

D = 4μ3(μ + 1)

�2

[(
y + 9 + 5μ

2μ

)2

− 27(1 + μ)2

4μ3

]
(39)

is given as

y± ≡ 1

2η3
[−(3 + 5η2)η ± (1 + 3η2)], (40)

with

y = � + �−1 (41)

and

η ≡
√

|μ|
3

. (42)

Note that 0 < η < 1/3 holds for 0 < μ < 1/3. We solve
Eq. (41) to obtain �. Let us examine the case y = y+ first.
It is straightforward to see that the solutions are

�
(0)
± ≡ 1

2 [y+ ±
√

(y+)2 − 4], (43)

which form a conjugate pair. We show that �
(0)
± are positive

and real. First, we examine the discriminant of the quadratic
equation

(y+)2 − 4 = 1

4η6
(1 − η)3 (1 + 3η2)(1 − 3η), (44)

which is positive for 0 < η < 1/3. Second, we examine the
sign of y+. We therefore have |y+| > 2 for 0 < η < 1/3.
Hence the sign of y+ is independent of η ∈ (0,1/3). As
η → 0+, it is easy to see y+ > 0. This implies that y+ is
positive for η ∈ (0,1/3). Hence �

(0)
± are also real and positive.

In a similar way, we examine the case y = y−, where we
have

�
(1)
± ≡ 1

2 [y− ±
√

(y−)2 − 4], (45)

which also form a conjugate pair. It is straightforward to see
�

(1)
± are real and negative because y− < 0 and (y−)2 − 4 > 0

hold.
Case (D3) 0 < ω < 2π

3 (−1 < μ < 0): We explain that
there are two conjugate pairs of 2EPs in the � plane, which
can be proved in a similar way above. The difference from the
above case is that these EPs are not in the real axis. As is seen
in Fig. 3, the trajectories (depicted by the red curve) of two
2EPs within the unit circle correspond to this case.

We solve D = 0 to obtain y [see Eq. (41)]. The solutions are

yc ≡ 1

2η3
[(3 − 5η2)η + i(1 − 3η2)] (46)

and y∗
c , where η is defined in Eq. (42). Note that 0 < η < 1/

√
3

holds for −1 < μ < 0. For y = yc, the solutions of Eq. (41) are

�
(c)
± ≡ 1

2 [yc ±
√

(yc)2 − 4], (47)

which form a conjugate pair of degeneracy points. We note
that [�(c)

± ]∗ are also EPs. The discriminant of the quadratic
equation is

(yc)2 − 4= [3η(1 − η2/3) + i(1 − 3η2)](1 − 3η2)(3η + i)

4η6
,

(48)

which is nonzero and complex valued as long as −1 < μ < 0.
Hence �

(c)
± and [�(c)

± ]∗ are not in the real axis.
We note that the 3EP is fragile against perturbations of μ.

Indeed, once μ is varied from 0, the resultant R(D,q) becomes
nonzero, which implies the absence of triple degeneracy.

We proceed to examine the correspondence between the
exotic quantum holonomy and the fragments of the 3EPs.
To establish this, we explain the emulation of the exotic
quantum holonomy with EPs by deforming the unitary cycle
C into non-Hermitian cycles, say, C ′. As for the 3EP case
(ω = 2π/3), we refer the reader to the previous section and
Fig. 2. Because there is only a single EP, the resultant Riemann
surface structure is rather simple.

Due to the rupture of 3EP into several EPs, the Riemann
surface structure becomes complicated. We here examine
the case ω = π/6, where the eigenspace anholonomy is
equivalent to the case ω = 2π/3 (see Fig. 1). There are two
2EPs, �1 and �2 (Fig. 3).

In addition to the configuration of these EPs, we need to take
into account the branch cuts of quasienergies in the � plane to
discuss the deformation of the adiabatic cycle. Here we repeat

2
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1
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FIG. 4. (Color online) Contour plots of Re EM in the � plane
with (a) M = −1, (b) M = 0, and (c) M = 1. We choose ω = π/6,
where a 3EP is split into two 2EPs indicated by filled circles. Other
parameters are the same as in Fig. 2.
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FIG. 5. (Color online) A schematic explanation of two non-
Hermitian cycles C1 (dashed lines) and C2 (dotted lines) that emulate
a unitary cycle C in the � plane for the quantum kicked spin J = 1
and ω = π/6 (see Fig. 4). C start from � = 1 and encircle EPs �1

and �2.

the same procedure to carry out the analytic continuation (see
Sec. IV) to obtain the Riemann sheets of quasienergies, as
shown in Fig. 4. As a result, we find how the Riemann sheets
of quasienergies are connected by the EPs and the branch cuts.
E−1 and E0 degenerate at �2. On the other hand, E0 and E1

degenerate at �1.
There are two kinds of non-Hermitian cycles that emulate

the exotic quantum holonomy induced by the unitary cycle C.
Typical examples C1 and C2 are shown in Fig. 5. They are
obtained through smooth deformations of C. Along C1, we
first encircle �1, where EM=0 and EM=−1 are interchanged,
and then we encircle �2, where EM=−1 and EM=0 are
interchanged. The composition of these permutation results
in the cyclic permutation given by Eq. (29).

On the other hand, we need to take into account the presence
of branch cuts for the analysis of the cycle C2. Along C2, we
first encircle �2, where EM=−1 and EM=0. Then, we need
to come across a branch cut. Because of this, EM becomes
EM−1. Next we encircle �2, and then come across the branch
cut again. Thus we conclude that the adiabatic cycle along C2

also induces the cyclic permutation shown in Eq. (29).
We summarize the analysis of the J = 1 case to clarify the

correspondence between the exotic quantum holonomy and
the bifurcation of EPs. While the exotic quantum holonomy
along the adiabatic cycle C is kept intact for 0 < ω � π ,
the configuration of EPs is sensitive to ω. There is a single
3EP within the unit circle of the � plane at ω = 2π/3. It
is straightforward to obtain the non-Hermitian cycle, which
encircle the 3EP (e.g., C ′ in Fig. 2), to emulate the exotic
quantum holonomy. As for the two 2EPs case (ω �= 2π/3),
two cycles that enclose the 2EPs are combined to emulate
the exotic quantum holonomy. The contributions from the two
2EPs are not interchangeable. They need to be combined in
exact order to correctly emulate the exotic quantum holonomy
(see C1 and C2 in Fig. 5).
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FIG. 6. (Color online) Contour plots of Re EM in the � plane
with (a) M = −3/2, (b) M = −1/2, (c) M = 1/2, and (d) M = 3/2.
Other parameters are J = 3/2 and ω = π/8. There are three 2EPs,
which merge at ω = π/2 (not shown here) to compose a 4EP. Other
conventions are the same as in Fig. 2.

A similar analysis can be carried out for the quantum kicked
top with an arbitrary J . We depict the J = 3/2 case in the
vicinity of a 4EP in Fig. 6.

VI. SUMMARY

We have examined the exotic quantum holonomy in a
family of quantum kicked tops J , against an adiabatic cycle
C, where the strength of the kick is increased. This model
exhibits the exotic quantum holonomy for an arbitrary value
of the parameter of the unperturbed top ω, except at the
resonant points. This model has a (2J + 1)-EP for a specific
value of ω. It is shown that an infinitesimal perturbation can
split (2J + 1)-EP into 2J 2EPs with J = 1 and 3/2. Analytic
argument is provided for J = 1. We have observed an intricate
interplay of the exotic quantum holonomy and EPs for both
the (2J + 1)-EP case and the 2EPs case.
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