
IPSJ Transactions on Programming Vol.7 No.5 1–9 (Dec. 2014)

Regular Paper

Parallel Tree Contraction with Fewer Types of Primitive
Contraction Operations and Its Application to Trees of

Unbounded Degree

AkimasaMorihata1,a) KiminoriMatsuzaki2,b)

Received: June 22, 2014, Accepted: August 22, 2014

Abstract: Parallel tree contraction is a well established method of parallel tree processing. There are efficient and
useful algorithms for binary trees, including the Shunt contraction algorithm and one based on the m-bridge decom-
position method. However, for trees of unbounded degree, there are few practical tree contraction algorithms. The
standard approach is “binarization,” namely to translate the input tree to a full binary tree beforehand. To prevent
the overhead introduced by binarization, we previously proposed the Rake-Shunt contraction algorithm (ICCS 2011),
which is a generalization of the Shunt contraction algorithm to trees of unbounded degree. This paper further extends
this result. The major contribution is to show that the Rake-Shunt contraction algorithm is a tree contraction algo-
rithm that uses fewer types of primitive contraction operations if we assume the input tree has been binarized. This
observation clarifies the connection between the Rake-Shunt contraction algorithm and those based on binarization.
In particular, it enables us to translate a parallel program developed based on the Rake-Shunt contraction algorithm to
one based on the m-bridge decomposition method. Thus, we can choose whether to use binarization according to the
situation.

Keywords: parallel tree contraction, rose tree, m-bridge decomposition

1. Introduction

We investigate a method of parallel processing over tree-
structured data. One of the simplest methods is processing inde-
pendent subtrees in parallel. This method can finish in O(log n +

h) parallel steps where n and h are the size and height of the
tree-structured data, respectively. The computational complexity
shows that this method is not effective for tall slender tree struc-
tures such as lists.

Parallel tree contraction [13] is a method of achieving a good
parallel speedup regardless of the shape of the underlying tree
structure. In parallel tree contraction, we process computation
by gathering information scattered over the tree structure by us-
ing primitive contraction operations. Parallel tree contraction fin-
ishes in O(log n) parallel steps for a tree structure of any shape.
Moreover, parallel tree contraction is a generalization of the sim-
ple subtree-based method if we combine it with a method called
m-bridge decomposition [5], [7], [9], [17].

Parallel tree contraction algorithms for binary trees have been
extensively studied; however, those for trees whose degree is un-
bounded (we call such trees rose trees) have been less studied.
Most studies [1], [3], [4], [11], [12], [14] were based on bina-

rization, namely, transforming the rose tree to a binary tree then
applying a parallel tree contraction algorithm for binary trees. Bi-

1 The University of Tokyo, Meguro, Tokyo 153–8902, Japan
2 Kochi University of Technology, Kami-shi, Kochi 782–8502, Japan
a) morihata@graco.c.u-tokyo.ac.jp
b) matsuzaki.kiminori@kochi-tech.ac.jp

narization is effective in theory, since it only affects the constant
factor — it at most doubles the number of nodes. Nevertheless,
in practice, binarization may make it difficult to use parallel tree
contraction. To use binarization, we should first translate our ob-
jective, namely an operation on rose trees, to that on binary trees,
then implement it by using parallel tree contraction. Thus, we
would like to avoid binarization if possible.

We previously proposed the Rake-Shunt contraction algo-

rithm [15], which is a parallel tree contraction algorithm for rose
trees. This algorithm finishes in O(log n) parallel steps, the same
as other algorithms. Moreover, it does not use binarization; there-
fore, it prevents overheads and avoids difficulties possibly caused
by binarization.

However, binarization is sometimes essential, mainly because
of the following two reasons. First, rose trees are often imple-
mented by the list-of-children structure, which is a binary tree.
To adopt this implementation, parallel tree contraction algorithms
for rose trees should be parallel tree contraction on binary trees
as well. Second, the m-bridge decomposition method does not
work well for rose trees. It makes all the siblings under a cer-
tain node as independent tasks, which may be too many and lead
to too large overheads [17]. A natural solution to this problem
is to binarize the rose tree; thereby, reducing the number of sib-
lings [7], [12]. Therefore, we would like to unify parallel tree
contraction algorithms for rose trees with those for binary trees.

We extend the Rake-Shunt contraction algorithm from our pre-
vious work [15] and address the above-mentioned issues. We
show that the Rake-Shunt contraction algorithm is, even if we

c© 2014 Information Processing Society of Japan 1

IPSJ Transactions on Programming Vol.7 No.5 1–9 (Dec. 2014)

Fig. 1 Primitive contraction operations applied to gray nodes: Rake (left), Compress (middle), and Shunt
(right).

regard it as one processing a binary, list-of-children representa-
tion of the rose tree, still a parallel tree contraction algorithm.
Moreover it is nonstandard in the sense that it uses fewer types
of primitive contraction operations. Classic parallel tree contrac-
tion algorithms use two types of primitive contraction operations:
Rake and Compress. The Rake-Shunt contraction algorithm can
be regarded as one that applies Compress operations only when a
certain condition holds.

This observation leads to important consequences. First, the
fact that the Rake-Shunt contraction algorithm consists of primi-
tive contraction operations on binary trees implies that such oper-
ations on rose trees used in this algorithm are meaningful even on
binary-tree representations. Thus, the primitive contraction oper-
ations on rose trees can be used even when we use other parallel
tree contraction algorithms for binary trees via binarization. In
particular, we argue that an implementation based on the Rake-
Shunt contraction algorithm can be translated to one based on the
m-bridge decomposition method. Therefore, we can chose appro-
priate implementations, for example whether we use binarization.
Second, the relationship between primitive contraction operations
for rose trees and those for binary trees is useful for theoretically
analyzing the properties of parallel tree contraction algorithms
for rose trees. For instance, the fact that the Rake-Shunt contrac-
tion algorithm uses fewer types of primitive contraction opera-
tions implies that it is at least no more difficult to implement our
objective by using the algorithm than the approach based on bina-
rization. Furthermore, since parallel tree contraction is a method
for enabling O(log n)-time processing by allowing Compress op-
erations, it is interesting that the same computational complexity
can be achieved under a more restrictive setting.

The rest of this paper is organized as follows. Section 2 ex-
plains the results regarding parallel tree contraction including the
Rake-Shunt contraction algorithm [15]. Section 3 shows the main
result, that is, the Rake-Shunt contraction algorithm can be re-
garded as a parallel tree contraction algorithm on binary trees that
uses fewer types of primitive contraction operations if we regard
it as manipulating a binary tree that embodies the list-of-children
representation. From this fact, we can translate tree processing
based on the Rake-Shunt contraction algorithm to that based on
the m-bridge decomposition method. Section 4 reports on the
experiments carried out to confirm the effectiveness of our ap-
proach. Section 5 compares our results with related work, and
Section 6 concludes the paper.

2. Parallel Tree Contraction

This section reviews the results regarding parallel tree contrac-
tion. Sections 2.3 and 2.4 introduce our previous results [15],
which form the basis of this study. To make this paper self-

contained, we show proofs for important theorems and lemmas.

2.1 Basic Definitions
We use the exclusive-read exclusive-write parallel random ac-

cess machine (EREW PRAM) as our model for parallel comput-
ers. The numbers of the processors and of the nodes of the input
tree are respectively denoted as p and n. We use functional pro-
gramming language Haskell [16] for describing computations.

We discuss the following two types of tree structures. One is
the binary tree, which can be expressed as an algebraic data struc-
ture in Haskell as follows.

data BTreeA,B = Tip A | Bin BTreeA,B B BTreeA,B

The other is the rose tree defined as follows.

data RTreeA = Node A [RTreeA]

We assume that both structures are implemented using arrays of
nodes each of which has bidirectional pointers between the parent
and the child. Note that in a rose tree, siblings are ordered and
connected accordingly.

We call transforming rose trees to binary trees binarization,
which is expressed by the following binarize function.

binarize :: RTreeA → BTreeA,()

binarize rt = aux [rt]
where

aux [] = Tip ()
aux (Node a cs : rts) = Bin (aux cs) a (aux rts)

For each node in the rose tree, its children and the following sib-
lings respectively become the left and right subtrees. Though
other binarization methods have been considered, e.g., Ref. [7],
we consider binarize only.

2.2 Primitive Contraction Operations
We now briefly introduce parallel tree contraction. Details can

be found in a book by Reif [17].
Parallel tree contraction collapses a tree structure into a node

by using primitive contraction operations. The following are the
three standard primitive contraction operations.
Rake Remove a leaf.
Compress Remove an internal node that has exactly one child.
Shunt For a leaf that has exactly one sibling, remove it and its

parent.
Figure 1 illustrates these operations. It is worth noting that a
Shunt operation is a successive application of the Rake and Com-
press operations.

c© 2014 Information Processing Society of Japan 2

IPSJ Transactions on Programming Vol.7 No.5 1–9 (Dec. 2014)

Fig. 2 Outline of Procedure 1: the dashed-lined boxes show leaves to which primitive contraction opera-
tions are to be applied.

2.3 Rake-Shunt Contraction Algorithm
The Rake-Shunt contraction algorithm we previously pro-

posed [15] is a parallel tree contraction algorithm for rose trees.
It is a generalization of the classic Shunt contraction algo-
rithm [1], [8], [17] for binary trees. They are identical for bi-
nary trees, and moreover, the former can be used for non-binary
trees as well. For simplicity, we assume that the input tree does
not contain any nodes that have exactly one child. We can fulfill
this assumption by inserting dummy nodes that have no effect on
computation. We also previously proposed another method that
avoids using dummy nodes [15].
Procedure 1 (Rake-Shunt Contraction Algorithm).
(1) Number leaves from left to right, starting from 1.
(2) Remove all odd-numbered leaves each of which is not the

rightmost sibling as follows: if the leaf has exactly one sib-
ling, apply Shunt to it; otherwise, apply Rake to it.

(3) Remove all odd-numbered leaves (which should be the right-
most) as follows: if the leaf has exactly one sibling, apply
Shunt to it; otherwise, apply Rake to it.

(4) Halve all the numbers.
(5) If the tree consists of more than one node, go back to Step

(2). �
Figure 2 illustrates Procedure 1.
We should be careful regarding implementation of Shunt oper-

ations so that we can simultaneously apply all the primitive con-
traction operations in the same step. Our implementation of a
Shunt operation removes a leaf and its sibling, not its parent. The
resulting trees are equivalent. This implementation keeps sibling
relations; therefore, it is better suited for the list-of-children im-
plementation of rose trees. More discussions can be found in our
previous paper [15].

If we would like to implement tree processing based on parallel
tree contraction algorithms, we merge the information retained by
the removed nodes with that of their neighbors. We explain this
in detail later. In the Rake-Shunt contraction algorithm, we trans-
fer the information to the right sibling for each Rake operation in
Step (2), to the left sibling for each Rake operation in Step (3),
and to the parent for each Shunt operation.

Procedure 1 is efficient.
Lemma 2 (Ref. [15]). In Procedure 1, in each step, no two prim-
itive contraction operations touch the same node.

Proof. The proof is almost the same as with the Shunt contrac-
tion algorithm [1], [8], [17]. �

Lemma 3 (Ref. [15]). Procedure 1 finishes in time O(n/p +
log p).

Proof. It is nearly the same as with the Shunt contraction
algorithm [1], [8], [17]. Procedure 1 removes all the odd-
numbered leaves for each iteration; thus, �log n� iterations are
sufficient. The total amount of work is apparently O(n). Now,
the computational complexity follows from Brent’s scheduling
lemma [2]. �

2.4 Tree Processing by Parallel Tree Contraction
Parallel tree contraction algorithms show a schedule to process

tree structures in parallel. Thus, if our objective can be decom-
posed into local computations each of which corresponds to a
primitive contraction operation, the objective can be efficiently
achieved by following the schedule.

For example, consider calculating the total sum of the values
in a tree. We can implement this calculation by adding the values
of the removed node to the neighbor for each Rake/Compress op-
eration. Hence, by using Procedure 1, we can calculate the total
sum in O(log n) parallel steps.

We can implement more complicated operations. We consider
tree reductions [11], [12], [18]. Given an associative binary op-
erator, (⊕) :: A → A → A, and a (possibly non-associative)
binary operator, (⊗) :: B→ A → A, a tree reduction, reduce⊗,⊕ ::
RTreeB → A, is identified as follows.

reduce⊗,⊕ (Node a [])
= a

reduce⊗,⊕ (Node a [t1, . . . , tn])
= a ⊗ (reduce⊗,⊕ t1 ⊕ · · · ⊕ reduce⊗,⊕ tn)

The following theorem shows that reduce⊗,⊕ can be imple-
mented using the Rake-Shunt contraction algorithm if we ad-
ditionally supply a function, ρ⊗,⊕ :: (A, B, A) → (A, B, A) →
(A, B, A), that satisfies a certain property.
Theorem 4 (Theorem 3 of Ref. [15]). We can calculate reduce⊗,⊕
in time O(n/p + log p) if ⊕ is associative, ⊗ and ⊕ are constant-
time, and there exists a constant-time function, ρ⊗,⊕, that satisfies
the following property.

ρ⊗,⊕ (a, b, c) (v, w, z) = (a′, b′, c′)
⇐⇒ (λx→ a ⊕ (b ⊗ x) ⊕ c) ◦ (λx→ v ⊕ (w ⊗ x) ⊕ z)

= (λx→ a′ ⊕ (b′ ⊗ x) ⊕ c′)

Proof. The key is that each internal node retains a closure of the
form of λx→ p⊕ (q⊗ x)⊕ r (p ∈ A, q ∈ B, and r ∈ A are values).
In what follows, we denote this closure by a triple, 〈p, q, r〉.

In the initialization step, for each node having value a, we as-
sociate 〈ι⊕, a, ι⊕〉, where ι⊕ is the unit of ⊕. Even if ⊕ does not
have a unit, we can introduce a unit by using a special flag that

c© 2014 Information Processing Society of Japan 3

IPSJ Transactions on Programming Vol.7 No.5 1–9 (Dec. 2014)

stands for the unit.
Then, for each primitive contraction operation, we process the

computation as follows.
Rake Let a be the value of the leaf removed.

if its sibling is a leaf: Overwrite the value b of the sibling
by b⊕a if the sibling is on its left and by a⊕b if on its right.

if its sibling is an internal node: Overwrite the value
〈v, w, z〉 of the sibling by 〈v, w, z ⊕ a〉 if the sibling is on its
left and by 〈a ⊕ v, w, z〉 if on its right.

if it has no sibling: Overwrite the value 〈v, w, z〉 of its par-
ent by v ⊕ (w ⊗ a) ⊕ z.

Compress Let 〈a, b, c〉 be the value of the removed internal
node.
if its child is a leaf: Overwrite the value v of the child by
a ⊕ (b ⊗ v) ⊕ c.

if its child is an internal node: Overwrite the
value 〈v, w, z〉 of the child by 〈a′, b′, c′〉 where
ρ⊗,⊕ (a, b, c) (v, w, z) = (a′, b′, c′).

It is not difficult to see that the above procedure correctly com-
putes the tree reduction. �

As an example, we consider calculating the maximum total
sum of values in a subtree. The following function, mss, cal-
culates that value, where maximum extracts the maximum from a
set.

mss (Node a ts)
= let [(m1, s1), . . . , (mn, sn)] = map mss ts

s′ = a +
∑

1≤i≤n si

in (maximum {m1, . . . ,mn, s′}, s′)
We can implement it by reduce⊗,⊕, where ⊗ and ⊕ are specified
as follows.

a ⊗ (m, s) = (max m (a + s), a + s)
(m1, s1) ⊕ (m2, s2) = (max m1 m2, s1 + s2)

Note that ⊕ is associative. Therefore, we can use Theorem 4 by
providing ρ⊗,⊕. Since ⊕ is commutative, it is sufficient to consider
closures of a simpler form, λx→ a ⊕ (b ⊗ x). Let ↑ be the binary
maximum operator, which binds looser than +.

(λx→ (am, as) ⊕ (b ⊗ x)) ◦ (λx→ (vm, vs) ⊕ (w ⊗ x))
= { by definitions of ⊗ and ⊕ }
λ(xm, xs)→ let s′ = w + xs; s′′ = b + vs + s′

in (bm ↑ vm ↑ xm ↑ s′ ↑ s′′, as + s′′)
= { by definitions of ⊗ and ⊕ }

let a′ = (bm ↑ vm, as + b + vs + w − b′)
b′ = w ↑ b + vs + w

in (λx→ a′ ⊕ (b′ ⊗ x))

Therefore, the following ρ⊗,⊕ satisfies our requirement.

ρ⊗,⊕ ((am, as), b,−) ((vm, vs), w,−)
= let b′ = w ↑ b + vs + w

in ((bm ↑ vm, as + b + vs + w − b′), b′,−)

Now Theorem 4 leads to an implementation based on parallel tree
contraction.

The strong point of the Rake-Shunt contraction algorithm and

Fig. 3 m-bridge (m = 5): black nodes on right are 5-critical; nodes con-
nected by solid lines form 5-bridge.

Theorem 4 is that the approach avoids binarization. Thus, we
can intuitively understand the role of each operator: ⊕ merges in-
formation of siblings, ⊗ merges information of a parent and its
child, and ρ⊗,⊕ is used for implementing Compress operations. In
particular, this intuitive understanding makes it easier to develop
ρ⊗,⊕ from ⊕ and ⊗.

Matsuzaki et al. [11], [12] proposed a theorem similar to The-
orem 4. Their theorem also requires a function similar to ρ⊗,⊕
for implementing tree reduction by parallel tree contraction. The
significant difference is that since their method is based on bi-
narization, the required function is less intuitive: it essentially
corresponds to a Compress operation on binary trees obtained by
binarization. We see in Section 3.2 that the required function is
at least not simpler if we use binarization.

2.5 m-bridge Decomposition
For each step, the Rake-Shunt contraction algorithm essentially

manipulates all the nodes. This low locality is not only worse
cache behavior but also requires a synchronization barrier be-
tween every step. The m-bridge decomposition method [5], [7],
[9], [17] is another approach to parallel tree contraction. It uses
divide-and-conquer: it decomposes a tree into substructures so
that the substructures can be collapsed in parallel. Therefore, it
reduces the number of synchronizations, improves locality, and
moreover, enables us to use distributed parallel computers.

Let m be a natural number (1 < m ≤ n). The root node
of subtree t = Node a ts (ts � []) is said to be m-critical if
�size(t)/m� > maxt′∈ts�size(t′)/m�, where size(t) denotes the num-
ber of the nodes in t. An m-bridge is a maximal set of connected
nodes that contains no m-critical node. Figure 3 shows 5-critical
nodes and 5-bridges.

Apparently, each m-bridge consists of at most m − 1 nodes.
Moreover, it is not difficult to see that a tree contains at most
2n/m − 1 m-critical nodes [17]. Therefore, by choosing appro-
priate m (m = n/p, for example), the m-bridge decomposition
method yields a reasonable number of m-bridges of reasonable
sizes.

Furthermore, each m-bridge can be fully collapsed by using
primitive contraction operations; therefore, if our objective can be
decomposed into computations that correspond to primitive con-
traction operations, the m-bridge decomposition method leads to
divide-and-conquer parallel processing.

It is easy to collapse an m-bridge all of whose nodes do not
have any m-critical children. We can collapse it by using Rake
operations in a bottom-up manner.

The interesting case is that a node in the bridge has an m-

c© 2014 Information Processing Society of Japan 4

IPSJ Transactions on Programming Vol.7 No.5 1–9 (Dec. 2014)

critical child. Note that such an m-critical child is unique because
the least common ancestor of two m-critical nodes is m-critical.
Thus, the only problematic part is the path from the root of the
bridge to the node whose child is m-critical; other parts can be
collapsed by Rake operations in a bottom-up manner. Once the
other parts are removed, the path can be collapsed by using a se-
ries of Compress operations.

3. Decomposing Rake-Shunt Contraction to
Primitive Contraction Operations and Its
Application to m-bridge Decomposition

We have introduced the Rake-Shunt contraction algorithm,
which is a generalization of a tree contraction algorithm for bi-
nary trees, namely the Shunt contraction algorithm. It avoids bi-
narization; therefore, it makes it easier to derive operators for
parallel processing over rose trees, namely ρ⊗,⊕. However, the
following issues remain.
• While the Rake-Shunt contraction algorithm avoids bina-

rization for deriving ρ⊗,⊕, it in fact manipulates binary tree
representations, namely the list-of-children representations,
for rose trees. Therefore, it is natural to expect that the
Rake-Shunt contraction algorithm is a parallel tree contrac-
tion even on the binary tree representation. Nevertheless, its
characterization as a tree contraction for binary trees is still
unclear.

• It is natural to expect, as with the Rake-Shunt contraction al-
gorithm, to generalize other methods of parallel tree contrac-
tion for binary trees including the m-bridge decomposition
method. However, it is essentially difficult to develop an ef-
ficient parallel tree contraction algorithm for rose trees based
on the m-bridge decomposition method. Since every child of
a critical node yields an m-bridge, the m-bridge decomposi-
tion method applied to a rose tree may result in too many
m-bridges. To overcome this problem, the current imple-
mentations apply binarization before performing m-bridge
decomposition [7], [12]. Nevertheless, we would like to re-
duce overheads introduced by binarization.

In this section, we examine the first issue then address the sec-
ond based on the answer to the first.

3.1 Decomposing Rake-Shunt Contraction Algorithm to
Primitive Contraction Operations

First, we characterize the Rake-Shunt contraction algorithm as
a manipulation on a binary tree representation. For this purpose,
we identify the primitive contraction operations for rose trees
appearing in the Rake-Shunt contraction algorithm as primitive
contraction operations for binary trees. We classify the primi-
tive contraction operations for binary trees as follows, which will
be useful to characterize the Rake-Shunt contraction algorithm.
RakeL and RakeR eliminate the left and right leaves, respectively.
CompressL

R removes an internal node that is a left child and has
its right child. CompressL

L, CompressR
L, and CompressR

R are simi-
larly defined. Figure 1 shows RakeL and CompressL

R. We ignore
Shunt operations because they can be decomposed into Rake and
Compress operations. The root node can be regarded as either a

Fig. 4 Correspondence between primitive contraction operations on rose
trees and those on binary trees: Left and right figures respectively
show rose trees and binary trees; gray nodes are to be removed; on
binary tress, we omit nodes that have no value.

left or a right child; the difference does not matter.
We examine to what types of primitive contraction operations

on binary trees Rake and Compress operations on rose trees cor-
respond via binarization. Figure 4 shows this correspondence.
Roughly speaking, Rake operations on rose trees correspond
to CompressL

R or CompressR
R on binary trees, Compress opera-

tions occurring at Shunt operations on rose trees correspond to
CompressL

L. RakeL and RakeR occur when we remove a leaf that
has no sibling and a leaf that is the last sibling, respectively, on
rose trees. It is worth noting that at a Shunt operation in the Rake-
Shunt contraction algorithm, we remove a leaf with its parent, not
its sibling. This modification is essential; otherwise, we cannot
find such a complete correspondence between the primitive con-
traction operations on rose trees and those on binary trees.

The observation so far has clarified that no primitive contrac-
tion operation on rose trees corresponds to CompressR

L on binary
trees. Hence, the Rake-Shunt contraction algorithm can be re-
garded as a procedure that collapses a binary tree in O(log n) par-
allel steps without using CompressR

L.
We will discuss consequences of this fact in the next subsec-

tion. In the remainder of this subsection, we discuss whether ef-
ficient parallel tree contraction for binary trees is possible with
fewer types of primitive contraction operations.

Apparently, RakeR and RakeL are necessary. Without them, we
cannot eliminate leaves. CompressL

L and CompressR
R are also es-

sential. For instance, without CompressL
L, we need O(n) parallel

c© 2014 Information Processing Society of Japan 5

IPSJ Transactions on Programming Vol.7 No.5 1–9 (Dec. 2014)

Fig. 5 Operation that corresponds to CompressR
Lon binary tree: left and

right figures respectively show rose trees and binary trees; gray nodes
are to be removed; on binary tree, we omit nodes that have no value.

steps for collapsing a monadic tree each of whose internal node
has only the left child.
Lemma 5. RakeR, RakeL, CompressL

L, and CompressR
R are nec-

essary for collapsing a binary tree in O(log n) parallel steps by
using Rake and Compress operations. �

As shown in the discussion about the Rake-Shunt contraction
algorithm, either of CompressL

R or CompressR
L is sufficient for ef-

ficient parallel tree contraction. Intuitively, we can understand
this fact as follows. Assume that we cannot use CompressL

R; the
discussion about CompressL

L indicates that the possibly problem-
atic case is that the input tree forms a path alternately growing as
left-right-left-right-· · · . This type of tree can be mostly collapsed
using CompressR

L. Note that this discussion also clarifies that ei-
ther CompressL

R or CompressR
L is necessary for efficient parallel

tree contraction.
Lemma 6. Either CompressL

R or CompressR
L is necessary for col-

lapsing a binary tree in O(log n) parallel steps by using Rake and
Compress operations. �
Lemma 7. By using RakeR, RakeL, CompressL

L, CompressR
R, and

CompressL
R, we can collapse a binary tree in O(log n) parallel

steps. �
Corollary 8. By using RakeR, RakeL, CompressL

L, CompressR
R,

and CompressR
L, we can collapse a binary tree in O(log n) paral-

lel steps. �

3.2 Properties of Parallel Tree Contraction without
CompressR

L
It is worthwhile to avoid using CompressR

L. Figure 5 shows
a CompressR

L on a binary tree representation and the correspond-
ing operation on a rose tree. The corresponding operation on a
rose tree eliminates the rightmost sibling and makes its children
siblings of it. Apparently, it is less intuitive than the primitive
contraction operations on rose trees. Recall that we should pro-
vide the corresponding calculation for each primitive contraction
operation so as to implement tree processing by parallel tree con-
traction. If we use CompressR

L, we should work out a calculation
for it; however, since it is not intuitive, it is rather difficult to
work out one. At least, absence of CompressR

L makes it no more
complicated to work out the corresponding calculations. This is
the reason Theorem 4 is easier to use than that by Matsuzaki et
al. [11], [12].

Nevertheless, the absence of CompressR
L is not very significant.

As shown in the discussions in the previous subsection, the effect
of the absence of CompressR

L is to delay the contraction process
for only a single node. Thus, we can translate parallel tree pro-
cessing without CompressR

L to those with CompressR
L by intro-

ducing function closures that express the delay. In summary, it is

asymptotically equivalent whether we use CompressR
L.

3.3 Parallel Computation Using m-bridge Decomposition
without CompressR

L
We have observed that the Rake-Shunt contraction algorithm

is nothing but a parallel tree contraction algorithm without us-
ing CompressR

L on binary tree representations. This observation
suggests that CompressR

L is essentially unnecessary for parallel
tree contraction of binary trees. Thus, we can also consider
CompressR

L-free variants of other parallel tree contraction algo-
rithms.

In what follows, we consider a CompressR
L-free m-bridge de-

composition method for binary trees, which leads to parallel tree
processing of rose trees based on the m-bridge decomposition.
As we have discussed, to avoid having many m-bridges, it is rea-
sonable to binarize the rose tree and apply m-bridge decompo-
sition. As we will show below, obtained m-bridges can be col-
lapsed without using CompressR

L. Therefore, by using ⊕, ⊗, and
ρ⊕,⊗ for the Rake-Shunt contraction algorithm, we can implement
this collapsing process for parallel tree reductions. This approach
has less synchronization and better locality than the Rake-Shunt
contraction algorithm.

As mentioned in Section 2.5, in parallel tree contraction based
on the m-bridge decomposition method, Compress operations are
necessary only for eliminating the nodes on the path from the root
of the bridge to the m-critical node. Other nodes can be easily
eliminated by Rake operations in a bottom-up manner. Thus, we
concentrate our effort on that path. Let c be the m-critical node,
p be its parent, and g be its grandparent. Assume that g is not
the root. Now, without using CompressR

L, we can eliminate either
p or g. If p is g’s right child and c is p’s left child, we cannot
eliminate p. Then, for any cases, we can remove g by applying
either CompressL

R or CompressR
R. Otherwise, we can remove p.

Therefore, by a series of compress operations, we can collapse
each m-bridge into a structure that consists of at most one nodes.

4. Experiments

We report our experiments to examine the effectiveness of our
approach.

The environment of our experiment consisted of an Intel Xeon
E5-2640 2.5 GHz CPU (6 cores), 12 GB memory, g++ 4.8.2,
Linux 3.13.0-29 (64-bit Ubuntu 14.04). Hyperthreading was dis-
abled by the BIOS configuration.

We prepared two programs that calculate the maximum subtree
sum, mss, discussed in Section 2.4; seq is a bottom-up sequen-
tial program and parallel is a parallel program based on the
m-bridge decomposition method implemented using OpenMP,
where m is an important tuning parameter, and we chose 221 based
on preliminary experiments. Both seq and parallel do not im-
plement reduce but are specialized to mss; moreover, both are
loop-based implementations that explicitly use stacks that retain
parameters and return values.

The following four rose trees were used as the inputs.
bin: whose binary tree representation is a complete binary tree.
flat: all of whose nodes except the root are leaves; note that its

c© 2014 Information Processing Society of Japan 6

IPSJ Transactions on Programming Vol.7 No.5 1–9 (Dec. 2014)

Table 1 Experimental results (units: milliseconds).

seq parallel

p=1 p=2 p=3 p=4 p=5 p=6

bin 2,060 2,121 1,193 770 608 496 431
flat 1,560 1,536 811 550 443 394 367

mono 1,448 1,557 834 568 451 396 370
lr 1,445 1,539 830 563 460 403 365

Fig. 6 Parallel speedup of parallel over seq.

binary tree representation is a monadic tree that grows right.
mono: all of whose internal nodes are monadic; note that its

binary tree representation is a monadic tree that grows left.
lr: each of whose internal nodes has exactly two children and

the left child is a leaf; note that its binary tree representation
is a monadic tree that grows alternately left or right.

Each tree consists of 227 − 1 nodes. Each node has an integer
ranging over −63 to 64.

The rose trees were implemented as follows. A rose tree con-
sists of a set of m-bridges and a tree that represents adjacent rela-
tions between the bridges. Note that seq takes a tree that consists
of exactly one bridge. Every bridge or tree is an array of nodes.
Each node has its value, a pointer to its first child, and a pointer
to its next sibling. Each pointer is represented by an index (i.e.,
an integer) of the array. The structure that represents a tree is di-
rectly generated into the memory at the initialization step of the
program.

For each of the four inputs, we measured the execution times
of seq and parallel while varying the number of threads, p.
Table 1 summarizes the results. Figure 6 shows relative parallel
speedups over the execution time of seq. Each execution time is
an average of ten executions and does not include times for data
generation.

First, compared with seq, parallel had a little overhead. The
differences varied in the shape of trees and were less than ten per-
cent. parallel became faster as more threads were available.
It was four to five times faster than seq when six threads were
available. Moreover, the performance was not seriously affected
by the shape of the input tree. These results are ideal for parallel
computing methods and imply that our approach is promising.

The current experiment is still preliminary. Different results
might be obtained if we consider other tree processing than the
maximum subtree sum, other types of input trees, and use other
computational environments. Further experiments are for future
work.

5. Related Work

Parallel tree contraction, proposed by Miller and Reif [13], is a
method of efficient parallel processing of trees of any shape. Be-
low we review the results that relate to ours. More information
about classic results can be found in the book by Reif [17].

Miller and Reif [13] observed that even trees that require O(n)
parallel steps by bottom-up processing, i.e., by Rake operations,
can be processed in O(log n) parallel steps if Compress opera-
tions are available. Based on this observation, they proposed a
parallel tree contraction algorithm that consists of Rake and Com-
press operations. The algorithm has two shortcomings. It requires
concurrent-read concurrent-write (CRCW) PRAM, which is un-
realistic. Its amount of work is O(n log n); thus, not optimal. To
resolve these problems, two methods were proposed. One is the
Shunt contraction algorithm [1], [8], which uses Shunt operations
rather than Compress operations. The other uses the m-bridge de-
composition method [5]. Both algorithms run on EREW PRAM
in time O(n/p + log n), which is optimal.

Binary trees are the major subject in the literature of parallel
tree contraction. The Shunt contraction algorithm requires the
input to be binary. The m-bridge decomposition method can be
applied to non-binary trees but may result in too many m-bridges;
therefore, its asymptotic complexity is worse.

These problems are addressed in the book by Reif [17]. It also
showed methods for processing non-binary trees without decreas-
ing the asymptotic complexity.

One such method is called isolation, which is a parallel tree
contraction algorithm for rose trees. It delays, for each consecu-
tive sequence of Compress-able nodes, removing the head node
of the sequence until all the other nodes are removed. Thus, we
should carefully determine whether each node is a head of such
a sequence. Accordingly, its constant factor is large and it is less
practical. To the best of our knowledge, its implementation and
experiments have not been reported.

In addition, for the m-bridge decomposition method, the fol-
lowing improvement was addressed. For each m-critical node
that has many children, apply parallel list ranking to determine
the size of each bridge then group the bridges into reasonably-
sized chunks. If we apply this method, we would like to fully
collapse each chunk in parallel by using an operation to merge
siblings. When such an operation is available, this method is
essentially equivalent to the method based on binarization, i.e.,
binarizing the rose tree then applying the m-bridge decomposi-
tion method; rather, it is less efficient because of the cost of per-
forming additional parallel list ranking. We are not aware of its
implementation and experiments.

A more practical solution is binarization. In fact, most classic
studies [1], [3], [4], [14] used binarization to avoid the above-
mentioned problems. A notable work is that by Matsuzaki et
al. [12], who reported on an implementation of typical parallel
rose-tree processing patterns, called parallel (rose-) tree skele-
tons, based on parallel tree contraction. Their strategy is that they
binarize rose trees then implement rose-tree processing by tree
skeletons for binary trees, which are implemented based on the
m-bridge decomposition method [10].

c© 2014 Information Processing Society of Japan 7

IPSJ Transactions on Programming Vol.7 No.5 1–9 (Dec. 2014)

Issues concerning binarization include the method of translat-
ing rose-tree processing to binary tree processing and the method
of parallelizing the obtained binary tree processing. However,
most studies ignored these issues. A notable exception is that by
Matsuzaki et al. [11], [12]. They showed that parallel rose-tree
reductions can be translated to parallel binary-tree processing if
the premise of Theorem 4 is fulfilled. However, the translation
is complex. It may introduce significant overhead; moreover, it
seems difficult to consider generalizing their results.

Previously, we [15] proposed the Rake-Shunt contraction al-
gorithm, which is a parallel tree contraction algorithm for rose
trees. This algorithm has two major strengths. Its behavior is
a natural generalization of the Shunt contraction algorithm and
simpler than the isolation-based method. It avoids binarization;
thus, it is easier to discuss what types of parallel operations can
be implemented based on it.

Based on these preceding studies, we showed that tree pro-
cessing based on the Rake-Shunt contraction algorithm can be
translated to one based on the m-bridge decomposition method.
The major two methods for parallel tree contraction for binary
trees have been generalized to implement rose tree operations.
Moreover, we observed that this generalization was guided by
the fact that the Rake-Shunt contraction algorithm is essentially a
parallel tree contraction algorithm without CompressR

L on binary
tree representations. This observation is useful for understanding
the properties of the Rake-Shunt contraction algorithm and the
m-bridge decomposition method based on it. Furthermore, as a
purely theoretical result of parallel tree contraction, it is interest-
ing in its own right that O(log n)-step parallel tree contraction is
possible with a more restrictive setting than what discussed in the
literature.

Kawamura and Matsuzaki [7] discussed m-bridge decomposi-
tion of rose trees via binarization and proposed a binarization
method especially suitable for processing large XML-like data
by using MapReduce-like distributed memory parallel computing
environments. Their binarization is different in the sense that the
order of sibling is reversed: more right siblings in a rose tree are
nearer to the root in the corresponding binary tree representation.
It is easy to see that our result is applicable to this binarization as
well.

Kakehi et al. [6] proposed a parallel tree contraction algorithm
for rose trees, which is different from both the Shunt contraction
algorithm and the m-bridge decomposition method. With their
approach, it is assumed that the input is in an XML-like format.
It treats the input as a sequence of tags, divides the input with-
out caring the underlying tree structure, and processes each part
in parallel. They showed that under the same condition as Theo-
rem 4, their algorithm can calculate the rose tree reduction in time
O(n/p + p). Their approach and our approach have several dif-
ferences: two approaches take different input formats; their algo-
rithm becomes significantly slower for tall slender trees whereas
ours does not; the complexity of the Rake-Shunt contraction al-
gorithm is O(n/p + log p); thus, slightly better.

6. Conclusion and Future Work

We showed that efficient parallel tree contraction of binary

trees is possible without CompressR
L, and such parallel tree con-

traction is useful to simplify discussions about parallel rose tree
manipulations. This result can be a missing piece for generalizing
parallel tree contraction for binary trees to rose trees.

We focused on theoretical analysis of parallel tree contraction
and briefly discussed the practicality of CompressR

L-free parallel
tree contraction. Further investigation in this direction is for fu-
ture work. Our experiments were carried on a shared-memory
machine; thus, experiments on different settings including dis-
tributed memory environments as well as comparison with differ-
ent implementations including that by Kakehi et al. [6] are also
left for the future.

Acknowledgments The authors are grateful to the reviewer
for his/her comments, which were useful for improving the paper.
The first author was supported by JSPS Grant-in-Aid for Young
Scientists (B) 24700019.

References

[1] Abrahamson, K.R., Dadoun, N., Kirkpatrick, D.G. and Przytycka,
T.M.: A Simple Parallel Tree Contraction Algorithm, J. Algorithms,
Vol.10, No.2, pp.287–302 (1989).

[2] Brent, R.P.: The Parallel Evaluation of General Arithmetic Expres-
sions, J. ACM, Vol.21, No.2, pp.201–206 (1974).

[3] Cole, R. and Vishkin, U.: The Accelerated Centroid Decomposition
Technique for Optimal Parallel Tree Evaluation in Logarithmic Time,
Algorithmica, Vol.3, pp.329–346 (1988).

[4] Diks, K. and Hagerup, T.: More General Parallel Tree Contraction:
Register Allocation and Broadcasting in a Tree, Theor. Comput. Sci.,
Vol.203, No.1, pp.3–29 (1998).

[5] Gazit, H., Miller, G.L. and Teng, S.-H.: Optimal tree contraction in
the EREW model, Proc. Princeton Workshop on Algorithms, Architec-
tures, and Technology Issues for Models of Concurrent Computation,
pp.139–156, Plenum Press (1987).

[6] Kakehi, K., Matsuzaki, K. and Emoto, K.: Efficient Parallel Tree Re-
ductions on Distributed Memory Environments, Computational Sci-
ence - ICCS 2007, 7th International Conference, Beijing, China, May
27-30, 2007, Proceedings, Part II, Lecture Notes in Computer Sci-
ence, Vol.4488, pp.601–608, Springer (2007).

[7] Kawamura, T. and Matsuzaki, K.: Dividing Huge XML Trees Using
the m-bridge Technique over One-to-one Corresponding Binary Trees,
IPSJ Trans. Programming, Vol.7, No.3, pp.40–50 (2014).

[8] Kosaraju, S.R. and Delcher, A.L.: Optimal Parallel Evaluation of
Tree-Structured Computations by Raking, VLSI Algorithms and Ar-
chitectures, 3rd Aegean Workshop on Computing, AWOC 88, Corfu,
Greece, June 28 - July 1, 1988, Proceedings, Lecture Notes in Com-
puter Science, Vol.319, pp.101–110, Springer (1988).

[9] Matsuzaki, K.: Efficient Implementation of Tree Accumulations on
Distributed-Memory Parallel Computers, Computational Science —
ICCS 2007, 7th International Conference, Beijing, China, May 27–
30, 2007, Proceedings, Part II, Lecture Notes in Computer Science,
Vol.4488, pp.609–616, Springer (2007).

[10] Matsuzaki, K.: Parallel Programming with Tree Skeletons, PhD The-
sis, Graduate School of Information Science and Technology, The
University of Tokyo (2007).

[11] Matsuzaki, K., Hu, Z., Kakehi, K. and Takeichi, M.: Systematic
Derivation of Tree Contraction Algorithms, Parallel Processing Let-
ters, Vol.15, No.3, pp.321–336 (2005).

[12] Matsuzaki, K., Hu, Z. and Takeichi, M.: Parallel skeletons for manip-
ulating general trees, Parallel Comput., Vol.32, No.7-8, pp.590–603
(2006).

[13] Miller, G.L. and Reif, J.H.: Parallel Tree Contraction and Its Ap-
plication, 26th Annual Symposium on Foundations of Computer Sci-
ence, 21-23 October 1985, Portland, Oregon, USA, pp.478–489, IEEE
(1985).

[14] Miller, G.L. and Teng, S.-H.: Tree-Based Parallel Algorithm Design,
Algorithmica, Vol.19, No.4, pp.369–389 (1997).

[15] Morihata, A. and Matsuzaki, K.: A Practical Tree Contraction Al-
gorithm for Parallel Skeletons on Trees of Unbounded Degree, Proc.
International Conference on Computational Science, ICCS 2011,
Nanyang Technological University, Singapore, 1-3 June 2011, Pro-
cedia CS, Vol.4, pp.7–16, Elsevier (2011).

[16] Peyton Jones, S.(Ed.): Haskell 98 Language and Libraries: The Re-
vised Report, Cambridge University Press, Cambridge, UK (2003).

c© 2014 Information Processing Society of Japan 8

IPSJ Transactions on Programming Vol.7 No.5 1–9 (Dec. 2014)

[17] Reif, J.H.(Ed.): Synthesis of Parallel Algorithms, Morgan Kaufmann
Publishers (1993).

[18] Skillicorn, D.B.: Parallel Implementation of Tree Skeletons, J. Paral-
lel Distributed Comput., Vol.39, No.2, pp.115–125 (1996).

Akimasa Morihata received his Ph.D.
from The University of Tokyo in 2009. He
got JSPS research fellowships for young
scientists (PD) in 2009, became an as-
sistant professor at Tohoku University in
2010, and a lecturer at The University of
Tokyo in 2014. His research interest in-
cludes functional programming, parallel

programming, and transformational program development. He
is a member of JSSST.

Kiminori Matsuzaki is an Associate
Professor of Kochi University of Technol-
ogy in Japan. He received his B.E., M.S.
and Ph.D. from The University of Tokyo
in 2001, 2003 and 2007, respectively. He
was an Assistant Professor (2005–2009)
in The University of Tokyo, before join-
ing Kochi University of Technology as an

Associate Professor in 2009. His research interest is in parallel
programming and algorithm derivation. He is a member of ACM,
JSSST, IEEE.

c© 2014 Information Processing Society of Japan 9

