
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014
1149

PAPER Special Section on Formal Approach

A Formal Verification of a Subset of Information-Based Access
Control Based on Extended Weighted Pushdown System

Pablo LAMILLA ALVAREZ†a), Nonmember and Yoshiaki TAKATA†b), Member

SUMMARY Information-Based Access Control (IBAC) has been pro-
posed as an improvement to History-Based Access Control (HBAC) model.
In modern component-based systems, these access control models verify
that all the code responsible for a security-sensitive operation is sufficiently
authorized to execute that operation. The HBAC model, although safe,
may incorrectly prevent the execution of operations that should be exe-
cuted. The IBAC has been shown to be more precise than HBAC main-
taining its safety level while allowing sufficiently authorized operations to
be executed. However the verification problem of IBAC program has not
been discussed. This paper presents a formal model for IBAC programs
based on extended weighted pushdown systems (EWPDS). The mapping
process between the IBAC original semantics and the EWPDS structure is
described. Moreover, the verification problem for IBAC programs is dis-
cussed and several typical IBAC program examples using our model are
implemented.
key words: weighted pushdown systems, access control, model checking

1. Introduction

Access control models are adopted in modern component-
based systems, specifically the Stack-Based Access Con-
trol (SBAC) supported in environments such as Java vir-
tual machines [7] and Microsoft .NET Common Language
Runtime (CLR). This model uses stack-inspection to verify
that all the code responsible for a security-sensitive opera-
tion has been granted a given set of permissions P which
guards that operation. This is checked using a primitive
function called checkPermission which checks that the set
P is granted on all the callers currently on the execution
stack when the security-sensitive operation is tried to be ex-
ecuted. However SBAC may allow non-trusted code to in-
fluence a security-sensitive operation performed by trusted
code because SBAC does not retain the security informa-
tion of previously executed methods because they are not on
the execution stack anymore. To solve this problem, Abadi
et al. [1] introduced a novel approach called History-Based
Access Control (HBAC) which registers the history of all
previously executed methods. HBAC systems ensure that
all the code previously executed is sufficiently authorized to
access a protected resource. However, since not all the code
previously executed may have influence on the protected re-
source, the HBAC is excessively restrictive in some cases.
Pistoia et al. formally presented in [2] a novel security model

Manuscript received July 18, 2013.
Manuscript revised November 11, 2013.
†The authors are with Kochi University of Technology, Kami-

shi, 782–8502 Japan.
a) E-mail: 156010g@gs.kochi-tech.ac.jp
b) E-mail: takata.yoshiaki@kochi-tech.ac.jp

DOI: 10.1587/transinf.E97.D.1149

called Information-Based Access Control (IBAC) which has
proven to be less restrictive than HBAC while maintaining
the level of security assurance of HBAC. The IBAC model
tracks not only the permissions of blocks of code but also
the dynamic permissions of each variable. Therefore, the
IBAC verifies that only the code responsible for a security-
sensitive operation is sufficiently authorized.

Since the main purpose of the model proposed in [2] is
not formal verification, the model cannot be directly appli-
cable to model checking problems. This paper proposes a
formal model for IBAC programs suitable for formal verifi-
cation. We model the behavior of an IBAC program as an
extended weighted-pushdown system (EWPDS) [5]. This
extension of pushdown systems (PDS) naturally models the
behavior of an IBAC program in which subsets of permis-
sions are maintained and altered at every procedure call and
return. Moreover, in some cases using EWPDS improves
the efficiency of model-checking [4] compared with a mod-
eling by PDS where the subsets of permissions are encoded
into stack symbols.

This paper is organized as follows: Sect. 2 presents
a summary of the IBAC syntax and behavior. In Sect. 3
we present the EWPDS definitions, and we describe the
structure and the semantics of our EWPDS-based model.
We show some examples of the model and we discuss the
model-checking problem of our EWPDS model. Section 4
describes an implementation of our model using existing
tools for EWPDS model-checking, and Sect. 5 concludes the
paper.

2. IBAC Program

2.1 Syntax

We review the syntax and the semantics of an IBAC pro-
gram defined in [2]. Figure 1 shows the syntax of a subset
(fields and records are not taken in consideration) of com-
mands from the cited paper. S, C, E, R, p, and x represent a
sequence of commands, a command, an expression, a subset

Fig. 1 IBAC language syntax of commands.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



1150
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

of permissions, a procedure, and a variable, respectively.
Like previous access control models (SBAC, HBAC),

the user assigns a set of permissions to each procedure. We
assume that the elements of this set are atomic and without
any hierarchy. This set is called static permissions and are
not changed during the execution. They represent the grade
of authorization of the procedure, i.e. which operations that
procedure can perform or not. On the other hand the run-
time system dynamically maintains the current permissions,
called dynamic permissions, of the execution process based
on the static permissions of each procedure called. These
dynamic permissions change during the execution of the
program, generally at call and return statements. When a
procedure is called, the current permissions of the process
are intersected with the static permissions of the called pro-
cedure. When the procedure finishes the behavior of the
dynamic permissions varies depending the access control
model.

In SBAC the process recovers the previous current per-
missions when the called procedure finishes. This means
that SBAC does not retain any information of the permis-
sions of previously executed methods. On the other hand,
in HBAC the current permissions are maintained when the
called procedure finishes. This way, HBAC keeps the his-
tory of the authorization level of previously executed meth-
ods. In all three access control models, a permission-check
command test R then S 1 else S 2 is statically placed by
the programmer just before each security-sensitive opera-
tion. At the permission-check command it is tested whether
the current dynamic permissions includes as a subset the set
of permissions specified in the check command. The nega-
tive case of this check is treated as a security violation. Be-
cause SBAC restores the dynamic permissions when a pro-
cedure finishes, this check command may not detect that a
procedure without enough authorization level had influence
in the security-sensitive operation. This is solved by HBAC
because it does not restore the dynamic permissions when a
procedure finalizes. However HBAC also prevents security
operations in the case when a previously executed procedure
without enough permissions to execute that operation does
not have any influence on that operation.

IBAC solves the high restrictiveness of HBAC by in-
cluding another set of dynamic permissions for each vari-
able in the program. This permissions of variables are up-
dated after an assignment command x := E to the intersec-
tion of the static permissions of the current program block
and the permissions of all variables in E. This set of per-
missions given to x represents the trustfulness of the value
assigned to x. The IBAC includes also another kind of
permission-check command called test R for x. This com-
mand inspects whether the set of permissions assigned to the
variable x contains the set of permissions R.

For the convenience of the definition, we modify the
syntax of a command sequence S in Fig. 1 as S ::= n |
n: C; S where n is a program point. We also call a program
point a node, because it corresponds to a node in a control
flow graph.

Formally, an IBAC program is a 7-tuple π =

(PR,NO, IS, p0,PRM, SP,VR) where PR is a finite set of
procedures, NO is a finite set of nodes (i.e. program points),
IS : PR → S is a function for defining the body of each
procedure, p0 ∈ PR is the main procedure, PRM is a finite
set of permissions, SP : PR → 2PRM is the static assign-
ment of permissions to procedures, and VR is a finite set of
global variables. We sometimes write PRπ, NOπ, and so on
to indicate that those are components of a program π.

Intuitive meanings of commands are as follows.

• x := E where x ∈ VR is the assignment command.
The intersection of the permissions of all the variables
included in E and also the program counter variable pc
is assigned to x.
• p() and grant R in p() where p ∈ PR and R ⊆ PRM are

the procedure call commands. The former is a special
case of the latter in which R = ∅. The parameter R is
called grant permissions.
• if E then S 1 else S 2 is the conditional clause.
• test R then S 1 else S 2 is the test command for current

permissions, which tests whether or not the subset R of
permissions is included in the current dynamic permis-
sions. If R ⊆ D where D is the set of current dynamic
permissions, then the execution advances to S 1. On the
contrary case, the program advances to S 2.
• test R for x where x ∈ VR and R ⊆ PRM is the test

command for a value’s permissions. If the permissions
assigned to the variable x include R as a subset, then
the execution continues. Otherwise, it is aborted.

For each procedure p, a subset SP(p) of permissions is as-
signed statically before execution. SP(p) is called the static
permissions of p. We extend the domain of SP to NO; i.e.,
SP(n) = SP(p) if n belongs to IS(p).

We write the initial program point of a command se-
quence S as head(S ); i.e., head(n) = n and head(n: C; S ) =
n. Similarly, the last program point of S is denoted as
last(S ); i.e., last(n) = n and last(n: C; S ) = last(S ). We
also define head(p) = head(IS(p)) and last(p) = last(IS(p))
for p ∈ PR. head(p0) is the starting program point of the
program.

The control flow graph of a sample IBAC program is
shown in Fig. 2. Each procedure is represented by the set of
nodes surrounded by a rectangle. The static permissions of a
procedure are attached to its rectangle. The intra-procedure
control flows are denoted as dotted arrows, which we call
transfer edges. The inter-procedure control flows are de-
noted as solid arrows, which we call call edges.

The set of variables in an expression E is denoted as
V(E). For a command sequence S , write oracle(S ) = { x ∈
VR | S contains a command x := E } is the subset of vari-
ables that are potentially altered during the execution of S .

For a given program π, we model the transition system
that represents the behavior of π as an extended weighted
pushdown system (EWPDS) [5].



LAMILLA ALVAREZ and TAKATA: A FORMAL VERIFICATION OF A SUBSET OF INFORMATION-BASED ACCESS CONTROL
1151

Fig. 2 A basic IBAC program.

2.2 Original Semantics

In [2], the semantics of a command sequence is represented
by a relation (S , s) ⇓P

Ds′ where s and s′ are stores and P and
D are subsets of permissions. A store maps each variable to
a framed value R[v] that is a pair of a subset R of permissions
and a value v. The expression (S , s) ⇓P

Ds′ means that the ex-
ecution of S transforms s into s′ if the static permissions of
S is P and the current permissions of the process is D. Simi-
larly, (E, s) ⇓P

DR[v] means that the expression E is evaluated
to R[v] if the current store is s, the static permissions of the
current procedure is P, and the current permissions of the
process is D. For a store s, s[x 	→ E] denote the same store
except that the value of x is E. For a procedure p, p() = R[S ]
means that the static permissions of p is R and the body of
p is S .

Variable pc (the program counter) is used for keeping
track of implicit influence between variables caused by con-
ditional clauses. write oracle(S , s) represents the set of
variables updated in S. If (S , s)⇓P

Ds′ and write oracle(S , s) =
V , then V is the set of variables that are potentially updated
from s to s′. taint(R,V, s) is a store s′ such that s′(x) = s(x)
for x � V and s′(x) = s(x) ∩ R for x ∈ V . taint represents an
operation that reduces the current permission of variables in
V . The semantics of IBAC programs is as follows:

p() = R[S ], (S , s)⇓R
D∩Rs′

(p(), s)⇓P
Ds′

(1)

(S 1, s)⇓P
Ds1, (S 2, s1)⇓P

Ds′

(S 1; S 2, s)⇓P
Ds′

(2)

R ⊆ D, (S 1, s)⇓P
Ds′

(test R then S 1 else S 2, s)⇓P
Ds′

(3)

R � D, (S 2, s)⇓P
Ds′

(test R then S 1 else S 2, s)⇓P
Ds′

(4)

Fig. 3 Program examples of IBAC and HBAC.

(E, s)⇓P
DP′[v], R ⊆ P′

(test R for E, s)⇓P
Ds

(5)

(S , s)⇓P
D∪(R∩P)s

′

(grant R in S , s)⇓P
Ds′

(6)

(E, s)⇓P
DR[v]

(x := E, s)⇓P
Ds[x 	→ s(pc) ∩ P ∩ R[v]]

(7)

(E, s)⇓P
DR[ f alse], s0 = s[pc 	→ s(pc) ∩ R]

(S 2, s0)⇓P
Ds2, V = write oracle(S1, s)

s′ = taint(s0(pc),V, s2)
(if E then S 1 else S 2, s)⇓P

Ds′[pc 	→ s(pc)]

(8)

(E, s)⇓P
DR[true], s0 = s[pc 	→ s(pc) ∩ R]

(S 1, s0)⇓P
Ds1, V = write oracle(S2, s)

s′ = taint(s0(pc),V, s1)
(if E then S 1 else S 2, s)⇓P

Ds′[pc 	→ s(pc)]

(9)

Rules 1 and 2 define the behavior for the procedure call
command and for a command sequence respectively. Rules
3 and 4 are the rules for the dynamic permission test state-
ment, when it succeeds and when it fails respectively. Rule
5 defines the test for the permissions of a variable. In this
case there is no “else” branch. Rule 6 defines the seman-
tics for the grant operation and rule 7 is the rule for the as-
signment statement. Finally rules 8 and 9 are stand for the
conditional clause. In these last two rules, the IBAC intro-
duces two operations called write oracle and taint. Basi-
cally, write oracle is the set of the variables that are updated
in a given command sequence, and taint imposes a set of
permissions on a set of variables. In the conditional clause,
the potentially-updated variables of the not taken branch are
influenced by the variable of the branch condition. There-
fore, by using the two operations mentioned above, we en-
sure the permissions of the branch condition variable inter-
sect with the variables that may be updated in the not taken
branch.

2.3 Examples

Example 1. Figure 3 shows a small program that illustrates



1152
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

the advantage of IBAC over HBAC. In this program, the
trusted function main calls the non-trusted function Bad-
Function, and then the function main tries to modify the
file password.txt. In the version a of this program, the
password.txt file is requested and returned by BadFunction,
which does not possess any permission over the file and thus
the main function would not be able to modify the file. In
this example, HBAC would detect this security violation by
checking the dynamic permissions just before the sensitive
operation write(x). Since these dynamic permissions are at
most the static permissions of BadFunction, the operation is
not executed because BadFunction does not have sufficient
permission. IBAC also detects this violation by checking the
permissions associated with variable x using the test com-
mand before the sensitive operation. Since this variable was
modified at BadFunction, the operation is not executed be-
cause the permissions associated to variable x are the same
as the static permissions of BadFunction. On the other hand,
in the version b of this program, the BadFunction does not
have any influence on the password.txt file. Therefore the
operation write(x) should be allowed to be executed. How-
ever, HBAC also negates the execution of the sensitive op-
eration because, since BadFunction is called, the dynamic
permissions are still intersected with the dynamic permis-
sions of BadFunction. As a result, the behavior of HBAC
is exactly the same in this example as in example a. IBAC
on the contrary allows the sensitive operation to be executed
in example b because the variable x is modified in the func-
tion main, not in BadFunction. As a result, the permissions
associated to x are the static permissions of main which are
enough to execute the sensitive operation write(x). There-
fore, in this case the test command succeeds and the exe-
cution continues. This example illustrates how in HBAC is
more restrictive than IBAC because IBAC tracks the permis-
sions of each variable along the execution of the program,
whereas HBAC just tracks the dynamic permissions of the
whole execution.

Example 2. Resurrecting Duckling policy [8] is a pol-
icy such that a device is first “free” (not bound with any
user) and then gets bound to the first user who tries to use
the device. After this, the device is only allowed to be used
by this first user until the device is “restored” to its unbound
state, where any user can become the master of the device.
Figure 4 shows an IBAC program that represents this pol-
icy. In this example, a global variable x represents a device,
the functions imprintA and imprintB represent the action of
binding the device to user A and B respectively, and the
functions killA and killB represent the action of unbinding
the device from user A and B respectively. The permissions
Pa and Pb are used to determine the owner of the device
represented by the variable x. If the variable x has both per-
missions the device is “free”, i.e. it can be bound to any user.
On the other hand, if x has only the permission Pa or only
the permission Pb, the device is bound to user A or user B
respectively. In order to bind the device to a user, the as-
signment command of both imprint functions intersects the
set of permissions of x with the static permissions of the

Fig. 4 Program example that models the resurrecting duckling policy.

imprint function, and thus the variable x gets bound to user
A in case of calling imprintA or to user B in case of call-
ing imprintB. Test statements are placed at the beginning of
both imprint functions in order to check if the device is not
bound to any user. When a user wants to unbind the device,
the function kill is called. This function first checks if the
device is bound to the user A in case of killA or to the user
B in case of killB. Then, if the test statement succeeds, the
assignment command restores the permissions of x to {Pa,
Pb}, which means that the device is again unbound and can
be bound to any user.

In the example of Fig. 4, the main function first calls
the function imprintA in order to bind the device to the user
A. Then, user B tries to use the device by calling the func-
tions imprintB and killB, but these actions are prevented by
the test statements of those functions because the device is
bound to user A. However, after user A unbinds the device
by calling the function killA, the function imprintB succeeds
because the device is in its unbound state.

The behavior of the Resurrecting Duckling policy can
be modeled by the IBAC model as we have shown here.
However it would not be possible for this policy to be rep-
resented by any HBAC model, because the set of dynamic
permissions in HBAC must necessarily become smaller, and
as a result the behavior of “restoring” to a previous state in
which the permissions of an element are greater than before
cannot be modeled using HBAC.

3. Weighted Pushdown System-Based Model

3.1 Weighted Pushdown System

DEFINITION 1. A pushdown system is a triple P = (P,
Γ, Δ) where P is the set of states or control locations, Γ
is the set of stack symbols and Δ ⊆ P × Γ × P × Γ* is
a finite set of transition rules. A configuration of P is a
pair 〈p, w〉 where p ∈ P and w ∈ Γ*. A transition rule r
∈ Δ is written as 〈p, γ〉 ↪→ 〈p′, w〉 where p, p’∈ P, γ ∈ Γ
and w ∈ Γ*. A transition rule 〈p, γ〉 ↪→ 〈p′,w〉 is called a



LAMILLA ALVAREZ and TAKATA: A FORMAL VERIFICATION OF A SUBSET OF INFORMATION-BASED ACCESS CONTROL
1153

push rule if the length of w is more than one. The transition
relation ⇒ on configurations of P is defined as follows: If
r=〈p, γ〉 ↪→ 〈p′,w〉, then 〈p, γw′〉⇒ 〈p′,ww′〉 for all w’∈ Γ*

The reflexive and transitive closure of⇒ is denoted by
⇒∗.

For the modeling of an IBAC program, we need just
one control location and thus we write γ ↪→ w instead of
〈p, γ〉 ↪→ 〈p, w〉.

DEFINITION 2. A bounded idempotent semiring is a
quintuple (D, ⊕, ⊗, 0 ,1) where 0, 1 ∈ D, and

1. (D, ⊕) is a commutative monoid with 0 as its unit ele-
ment, and ⊕ is idempotent (i.e., for all a ∈ D, a ⊕ a =
a).

2. (D, ⊗) is a monoid with the neutral element 1.
3. ⊗ distributes over ⊕.
4. 0 is annihilator with respect to ⊗, i.e., for all a ∈ D, a
⊗ 0 = 0 ⊗ a = 0.

5. There are no infinite descending chains for the partial
order � defined as follows: ∀a, b ∈ D, a � b iff a ⊕ b =
a.

DEFINITION 3. A weighted pushdown system is
a triple W = (P, S, w), where P = (P, Γ, Δ) is a pushdown
system, S = (D, ⊕, ⊗, 0, 1) is a bounded idempotent semiring,
and w : Δ→ D is a function that assigns a value from D to
each rule of P.

The extend operation ⊗ is used for computing a weight
of a single path, while the combine operation ⊕ is used
for combining the weights of joining paths. To a rule
sequence σ=r1r2 . . . rk, a weight v (σ)=w (r1)⊗w(r2)⊗· · · ⊗
w(rk) is associated by the EWPDS. For configurations s and
t, let path(s, t) be the set of all rule sequences that transform
s into t. The meet-over-all-valid-paths value MOVP(s, t) is
defined as ⊕ {v(σ)|σ ∈ path (s, t)}.

In the EWPDS Wπ that models an IBAC program π,
the stack alphabet Γ is the set NO of nodes and the config-
uration of the PDS part of Wπ is a finite sequence of nodes
that represents the call stack. The dynamic assignment of
permissions to variables is codified on the weights of the
EWPDS as explained as follows.

DEFINITION 4. If G is a finite set, then the relational
weight domain on G is defined as a the bounded idempo-
tent semiring (2G×G, ∪, ; , ∅, id) where weights are binary
relations on G, combine is union, extend is relational com-
position, 0 is the empty relation, and 1 is the identity relation
id on G.

We define VR′ = VR ∪ {pc, dp} where pc and dp are
newly introduced variables for representing the set of cur-
rent dynamic permissions of the program counter and the
execution process, respectively. An environment is an as-
signment of permissions to variables in VR′ and is a func-
tion from VR′ to 2PRM . The set of all environments is de-
noted as Env. In our model, we use the relational weight
domain on Env. Therefore, a weight of a EWPDS Wπ is of
the form:

w = {(e, e′) | e, e′ ∈ Env, . . .}.

A weight is a set of pairs and the first component of
each pair represents the pre-state of the variables before ap-
plying the transition rule. The second component represents
the post-state of the variables after applying the transition
rule.

For an environment e, e [x 	→ R] denote the same envi-
ronment except that the value of x is R.

When a conditional clause finishes, the variable pc
needs to be restored to its value before the conditional
clause. The same issue occurs with the variable dp in case
of a procedure call. In order to implement this behavior, we
use the Extended-WPDS (EWPDS) [5], which allows local
variables to be stored at call sites and then, when a procedure
finishes, combine the returned value with the stored value by
using a merging function. For a semiring S on domain D, a
merging function is defined as follows:

DEFINITION 5. A function g : D × D → D is
a merging function with respect to a bounded idempotent
semiring S = (D, ⊕, ⊗, 0, 1) if it satisfies the following prop-
erties.

1. Strictness. For all a ∈ D, g (0, a) = g (a, 0) = 0.
2. Distributivity. The function distributes over ⊕.
3. Path Extension. For all a, b, c ∈ D, g (a ⊗ b, c) =

a ⊗ g (b, c) .

DEFINITION 6. An extended weighted pushdown
system is a quadruple We = (P, S, w, g) where (P, S, w) is
a weighted pushdown system and g : Δ2 → G assigns a
merging function to each rule in Δ2 , where G is the set of
all merging functions on the semiring S and Δ2 is the set of
push rules of P.

Using the merging functions of the EWPDS at the end
of a conditional clause and at the end of a procedure call, the
values of pc and dp are restored respectively. Regarding the
rest of the variables in the weight, they remain unaffected
by the merging function. Assuming w1 to be the weight just
before a conditional clause or a procedure call and w2 to be
the weight after a conditional clause or a procedure call, the
merging functions are defined as follows:

• For a conditional clause:

g1 (w1,w2) =
{(

e, e2
[
pc 	→ e1 (pc)

])∣∣∣

e, e1, e2 ∈ Env, (e, e1) ∈ w1, (e1, e2) ∈ w2}
• For a procedure call:

g2 (w1,w2) =
{(

e, e2
[
dp 	→ e1 (dp)

])∣∣∣

e, e1, e2 ∈ Env, (e, e1) ∈ w1, (e1, e2) ∈ w2}
In case of conditional clause, the variable pc is re-

stored to its value in the weight w1, the one before the
conditional clause. The rest of variables are set to their
value in weight w2. In case of procedure call, the same
process is performed but restoring the variable dp instead.
For other push rules we assign the third merging function
g0 (w1,w2) = w1 ⊗ w2, which is the same as the combining
operation.



1154
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

3.2 Model Semantics

The set Δ(π) of transition rules of Wπ is defined as Δ(π) =
⋃

p∈PRπ Δ(ISπ(p)), and Δ(S ) for a command sequence S is
defined as the least set that satisfies the following inference
rules. Moreover, the weight specified in each inference rule
is assigned to the transition rule defined in that rule.

n′ = head(S )
Δ(n: C; S ) = Δ(n: C; n′) ∪ Δ(S )

(10)

t = n ↪→ n′ ∈ Δ(n: x := E; n′)
w(t) = {(e, e[x 	→ P]) | e ∈ Env

P = (
⋂

y∈V(E) e(y)) ∩ SP(n) ∩ e(pc)}
(11)

m = head(p)
t = n ↪→ m n′ ∈ Δ(n: grant R in p(); n′)

w(t) = {(e, e[dp 	→ D]) | e ∈ Env
D = (e(dp) ∪ R) ∩ SP(p)} g(t) = g2

(12)

p ∈ PR, m = last(p)
t = m ↪→ ε ∈ Δ(m) w(t) = id

(13)

t = n ↪→ n′ ∈ Δ(n: test R for x; n′)
w(t) = {(e, e) | e ∈ Env, R ⊆ e(x)} (14)

i, j ∈ {1, 2}, i � j, m = head(S i)
m′ = last(S i), W = write oracle(S j)
t1 = n ↪→ m n′ ∈ Δ(n: if E then S 1 else S 2; n′)

w(t1) = {(e, e[pc 	→ P]) | e ∈ Env,
P = e(pc) ∩ SP(n) ∩ (

⋂
y∈V(E) e(y))}

g(t1) = g1

t2 = m′ ↪→ ε ∈ Δ(m′)
w(t2) = {(e, e[x 	→ e(x) ∩ e(pc) | x ∈ W])
| e ∈ Env}
Δ(n: if E then S 1 else S 2; n′) ⊇ Δ(S 1) ∪ Δ(S 2)

(15)

m = head(S 1), m′ = last(S 1)
t1 = n ↪→ m n′ ∈ Δ(n: test R then S 1 else S 2; n′)

w(t1) = {(e, e) | e ∈ Env, R ⊆ e(dp)}
g(t1) = g0

t2 = m′ ↪→ ε ∈ Δ(m′) w(t2) = id
Δ(n: test R then S 1 else S 2; n′) ⊇ Δ(S 1) ∪ Δ(S 2)

(16)

m = head(S 2), m′ = last(S 2)
t1 = n ↪→ m n′ ∈ Δ(n: test R then S 1 else S 2; n′)

w(t1) = {(e, e) | e ∈ Env, R � e(dp)}
g(t1) = g0

t2 = m′ ↪→ ε ∈ Δ(m′) w(t2) = id
Δ(n: test R then S 1 else S 2; n′) ⊇ Δ(S 1) ∪ Δ(S 2)

(17)

Rule (10) defines the set of transition rules for a com-
mand sequence.

Rule (11) is the rule for the assignment command. If
the control reaches an assignment node n, then the next cur-
rent node can be the node n′ next to n. The weight of the rule
states that the permissions of the variable x is intersected
with three sets of permissions: the permissions of all the

variables in the expression E, the static permissions of the
current node, and the permissions of the program counter.

Rule (12) states that if the control is at a node n that is
a call to a procedure p, then the initial node m of p can be
pushed onto the stack. In the weight of the rule, the dynamic
permissions are updated to D = (D′ ∪ R) ∩ SP(n) where D′
is the old value of dp.

Rule (13) describes the return from a procedure. If the
current node m is the last node of a procedure p, then m is
simply removed from the stack and the next current node is
the node n′ next to the caller node, which is placed int he
stack by Rule (12). Regarding to the weight, the value of
the dynamic permissions is restored to the one before the
procedure call by the merging function g2.

Rule (15) describes the behavior when the control
reaches a conditional clause. If the current node n is a con-
ditional clause, then the next current node can be the ini-
tial node of either the then clause S 1 or the else clause S 2.
The EWPDS takes non-deterministically one of the two
branches. If the control reaches the last node m′ of S 1 or
S 2, then m′ is simply removed from the stack and the next
current node is the node n′ next to n. There are two changes
regarding the weight of these rules. First, the permissions of
the program counter pc are intersected with the permissions
of all the variables included in the expression E. Second, at
the end of the conditional clause, the permissions of pc is
imposed to the variable x that are updated in the not taken
branch. A push rule is needed for the conditional clause be-
cause, in case of nested if commands, the pc variable has to
be tracked accordingly.

Rules (16) and (17) model the behavior of SBAC
checkPermission statement. In these rules, when the control
reaches a test node n, the next current node can be the initial
node of either the then clause S 1 or the else clause S 2. Re-
garding to the weight of these rules, advancing to S 1 is valid
only when R ⊆ D and advancing to S 2 is valid only when
R � D where D is the current dynamic permissions.

Finally, Rule (14) says that if control reaches a test
node n for a variable x, and the current dynamic permissions
of x include R, then the next current node can be the node n′
next to n. In this case, the weight keeps the environment as
the same. If the permissions of x does not include R, then the
weight does not map the environment to any environment.

3.3 Model Example

Example 3. Let us return to the IBAC program π1 in Fig. 2.
When the unknown procedure is called by n0, the current
dynamic permissions i.e., the variable dp in the weight of
the EWPDS, become e(dp) ∩ SP(n1) = e(dp) ∩ {r} where
e is an initial environment. In node n1, because the vari-
able x is updated, the permissions associated to variable x
become e(pc) ∩ SP(n1) = e(pc) ∩ {r}. Therefore, the test
at node n7 fails regardless of the initial environment be-
cause the permissions of x do not include {w}. However,
the test at node n5 succeeds if w ∈ e(pc) because the vari-
able y is just modified at the naive procedure, which has



LAMILLA ALVAREZ and TAKATA: A FORMAL VERIFICATION OF A SUBSET OF INFORMATION-BASED ACCESS CONTROL
1155

Fig. 5 Transitions of Wπ1.

the permissions e(pc) ∩ {r, w}. This test at node n5 would
have failed in an HBAC program because the first call to
the unknown method would have cut the permission {w} for
the rest of the execution, even if y is not modified in the
unknown method. The transitions of the EWPDS Wπ1 and
the weight after each transition following the semantics ex-
plained before are shown in Fig. 5.

In order to restore the dp variable at the finalization of
a procedure, the merging function g1 is applied at the rules
for the end of a procedure, in this case the third and the sev-
enth transitions. In the last transition of this example, the
weight becomes the empty relation because the test state-
ment at node n7 fails.

3.4 Formal Verification Problem

Let us discuss in this section the model-checking problem
of our EWPDS model. Let π be an IBAC program and Wπ

be the EWPDS that models that program. The initial envi-
ronment is an environment e0 such that e0(pc) = PRM and
e0(dp) = SP(p0). We consider the reachability problem on
π, i.e., check whether or not a given node n is reachable
from the initial configuration n0 = head(p0) with the initial
environment e0. The property that an invalid node n is not
reachable from the initial program node can be represented
as the following expression on Wπ:

(e0, e) � MOVP (n0, nξ) for any e and ξ.

This expression means that when the EWPDS reaches
some configuration whose stack top is n, the weight in that
configuration must not map the initial environment to any
environment. Otherwise the expression does not hold and
the IBAC program is invalid because it successfully reaches
an invalid configuration. As an example, let us take the pro-
gram π2 in Fig. 2. Following the original semantics of the

IBAC model, in program π2 the node n8 is not reachable be-
cause the test command at n7 should abort the execution.
To verify that this behavior occurs in Wπ2, the above ex-
pression for n8 is examined. That expression holds because
the weight at node n8 does not map e0 to any environment
regardless the path chosen at the conditional clause. There-
fore, the safety property of the original program π2 is main-
tained in the EWPDS Wπ2.

Let us consider more complex verification problem.
For a program like the Resurrecting Duckling policy in Ex-
ample 2, one may want to verify whether a given bad path
does not exist in that program. Let n1 = last(imprintA),
n2 = last(killA), and n3 = last(imprintB). Then one of
the bad paths is n0 ⇒∗ n1ξ ⇒∗ n3ξ

′ for some ξ, ξ′ such
that its second half n1ξ ⇒∗ n3ξ

′ does not contain n2ξ
′′ for

any ξ′′. Using a technique for model-checking PDS [6],
we can obtain a EWPDS W ′ from Wπ such that the tran-
sition relation ⇒ for W ′ is a subset of that of Wπ and, in
W ′, the stack top must transit according to a regular expres-
sion n0 NO∗ n1 (NO− {n2})∗ n3. Conducting the unreachabil-
ity test for W ′, we can verify whether the bad path does not
exist in program π.

A practical example of the usefulness of this method
would be the detection of bugs in a given IBAC program.
Following the Example 2, imagine there is a bug in the test
command of the killB() function so instead of testPb for x
the programmer wrote testPa for x. In this case, when the
killB() function is called it succeeds and the user B would
be able to operate the device even though the device belongs
to user A. This error could be detected by using the MOVP
from the starting point of function imprintA until the return
of function killB. In this example, the MOVP is not empty
because there is a path that reaches the end of killB from im-
printA, which is a security violation. Therefore, by checking
the value of the MOVP we can detect these type of bugs in
an IBAC program.

The soundness of our EWPDS model with respect to
the original semantics of IBAC programs given in [2] is rep-
resented by the following Theorem 1. Note that the origi-
nal semantics is defined with respect to stores, which map
each variable x ∈ VR ∪ {pc} to a framed value R[v], i.e. a
pair of permissions R and a value v. The environments we
used abstract the values and consider only the permissions.
We define a projection function proj over framed values as
proj(R[v]) = R. Moreover, for a store s and a subset D of
permissions, we define proj(s,D) as the environment e such
that e(dp) = D and e(x) = proj(s(x)) for x ∈ VR ∪ {pc}. We
define SP(S ) = SP(head(S )) for a command sequence S .

Theorem 1 (Soundness). Given an IBAC program π, if
(S , s) ⇓SP(S )

D s′ for a command sequence S in π and stores
s and s′ and dynamic permissions D ⊆ PRM, then the
EWPDS Wπ satisfies n0 ⇒∗ n1 and (e, e′) ∈ MOVP(n0, n1)
where n0 = head(S ), n1 = last(S ), e = proj(s,D), and
e′ = proj(s′,D).

Proof. This theorem can be proved by induction on the
number l of steps to derive (S , s) ⇓SP(S )

D s′ (Shown in Ap-



1156
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

pendix A). �

The above theorem says that the non-reachable states
of a transition system Wπ are neither reachable in the IBAC
program π. However, due to the non-deterministic behav-
ior of the EWPDS, if Wπ includes conditional clauses, its
reachable set of states is greater than the program π.

4. Implementation and Performance Evaluation

The model presented in this paper is implemented using
the model-checker for EWPDS called WALi [9]. This tool
provides a C++ interface for easily creating and verifying
EWPDS and also provides an add-on that implements a bi-
nary relation domain using the Binary Decision Diagram
(BDD) library Buddy [10]. The implementation of a bi-
nary relation includes the basic semiring methods that WALi
needs in any weight domain. These methods are: One() and
Zero() which return the neutral element 1 and the empty
element 0 of the semi-ring respectively, Combine() which
returns the union of two semiring elements, and Extend()
which returns the composition of two semiring elements.

Besides the previous top-level methods of the rela-
tional weight domain, additional low-level methods are im-
plemented in order to create and return a semi-ring ele-
ment according to the changes denoted in the semantics of
our model. For example, for the assignment command, a
method returns an environment that reflects the update of
the set of permissions of the updated variable, and then this
returned semi-ring element is passed to WALi as the weight
of the corresponding EWPDS rule. The weights returned by
these methods are used in the model checking computation
by the Combine and Extend operations explained before.
Moreover, we also implemented the two merge functions
defined in Sect. 3.1.

In our model, a relational weight domain is com-
posed by a binary relation R over D where D is a set of
Boolean vectors. These vectors store the permissions as-
sociated to each global variable plus the dynamic permis-
sions DP and the program counter variable PC. There-
fore the length of each vector is |VR′| × |PRM| where |VR′|
is the number of variables including the two special vari-
ables PC and DP, and |PRM| is the number of different
permissions. For example, a vector in a program with
one global variable x and two different permissions Pa and
Pb would be of the form (xPa, xPb, pcPa, pcPb, dpPa,
dpPb) where all the components are Boolean. The rela-
tional weight of our problem would be composed by a set
of pairs of these Boolean vectors, where the two vectors of
a pair would be the pre state and the post state of a weight.
The ordering of the Boolean variables in BDDs chosen for
these two vectors is (xpre, xpost, . . . , zpre, zpost), instead of
(xpre, . . . , zpre, xpost, . . . , zpost). The reason of this choice is
that in the former ordering, the number of nodes of the BDD
that represents our id weight grows linearly. On the other
hand, using the latter ordering, the number of nodes grows
exponentially.

Using all the elements described above, we imple-
mented a EWPDS of four IBAC programs, each one rep-
resenting a group of IBAC programs. These four programs
try to include all the IBAC operations that can be used in
any IBAC. This way, if our model is suitable for all these
programs separately, it would be also suitable for verifying
the majority of IBAC programs. The scalability of all the
programs depends on the number of permissions which is
augmented from 2 to 20.

The first program used in this experiment is the one
shown in Fig. 4. This is chosen because it is a typical ex-
ample of a security policy that cannot be modeled using
previous access control models but can be modeled using
IBAC. In terms of the program, increasing the number of
permissions means an increment of the number of proce-
dures, especifically 2 procedures (imprintX and killX) are
added for each permission incremented. In terms of the se-
curity policy, an increment of one permission means, for ex-
ample, allowing one more user the possibility to inprint a
device. Therefore incrementing the number of permissions
increments also the number of users that can get a device.

The rest three programs are artifitially created in or-
der to test the rest of operations an IBAC program can use,
without any intention of representing a real life situation.
The first one shown in Fig. 6 tests the conditinal clause be-
havior in an IBAC program. The objective in this program
is to check if the variable y, which every time that enters a
conditional clause loses one permission, has the same set of
permissions at the end of the conditional clause no matter
the path taken. For example, if we take the first conditional
clause, the variable y loses the permission A explicitally in
the then path due to the assignment operation because vari-
able y gets the permissions of variable x. If the else path
is taken, the variable y also will lose the permission A at
the end of the conditional clause due to the write oracle and
taint of the IBAC semantics. This fact is tested using test A
for y operation which no matter the path taken should fail.
This behaviour is tested in all the nested conditional clauses.
The depth of the nesting increases with the number of per-
missions.

The second artifitial program shown in Fig. 7 is cre-
ated to test the grant operation and the dynamic permission
check operation. At first, the main function calls either GrtA
or GrtB granting a permission that is not including in the
static permissions of these functions, A in case of GrtA and
B in case of GrtB. Then we check if that permission has
been granted into the dynamic permissions using the test R
then else command, where R is either permission A or per-
mission B depending on the function. These test operations
should always succeed in this example. After this, the per-
missions of variable x are updated to the static permissions
of the function called and then checked in the main func-
tion using the test A,B for x command. This test is placed
to check that the then path has been taken in the dynamic
permission test command and thus, the permissions of the
variable x were correctly updated. In this program, by aug-
menting the permissions the number of Grt() functions in-



LAMILLA ALVAREZ and TAKATA: A FORMAL VERIFICATION OF A SUBSET OF INFORMATION-BASED ACCESS CONTROL
1157

Fig. 6 Program test of conditional clause with 3 permissions.

Fig. 7 Program test of grant and dynamic permission check with 2 per-
missions.

creases.
Finally the third artifitial program shown in Fig. 8 tests

the behavior of recursive loops. This simple program nonde-
terministically calls either FuncA() or FuncB() to eliminate
a permission from the set of permissions of variable x. Then
it tests also nondeterministically if x has the permission A or
B. Finally the program can recursively call the main function
again or finish. Note that because our model cannot explici-
taly control a conditional statement, the decision of finishing
or continuing the loop is taken nondeterministically by the
model checker. As the number the permissions is increased,
the number of functions and the number of test statements
that can be executed increases.

In order to measure the performance of the imple-
mented EWPDS, a poststar query [4] is calculated for every
example. Given a set of configurations C, a poststar query
calculates the set of configurations post∗(C) := {c′ | ∃c ∈
C : c⇒∗ c′}, i.e, the set of configurations that are reachable
from elements of C via the transition relation. We performed
the poststar query with the beginning of the program as the
starting configuration.

The performance results are shown in Fig. 9. The x and
y axes represent the number of permissions and the execu-
tion time respectively. The environment used is a Intel(R)
Core(TM) i7-3770 CPU 3.40Ghz with 8 GB of RAM. As
we see in this figure, all the examples except the conditional

Fig. 8 Program test of loops using recursion with 2 permissions.

Fig. 9 Performance evaluation of a query in our EWPDS model.

clause one the time complexity of the query is efficient un-
til 20 permissions but from 21 permissions the time grows
exponentially and becomes unreasonable for more than 20
permissions. In a real life example using the example in
Fig. 4 where the number of permissions represents the num-
ber of users that can use a device, 20 permissions could be
sufficient for example for a remote control in a family house,
where 20 users at the same time at max seems reasonable.
However, systems that require a large number of users oper-
ate simultaneously, 20 permissions would not be sufficient.

The reason for this limitation is related to the bdd li-
brary cache space. Because the number of nodes of the bdd’s
becomes too high, the library does not operate efficiently for
more than 20 permissions. This is because the cache used by
the bdd library becomes full after 20 permissions and there-
fore the execution time increases. In the conditional clause
example, we use 2 variables instead of 1 as in the other ex-
amples. Therefore, the bdds grow faster and the cache of
the library becomes full at 10 permissions. Possible opti-
mization paths may include the redefinition of the weight
codification in order to use fewer BDD nodes, and the par-
allelization of the BDD library [11].

5. Related Work

The verification problem for HBAC has been discussed in



1158
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

works such as [3] and [12], but no formal verification has
been proposed for IBAC. Our work is the first to discuss
and implement the model-checking problem for IBAC pro-
grams.

PDS-based approaches are recently being used to re-
solve security related problems. In [14], EWPDS model-
checking is used to develop a distributed certificate-chain-
discovery algorithm for a trust management system called
SPKI/SDSI. In [13] a PDS-based approach is utilized to de-
velop a Symbolic PDS from core-language program in order
to express noninterference with LTL formula. While they
used PDS for analyzing information flow of usual proce-
dural programs, we aim to analyze the execution paths of
the IBAC programs. In IBAC, permissions are dynamically
maintained at each procedure call and there exists a dynamic
permission test statement; we aim to model such behavior
using EWPDS. On the other hand, since our purpose is to
verify the execution paths of an IBAC program, we have not
considered the self-composition technique taken in [13] as a
key technique for precise non-interference analysis.

In [2], Pistoia et al. proposed two types of implementa-
tion for the IBAC model: a static and a dynamic enforce-
ment. Our method mainly aims to provide a verification
method for an IBAC program on the dynamic implemen-
tation. The runtime system of the dynamic implementation
maintains the subset of permissions of each value, and at
the test R for x command it checks whether R is included
by the subset of permissions attached to x. Our verification
method can analyze the behavior of a given IBAC program
on the dynamic implementation, and it can be used for ver-
ifying whether the given IBAC program is correctly written
and has no unintentional behavior. In the static implementa-
tion, it is inspected before runtime whether all statements in
the static backward slice of each test command have enough
static permissions. If not, then the program is not executed
at all. Even for the static implementation, our verification
method can be used for analyzing a path that is safe in the-
ory but is not permitted in the static implementation.

6. Conclusion and Future Work

In this paper we present a EWPDS-based formal model
for dynamic access control based on information flow
(IBAC). A subset of the original IBAC semantics is rep-
resented by a EWPDS. The verification problem of our
model and an implementation in an existing EWPDS tool
are also discussed. Theorem 1 proves the soundness of our
model. However, because the values of the variables are
not stored in our model, the conditional clauses are treated
non-deterministically. Therefore, our model is an over-
approximation of the original IBAC model and thus is only
suitable for safety properties. The implementation described
in Sect. 4 achieves good scalability up to 20 permissions us-
ing one variable. Future work includes the optimization of
our implementation and searching for a data structure more
suitable for our EWPDS model.

References

[1] M. Abadi and C. Fournet, “Access control based on execution his-
tory,” Proc. 11th Network and Distributed System Security Sympo-
sium (NDSS 2003), Feb. 2003.

[2] M. Pistoia, A. Banerjee, and D.A. Naumann, “Beyond stack inspec-
tion: A unified access-control and information-flow security model,”
Security and Privacy, 2007. SP ’07. IEEE Symposium on, pp.149–
163, May 2007.

[3] J. Wang, Y. Takata, and H. Seki, “HBAC: A model for history-based
access control and its model checking,” 11th ESORICS, LNCS,
vol.4189, pp.263–278, 2006.

[4] T. Reps, S. Schwoon, S. Jha, and D. Melski, “Weighted pushdown
systems and their application to interprocedural dataflow analysis,”
Sci. Comput. Program., vol.58, no.1-2, pp.206–263, 2005.

[5] A. Lal, T. Reps, and G. Balakrishnan, “Extended weighted push-
down systems,” CAV05: Proceedings of the 17th International Con-
ference on Computer Aided Verification, pp.434–448, 2005.

[6] S. Schwoon, “Model-checking pushdown systems,” PhD thesis,
Technical University of Munich, 2002.

[7] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers, “Going
beyond the sandbox: An overview of the new security architecture
in the JavaT M Development Kit 1.2,” USENIX Symp. Internet Tech-
nologies and Systems, pp.103–112, 1997.

[8] F. Stajano and R. Anderson, “The resurrecting duckling: Security
issues in ad-hoc wireless networks,” Security Protocols, 7th Interna-
tional Workshop Proceedings, LNCS, vol.1796, 1999. URL
http://www.cl.cam.ac.uk/ fms27/duckling/

[9] N. Kidd, T. Reps, and A. Lal, “WALi: A C++ library for weighted
pushdown systems,” http://www.cs.wisc.edu/wpis/wpds/
download.php, 2008.

[10] J. Lind-Nielsen, “BuDDy – A binary decision diagram package,”
http://sourceforge.net/projects/buddy, 2004.

[11] Y. He, Multicore-enabling a Binary Decision Diagram algorithm,
http://software.intel.com/en-us/articles/
multicore-enabling-a-binary-decision-diagram-algorithm, 2009.

[12] A. Banerjee and D.A. Naumann, “History-based access control and
secure information flow,” CASSIS04, LNCS, vol.3362, pp.27–48,
2004.

[13] C. Sun, L. Tang, and Z. Chen, “Secure information flow by model
checking pushdown system,” Proceedings of UIC-ATC09, pp.586–
591, 2009.

[14] S. Jha, S. Schwoon, H. Wang, and T. Reps, “Weighted push-
down systems and trust-management systems,” TACAS06, LNCS,
vol.3920, pp.1–26, Springer-Verlag, 2006.

Appendix: Proof of Theorem 1

Proof. This theorem can be proved by induction on the
number l of steps to derive (S , s) ⇓SP(S )

D s′.

(Basis) Assume that l = 0. This implies that s = s′ and
S contains no command, and thus n0 = n1. Since MOVP
(n0, n0) equals the identity relation id, (e, e) ∈ MOVP(n0, n1)
for e = proj(s,D) = proj(s′,D).

(Induction step) Assume that l > 0. This implies
that S = n0: C; S ′. By the definition of ⇓, (C, s) ⇓SP(S )

D s′′

and (S ′, s′′) ⇓SP(S )
D s′ for some s′′. By the induction hy-

pothesis, n2 ⇒∗ n1 and (e′′, e′) ∈ MOVP(n2, n1) where
n2 = head(S ′), n1 = last(S ′) = last(S ), e′′ = proj(s′′,D),
and e′ = proj(s′,D). On the other hand, for each form of



LAMILLA ALVAREZ and TAKATA: A FORMAL VERIFICATION OF A SUBSET OF INFORMATION-BASED ACCESS CONTROL
1159

C we can show that n0 ⇒∗ n2 and (e, e′′) ∈ g1(id,MOVP
(n0, n2)) for the conditional clause, (e, e′′) ∈ g2(id,MOVP
(n0, n2)) for the procedure call, or (e, e′′) ∈ MOVP(n0, n2)
for the other commands. We conclude that n0 ⇒∗ n1 and
(e, e′) ∈ MOVP(n0, n1).

(A) If C = x := E, then by the definition of ⇓,
s′′ = s[x 	→ (s(pc)∩ SP(n0)∩R)[v]] for some value v where
R = SP(n0)∩ (

⋂
y∈V(E) proj(s(y))). On the other hand, by the

definition of Wπ, n0⇒n2 and (e, e2) ∈ MOVP(n0, n2) for any
e ∈ Env and e2 = e[x 	→ (

⋂
y∈V(E) e(y)) ∩ SP(n0) ∩ e(pc)].

Therefore (e, e′′) ∈ MOVP(n0, n2) when e = proj(s,D)
and e′′ = proj(s′′,D). Since MOVP(n0, n1) ⊇ MOVP
(n0, n2)⊗MOVP(n2, n1), n0⇒∗n1 and (e, e′) ∈ MOVP(n0, n1)
where e = proj(s,D) and e′ = proj(s′,D).

(B) If C = grant R in p(), then by the definition of
⇓, (IS(p), s) ⇓SP(p)

D′ s′′ where D′ = (D ∪ R) ∩ SP(p). By
the induction hypothesis, n3 ⇒∗ n4 and (e3, e4) ∈ MOVP
(n3, n4) where n3 = head(p), n4 = last(p), e3 = proj(s,D′),
and e4 = proj(s′′,D′). On the other hand, by the definition
of Wπ, n0 ⇒ n3 n2 and (e, e3) ∈ MOVP(n0, n3n2) for any
e0 ∈ Env and e3 = e[dp 	→ (e(dp) ∪ R) ∩ SP(p)]. There-
fore (e, e3) ∈ MOVP(n0, n3n2) when e = proj(s,D) and
e3 = proj(s,D′). Moreover, n3 n2⇒∗ n4 n2⇒ n2 and MOVP
(n3n2, n2) = MOVP(n3n2, n4n2) = MOVP(n3, n4), and
thus (e, e4) ∈ MOVP(n0, n2) = MOVP(n0, n3n2) ⊗ MOVP
(n3n2, n2) where e = proj(s,D) and e4 = proj(s′′,D′).
By the definition of Wπ, MOVP(n0, n1) = g2(id,MOVP
(n0, n2))⊗MOVP(n2, n1) and (e, e′′) ∈ g2(id,MOVP(n0, n2))
where e′′ = proj(s′′,D) since g2 forces e′′(dp) = e(dp). It
concludes that n0⇒∗ n1 and (e, e′) ∈ MOVP(n0, n1).

(C) Consider the case that C = if E then S 1 else S 2.
Because of the symmetricalness of the definition, we as-
sume that the value of E under s is true without loss of
generality. By the definition of ⇓, (S 1, s0) ⇓SP(n0)

D s1 and
s′′ = s2[pc 	→ s(pc)] where s0 = s[pc 	→ s(pc) ∩ R],
s2 = s1[x 	→ (s(pc) ∩ R ∩ P)[v] | x ∈ W, s1(x) = P[v]],
R = SP(n0)∩(

⋂
y∈V(E) proj(s(y))), and W = write oracle(S 2).

By the inductive hypothesis, n3⇒∗ n4 and (e3, e4) ∈ MOVP
(n3, n4) where n3 = head(S 1), n4 = last(S 1), e3 =

proj(s0,D), and e4 = proj(s1,D). By the definition of Wπ,
n0⇒n3 n2 and (e, e3) ∈ MOVP(n0, n3n2) for any e ∈ Env and
e3 = e[pc 	→ P] where P = e(pc) ∩ SP(n0) ∩ (

⋂
y∈V(E) e(y)),

and thus (e, e3) ∈ MOVP(n0, n3n2) when e = proj(s,D) and
e3 = proj(s0,D). Moreover, n4 ⇒ ε and (e4, e5) ∈ MOVP
(n4, ε) for any e4 ∈ Env and e5 = e4[x 	→ e4(x)∩ e4(pc) | x ∈
W], and thus (e4, e5) ∈ MOVP(n4, ε) when e4 = proj(s1,D)
and e5 = proj(s2,D). MOVP(n0, n1) ⊇ g1(id,MOVP
(n0, n2))⊗MOVP(n2, n1) and (e, e′′) ∈ g1(id,MOVP(n0, n2))
where e′′ = proj(s′′,D) since g1 forces e′′(pc) = e(pc). It
concludes that n0⇒∗ n1 and (e, e′) ∈ MOVP(n0, n1).

(D) Consider the case that C = test R then S 1 else S 2.
Because of the symmetricalness of the definition, we as-
sume that R ⊆ D without loss of generality. By the defi-
nition of ⇓, (S 1, s) ⇓SP(S )

D s′′. By the inductive hypothesis,
n3⇒∗ n4 and (e, e′′) ∈ MOVP(n3, n4) where n3 = head(S 1),
n4 = last(S 1), e = proj(s,D), and e′′ = proj(s′′,D). By the

definition of Wπ, n0 ⇒ n3 n2 and (e, e) ∈ MOVP(n0, n3n2)
for e = proj(s,D) since R ⊆ D = e(dp). Moreover, n4 ⇒ ε
and (e′′, e′′) ∈ MOVP(n4, ε) = id, and thus n0 ⇒∗ n2 and
(e, e′′) ∈ MOVP(n0, n2).

(E) If C = test R for x, then by the definition of ⇓,
R ⊆ proj(s(x)) and s = s′′. By the definition of Wπ, n0⇒ n2

and (e, e) ∈ MOVP(n0, n2) for e = proj(s,D) = proj(s′′,D)
since R ⊆ e(x) = proj(s(x)).

�

Pablo Lamilla Alvarez received the M.S.
degree in computer science and engineering
from the Polytechnic University of Valencia in
2010. In 2011 he joined the Special Scholarship
Program in Kochi University of Technology for
PhD students. At the same time, he also joined
the Junior Research Associate (JRA) program
in the RIKEN institute from April 2011 until
March 2012. His research interests are focused
in the areas of formal methods and verificacion
of software systems.

Yoshiaki Takata received the Ph.D. de-
gree in information and computer science from
Osaka University in 1997. He was with Nara
Institute of Science and Technology as an As-
sistant Professor in 1997–2007. In 2007, he
joined the faculty of Kochi University of Tech-
nology. His current research interest include
formal specification and verification of software
systems.


