厳しい立地環境に建設するLNG貯槽の開発

平成15年 9月 中野 正文

平成15年度 秋期終了

博士(工学)学位論文

厳しい立地環境に建設するLNG貯槽の開発

Development of LNG storage tanks built in severe environmental constraint

主指導教員

- 岡村 甫教授
- 論文審査委員
 - 主査 岡村 甫教授
 - 副查 島 弘 教授
 - 草柳 俊二 教授
 - 中田 愼介 教授
 - 藤澤 伸光 教授

平成15年9月

高知工科大学大学院 工学研究科基盤工学専攻 社会システムエ学コース

中野 正文

Masafumi Nakano

写真 I 屋根上部に植栽を施した埋設式地下式貯槽の外観
 (写真上部 6万 KL LPG 貯槽、写真下部 20万 KL LNG 貯槽)
 【東京ガス(株) 扇島 LNG 基地】

写真 I 覆土前における 20 万 KL LNG 埋設式地下式貯槽のコンクリート製ドーム屋根 (上部は掘削工事中の 6 万 KL LPG 埋設式地下式貯槽) 【東京ガス㈱ 扇島 LNG 基地】

論文要旨

厳しい立地環境に建設するLNG貯槽の開発

中野 正文

1969年クリーンエネルギーであり長期の安定供給が可能であるLNG(液化天然ガス)が 初めて導入されて以来、LNG地下式貯槽は安全で周囲の環境ともよく調和する貯蔵設備と して、日本全国で多数建設されている。大深度地中連続壁工法、大型竪型NATM工法等、 大深度地下構築技術を次々と開発し、貯蔵容量を開発当初の1万KLから20万KLまでに大容 量化し、土地の有効利用を図るとともに経済的な地下式貯槽を実現している。一方、LNG 基地の立地については近年厳しさを増しており、立地環境によっては、近隣火災、飛来物 に対する高い安全性を有するとともに景観にさらに配慮したLNG貯槽設備として、屋根を コンクリート製とし貯槽設備全体を地盤面下に埋設し、さらに屋根上部に植栽による緑化 を施したLNG地下式貯槽の開発が必要とされていた。

本論文は、屋根上部に植栽を施した埋設式LNG地下式貯槽を実現するための、低ライズ のコンクリート製ドーム屋根における設計技術と構築技術、および地下式貯槽の建設に伴 い発生する掘削土の植栽基盤への有効利用技術に関する研究を取りまとめたものである。

設計技術としては、低ライズのコンクリート製ドーム屋根を対象とした模型破壊実験を 行うとともに、材料の非線形性を考慮した幾何学的非線形解析および各種規準による構造 安定性照査を行い、これらを総合的に評価し、低ライズのドーム屋根の構造安定性に関す る照査方法を提案した。また、構築技術については、トラス支保工に比較し建設費の削減 が図れるエアーサポート工法において、エアーサポート圧力、コンクリート打設方法をパ ラーメータとした仮設鋼製屋根の座屈安定解析を実施し、その結果を基に仮設鋼製屋根の 仕様検討を行い、エアーサポート工法によりコンクリート製屋根を合理的に構築する方法 を提案した。

さらに、掘削土の有効利用技術では、環境に優しいパーライト土質改良工法を開発する とともに、本工法の土質改良効果と植栽基盤材としての土壌改良効果を評価した。

低ライズのコンクリート製ドーム屋根の設計、構築技術に関する研究成果を基に、容量 20万KLの埋設式LNG地下式貯槽3基と容量6万KLの埋設式LPG地下式貯槽1基を実現した。 また、パーライト土質改良工法の適用により約2万m³もの掘削土を植栽基盤として有効利 用することができ、約30%ものコスト削減を達成した。

本論文は、7つの章から構成され、以下にその要旨を述べる。

第1章 序論

第1章では、本研究を実施するに至った背景、研究の目的、特徴、および論文の構成に ついて述べた。 第2章 LNG貯槽とLNG地下式貯槽

第2章では、LNG貯槽の型式とLNG地下式貯槽の概要について述べた。

LNG貯槽は、国および地域の社会情勢、立地環境等の相違から、世界各地で種々の型式 が採用されているが、貯槽型式としては、地上式貯槽、地下式貯槽、および地上式の構造 ではあるが周辺に盛土を設けたものまたは地中ピット内に設置したものの3種類に分けら れる。

日本では、東京ガスおよび東京電力のLNG基地において、安全で周囲の環境ともよく調 和し、土地の有効利用が図れるLNG地下式貯槽が、LNG導入早期の段階から採用されてい る。このLNG地下式貯槽に関する建設技術の発展は大きく3つの世代に区分することがで きる。第一世代は1980年代前半までに建設された開発初期段階の容量9.5万KL以下のLNG 地下式貯槽であり、主要な課題は設計構築技術の確立であった。第二世代は限られた敷地 内に大量のLNGを経済的に貯蔵できる大容量LNG地下式貯槽である。1980年代前半から 1990年代後半にかけて、大深度地中連続壁工法、大型竪型NATM工法等に関する技術開発 が行われ、袖ヶ浦基地で容量13~14万KLのLNG地下式貯槽が、1995年には根岸基地で世 界最大容量の20万KLLNG地下式貯槽が建設された。そして、2003年8月には、側壁と底版 を剛結構造とし、LNG地下式貯槽のもつ信頼性、安全性に加え経済性をさらに向上させた 新世代(第三世代)の地下式貯槽が完成した。

関東地区で発展を遂げたLNG地下式貯槽は、その後、福北基地(福岡)、袖師基地(清水)、 新港基地(仙台)、知多緑浜基地、長崎基地等日本各地で建設されるようになった。一方、 LNG基地の立地については近年厳しさを増しており、立地環境においては、近隣火災、飛 来物に対する高い安全性を有するとともに景観にさらに配慮したLNG貯槽設備として、屋 根をコンクリート製とし貯槽設備全体を地盤面下に埋設し、さらに屋根上部に植栽による 緑化を施したLNG地下式貯槽の開発が必要とされていた。

第3章 厳しい立地環境に建設するLNG貯槽の開発への課題

第3章では、厳しい立地環境に建設するLNG貯槽の開発への課題について論じ、本研究の意義を明確にした。

屋根も含め貯槽全体を地盤面下に埋設し、さらに屋根上部に植栽による緑化を施した LNG地下式貯槽を開発するためには、コンクリート製屋根型式LNG地下式貯槽の設計・構 築技術および掘削土の植栽基盤への有効利用技術に関する課題を抽出する必要がある。

コンクリート製屋根型式のLNG地下式貯槽は、LNG地下式貯槽指針に設計手法が示され ていないLNG貯槽型式である。そのため、最初に本型式の地下式貯槽の定義および基本構 造を明確にした。次に、現状のLNG地下式貯槽における建設技術および土木、建築技術の レベルを考慮し、コンクリート製屋根型式LNG地下式貯槽の設計・構築技術における課題 として、低ライズのコンクリート製ドーム屋根における構造安定性に関する照査方法の提 案およびエアーサポート工法による合理的な屋根構築方法の提案を設定した。

また、掘削土の植栽基盤への有効利用技術に関する課題として、pH等掘削土の有してい る化学的性質に影響を与えない環境に優しい土質改良工法の開発を設定した。 第4章 低ライズのコンクリート製ドーム屋根に関する設計技術

第4章では、低ライズのコンクリート製ドーム屋根に関する設計技術として、ドーム屋 根の構造安定性に関する照査方法について論じた。

ライズ・スパン比を1/16としたコンクリート製ドーム屋根を対象に1/20縮尺モデルの模型破壊実験を実施し、材料の非線形性を考慮した幾何学的非線形解析による構造安定性照 査方法の妥当性を評価した。さらに、既存の解析手法および各種規準による照査結果と比 較するとともにそれぞれの方法を総合的に評価し、低ライズのコンクリート製ドーム屋根 の構造安定性に関する照査方法を提案した。

第5章 低ライズのコンクリート製ドーム屋根に関する構築技術

第5章では、低ライズのコンクリート製ドーム屋根に関する構築技術として、仮設鋼製 屋根を底型枠としコンクリート打設時の荷重を空気圧で支持するエアーサポート工法によ りコンクリート製ドーム屋根を合理的に構築する方法について論じた。仮設鋼製屋根の仕 様を決定する要因であるエアーサポート圧力、コンクリート打設方法をパラーメータとし た仮設鋼製屋根の座屈安定解析を実施するとともに、解析結果を基にした仮設鋼製屋根の 仕様検討を行い、仮設鋼製屋根の鋼材量を合理的にするためのエアーサポート圧力および コンクリート打設方法を提案した。

第6章 掘削土の植栽基盤への有効利用技術

第6章では、地下式貯槽の建設に伴い発生する掘削土を植栽基盤等に有効利用するため に開発したパーライト土質改良工法と本工法の土質改良効果または植栽基盤材としての土 壌改良効果について論じた。パーライトと高含水の粘性土を混合させた試料を用いた室内 混合試験および現地発生土を利用した実機プラント混合試験を実施した。その結果、パー ライト土質改良工法が原土のpHを変化させない環境に優しい土質改良工法であるととも に、原土に対してパーライトの混合割合を増加させるにしたがい、締固め特性、コーン指 数、一軸圧縮強度等力学的性質の向上、および植栽基盤として必要な有効水分量、三相分 布、飽和透水係数等物理的性質の向上を図れることが明らかになった。

第7章 結論

第7章では、本論文の各章の要旨をまとめ、結論とした。低ライズのコンクリート製ド ーム屋根の設計、構築技術に関する研究成果を基に、容量20万KLの埋設式LNG地下式貯槽 3基と容量6万KLの埋設式LPG地下式貯槽1基を実現した。20万KLの埋設式貯槽では、屋根 の高さを7.8mと従来の鋼製屋根型式地下式貯槽に比較し2.4m屋根高さを低くすることに より、約8.7億円のコスト削減を達成した。さらに、パーライト土質改良工法を適用し、約 2万m³もの掘削土を植栽基盤として有効利用することにより、緑化工事において約30%(約 8,000万円)のコスト削減を実現した。

Abstract

Development of LNG storage tanks built in severe environmental constraint

Masafumi Nakano

Liquefied natural gas (LNG), which is characterized by its stable long-term supply and relatively clean emission, was first introduced into Japan in 1969. Since then, many in-ground LNG storage tanks have been constructed and the effort in them to develop revolutionary construction technology, such as super-deep slurry wall method and large-scale vertical NATM, supported continuous increase in their storage capacity —from 10,000 kiloliters in early days to 200,000 kiloliters today. These developments of technologies also achieved more effective land utilization and higher economic efficiency.

On the other hand, severer social requirements for safety, landscape and environmental protection had limited the owner-oriented construction of the LNG terminal than ever before. Thus this requires high safety against potential risk of neighborhood fires and flying missiles as well as harmony with environment in some locational conditions, which demands developing a completely underground storage tanks with a concrete dome-shaped roof covered with trees or grass, which is entirely hidden from view.

This paper focuses on three key technologies which realized the construction of LNG underground storage tanks, i.e., design of low-rise concrete roof of the underground tank, construction technology of the low-rise roof and effective utilization of excavated earth covering the roof as a fertile soil for planting

Firstly, with respect to design technologies, a series of model tests were conducted on a 1/20-scale concrete dome roof in order to clarify the behavior of buckling of the low-rise dome roof. Buckling stability of the roof was evaluated based on these test results using geometrical non-linear analysis considering non-linear characteristic of concrete material. Furthermore, by comparing test results with calculation results based on various existing design codes, a new design method which can deal with the stability against buckling of low-rise concrete dome roof is proposed.

Secondly, with respect to construction technologies of low-rise concrete roof, the air-support method, which is expected to save construction cost and reduce construction period compared with conventional truss girder support method, is discussed. In this air-support method, all loads during roof construction are supported by air pressure working on the inner surface of temporary steel roof which also has a role of bottom form

during concrete placement. Linear eigen-value analysis was conducted with a parameterized air supporting pressure under several roof construction plans in order to optimize a specification of the temporary steel roof.

Finally, with respect to effective utilization of excavated soil, soil improvement system with perlite was newly developed from the viewpoints of decreasing an environmental impact. The laboratory soil tests were conducted to evaluate soil improvement in terms of both mechanical and agrological properties.

It is the above studies on design and construction that enables us to construct three LNG underground storage tanks with the capacity of 200,000 kiloliters and one LPG underground tank with the capacity of 60,000 kiloliters. Furthermore approximately 20,000 m³-excavated earth was used as a fertile soil for trees and grass covering the concrete roof by applying a soil improvement system with a perlite, which saved 30% of the construction cost of planting.

第1章	序論	1
1.1	研究の背景	1
1.2	研究目的	3
1.3	研究の特徴	4
1.4	研究論文の構成	4
1.5	第1章の参考文献	5
第2章	LNG 貯槽と LNG 地下式貯槽	7
2.1	LNG 貯槽	7
2.1.1	LNG 貯槽の種類	7
2.1.2	LNG 貯槽の型式と特徴	7
2.2	LNG 地下式貯槽	11
2.2.1	LNG 地下式貯槽の概要	11
2.2.2	LNG 地下式貯槽指針	11
2.2.3	LNG 地下式貯槽建設技術の変遷	13
2.2.4	LNG 地下式貯槽建設技術の発展	16
2.3	第2章の参考文献	17
第3章	厳しい立地環境に建設する LNG 貯槽の開発への課題	21
3.1	概要	21
3.2	コンクリート製屋根型式 LNG 地下式貯槽の定義および基本的な考え方	21
3.2.1	コンクリート製屋根型式 LNG 地下式貯槽の定義	21
3.2.2	コンクリート製屋根型式 LNG 地下式貯槽の基本的考え方	22
3.3	コンクリート製屋根型式 LNG 地下式貯槽の設計・構築技術に関する課題	25
3.3.1	屋根部コンクリート構造の設計技術	25
3.3.2	コンクリート製屋根の構築技術	26
3.3.3	気密保持構造の設計技術	26
3.4	掘削土の植栽基盤への有効利用技術に関する課題	26

3.5	第3章の参考文献	27
第4章	低ライズのコンクリート製ドーム屋根に関する設計技術	
	構造安定性に関する照査方法の提案 ~	29
4.1	概要	29
4.2	低ライズのコンクリート製ドーム屋根の座屈に対する安全性	29
4.3	コンクリート製ドーム屋根における破壊実験の実績	
4.4	模型破壊実験	
4.4.1	実験概要	
4.4.2	実験供試体と実験装置	35
4.4.3	測定項目	35
4.4.4	実験結果	41
4.5	非線形解析	59
4.5.1	数值解析方法	59
4.5.2	解析モデルと材料の構成則	60
4.5.3	非線形解析結果と実験結果の比較および考察	63
4.6	構造安定性に関する各種規準による照査	85
4.6.1	各種規準による座屈荷重の算定	85
4.6.2	比較結果	85
4.7	コンクリート製屋根の構造安定性に関する照査方法の提案	86
4.8	まとめ	89
4.9	第 4 章の参考文献	90
第5章	低ライズのコンクリート製ドーム屋根に関する構築技術	
	~ 合理的なエアーサポート工法の提案 ~	91
5.1	概要	91
5.2	コンクリート製屋根構築技術	91
5.2.1	トラス支保工	91
5.2.2	リフトアップ工法	94
5.2.3	エアーサポート工法	96
5.2.4	コンクリート製屋根構築費	100

5.3	研究対象の仮設鋼製屋根	
5.3.1	構造概要	101
5.3.2	構造的特徴	103
5 /	仮設細制屋坦の仕様を決定する亜田	105
5.4	() () () () () () () () () () () () () (
5.4.1		
5.4.2	コンクリート打設方法	109
5.5	仮設鋼製屋根の座屈解析	113
5.5.1	解析方法	113
5.5.2	解析モデル	113
5.5.3	荷重条件	113
5.5.4	解析ケース	114
5.5.5	解析結果と考察	115
5.0	+ 6 4	100
0. 0	τ C Ø)	133
5.7	第5章の参考文献	135
第6章	掘削土の植栽基盤への有効利用技術	
	~ パーライト+哲改良工法の問発 ~	107
C 4		
6.1	概要	137
6.1 6.2	概要	
6.1 6.2	概要	137 137 137
6.1 6.2 6.3	概要	137 137 137 137
6.16.26.36.4	概要	
 6.1 6.2 6.3 6.4 6.4.1 	 概要 植栽基盤の要求品質 パーライト土質改良工法(サラット工法)の開発 パーライト土質改良工法の評価 - パーライト減容化 室内混合試験 	
 6.1 6.2 6.3 6.4 6.4.1 6.4.2 	概要 植栽基盤の要求品質 パーライト土質改良工法(サラット工法)の開発 パーライト土質改良工法の評価 – パーライト減容化 室内混合試験	
 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 	概要 植栽基盤の要求品質 パーライト土質改良工法(サラット工法)の開発 パーライト土質改良工法の評価 – パーライト減容化 室内混合試験 実機プラント混合試験	
 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 	概要 植栽基盤の要求品質 パーライト土質改良工法(サラット工法)の開発 パーライト土質改良工法の評価 – パーライト減容化 室内混合試験 実機プラント混合試験	
 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 6.5 	概要 植栽基盤の要求品質 パーライト土質改良工法(サラット工法)の開発 パーライト土質改良工法の評価 - パーライト減容化 室内混合試験 実機プラント混合試験 パーライト土質改良工法の評価 - 土質改良効果	
 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 6.5 6.5.1 	概要	
6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 6.5 6.5.1 6.5.1 6.5.2	 概要	
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.4.1 \\ 6.4.2 \\ 6.4.3 \\ 6.5 \\ 6.5.1 \\ 6.5.2 \\ 6.5.3 \end{array}$	 概要	
 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 6.5 6.5.1 6.5.2 6.5.3 6.6 	 概要	
 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 6.5 6.5.1 6.5.2 6.5.3 6.6 6.6 1 	 概要	
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.4.1 \\ 6.4.2 \\ 6.4.3 \\ 6.5 \\ 6.5.1 \\ 6.5.2 \\ 6.5.3 \\ 6.6 \\ 6.6.1 \\ 6.6.2 \end{array}$	 概要	

6.6.4	土壌改良効果の評価165
6.7	パーライト土質改良工法の適用による成果171
6.8	まとめ172
6.9	第6章の参考文献173
第 7 章	結論175
7.1	第7章の参考文献176
	謝辞179

第1章 序論

1.1 研究の背景

LNGは大気圧下において-162℃という超低温の無色・無臭・透明の液体である。LNGは天 然ガスを液化する際に不純物を取り除いたクリーンなエネルギーであるとともに、天然ガ スが世界各地に豊富に埋蔵されているため、エネルギーの安定供給の面でも有利である。 さらに、図1.1に示すように、燃焼排ガス中のSOx、NOxや地球温暖化の原因であるCO₂の 排出量も石炭・石油などの他燃料に比べて少ない。このため、天然ガスは都市ガスの原料と してばかりでなく発電用の燃料としても広く利用されている。エネルギーの長期安定需給 および近年の環境問題等から、LNGの需要はますます増大しており、基幹エネルギーのー つとして社会的、経済的に重要な役割を担っている。図1.2に示すように日本の1次エネル ギーに占めるLNGの割合は13%²⁾と、石油、石炭に次いで原子力とともに重要な地位を占 めている。国内で消費される天然ガスのうち、LNGとして輸入されるものは97%²⁾である。 また、それは、図1.3に示すように世界のLNG取扱量の約48%³⁾を占めており、日本は世 界一のLNG輸入国である。

このように日本は、LNGのすべてを輸入に依存しており、LNG受入基地におけるLNG 貯 蔵設備の重要性はますます高くなってきている。このため、大量の可燃物を取り扱うLNG 受入基地に対しては、高い安全性をもつLNG貯蔵設備が求められている。-162℃という

図 1.1 天然ガスのクリーン性¹⁾

写真 1.1 LNG 地下式貯槽の外観

(2002年度)

図 1.2 日本における一次エネルギー供給量 図 1.3 世界の LNG 国別輸入量 (2001年度)

極低温の液体を貯蔵するLNG貯槽に必要な機能としては、貯蔵物の漏洩がなく、外部から の熱に対する断熱性能が十分であり、液圧その他の荷重に十分耐える構造などがある。こ れらの条件のもとで、世界各地で多種多様な型式の貯槽が考案され実用化されているが、 LNG地下式貯槽は、他の貯蔵方式に比較し次の特長をもつ。

- 貯蔵液の最高液面が地表面以下にあるため、万一の場合でも液が地表面に流出する 可能性がなく安全性が高い。
- ② 写真1.1に示すように地表に見えるのは鋼製のドーム屋根だけであり、ソフトな外観 は周囲に威圧感を与えない。
- ③ 防液堤が不要なため土地の有効利用を図ることができる。

このような特長をもつLNG地下式貯槽は、LNGが日本に初めて導入された翌年の1970 年に根岸基地で容量1万KLの第1号が建設されて以来、日本各地で数多くの建設実績を有し ている。

一方、LNG基地の立地については近年厳しさを増してきており、立地環境によっては、 周辺環境および地域社会に対する影響を十分に考慮した設備計画が必要であり、特に、大 量のLNGを貯蔵する設備に対しては、近隣火災、飛来物に対する高い安全性を有し、景観 にさらに配慮したLNG貯槽設備が求められる。このため、これらの要件を満足する貯槽型 式として、図1.3に示すような貯槽設備全体を地盤面下に埋設し、さらに屋根上部に植栽に よる緑化を施したLNG地下式貯槽の開発が必要とされていた。

屋根は自重、覆土荷重に対する耐荷性能に加え、50年以上に渡る耐久性能が要求される ため、側壁、底版と同様に鉄筋コンクリート製とする必要がある。埋設式地下式貯槽にお いては、ドーム屋根が扁平になればなるほど貯槽全体の床付け深さが浅くなり、躯体寸法 の縮小と掘削土量の低減により建設費の削減および工程短縮が図れるが、ドーム屋根の座 屈に対する構造安定性は低くなる。従来から、コンクリート製ドーム屋根は水道用タンク 等で採用されており、そのライズ・スパン(高さ/直径)比を1/6~1/10と規定し座屈に対 する安定性を確保している。しかし、埋設式地下式貯槽を対象とした低ライズのコンクリ ート製ドーム屋根の構造安定性照査方法に関する規定はなかったため、構造安定性を考慮 した低ライズのコンクリート製ドーム屋根に関する設計方法を提案する必要があった。

底版上方50~60mの空間に低ライズのコンクリート製ドーム屋根を構築するには、保冷

材およびメンブレンから要求される厳しい内面精 度を確保するとともに、約1.5万トンものコンクリ ート打設時荷重を安定して支持するための支保工 技術が必要である。ドーム屋根を経済的に構築す る技術の一つとして、仮設鋼製屋根を底型枠とし て利用し、鉄筋およびコンクリート打設時荷重を 仮設鋼製屋根と空気圧で支えるエアーサポート工 法が考えられる。このエアーサポート工法は、鋼 製屋根を有する地下式貯槽または地上式貯槽にお いて、屋根表面に厚さ50cm程度のコンクリートを 覆工する際に利用されている。この場合、鋼製屋 根を構成する屋根板および屋根骨の仕様は、貯槽

図 1.3 完全埋設式地下式貯槽

運転時におけるタンク内圧から決定されている。これに対して、仮設鋼製屋根はコンクリ ート打設方法等に起因する施工時荷重によりその仕様が決定されるため、コンクリート打 設方法を工夫することにより鋼製屋根の仕様を合理的にすることが可能である。したがっ て、コンクリート製ドーム屋根に関する構築技術として、エアーサポート工法により仮設 鋼製屋根の鋼材量をできるだけ低減し、コンクリート製屋根をより経済的に構築する方法 を提案する必要があった。

LNG基地には、環境保全の観点から緑地の確保が義務づけられており、LNG地下式貯槽 外周の盛土法面等に植栽が施されている。これら植栽用の基盤としては、購入客土が用い られているが、緑化工事に伴うコスト削減と建設残土量の低減を図るために、地下式貯槽 の建設に伴い発生する掘削土を植栽基盤材等良質な土砂へ土質改良する技術開発とその実 現が重要な課題であった。一般に、建設工事に伴う掘削土のうち粘性の高い土や含水比の 高い土については、生石灰およびセメントと混合し用途別の要求品質まで改良した後再利 用している。これらの改良土については、強度は増加するがアルカリ分が多く含まれてお り浸透水のpHが高くなるため、植栽基盤材としては再利用できるものではない。このため、 掘削土の有しているpHを変化させない環境に優しい土質改良技術の開発が必要であった。

1.2 研究目的

LNG基地に対する立地環境は近年厳しさを増しており、立地環境によっては、近隣火災、 飛来物に対する高い安全性を有し、景観にさらに配慮したLNG貯槽設備として、屋根をコ ンクリート製とし貯槽設備全体を地盤面下に埋設し、かつ屋根上部に植栽による緑化を施 したLNG地下式貯槽の開発が必要とされた。本研究の目的は、この環境面、安全面を一層 向上させた新型式のLNG地下式貯槽を実現するために必要な建設技術を開発することで あり、次の3つの課題を研究目的とする。

- 低ライズのコンクリート製ドーム屋根に関する設計技術 ライズを従来の鋼製屋根に比べ低くし、ライズ・スパン比を1/16としたコンクリート 製ドーム屋根を対象に1/20縮尺モデルの模型破壊実験を実施し、材料の非線形性を考 慮した幾何学的非線形解析による構造安定性照査方法の妥当性を評価する。また、各 種規準による照査結果と模型破壊実験結果を総合的に評価し、低ライズドーム屋根の 構造安定性に関する照査方法を提案する。
- 2) 低ライズのコンクリート製ドーム屋根に関する構築技術 エアーサポート工法において、エアーサポート圧力、コンクリート打設方法をパラー メータとした仮設鋼製屋根の座屈安定解析を実施し、その結果を基に仮設鋼製屋根の 仕様検討を行い、エアーサポート工法によりコンクリート製屋根を合理的に構築する 方法を提案する。
- 3) 掘削土の植栽基盤への有効利用技術 環境に優しいパーライト土質改良工法を開発し、高含水の均質な粘性土とパーライト を用いた室内混合試験、および現地発生土を利用したプラント混合試験を行い、パー ライト土質改良工法の土質改良効果および植栽基盤材としての土壌改良効果を評価 する。

1.3 研究の特徴

本研究は、筆者が東京ガス株式会社の技術者として、約10年間、扇島LNG基地の建設業務に携わり、埋設式LNG地下式貯槽に関わる技術開発および建設業務をとおして実施したものである。

本研究の特徴は、厳しい立地環境に建設するLNG貯槽を実現するために、コンクリート 製屋根を有するLNG地下式貯槽の設計および構築技術に留まらずに、地下式貯槽の建設に 伴う掘削土を植栽基盤として有効利用するための技術開発を研究内容に選定したことにあ る。つまり、LNG貯槽設備全体を合理的に建設するために必要なコンクリート、土質およ び構築技術等を総合的に研究内容に取り入れたことにある。

コンクリート製屋根型式LNG地下式貯槽はLNG地下式貯槽指針⁴⁾に規定されていない新 しい概念の貯槽型式であったため、本型式の貯槽の考え方、定義および各部材の機能を明 確にするとともに、現状のLNG地下式貯槽における建設技術および土木・建築技術のレベ ルを十分に考慮して設計技術に関する研究テーマを抽出した。また、本型式の地下式貯槽 の研究を進めるに際しては、LNG地下式貯槽がLNG基地の保安を確保する上で非常に重要 な設備であることを十分に認識し、土木分野だけでなく機械・安全工学等他分野の学識経 験者から意見、指導を受けながら進めた。

コンクリート製ドーム屋根の構築技術に関しては、トラス支保工による建設実績を踏ま え、さらなるコスト削減が期待できる構築方法を探究し、エアーサポート工法に着目した。 そして、実際の地下式貯槽の設計業務を進めながら、エアーサポート工法によりコンクリ ート製屋根を合理的に構築できる方法に関する研究を実施してきた。

掘削土を植栽基盤として有効利用するための技術開発については、低温金属二重殻貯槽 の解体に伴い発生する保冷用パーライトを処理する技術として開発されたパーライト土砂 混合処理工法の実績をヒントに、パーライトを積極的に利用して高含水の粘性土を良質な 土砂に改良させることができるパーライト土質改良技術を考案した。そして、本改良技術 の土質改良効果および植栽基盤としての土壌改良効果を評価することを課題として研究を 進めた。

1.4 研究論文の構成

本研究は、厳しい立地環境に建設するLNG貯槽として、屋根上部の地盤面に緑化を施し た埋設式LNG地下式貯槽を実現するために必要な低ライズのコンクリート製ドーム屋根 に関する設計技術と構築技術を提案することである。また、地下式貯槽の建設に伴い発生 する掘削土を植栽基盤として有効利用するために開発したパーライト土質改良工法の土質 改良効果および土壌改良効果を評価することである。

論文の構成は次のとおりである。

第1章「序論」では、本研究の背景、目的、特徴、および概要と論文構成について述べる。

第2章「LNG貯槽とLNG地下式貯槽」では、LNG貯槽の型式、LNG地下式貯槽の構造およびLNG地下式貯槽建設技術の変遷等について述べる。

第3章「厳しい立地環境に建設するLNG貯槽の開発への課題」では、新しいコンセプト であるコンクリート製屋根型式LNG地下式貯槽の考え方および定義を明確にするととも に鋼製屋根型式LNG地下式貯槽との相違点を明らかにし、コンクリート製屋根型式LNG地 下式貯槽を実現するための課題について論じる。さらに、掘削土の植栽基盤への有効利用 を実現するための課題についても論じ、本研究の意義を明らかにする。

第4章「低ライズのコンクリート製ドーム屋根に関する設計技術」では、低ライズのコ ンクリート製ドーム屋根の構造安定性に関する研究について述べる。ライズ・スパン比を 1/16とした低ライズのコンクリート製ドーム屋根を対象に1/20縮尺モデルの模型破壊実験 を実施し、材料の非線形性を考慮した幾何学的非線形解析による構造安定性照査方法の妥 当性を明らかにする。また、線形固有値解析手法によるIASS指針(案)等各種規準による 照査結果と模型破壊実験結果を総合的に評価し、低ライズドーム屋根の構造安定性に関す る照査方法を提案したことを述べる。

第5章「低ライズのコンクリート製ドーム屋根に関する構築技術」では、低ライズのコ ンクリート製ドーム屋根の合理的な構築技術であるエアーサポート工法に関する研究につ いて述べる。コンクリート製ドーム屋根構築技術として、トラス支保工、コンクリート製 屋根のリフトアップ工法およびエアーサポート工法があるが、直径70m規模の大容量地下 式貯槽においては、仮設鋼製屋根を底型枠としコンクリート打設荷重を空気圧で支持する エアーサポート工法が最も経済性に優れた構築方法であることを述べる。次に、エアーサ ポート工法において、仮設鋼製屋根の仕様を決定する要因であるエアーサポート圧力、コ ンクリート打設方法をパラーメータとした仮設鋼製屋根の座屈安定解析を実施する。さら に、座屈安定解析結果を基に仮設鋼製屋根の仕様検討を行い、エアーサポート工法により コンクリート製屋根を合理的に構築するためのエアーサポート圧力およびコンクリート打 設方法を述べる。

第6章「掘削土の植栽基盤への有効利用技術」では、地下式貯槽からの掘削土を植栽基 盤へ有効利用するための土質改良工法に関する研究について述べる。高含水の均質な粘性 土とパーライトを用いた室内混合試験および現地発生土を利用したプラント混合試験を行 い、パーライト土質改良工法の土質改良効果および植栽基盤材としての土壌改良効果を明 らかにする。

最後に7章「結論」で、各章の要旨および研究成果をまとめて結論とした。

1.5 第1章の参考文献

- 1) 「IEA NATURAL Gas Prospects to 2010」, 1986
- 2) 「総合エネルギー統計」, 資源エネルギー庁, 2002
- 3) ^[bp statistical review of world energy], June 2003
- 4) 「LNG地下式貯槽指針」, 日本瓦斯協会・液化ガス用保安調査委員会, 1979.3

第2章 LNG貯槽とLNG地下式貯槽

2.1 LNG貯槽

2.1.1 LNG貯槽の種類

LNG貯槽は、国、地域の社会情勢や立地条件等から種々の型式が採用されている。LNG 貯槽の種類については、地上式貯槽、地下式貯槽および地上式の構造であるが側部外周に 盛土を行う型式または地中に掘ったピット内に設置する型式の3つに分類できる。

地上式貯槽は、LNGを貯蔵するための一次容器である内槽と保冷層を保持するための外 槽から構成されている。内槽としては、「低温鋼板製容器」および「プレストレストコンク リート(以下PCと呼ぶ)製容器+ライナー(またはメンブレン)」がある。外槽としては、

「炭素鋼板製容器」または「PC製容器+ライナー」がある。また、LNG貯槽周辺には万一 の液漏洩時における液の拡散を防止するために、防液堤が設定されている。防液堤として は、「盛土または鉄筋コンクリート製の低いダイク」および「PC製の高いダイク」がある。 貯槽を設置する条件、貯槽所有者の考え方等により各種の内槽、外槽および防液堤を組合 せたLNG貯槽システムが形成されている。

地下式貯槽は、周辺地盤をあらかじめ凍結させて内部を掘削し、この竪坑にLNGを直接 貯液する型式と、「鉄筋コンクリート製の躯体+メンブレン」を地中に設置した型式がある。 前者は底部に保冷層を設置しているが側壁は素掘りのままで、側壁・底部ともメンブレン のような液シール材はない。

地上式貯槽であるが、周囲を盛土した型式および地中ピット内に設置した型式について は、LNG基地近傍に火薬庫等が設定されていたり、人工の密集した住宅地やリゾート地に LNG基地を立地する際に景観上の配慮が求められたり、また、内槽材の低温脆性破壊を想 定した設計等により、その型式が採用されている。

2.1.2 LNG貯槽の型式と特徴¹⁾

2003年8月現在、日本においては、図2.1に示す27ヶ所のLNG受入基地が稼動しており、 図2.2に示すように地上式104基、地下式71基、総計175基のLNG貯槽が建設されている。 日本のLNG基地で用いられているLNG貯槽の型式を図2.3に示す。以下に、これらLNG貯槽 の主な特徴を述べる。

(1) 金属二重殼地上式貯槽

1958年、イギリスのキャンベイ基地に2.4万KLの貯槽が設置されて以来、世界各国のLNG 基地で多数の地上式金属二重殻貯槽が建設されている。日本で最初に建設されたLNG貯槽 は、この型式の3.5万KLと4.5万KLの貯槽である。内槽は-162℃のLNGに対して低温脆性の ない9%ニッケル製またはアルミニウム製の低温用鋼板で構成されており、LNGの液圧お よびガス圧を支持するとともに、液密気密の機能を果たしている。外槽は炭素鋼製の自立 貯槽であり、保冷材(パーライト)を保持している。

防液堤としては、初期には石油貯槽と同様に高さの低い鉄筋コンクリート製のものを設 置していたが、最近では高い鉄筋コンクリート製またはPC製の防液堤を設け、万一の液漏 洩の拡大を局所化できるよう安全性を配慮した型式になっている。

日本では、これまで94基、総容量689万KLの地上式金属二重殻式貯槽が建設されており、 貯蔵容量は1基あたり12万KLのものまで大型化されている。

(2) PC二重殼地上式貯槽

自立した低温用鋼製(9%ニッケル鋼)内槽、保冷材(パーライト)、そしてそれを保持 するPC構造の外槽で構成されている貯槽であり、世界ではこの型式の貯槽が多い。PC製 の外槽を万一の液漏洩時における防液堤と位置づけている。低温用鋼製の屋根は内槽によ り支持されている。

この型式の貯槽は日本で8基建設されており、総容量は69.4万KLである。1基あたりの貯 蔵容量は18万KLまで大容量化されている。

(3) 地下式貯槽

1969年、初のLNGプロジェクトが日本に導入された翌年1970年、初めての容量1万KLの LNG地下式貯槽が完成した。

鉄筋コンクリート製の側壁、底版により土圧、地下水圧を支え、その内側に断熱用の保 冷材、さらに内側に液密、気密材としてのステンレス製のメンブレンが設けられている。

1基あたりの容量は世界最大の20万KLまで大容量化されている。現在までに日本全国で 71基、総容量622万KLが建設されている。このうち本研究成果である埋設式LNG地下式貯 槽も容量20万KLのものが3基稼動している。地下式貯槽については、次項で詳細に述べる。

(4) ピットイン貯槽

金属二重殻地上式貯槽を地中に掘ったピットの中に入れた貯槽であり、景観対策、敷地の制約等の条件から本型式貯槽が採用されている。日本では、2基、総容量17万KL、1基あたり最大で8.5万KLまでのピットイン貯槽が建設されている。

図 2.2 日本における LNG 貯槽建設実績 (2003 年 8 月時点)

① 金属二重殼地上式貯槽

外槽(CS)十内槽(9%Ni鋼 or Al)

③ 地下式貯槽

② PC 二重殼地上式貯槽

外槽兼防液堤(PC)+内槽(9%Ni鋼 or SUS) PC外槽 保冷材 (パーライト) 内槽 (9%Ni鋼 or SUS)

④ ピットイン貯槽

図 2.3 日本における LNG 貯槽の型式

2.2 LNG地下式貯槽

2.2.1 LNG地下式貯槽の概要

LNG地下式貯槽の構造を図2.4に示す。この貯槽は、掘削された地盤の内側に構築した鉄 筋コンクリート製の側壁および底版により貯槽空間の安定性を保ち、また、その内側に取 り付けられたメンブレンと呼ばれる金属製薄膜で液密性・気密性を保持している。メンブ レンには貯蔵物に対する液密性、気密性が要求される他、温度や圧力の変化に追従する変 位吸収機構が必要となる。通常厚さ2mmのオーステナイトステンレス鋼の薄板(SUS304) が使用され、変位吸収のためにコルゲーションと呼ばれるひだが設けられている。

躯体は鉄筋コンクリート製の側壁および底版からなり、安定した地盤に床付けされてい るとともに、周囲の土水圧等の荷重を支持している。また、周辺地盤の凍結をコントロー ルするためのヒーターが側部、底部に設けられている。

屋根は、一般的に自立式の鋼製ドーム屋根が採用されている。

側部、底部の保冷材には所定の断熱性能と合わせてメンブレンからの作用荷重をコンク リート躯体に円滑に伝達する機能が要求されるので、十分な断熱性能と支圧強度を有した 硬質ポリウレタンフォーム(PUF)が使用されている。

屋根の保冷形式は、吊り屋根保冷形式と屋根内面保冷形式の2形式がある。前者は鋼製 屋根に吊り屋根(サスペンションデッキ)を吊り下げ、その上に保冷材としてグラスウー ルを載せた形式である。後者は屋根の内面にボルト等で直接PUFを取り付ける構造となっ ている。

2.2.2 LNG地下式貯槽指針

LNG地下式貯槽指針²⁾は、通産省の委託により日本ガス協会が、『液化天然ガス用貯槽保 安調査委員会』を設定して、昭和54年に技術指針としてまとめたもので、現在でもガス事 業法、電気事業法の適用技術指針として、法律に準じる形で運用されている。この指針は、 性能規定化された技術基準との整合、高レベル地震動の導入、コンクリート製屋根型式 LNG地下式貯槽等新技術の取り込み、維持管理規定の充実等を図ることを目的として、 2002年8月に改訂指針が発刊された。

LNG地下式貯槽指針におけるLNG地下式貯槽の定義は、次の通りである。

『低圧の液化ガス用貯槽であり、貯槽内の液化ガスの最高液面が盛土の天端面以下にあり、かつ、埋設された部分が周囲の地盤に接する、躯体、屋根、メンブレン、保冷、その 他により構成されているものをいう。』

すなわち、LNG地下式貯槽は地下にあるだけでなく、側壁と底版が直接地盤と接してい るものをいう。先に述べたピットイン式の貯槽は、地下に構築したピットの中に通常の金 属二重殻地上式貯槽を設置したものである。地盤面下に貯槽全体が設置されているが貯槽 は高床式の基礎の上に設けられており、LNG地下式貯槽とは技術的には全く異なったもの である。³⁾ LNG地下式貯槽指針²⁾で規定されている屋根⁴⁾ は鋼製の球殻および胴板で構成 されたものである。

図 2.4 LNG 地下式貯槽の構造

2.2.3 LNG地下式貯槽建設技術の変遷⁵⁾

東京ガスおよび東京電力のLNG基地において、安全で周囲の環境ともよく調和し、土地 の有効利用が図れるLNG地下式貯槽がLNG導入早期の段階から採用されている。このLNG 地下式貯槽建設技術の歩みは、年代順に設計構築技術の確立を目指した開発発展(第一世 代)、大容量化(第二世代)、高品質化・経済性(第三世代)の3つのステージに区分でき る。以下に、それぞれの世代における地下式貯槽建設技術の特長を述べる。図2.5にこれま でのLNG地下式貯槽建設技術変遷の概要を示す。

(1) 設計構築技術の確立を目指した開発発展(1970年~1980年代前半)

地下式貯槽の最大の特長である「最高液面を地盤面以下とし、万が一の際にも貯蔵液の 地表面流出がない本質的な安全性」という考え方は、1960年代にアルジェリアおよびイギ リスで、5基の凍結土壌素掘り式貯槽で初めて実現された。これらの貯槽は、人工地盤凍 結工法により自然地盤を凍結させ、図2.6に示すように凍結土により側部と底部を構成して 地下水圧、土圧を支持し、同時に液密性・気密性を期待したものである。

これに対し、日本においては、躯体である側壁、底版に強度部材である鉄筋コンクリートを用い、その内側に液密・気密のためのメンブ

レンと保冷材を設けた耐震性に優れた独自の地 下式貯槽を開発し、1970年、根岸基地で容量1 万KLの試験貯槽を初めて稼動させた。引き続き 1970年代から80年代初めまでに、砂質の透水性 地盤である袖ヶ浦基地で容量6万KLの地下式貯 槽を、また、軟岩地盤の不透水性地盤である根 岸基地ではその特性を利用した6~9.5万KLの 地下式貯槽を建設してきた。第一世代の地下式 貯槽における技術開発の主要課題は、設計構築 技術の確立であった。1976年に日本ガス協会内

図 2.6 凍結土壌素掘り式地下式貯槽

図 2.5 LNG 地下式貯槽建設技術の変遷

に液化天然ガス用貯槽保安調査委員会が設置され、3年の歳月を費やし凍土、構造、耐震 および保安に関する調査、実験および審議が精力的に実施されてきた。その成果として、 1979年に、LNG地下式貯槽の計画、建設から維持管理までの全ての範囲に渡る技術指針お よび保安対策指針を集大成した「LNG地下式貯槽指針」が日本ガス協会から発刊された。

(2) 大容量化(1980年代前半~1990年代後半)

第二世代は大容量LNG地下式貯槽である。日本経済の高度成長およびエネルギーのクリ ーン化に伴う大幅なLNG需要の伸びに対し、限られた敷地内に大規模な地下式貯槽を建設 する必要性にせまられ、従来の容量を大幅にアップさせた地下式貯槽の建設が始められた。 1980年代前半から1990年代後半にかけて、大深度地中連続壁工法、大型竪型NATM工法等 に関する技術開発が行われ、袖ヶ浦基地で容量13~14万KLのLNG地下式貯槽が、1995年 には根岸基地で世界最大容量の20万KL LNG地下式貯槽が建設された。以下に大容量化を 実現させた技術の特徴を述べる。

(a) 深さ100mの大深度地中連続壁工法の開発(袖ヶ浦基地)

袖ヶ浦基地の地盤は地表面から約15mが軟弱な埋め立て沖積層であり、その下に洪積層 が続く。洪積層は透水性の良い砂層が主体であるが、地表より約40m付近および約100mの 深部に不透水層である粘性土層が分布している。

地中連続壁工法は、地上からベントナイト液(泥水)を用いて壁状の溝を掘削した後、 この泥水の中に鉄筋籠を挿入し、コンクリートを打込んで地中に鉄筋コンクリート製の壁 を造るものである。構築は長さ数mのパネル毎に行い、隣接するパネル間の目違いが大き くなると連続壁としての機能を果たさなくなる。当時の地中連続壁は水平方向のズレの深 さに対する割合である掘削精度が1/200~300程度しかなく、深さ60mが施工上の限界であ った。このため、袖ヶ浦基地の地盤では、盤ぶくれの関係より掘削深さが制限され、最大 で貯槽容量6万KLの地下式貯槽しか建設できなかった。

これに対して、GL-100m付近の不透水層を利用し、盤ぶくれの安定を確保することがで きればさらに大容量化が図れるため、深さ100mに対して誤差10cm以下、すなわち1/1000 の精度を目標値とした掘削機の開発に挑戦した。自動制御掘削地中連続壁試験、地中連続 壁継手施工試験等種々の施工実験を行った結果、掘削機に取り付けた傾斜計、深度計等の

図 2.7 大深度地中連続壁工法を利用した地下式貯槽の大容量化(袖ヶ浦基地)

計器による掘削精度の把握、および姿勢制御装置によるリアルタイムでの掘削機の制御を 可能とさせ、深さ100mで誤差約5cm以内(1/2,000)という高精度の掘削を初めて実現す ることに成功した。

そして、この大深度地中連続壁(深さ100m、壁厚1.2m)を利用して、内径71mの円筒 形山留め止水壁を建設するとともに、側壁を逆巻工法で6mピッチ毎に構築しながら内部掘 削を進め、図2.7に示すように側壁内径64m、深さ41m、容量13万KLの地下式貯槽を完成 させた。さらに、高品質化、経済性の観点から、従来山留め壁として用いられていた地中 連続壁を側壁本体の一部として組み込み、かつ地中連続壁内側に施工されるうち巻きコン クリートを構造物の下部から施工していく順巻き工法を開発した。内部掘削は無支保で一 気に深さ46mの最終床付けまで行い、側壁内径64m、深さ44m、容量14万KLの地下式貯槽 を完成させた。地中連続壁には、設計基準強度51N/mm²の水中コンクリートを採用し、世 界初の高強度地中連続壁を実現した。

(b) 大型竪型NATMの開発(根岸基地)

根岸基地の地盤は地表面から約10mが軟弱な埋め立て沖積層であり、その下部には軟岩 (土丹)が存在している。この土丹は、一軸圧縮強度が2~3N/mm²の泥岩で、透水性の低 い地盤である。

図2.8に9.5万KLのLNG地下式貯槽で適用した山留め工法を示すが、軟弱層部に鋼矢板を 打設し土丹部ではH鋼親杭をアースアンカーで引張り、土留めとしていた。これに対し、 土丹の自立性に着目してトンネル工事におけるNATMの技術を積極的に導入、適用したの が竪型NATMである。この工法は、土丹部を1.5mずつ直掘りしながら、吹き付けコンクリ ートで掘削表面を保護し、長さ5m程度のロックボルトを約1.5mピッチで打設することに より、地山の安定を確保するものである。

先ず、この工法で深さ33mの6万KL LPG地下式貯槽の掘削を実施した。ロックボルト径、 長さ、ピッチ等についてはトンネル工事におけるNATMの実績から定め、緩み領域等の検 討は実施しなかったが、今後の大深度化へのデータ蓄積を目的として、ロックボルトの軸 カ、傾斜計による掘削面の変形等の計測を実施した。次に掘削深さ46m、容量8.5万KLの LNG地下式貯槽の掘削に適用した。事前に地盤の応力、変形解析を実施し、これに基づい てロックボルトの配置計画を行った。掘削時には、地山の変位計測を行い、予測値とのフ

図 2.8 大型竪型 NATM 工法を利用した地下式貯槽の大容量化(根岸基地)

ィッティングを行った結果、掘削に伴う土丹の挙動を的確に把握できるようになった。これらの成果より、この地盤における竪型NATM技術の信頼性をあげ、地表面から深さ60mもの大深度掘削を竪型NATMで経済的に掘削できるようにし、図2.8に示すように容量20KLの地下式貯槽を実現した。

(3) 高品質化(1990年代後半~)

従来、耐水圧強度版形式の地下式貯槽では、経済性の面から側壁と底版の結合部に図2.9 の左側に示すような目地を設け、側壁と底版を分離したピン構造を採用している。この目 地部には側壁・底版間の荷重を伝達するための結合材等が設置されている。これに対し、 LNG地下式貯槽のもつ信頼性、安全性に加え経済性をさらに向上させたのが側壁・底版剛 結構造であり、この新世代(第三世代)の地下式貯槽を扇島基地で完成させたばかりであ る。

側壁と底版が連続した剛結合構造は目地がなく、また、不静定次数が上がることにより 構造物としての靭性および耐力が向上し、耐震性や変形特性が向上する特徴があるが、応 力集中による側壁下部の鉄筋の過密化および、隅角部のひびわれ進展等の面で課題があっ た。そこで、ハンチ構造の採用、大容量PCケーブルの使用など種々の構造的工夫および3 次元のRC非線形解析による安全性照査、自己充てんコンクリートを適用することにより、 地下式貯槽が有している信頼性、安全性に加え経済性をなお一層向上させた地下式貯槽を 実現することができた。

関東地区で発展を遂げたLNG地下式貯槽は、その後、福北基地(福岡)、袖師基地(清水)、新港基地(仙台)、知多緑浜基地、長崎基地等日本各地で建設されるようになった。 一方、LNG基地の立地については近年厳しさを増しており、立地環境においては、近隣火 災、飛来物に対する高い安全性を有するとともに景観にさらに配慮したLNG貯槽設備とし て、屋根をコンクリート製とし貯槽設備全体を地盤面下に埋設し、さらに屋根上部に植栽 による緑化を施したLNG地下式貯槽の開発が必要とされていた。

2.2.4 LNG地下式貯槽建設技術の発展

(1) 大型地下構造物への発展的利用

2.2.3項で述べた大容量化を実現した技術は、LNG地下式貯槽のみならず一般の大型地下 構造物にも活用されている。特に大深度地中連続壁工法は、国家プロジェクトでもある東 京湾横断道路の川崎人工島などの大規模立坑や、明石海峡大橋アンカレジ等での橋梁基礎 で盛んに利用されている。最近では、地下変電所の山留め壁として内径140mもの地中連続 壁が利用されるまでになった。また、軟岩の自立特性を巧みに利用した竪型NATMも経済 性に優れた工法であり、同種の地盤で今後の活用が期待される。

(2) LNG地下式貯槽建設技術の海外での適用

日本で独自に開発された地下式貯槽は、その安全性、威圧感のない景観が高く評価され、 台湾、韓国といった海外の地震国においても建設されている。

台湾の永安LNG基地では、容量10万KL 3基と13万KL3基の LNG地下式貯槽が建設された。埋め立て直後の超弱齢地盤であり旧海底面も比較的軟弱であったことから、土留壁の 検討には慎重を期し、剛性の高い地中連続壁を用いた逆巻工法で施工された。 一方、韓国の仁川LNG基地では、14万KLタンク2基、20万KLタンク4基が完成し、現在 20万KL2基が建設されている。地表面から70m以深の地盤は花崗岩で構成されており、地 中連続壁順巻き工法で躯体の構築が進められた。

表2.1に世界におけるLNG地下式貯槽の建設実績を示す。

図 2.9 従来の地下式貯槽と側壁・底版剛結構造地下式貯槽の比較

- 2.3 第2章の参考文献
- 1) 後藤貞雄:「大容量LNG地下式貯槽の建設技術に関する研究」,東京工業大学博士論文, pp.21, 1997
- 2) 「LNG地下式貯槽指針」, 日本瓦斯協会・液化天然ガス用保安調査委員会, 1979.3
- 3) 後藤貞雄:「大容量LNG地下式貯槽の建設技術に関する研究」,東京工業大学博士論文, pp.18~pp.20, 1997
- 4) 「LNG地下式貯槽指針」, 日本瓦斯協会・液化天然ガス用保安調査委員会, pp.147~ pp.219, 1979.3
- 5) 中野正文:「LNG地下タンク建設技術の変遷と最新の技術開発」, 土木学会論文集 N.679/VI-51, pp.1~pp.20, 2001.6

貯	槽	腔蕨物	_{貯蔵物} 容量	寸法	(m)	空武在
会社・基地	タンク名称	只」爬几约	(KL)		液深	元戍平
	T L — 6	LNG	60, 000	50.0	30.6	1972
	T L — 7	LNG	10, 000	30.0	14. 2	1970
	T L - 8	LNG	95, 000	64. 0	29. 6	1977
	T L — 9	LNG	95, 000	64. 0	29.6	1978
	T ∟ -10	LNG	95, 000	64.07	29. 5	1981
東京ガス	T ∟ —11	LNG	95, 000	64.0	29. 6	1982
根岸	⊤∟−21	LNG	85, 000	50.0	43.5	1994
	T ∟ -22	LNG	85, 000	50.0	43. 5	1994
	⊤∟−41	LNG	200, 000	68.0	55.1	1995
	T ∟ -42	LNG	200, 000	68.0	55.1	1996
	т р —21	LPG	60, 000	50.0	30.6	1990
	т р —22	LPG	60, 000	50.0	30.6	1989
	A-1TL	LNG	60, 000	64.0	18. 7	1976
	A – 2 T L	LNG	60, 000	64.0	18. 7	1976
	A-3TL	LNG	60, 000	64.0	18. 7	1977
	A – 4 T L	LNG	60, 000	64.0	18. 7	1976
	A — 5 T L	LNG	60, 000	64.0	18. 7	1978
	A – 6 T L	LNG	60, 000	64.0	18. 7	1977
	B-3TL	LNG	60, 000	60.0	21.3	1974
	B-5TL	LNG	60, 000	60.0	21. 3	1974
東京ガス	B-6TL	LNG	60, 000	64.0	18. 7	1976
袖ヶ浦	B-7 T L	LNG	62, 000	64.0	19. 3	1979
	B-8TL	LNG	58, 000	64.0	18. 1	1979
	C-1TL	LNG	130, 000	64. 0	40. 5	1982
	C – 2 T L	LNG	130, 000	64. 0	40. 5	1982
	C – 3 T L	LNG	130, 000	64. 07	40.4	1984
	C-4 T L	LNG	130, 000	64. 0	43.65	1989
	C — 5 T L	LNG	140, 000	64. 0	40. 5	1985
	C - 6 T L	LNG	140, 000	64. 0	43.65	1993
	PA-LP-3TP	LPG	60, 000	64.0	18. 7	1986
	T L 11	LNG	200, 000	72. 0	49. 2	1998
東京ガス	⊤∟21	LNG	200, 000	72. 0	49. 2	2000
扇島	T ∟12	LNG	200, 000	70. 8	51.0	2003
	T P 1	LPG	60, 000	45.0	37.8	1998
東京ガス	T — 1	LNG	650	10.0	8.3	1988
甲府	Т — З	LNG	870	10. 0	11. 2	1990
東京ガス 日立		LNG	650	10. 38	7.8	1992

表 2.1 世界における LNG 地下式貯槽建設実績 [LPG 含む] (その 1)

貯	槽	貯蔵物	容量	寸法	(m)	空成在
会社・基地	タンク名称	RJ /RX 19J	(KL)	内径	液深	九风十
大阪ガス 泉北		LNG	45, 000	54.0	19. 7	1975
	6	LNG	60, 000	64. 0	18. 85	1979
	7	LNG	60, 000	64. 0	18. 85	1979
	9	LNG	60, 000	64. 5	18. 85	1981
東京電力	11	LNG	90, 000	57.8	35.7	1984
11	12	LNG	90, 000	57.0	35.5	1984
袖ケ浦	13	LNG	90, 000	57.4	35.0	1984
	14	LNG	90, 000	57.0	35.5	1984
	15	LNG	90, 000	57.4	35.0	1985
	16	LNG	90, 000	57.8	35.7	1985
	1	LNG	60, 000	50.0	30. 7	1984
	2	LNG	60, 000	50. 2	30.4	1984
	3	LNG	60, 000	50. 3	30. 7	1983
東京電力	4	LNG	60, 000	50.0	30. 7	1984
+= -	5	LNG	60, 000	50. 2	30.4	1984
東扇島	6	LNG	60, 000	50. 3	30. 7	1984
	7	LNG	60, 000	50. 2	30.4	1984
	8	LNG	60, 000	50. 3	30. 7	1987
	9	LNG	60, 000	50. 2	30.4	1987
	1	LNG	90, 000	64	28. 2	1985
	2	LNG	90, 000	64. 4	27.8	1985
	3	LNG	90, 000	64. 0	28. 2	1986
	4	LNG	90, 000	64. 4	27.8	1986
東京電力	5	LNG	125, 000	72. 5	30. 5	1991
富津	6	LNG	125, 000	72. 5	30. 5	1991
	7	LNG	125, 000	69. 15	33. 5	1999
	8	LNG	125, 000	69. 15	33.5	1999
	10	LNG	125, 000	69.15	33.5	2002
	11	LNG	125, 000	69.15	33.5	2002
西部ガス	T — 1	LNG	35, 000	41.56	25.9	1993
福北	T — 2	LNG	35, 000	41.56	25.9	1996
西部ガス 熊本	T — 1	LNG	2, 000	15	11.6	1999
西部ガス 長崎		LNG	35, 000	37.6	32. 6	2003
知多エル・エヌ・ジー	т —207	LNG	160, 000	64. 0	49. 9	1997
東邦ガス 知多緑浜		LNG	200, 000	74. 0	46.6	2001
清水エル・エヌ・ジー	1	LNG	82, 900	58. 0	31.4	1996
袖師	2	LNG	94, 300	58. 4	35.7	2000
仙台ガス 新港	T — 1	LNG	80, 000	60.61	27.8	1997

表 2.2 世界における LNG 地下式貯槽建設実績 [LPG 含む](その 2)

貯	槽	貯蔵物	~ 容量	寸法 (m)		空成在
会社・基地	タンク名称	只丁 阆(19)	(KL)	内径	液深	元成十
	T - 101	LNG	100, 000	64.0	31.0	1990
山迹	T-102	LNG	100, 000	64. 0	31.0	1990
口 /弓 CPC	T - 103	LNG	100, 000	64.0	31.0	1990
<u></u>	T-104	LNG	130, 000	64. 0	40. 5	1996
水女	T — 105	LNG	130, 000	64. 0	40. 5	1996
	T-106	LNG	130, 000	64.0	40. 5	1996
	т к —211	LNG	140, 000	64.0	43. 7	2001
	T K - 212	LNG	140, 000	64.0	43. 7	2001
静国	т к —213	LNG	200, 000	72. 0	49. 2	2002
KOGAS	т к —214	LNG	200, 000	72. 0	49. 2	2002
/	т к —215	LNG	200, 000	72. 0	49. 2	(2003)
1/1	т к —216	LNG	200, 000	72.0	49. 2	(2003)
	т к — 217	LNG	200, 000	72.0	49. 2	(2004)
	т к-218	LNG	200, 000	72.0	49. 2	(2004)

表 2.3 世界における LNG 地下式貯槽建設実績 [LPG 含む] (その 3)

(): 2003年8月時点で建設中
第3章 厳しい立地環境に建設するLNG貯槽の開発への課題

3.1 概要

屋根も含め貯槽全体を地盤面下に埋設し、さらに屋根上部に植栽による緑化を施した LNG地下式貯槽を実現するためには、コンクリート製屋根型式LNG地下式貯槽の設計・構 築技術および地下式貯槽の建設に伴い発生する掘削土の植栽基盤への有効利用技術が必要 である。

LNG地下式貯槽は、ガス事業法および電気事業法の適用技術指針であるLNG地下式貯槽 指針に準拠して設計、構築されている。しかし、コンクリート製屋根型式のLNG地下式貯 槽はこのLNG地下式貯槽指針¹⁾に設計手法が示されていないLNG貯槽型式である。そのた め、最初に本型式の地下式貯槽の定義および基本構造を明確にした。次に、現状のLNG地 下式貯槽における建設技術および土木、建築技術のレベルを考慮し、コンクリート製屋根 型式LNG地下式貯槽の設計・構築技術における課題として、低ライズのコンクリート製ド ーム屋根における構造安定性に関する照査方法の提案およびエアーサポート工法による合 理的な屋根構築方法の提案を設定した。

また、掘削土の植栽基盤への有効利用技術に関する課題としては、環境に優しい土質改 良工法の開発を設定した。

3.2 コンクリート製屋根型式LNG地下式貯槽の定義および基本的な考え方

3.2.1 コンクリート製屋根型式LNG地下式貯槽の定義

コンクリート製屋根型式LNG地下式貯槽は、前章で述べた鋼製屋根を有する従来型式地 下式貯槽の定義を逸脱するものではなく、LNG地下式貯槽の一型式である。本型式貯槽の 定義を以下に示す。

「LNG地下式貯槽のうちコンクリート製の屋根を有する貯槽であって、側壁、底版、屋 根、メンブレン、保冷、その他により構成されるものをいう。このうち、特に屋根部も埋 設されて、周囲地盤に接する貯槽を埋設式貯槽という。」²⁾

従来型式貯槽とコンクリート製型式貯槽の決定的な相違点は屋根である。両型式貯槽の 屋根を構造および機能の面から比較すると表3.1に示すように、鋼製ドーム屋根が有してい る耐圧機能および気密機能をコンクリート構造および気密保持構造がそれぞれ分担する。

従来型式貯槽				式貯槽	コンクリート製屋根型式貯槽
	形	状	ドー	-ム	ドームまたはフラットおよびそのバリエーション
	構	造	鎁	製	コンクリート構造および気密保持構造
機	耐	圧	鋼製 l	ドーム	コンクリート構造
能	灵	密	鋼製	ベーム	気密保持構造(メンブレンまたはシールプレート)

表 3.1 従来型式貯槽とコンクリート製屋根型式貯槽の比較

3.2.2 コンクリート製屋根型式LNG地下式貯槽の基本的考え方³⁾

表3.2にコンクリート製屋根型式貯槽の槻念図および基本的考え方を示す。また、表3.3 に本型式貯槽を構成している各部の定義、構造および要求性能を示す。屋根は、鉄筋コン クリート部材またはプレストレストコンクリート部材、保冷材およびメンブレンまたはシ ールプレート等により構成されている。コンクリート構造は、ガス圧と貯蔵液圧の内圧、 および自重、土圧、水圧、覆土荷重、側壁からの伝達荷重等の外圧を支持する。また、コ ンクリート構造内面に取り付けられたメンブレンまたはシールプレートが気密性を保持す る。ただし、配管がコンクリート構造を貫通する部分は例外として鋼構造部分が耐圧性能 および気密性能を保持している。屋根形状としては、ドーム屋根型式および平屋根型式の 2種類がある。また、屋根が地表面に出る型式(非埋設式)および地表面に出ない型式(埋 設式)がある。

		従来貯槽	コンクリート製屋根型式貯槽				
			ドーム屋根型式 平屋根型式				
		细制民由	<u>非埋設式 埋設式 非埋設式</u> 埋設式				
		到設住位	<u>コンクリート製屋根</u> ユンクリート製屋根				
概念図							
地下式貯槽としての基本コンセプト		・LNG液面は盛土天端面以下にある。 ・貯槽は周辺地盤に接している。	・LNG液面は盛土天端面以下にある。 ・貯槽は周辺地盤に接している。 (基本コンセプトは変更なし。変更点は屋根構造)				
	・鋼製屋根が耐圧を保持する。 耐圧機能		 ・コンクリート構造部分が内外圧を支持する。 ・型式としてはドーム屋根型式および平屋根型式がある。 ・屋根が地表面に出る型式(非埋設式)および地表に出ない型式(埋設式)がある。 				
		・鋼製屋根が気密を保持する。	・内側の金属製膜が気密を保持する。 ・型式としてはメンブレン型式およびシールプレート型式がある。				
屋根	気密機能		<u>コンクリート</u> <u>保冷材</u> <u>メンブレン</u> <u>保冷材</u> メンブレン <u>保冷材</u> メンブレン <u>保冷材</u> メンブレン <u>保冷材</u> <u>メンブレン</u> <u>保冷材</u> <u>メンブレン</u> <u>保冷材</u> <u>メンブレン</u> <u>保冷材</u> <u>メンブレン</u> <u>保冷材</u> <u>メンブレン</u> <u>マールブレート</u>				
側壁	耐圧機能	・コンクリートが内外圧を支持する。	・コンクリートが内外圧を支持する。				
底部	液密気密機能	・内側の金属製薄膜が液密気密を保持する。	・内側の金属製薄膜が液密気密を保持する。				

表 3.2 コンクリート製屋根 LNG 地下式貯槽の概念図および基本的考え方

構成	定 義	構造等	要求される機能
	円筒形構造のもので、主	鉄筋コンクリートまたはプレ	主として土圧、液圧
/0.1	として土圧等の水平方向	ストレストコンクリート製の	等の水平方向荷重を
則	荷重を支えるコンクリー	円筒形構造とする。	支える。
居辛	ト製の構造部分をいう。	側壁は考えられる荷重の組合	
		せに対し十分な強度を有する	
		ように設計する。	
底	主として鉛直方向荷重を	地下水圧に対処する方法によ	主として土圧、液圧
	支える構造部分をいう。	り耐水圧型強度底版、減圧型底	等の鉛直方向荷重を
版		版等がある。	支える。
	側壁上部に設けられ、内	屋根は、鉄筋コンクリート部材	コンクリート構造は
	圧を保持し、型式によっ	またはプレストレストコンク	内圧を支持し、気密
屋	ては覆土荷重等も支える	リート部材、保冷材および気密	保持材は気密を保持
	構造部分をいう。	保持材等により構成される。	する。
根		屋根は、考えられる荷重の組合	
		せに対し十分な強度を有する	
		ように設計する。	
	貯槽内液を断熱するため	設計上要求される十分な保冷	保冷性能および支圧
保	に設けられる構成部分を	性能を有するよう設計する。	強度
	いう。	支圧部については、作用する荷	
冷		重に対して十分な強度を有す	
		るよう設計、製作を行う。	
×	貯槽内の液またはガスと	想定される荷重に対して安定	貯槽内の液およびガ
レブ	保冷とを隔てる金属製薄	した変形挙動をする。	スに対して液密性お
Ú	膜をいう。	想定される繰返し荷重に対し	よび気密性を有す
		て十分な疲労強度を有する。	る。
シ	屋根にあって貯槽内のガ	想定される荷重に対して十分	貯槽内のガスに対し
 ル	スとコンクリートとを隔	な強度を有する。	て気密性を有する。
プ	てる金属製膜でコンクリ		
	ートに接するものをい		
F	う。		

表 3.3 コンクリート製屋根型式 LNG 地下式貯槽における構成各部の定義

3.3 コンクリート製屋根型式LNG地下式貯槽の設計・構築技術に関する課題

コンクリート製屋根型式LNG地下式貯槽においては、前項の定義で述べたように、従来 の鋼製ドーム屋根が有している耐圧機能および気密機能をコンクリート構造、気密保持構 造がそれぞれの機能を分担して受けもつ。本型式の貯槽を実現するためには、屋根部コン クリート構造の設計技術、構築技術および気密保持構造の設計技術を新たに確立する必要 がある。以下に、現状のLNG地下式貯槽および土木・建築構造物における技術レベルを基 に、屋根部コンクリート構造および屋根部気密保持構造の設計および構築に必要な技術を 評価し、コンクリート製屋根型式地下式貯槽を実現するための技術的な課題を抽出する。

3.3.1 屋根部コンクリート構造の設計技術

屋根部コンクリート構造を構成する鉄筋コンクリート構造部材、または、プレストレス トコンクリート部材については、LNG地下式貯槽指針には記載のない屋根部の構成部材で あり、その設計に関する規定もない。屋根部コンクリート構造に要求される性能は、貯槽 の最高および最低使用圧力に対する耐圧機能と自重、付属品荷重、埋設式貯槽における覆 土などの貯槽屋根に作用する荷重に対する耐荷機能である。これらの要求性能を満足させ た屋根部コンクリート構造を設計するには、LNGの低温に関する技術、耐震設計技術およ び設計荷重の設定・荷重の組合せ等の設計技術等が必要である。これら設計技術のうち、 LNGの低温に関する技術はLNG地下式貯槽特有のものであり、熱伝導解析技術、鉄筋コン クリートの低温特性に関する技術、地盤の凍結と凍結膨張解析技術が挙げられる。これら の技術は既にLNG地下式貯槽指針に集大成され、鉄筋コンクリート製の側壁および底版の 設計に反映されている。屋根部コンクリート構造は、温度条件および作用荷重の大きさ等 において、側壁、底版と相違はあるが、設計技術に関する基本的な考え方、設計手法は側 壁、底版と同様であり、現状のLNG地下式貯槽の建設技術を屋根部コンクリート構造の設 計に適用および拡張することができると考えられる。ただし、低ライズのコンクリート製 ドーム屋根を適用する場合には、以下に述べるようにその構造安定性を照査する方法を新 たに提案する必要がある。

コンクリート製ドーム屋根は、原子力格納容器、水道用タンク、LNG貯槽等の円筒形容 器において多数の実績がある。覆土のない非埋設式のコンクリート製ドーム屋根について は、ACI344 R-70においてライズ・スパン比(ドーム屋根の高さ〔H〕を直径〔D〕で除し た値)を1/6~1/10と規定し、座屈に対する安定性を確保している。また、IASS指針(案) においても、建築構造の鉄筋コンクリートシェルおよび折板構造屋根を対象として、線形 固有値解析手法を利用した構造安定性照査方法が規定されている。

埋設式地下式貯槽のドーム屋根においては、ドーム屋根が扁平になればなるほど貯槽全体の床付けレベルが浅くなり工費削減および工程短縮が図れるが、座屈に対する構造安定性は小さくなる。コンクリート製ドーム屋根の構造安定性を考慮した設計規準類については、前述したように非埋設のドーム屋根を対象としており、また、ライズ・スパン比等適用条件に制約を設けているものもある。このため、埋設式地下式貯槽を対象としたライズ・スパン比1/10以下のコンクリート製ドーム屋根に対する構造安定性照査方法を提案することは重要な課題と位置づけられる。

3.3.2 コンクリート製屋根の構築技術

LNG地下式貯槽は、一般の土木構造物とは異なり、鉄筋コンクリート製の側壁・底版の 内面に機械構造物である保冷材、メンブレンが取り付けられた複合構造物であり、機械構 造物から要求される設計条件および施工条件を満足するように鉄筋コンクリート構造物を 建設する必要がある。具体的には、コンクリート製屋根内面の出来形精度は、メンブレン 溶接時の肌合せ等の許容誤差から段差は6mm以下、多面体の稜線のズレと平面内の凹凸は 10mm以下と、側壁、底版と同様に厳しいものが要求された。

保冷材およびメンブレンから要求される厳しい内面精度を確保しながら、低ライズのコ ンクリート製ドーム屋根を底版上方50~60mの空間で確実に構築する技術としてトラス 支保工がある。この支保工は、中央構台と側壁に設置したブラケットを支点とした剛性が 高く変形を制御しやすい傘状の立体鋼製トラスと加工が容易で耐候性のあるコーティング 付き合板型枠で構成されている。直径72m、高さ7m、および頂部で1m、端部で2m厚さの コンクリート製ドーム屋根をトラス支保工で構築する場合、その鋼材量は約2,000 t にも なり、コンクリート製ドーム屋根全体の構築費に占める割合も約60%にも達する。このト ラス支保工に替わり屋根工事費の削減を図ることができる最適な構築技術として、仮設鋼 製屋根を底型枠として利用し、鉄筋およびコンクリート打設時荷重を仮設鋼製屋根と空気 圧で支えるエアーサポート工法が考えられる。このエアーサポート工法は、鋼製屋根を有 する地下式貯槽または地上式貯槽において、屋根表面に厚さ50cm程度のコンクリートを覆 工する際に利用されている。この場合、鋼製屋根を構成する屋根板および屋根骨の仕様は、 コンクリート打設時でなく、貯槽運転時における内圧から決定されている。これに対して、 仮設鋼製屋根は屋根構築時だけに適用するものであるため、コンクリート打設方法等をエ 夫することにより鋼製屋根の仕様を合理的にすることが可能である。したがって、エアー サポート工法により仮設鋼製屋根の鋼材量をできるだけ低減し、コンクリート製屋根をよ り経済的に構築する方法の提案は重要な課題と考えられる。

3.3.3 気密保持構造の設計技術

屋根部気密保持構造としては、メンブレン型式またはシールプレート型式がある。 屋根部メンブレンについては、既に側部および底部で数多くの実績を有しているメンブ レンを使用するため、LNG地下式貯槽指針で規定されている設計法を適用できると考えら れる。ただし、実際の設計に際しては、メンブレン設置位置における設計荷重条件が側部 および底部メンブレン構造と異なることに留意する必要がある。シールプレートは、貯槽 屋根部コンクリート構造に定着されるため、コンクリートの変形の影響を直接受ける。こ のような非耐圧部材で変位制御型荷重が支配的な構造に対して、LNG地下式貯槽指針の鋼 製屋根に対して規定されている圧力容器の設計体系をそのまま適用することはできないが、 変位制御型荷重が主体である鋼構造物の設計体系として一般的に使われているASME Sec. II Div2 の規定を準用できると考えられる。したがって、気密保持構造の設計技術につい ては、現状の技術レベルで十分に適応可能であると評価できる。

3.4 掘削土の植栽基盤への有効利用技術に関する課題

LNG基地には、環境保全の観点から緑地の確保が義務づけられており、LNG地下式貯槽

外周の盛土法面等に植栽が施されている。これら植栽用の基盤としては購入客土が用いら れているが、緑化工事におけるコスト削減と建設残土量の低減を図るために、地下式貯槽 の建設に伴い発生する掘削土を植栽基盤材等良質な土砂へ土質改良する技術開発とその実 現が必要であった。一般に、建設工事に伴う掘削土のうち粘性の高い土や含水比の高い土 については、生石灰およびセメントと混合し用途別の要求品質まで改良した後再利用して いる。これらの改良土については、強度は増加するがアルカリ分が多く含まれており浸透 水のpHが高くなるため、植栽基盤材としては再利用できるものではない。このため、掘削 土の有しているpHを変化させない環境に優しい土質改良技術の開発は重要な課題であっ た。

以上より、厳しい立地環境に建設するLNG貯槽の開発に関する本研究の課題を次のよう に設定した。

- 低ライズのコンクリート製ドーム屋根に関する設計技術
 構造安定性に関する照査方法の提案 ~
- ② 低ライズのコンクリート製ドーム屋根に関する構築技術

~ エアーサポート工法による合理的な屋根構築方法の提案 ~

③ 掘削土の植栽基盤への有効利用技術

~ 環境に優しい土質改良工法の開発 ~

- 3.5 第3章の参考文献
 - 1)「LNG地下式貯槽指針」、日本瓦斯協会・液化天然ガス用保安調査委員会、1979.3
 - 2)「コンクリート製屋根型式LNG地下式貯槽技術調査報告書」, コンクリート製屋根型 式LNG地下式貯槽技術調査委員会(東京ガス社内委員会), pp.4, 1991.12
 - 3) 「コンクリート製屋根型式LNG地下式貯槽技術調査報告書」, コンクリート製屋根型 式LNG地下式貯槽技術調査委員会(東京ガス社内委員会), pp.5~pp.10, 1991.12

第4章 低ライズのコンクリート製ドーム屋根に関する設計技術

~ 構造安定性に関する照査方法の提案 ~

4.1 概要

埋設式地下式貯槽の屋根は自重、覆土荷重等を支えるために、コンクリート製ドーム構 造となっている。ドーム構造は圧縮力を受けるシェル構造のため、鉄筋コンクリート部材 として最適であるが、座屈に対する構造安定性については特に留意する必要がある。

コンクリート製ドーム屋根は図4.1に示す様に、原子力格納容器、水道用タンク、LNG貯 槽等の円筒容器で多数の実績がある。本研究の対象とした直径72m、ライズ・スパン比(ド ーム屋根の高さ〔H〕を直径〔D〕で除した値)1/10~1/16の屋根は、これまでの構築実績 と比較しても大規模かつ低ライズの屋根である。

覆土のない非埋設式のコンクリート製ドーム屋根については、ACI344 R-70¹⁾においてラ イズ・スパン比を1/6~1/10と規定し、座屈に対する安定性を確保している。また、IASS (International Association for Shell and Spatial Structures、国際シェル立体構造学会)(案) ²⁾においても、建築構造の鉄筋コンクリートシェルおよび折板構造屋根を対象として、線 形固有値解析手法を利用した構造安定性照査方法が規定されている。

埋設式地下式貯槽のドーム屋根においては、屋根の上部に覆土を行うため荷重条件が厳 しくなる一方、ドーム屋根が扁平になればなるほど貯槽全体の床付けレベルが浅くなり、 工費削減および工程短縮が図れる。

埋設式地下式貯槽を対象とした低ライズのコンクリート製ドーム屋根の構造安定性を照 査する方法を大別すると

非線形解析による方法

③ 既存の解析手法および各種規準による方法

の3つの方法が考えられる。しかし、前述した各種規準類においては、非埋設のドーム屋 根が照査対象であり、また、適用条件等に制約がある。このため、埋設式地下式貯槽のド ーム屋根に適用する際には①~③の妥当性を十分に評価する必要がある。

そこで、本研究では、材料の非線形性を考慮した幾何学的非線形解析による構造安定性 照査方法の妥当性を評価するために、ライズを従来の鋼製屋根に比べ低くし、ライズ・ス パン比を1/16としたコンクリート製ドーム屋根を対象に1/20縮尺モデルの模型破壊実験を 実施した。さらに、既存の解析手法および各種規準による照査結果と比較するとともに、 それぞれの方法を総合的に評価し、低ライズドーム屋根の構造安定性に関する照査方法を 提案する。図4.3にコンクリート製ドーム屋根の構造安定性に関する検討フローを示す。

4.2 低ライズのコンクリート製ドーム屋根の座屈に対する安全性

図4.1に示したコンクリート製ドーム屋根の座屈に対する安全性は、「ドーム屋根の自重」 を「座屈荷重」で除した値αで比較することができる。なお、埋設式地下式貯槽において は、覆土荷重も自重の一部として考慮する。

αは次式に示す様にドーム屋根曲率半径の2乗をドーム屋根の厚さで除したものに比例

する。原子力格納容器の場合、他構造物の屋根に比較し曲率半径が小さく、かつその厚さ も大きいため、αが736と最も小さい値を示す。各種ドーム屋根のαを原子力格納容器の αで基準化した値βを縦軸に、また、ドーム屋根の内径を横軸として整理したのが図4.2 である。βの値が大きい程、座屈に対する安全性が小さくなる。内径72m、ライズ・スパ ン比 1/10~1/16 のドーム屋根のβは12および31であり、座屈に対する安全性は水道用タ ンクと同程度である。これに対して、覆土することによりβは46および89に増加し、座屈 に対する安全性は一段と低くなることが明確である。また、今回研究対象のドーム屋根の 破壊形態は、変形による2次的効果が卓越した断面破壊または座屈による破壊が想定され た。

$$q_{cr} = \frac{t_{d}^{2} \times K \times E_{c}}{S \times r^{2}}$$
$$\therefore \quad \alpha = \frac{\underline{h} \underline{m}}{\underline{m} \underline{m} \overline{d} \underline{m}} = \frac{t_{d} \times w_{c}}{q_{cr}} = \frac{S \times r^{2} \times w_{c}}{t_{d} \times K \times E_{c}} \propto \frac{r^{2}}{t_{d}}$$

ここで、 q_{cr}:座屈荷重、t_d:部材厚さ、E_c:コンクリートのヤング係数
 w_c:コンクリートの単位重量、K:定数、S:安全率、r:ドームの曲率半径
 なお、E_c、w_cは一定値とした。

図 4.1 各種円筒容器におけるコンクリート製ト・一ム屋根の内径とライズ・スパン比の関係

図 4.2 各種円筒容器におけるコンクリート製ドーム屋根の内径と(自重/座屈荷重)の関係

図 4.3 コンクリート製ドーム屋根の構造安定性に関する検討フロー

4.3 コンクリート製ドーム屋根における破壊実験の実績

これまで実施されたコンクリート製屋根に関する破壊実験例については、コンクリート シェルに関するものが、ACI、IASS、日本建築学会で幾つか報告されている。しかし、コ ンクリート製ドーム屋根に関するものは、高山の論文³⁾、Robert Nichollsの論文⁴⁾など数例 ⁵⁾⁶⁾しか確認することができない。高山等の実験は、1979年、IASSで発表された鉄筋コン クリートシェルに関する設計指針(案)²⁾を国際指針として確立するための確認実験と実 験データの蓄積を目途に行われたものである。これに対して、今回の実験は、非線形解析 の妥当性を確認することを主目的とした実験であるため、非線形解析結果に大きな影響を 与えるドーム屋根の厚さ・施工時初期不整量、モルタル・鉄筋の材料特性の把握、荷重載 荷方法および供試体の端部固定方法等に細心の注意を払い実施した。

4.4 模型破壊実験

4.4.1 実験概要

実験の目的は、ライズ・スパン比を1/16とした低ライズのコンクリート製ドーム屋根の 破壊に至るまでの変形状況および破壊荷重・破壊性状を把握し、材料的・幾何学的非線形 解析の妥当性を確認するとともに、実験結果、非線形解析結果および既存の解析手法と各 種規準による方法を比較し、これらを総合的に評価するための資料を得ることである。

ドーム屋根の破壊形状としては、図4.4に示す3タイプが想定される。

- ① 変形による2次的効果が小さい場合の断面破壊
- ② 変形による2次的効果が卓越した場合の断面破壊
- ③ 構造不安定(座屈)による破壊

コンクリート製ドーム屋根の構造安定性は、ライズ・スパン比を一定とした場合、部材 厚t_dによって大きく左右される。そこで、部材厚t_dを変化させて、変形による2次的効果 が卓越した場合の断面破壊、または構造不安定による破壊を想定した供試体(CASE1、3、 4)と変形による2次的効果が小さい場合の断面破壊を想定した供試体(CASE2、5)の5

図 4.4 ドーム屋根の破壊形状

ケースについて実験を行った。表4.1に各供試体の形状寸法および材料特性を示す。

供試体	ライズ h(m)	スパン D (m)	h/D	曲率半径 R(m)	ドーム中央部の 厚さ t _d (cm)	モルタル強度 N/mm ²
CASE1	0.225	3.6	1/16	7.313	3.33	83
CASE2	0.225	3.6	1/16	7.313	5.5	33
CASE3	0.225	3.6	1/16	7.313	1.74	76
CASE4	0.225	3.6	1/16	7.313	1.89	81
CASE5	0.225	3.6	1/16	7.313	4.67	41

表 4.1 各供試体の形状寸法と材料特性

図 4.5 実験供試体の構造

図 4.6 実験装置

4.4.2 実験供試体と実験装置

実験供試体は、部材厚が薄いため(ドーム中央部でt_d=2.0~5.0cm程度)、基本的には無筋のモルタルとしたが、中央部には乾燥収縮等によるひびわれを防止するための亀甲金網を配置した。これに対して、部材端部での破壊を防止するために、供試体端部には補強用の鉄筋を配置した。また、ドーム端部は移動・実験時の固定用に幅35cm、高さ30cmの剛性の高いリング構造とした。図4.5に実験供試体の構造図を示す。

実験に際しては、上載荷重である覆土と同様な逆凹型の荷重を作用させることは困難で あるため、検討対象である屋根部に覆土重量および自重を想定した水圧を下方から作用さ せることとし、図4.6に示す実験装置を用いて、水圧を等分布荷重として実験供試体に載荷 した。供試体端部には水圧作用時における変形を抑制するためにPC鋼棒(φ32、n=15本) を使用し、1本当たり490kNで緊張し締付け固定した。

4.4.3 測定項目

実験における測定項目を表4.2に示す。

非線形解析により応力履歴および変形性状を追跡するためには、材料特性および構造の 幾何学形状を正確に把握する必要がある。特に、構造不安定現象を解析する上では、部材 厚や施工時初期不整量といった幾何学形状が重要となる。測定項目のうち供試体の材料特 性、部材厚さおよび施工時初期不整量については事前に測定を実施した。また、CASE3、 4、5の供試体におけるモルタルの一軸圧縮強度については、実験終了後、実験時の載荷速 度に合わせて試験を行った。

計測頻度は、各ケースにおいてその挙動が追跡できるように、非線形解析による予測解 析をもとに決定した。測定頻度および載荷に要した時間を表4.3に示す。

部材厚は、実験前にバンジットにより測定した。バンジットは図4.7に示すように各点の 上面から下面への超音波伝播時間を測定するものである。モルタル打設時に採取した10× 10×40cmの角柱試験体を、1cm、2cm、3cm、5cm、7cm、10cmにスライスし、それぞれ の超音波伝播時間を測定する。そして、厚さと伝播時間の関係を基に各点の伝播時間を部 材厚に換算する。バンジットによる測定は、次の理由により測定誤差が生じる可能性があ ったため、実験後バンジットの測定精度を確認する目的で、バンジット測定点と同一点に おいてコアを採取して部材厚を測定した。解析では実測した部材厚を基にバンジットによ る測定値を補正した部材厚を用いた。

- ・ バンジット測定点の上下のズレ
- ・ 材料中の含水量の相違、キャリブレーション
- 測定時の接触方法
- キャリブレーションは、10×10×40cm角柱供試体スライスによるモルタル材料で
 実施したが、実験供試体は亀甲金網あるいは鉄筋を含む材料であることの相違

施工時初期不整量については、図4.8に示す様な円周方向16断面、断面方向15点、(上・ 下それぞれ224点)を測定した。上面は、図4.9、写真4.1のように外周リング上にアルミ角 材を設置し、供試体までの距離をポイントゲージ(最小目盛:1/100mm)で測定した。下 面については、図4.9、写真4.2に示す架台上にアルミ角材を設置し、供試体までの距離を ポイントゲージにて測定した。

供試体の変位は、写真4.3に示すように、供試体上面の対角線上に配置した剛性のある鋼材およびアルミ製山形材を利用して取り付けた変位計で測定した。変位計の取り付け位置は図4.10に示すとおりであり、ドーム供試体の変形測定と供試体の浮き上がりを測定するために、2断面のリング上部に2点ずつ変位計を取り付けた。また、加圧水槽の変形を測定するために、図4.10に示す4ヶ所で水平方向の変位を測定した。変位計は水槽の外側に設けた不動点から立ちあげ、H鋼に固定した。

No	測定項目	測定点数
1	供試体材料特性	供試体毎
2	供試体部材厚さ	97
3	供試体施工時不整量	224
4	載荷圧力	1
(5)	変位	37
6	供試体表面ひずみ	上面37、下面37
$\overline{\mathcal{O}}$	破壊性状観察	1(上面)

表 4.2 測定項目

写真 4.3 変位計の取り付け状況

表 4.3 測定頻度および載荷時間

供試体	測定頻度	載荷時間
CASE1	32t/m ² まで2t/m ² ピッチとし、 その後は1t/m ² ピッチ	50分
CASE2	24t/m ² まで2t/m ² ピッチとし、 その後は1t/m ² ピッチ	50分
CASE3	1t/m ² ピッチ	20分
CASE4	7t/m ² まで2t/m ² ピッチとし、 その後は0.5t/m ² ピッチ	30分
CASE5	31t/m ² ま1t/m ² ピッチとし、 その後は0.5t/m ² ピッチ	50分

図 4.7 バンジットによる部材厚測定

図 4.8 初期不整量測定位置

図 4.9 供試体初期不整量測定方法

写真 4.1 供試体初期不整量測定方法(上面)

写真 4.2 供試体初期不整量測定方法(下面)

4.4.4 実験結果

(1) モルタルおよび鉄筋の材料特性

各供試体におけるモルタルの材料特性である、終局強度、終局ひずみ、ヤング係数、ポ アソン比、引張強度、およびモルタルの一軸圧縮応カーひずみ関係を表4.4および図4.11~ 図4.15に示す。また、鉄筋の材料特性を表4.5に示す。

CASE 5については、破壊実験時の載荷速度を考慮した圧縮強度に大きなバラツキがあったため、実験当日の6日後に供試体からコア抜きした試験体で再度圧縮試験を実施し、 その結果を解析に適用した。

(2) 施工時初期不整量

載荷に先だち計測した実験供試体の施工時初期不整量を図4.16~図4.20に示す。CASE1 においては、施工時初期不整量は最大1cm程度であったが、その他のケースでは4mm程度 であった。

(3) 部材厚

解析に使用する部材厚を図4.21~図4.30に示す。部材厚は、解析モデルの全要素につい て測定し解析モデルに入力することが望ましいが、現実的に不可能であるため、測定して いない点については、半径方向・円周方向の2方向を考慮した近傍の測定値より補間し部 材厚を設定した。

(4) 破壊状況

表4.6に破壊荷重と破壊域半径を、また、破壊時の供試体ひびわれ状況を図4.31~図4.35 示す。破壊は何れのケースについてもドーム中央付近から外周へ進展した。部材の厚い供 試体(CASE2、5)は、図4.36に示すように中央から広い範囲で破壊し、また、薄い供試 体(CASE1、3、4)は狭い範囲で破壊した。

供試体	終局強度	終局ひずみ	ヤング係数	ポアソン比	引張強度	備考	
	(N/mm ⁻)		(N/mm ⁻)		(N/mm ⁻)		
CASE1	83	0.0037	33,600	0.22	5.7	通常載荷	
CASE2	33	0.0035	17,400	0.21	3.0	通常載荷	
CASE2	77	0.0033	32,000	0.21	15	通常載荷	
CASES	76	0.0037	31,400	0.21	4.5	20分載荷	
CASEA	82	0.0035	33,600	0.22	55	通常載荷	
CASE4	81	0.0038	33,300	0.22	5.5	30分載荷	
CASES	35	0.0030	18,100	0.23	37	通常載荷	
UAGED	41	0.0040	18,100	0.23	5.7	50分載荷	

表 4.4 モルタルの材料特性

図 4.13 モルタルの一軸圧縮応力とひずみの関係(CASE3)

表 4.5	鉄筋の材料特性
-------	---------

	D16	D10	
降伏強度 σ _y (N/mm ²)	382	353	
引張強度 σ _u (N/mm ²)	529	539	
伸び ε _u (%)	15.6	16.3	
ヤング係数 E _s (N/mm ²)	186,000	187,000	レザ ひずみ $\varepsilon^{\varepsilon_u}$

角度	不整量(mm)							
	r=Om	r=0.3	r=0.6	r=0.9	r=1.2	r=1.5	r=1.8	
0 °	5.20	6.60	5.93	5.75	5.95	4.76	0.00	
90°	5.20	4. 24	1.34	0.11	0.16	-0. 01	0.00	
180°	5.20	6.09	5.11	4. 29	3. 25	2.85	0.00	
270°	5. 20	5.38	4. 76	6.63	5.24	3. 48	0.00	

図 4.16 初期不整量測定結果(CASE1)

角度									
	r=Om	r=0.3	r=0.6	r=0.9	r=1.2	r=1.5	r=1.8		
0 °	4.00	2.58	3.63	3.63	3. 38	2.50	0.00		
90°	4.00	4.13	3.30	3.49	1.88	1.41	0.00		
180°	4.00	5.19	3. 28	4.17	4. 22	5.19	0.00		
270°	4.00	4.26	3.85	3.80	1.21	0.97	0.00		

図 4.17 初期不整量測定結果(CASE2)

角度	不整量(mm)							
	r=Om	r=0.3	r=0.6	r=0.9	r=1.2	r=1.5	r=1.8	
0 °	2.15	0. 02	-0.77	-0.76	0.16	3.10	0.00	
90°	2.15	4.04	0. 21	0.37	-0.62	1.93	0.00	
180°	2.15	-0.59	-1.38	-1.04	-0.55	2.63	0.00	
270°	2.15	3.93	0.53	0.10	0. 52	2.60	0.00	

 180°

 由	不整量(mm)						
円皮	r=Om	r=0.3	r=0.6	r=0.9	r=1.2	r=1.5	r=1.8
0 °	0. 29	0.35	-0.15	0.14	0.62	0. 74	0.00
90°	0. 29	0.81	-0.56	-0.52	-0.07	0. 25	0.00
180°	0. 29	0.84	-1.56	-1.54	-1.53	-0.34	0.00
270°	0.29	0, 80	-0.94	-0.45	-0.21	0, 69	0.00

図 4.19 初期不整量測定結果(CASE4)

角度	不整量(mm)							
	r=Om	r=0.3	r=0.6	r=0.9	r=1.2	r=1.5	r=1.8	
0 °	-3.04	-0.59	-0. 08	1. 18	0.89	-0.94	0.00	
90°	-3.04	-1.81	-1.73	-0.76	0.37	0.38	0.00	
180°	-3.04	-2.37	-3.00	-2.33	-1.84	0.09	0.00	
270°	-3.04	-1.88	-1.94	-1.55	0.56	3. 29	0.00	

図 4.20 初期不整量測定結果(CASE5)

供試体	破壊荷重(kN/m ²)	破壊域半径(mm)		
CASE1	477	300 程度		
CASE2	376	600~900 程度		
CASE3	133	300 程度		
CASE4	191	300 程度		
CASE5	379	600~900 程度		

表 4.6 破壊荷重と破壊域半径

中心からの距離 L=300 45 40 35 30 25 20 15 10 5 0 ▶実測値 ■ ■ ■ ■設計値 部材厚(mm) 角度 (θ) L=600 •実測値 ■ ■ ■ •設計値 45 40 (LLLL) (LLL) (LL 10 5 0 角度 (θ) L=900 実測値 - - - - 設計値 55 45 40 35 30 25 20 15 10 部材厚(mm) 角度 (θ)

図 4.21 解析に使用する部材厚(CASE1 その 1)

図 4.22 解析に使用する部材厚(CASE1 その 2)

図 4.23 解析に使用する部材厚(CASE2 その 1)

図 4.24 解析に使用する部材厚(CASE2 その 2)

図 4.25 解析に使用する部材厚(CASE3 その 1)

図 4.27 解析に使用する部材厚(CASE4 その 1)

図 4.28 解析に使用する部材厚(CASE4 その 2)

図 4.29 解析に使用する部材厚(CASE5 その 1)

図 4.30 解析に使用する部材厚(CASE5 その 2)

図 4.33 破壊状況 (CASE3)

図 4.34 破壊状況 (CASE4)

図 4.35 破壊状況 (CASE5)

写真 4.4 破壊状況 (CASE5)

4.5 非線形解析

4.5.1 数值解析方法

(1) 解析方法

本研究の解析においては、実験を正確にシミュレーションする目的がある。実験の破壊 性状としては、座屈による破壊が想定されたため、微小変形理論(幾何学的線形)でなく 大変形理論(幾何学的非線形)が必要であると考えた。また、破壊に至るまでの性状を追 跡するためにはその材料の非線形性を正確に反映する必要がある。したがって、実験シミ ュレーションの数値解析方法としては、材料の非線形性を考慮した幾何学的非線形解析(以 下「非線形解析」と呼ぶ)により行うこととした。具体的には、汎用構造解析プログラム "ABAQUS"⁷⁾を使用した。

(2) 解析手順

非線形解析においては、破壊荷重および破壊に至るまでの変形性状を追跡する必要があ るため、最大荷重の予測が重要となる。また、計算時間あるいは計算精度は、その荷重ス テップにより大きく支配される。そこで、図4.37に示すように、実験前に予備解析により 最大荷重を予測し、実験終了後、非線形解析を行った。荷重載荷方法としては、飛び移り 等の非線形性の強い挙動を考慮して、弧長法である修正Risks法⁸⁾を採用した。

図 4.37 解析手順

4.5.2 解析モデルと材料の構成則

(1) 解析モデル

解析モデルは、図4.38に示すように板厚方向に9個の積分点を有する薄肉シェル要素を 用い、円周方向48分割、半径方向18分割とした。解析モデルでは、シェル要素を用いるた め、正確な破壊荷重を算出するには精度良く多くの点の部材厚を測定するとともに、メッ シュ分割数を細かくする必要がある。しかし、メッシュ分割を細かくすることは、計算時 間を増加させるだけでなくさらに多くの測定点が必要となるため、適切な分割数を決定す る必要がある。そこで、半径方向の分割数をパラーメータとして、線形固有値解析により 破壊荷重(固有値)に対するメッシュ分割の影響度を比較した。解析結果を図4.39に示す が、メッシュを18分割以上にしても算出された破壊荷重の値には大差がないことが明らか である。

解析モデル形状および部材厚は、図4.16~図4.30に示すとおり、ケース毎に実験供試体の形状寸法および部材厚を測定して、その初期不整量を忠実にモデル化した。実験供試体端部に配置された補強鉄筋は、単軸剛性を有する等価な板厚の鋼層として評価したが、ド ーム中央部に配置したひび割れ防止用の亀甲金網は考慮しないものとした。また、境界条件はドーム端部を固定とした。

荷重は、実験で供試体に載荷される水圧と同様、図4.38に示すようにシェル面直角に等 分布荷重として作用させた。

(2) コンクリートの構成則

コンクリート構造の破壊性状および変形性状を考える場合、コンクリートの非線形特性 を考慮できる解析モデルおよび材料特性を用いる必要がある。ここでは、ひび割れのモデ ル化を行う解析モデルとして分布ひび割れモデル(Smeared Crack Model)を用い、ひび 割れ後のモデル化には固定ひび割れモデル(Fixed Crack Model)を用いることとした。こ のひび割れモデルに対して必要となる材料構成則として、以下の4項目を定義した。

図 4.38 解析モデルと作用荷重

図 4.39 メッシュ分割数と破壊荷重の関係

- ① ー軸圧縮応カーひずみ曲線
- ② 破壊曲面(二軸応力平面の定義)⁹⁾
- SHEAR RETENTION (クラック発生後のせん断剛性の低下)¹⁰⁾
 また、端部の鉄筋を配置した領域では以下の構成則を設定した。
- ④ TENSION STIFFENING(引張硬化:鉄筋とコンクリートの相互作用)¹¹⁾

表4.7に、定義したコンクリートの構成則を示す。

①はコンクリートの圧縮特性として、一軸圧縮応カーひずみ関係を定義したものである。 圧縮側のコンクリートの一般的な特性として、ひび割れの存在による圧縮強度の低減が知 られている。この挙動は主としてせん断の様に最大主応力と最小主応力が圧縮と引張とな る様な場合に必要なモデル化であり、本実験の様に二軸圧縮状態となる場合にはそのモデ ル化の有無が結果に影響しないことから考慮しないこととした。一方、二軸圧縮状態であ ることにより圧縮強度が増大する効果を考慮する必要があり、それをモデル化したのが② である。ここでは、Kupfer⁹⁾の実験により得られた二軸応力状態における破壊曲面を用い ることとした。

③はひび割れ発生後のひび割れ界面における骨材の噛み合い効果を、コンクリート要素 の平均的な挙動として捉え、平均せん断応カーせん断ひずみ関係としてモデル化するため の係数である。一般に、応カーひずみ関係を直接与えるモデル化方法と、せん断剛性を初 期せん断剛性に対する比率で表すShear Retention Factorを用いてモデル化方法があるが、 ここでは後者のモデル化方法を用い、Shear Retention Factorがクラック直交方向の引張ひ ずみの関数となるモデル化を行った。

④はひび割れ発生後のコンクリートと鉄筋の付着による引張抵抗の効果を、コンクリート要素の平均的な挙動として捉え、別途モデル化した鉄筋の平均応カーひずみ関係にこの Tension Stiffeningにより表される付着の効果としての平均応カーひずみ関係を足し合わせ ることにより、鉄筋コンクリートとしての平均応カーひずみ関係を定義するものである。 今回の解析では、端部の鉄筋を配置した領域においてのみ設定した。

構成則の特性値の設定に関し、①については、実験当日に実施した圧縮強度試験結果より材料特性を定義した。②~④については、実験的に設定することは困難であるため、既 存の研究成果および文献から仮定した。

(3) 鉄筋の構成則

ドーム端部に配置しているD6およびD10の鉄筋の一軸引張応カーひずみ曲線は、事前に 行った引張強度試験結果よりTri-linear型で近似し設定した。

表 4.7 コンクリートの構成則

4.5.3 非線形解析結果と実験結果の比較および考察

各ケースにおける非線形解析結果と実験結果の比較および考察を以下に示す。

- ① 表4.8および図4.40に破壊荷重を示す。TEST CASEとして、ドーム頂部の部材厚 t_d=1.0cmとした場合の非線形解析結果も合わせて示す。
- ② 図4.41~図4.45にドーム頂部における荷重と変位の関係を示す。
- ③ 図4.46~図4.50に各荷重における全体変位モードを示す。
- ④ 図4.51~図4.55にドーム頂部における荷重とひずみの関係を示す。なお、実験結果 については、供試体内面に取り付けたひずみゲージが載荷途中で剥がれ、荷重と ひずみの関係が供試体破壊時まで計測できなかったため、参考データとして取り 扱う。
- ⑤ 図4.56~図4.60にドーム頂部におけるM-N曲線を示す。④で述べたように、実験では供試体内面のひずみを供試体破壊時まで計測できなかったため、M-N曲線については解析結果だけを示す。なお、解析については、発生断面力(M-N曲線)が断面耐力(インタラクションカーブ)を越えた時点で打ち切った。
- (1) 破壊荷重
 - 表4.8および図4.40 よりCASE1~CASE5において、Pn/Pe=0.99~1.1(Pn.: 非線 形解析値、Pe:実験値)となり、実験値と非線形解析値は良く一致している。こ れは、破壊荷重に影響を与える材料特性、部材厚および形状寸法(幾何学的形状) を非常に高い精度で計測できたことが大きな要因と考えられる。
 - 2) CASE5では、実験当日から6日後に実施した圧縮強度を適用して解析を実施したため、解析値と実験値の差が他のケースに比較して大きくなったと考えられる。
- (2) 変形
 - 1) 図4.46~図4.50より、屋根頂部が薄いCASE1、3および4の供試体の全体変形形状については、CASE1を除くCASE3、4において、破壊直前に頂部の変形が急激に増大しているが、全体的には実験値と解析値は良く一致している。この局部的な変形の急増は初期ひびわれに伴う剛性の低下に起因すると考えられる。実験供試体のうち、部材厚が薄く高強度モルタルを使用したCASE3、4については、型枠脱型後数日のうちに図4.61に示す様な十字方向のひびわれが発生した。この原因としては、剛性の高いコンクリート製リングに拘束された供試体ドームが、外気温の変動により収縮したためと考えられる。
 - 2) 屋根頂部が厚いCASE2、5の供試体全体変形形状においては、実験値が解析値に比較し大きな値を示している。これは、変形および回転とも完全拘束状態としていた供試体端部の支点において、若干ではあるが回転拘束に緩みが生じたことが考えられる。その結果、曲げ剛性が大きく、相対的に大きな荷重が作用する部材の厚いケースにおいて、実験値と解析値に顕著な差が現れたと考えられる。このため、CASE5において、供試体端部境界条件をバネ支承とした線形解析を実施し、その結果も踏まえ供試体変形形状に関する考察を行った。
 - 3) 図4.62に上述した線形解析に適用する解析モデル、解析方法等を示す。バネ支承 については、水平方向変位自由、水平方向変位固定の2種類の境界条件について解

析を行った。図4.63~図4.65に各荷重における全体変位モードを示す。なお、全体変位モードについては、線形解析に加え非線形解析結果も示している。

- a) 線形解析(固定境界)と非線形解析(固定境界)における供試体変形形状を比較 すると、荷重の小さい段階で両解析値は非常に良く一致しているが、荷重の増加 にしたがい、非線形解析結果における中央部変位が相対的に増大する傾向を示す。 これは、荷重載荷の初期には弾性挙動を示し、荷重の増加とともに非線形性を示 すという非線形解析の定性的な傾向が現れているからである。端部の変位につい ては、荷重が大きくなってからも両解析値は良く一致している。
- b) 線形解析(バネ支承、水平方向変位自由)結果と実験結果の供試体変形形状を比較すると、端部の変位については、荷重の小さい段階で線形解析値が実験値を上回っているが、荷重の増加とともに解析値と実験値は比較的良く一致してくる傾向が見られる。
- c) 上記の荷重初期段階において、線形解析(バネ支承、水平方向変位自由)の変位 が大きくなる理由としては、半径方向の境界条件を自由としているため、供試体 全体が広がることによって鉛直変位が大きくなっていることが考えられる。そこ で、リング部の1点(解析モデル図におけるリング部ソリッド要素の左下角部)を 半径方向に拘束した解析も実施した。その結果、供試体端部の変形形状について は、荷重の小さい段階で解析値と実験値は非常に良く一致しているとともに、荷 重がある程度増加してからも両者は比較的良く一致している。
- d)供試体リング部には、PC鋼棒により圧縮力が導入されており、また、リング部と ベースコンクリートの間に摩擦があり、荷重初期段階では水平方向の変位はほと んど生じないと想定される。このため、境界条件としては「バネ支承+水平方向 変位固定」の方が適切なモデルとなっていると考えられる。荷重がさらに増加さ れた場合においては、摩擦力は作用しているが、実際には、水平方向変位の拘束 としては固定と自由との中間的な状態になっているものと考えられる。
- e) 実験値と非線形解析値が良く一致していたCASE3においても、バネ支承を境界条件とした線形解析を行った。解析結果を図4.66~図4.68に示す。このケースは、供試体頂部の部材厚が非常に薄いケースであり、荷重初期段階から非線形性が現れている。また、載荷荷重がCASE5に比較して小さいため、破壊荷重作用時においても固定境界およびバネ支承における変形形状にはほとんど差が生じていないことが明らかである。
- f) 以上の解析結果から、部材厚さの大きいCASE5においても供試体端部の境界条件 を適切に考慮することで、材料非線形および幾何学的非線形特性を考慮した非線 形解析により実験値を良い精度でシミュレートできると考えられる。また、頂部 近傍付近に初期クラックがある場合には、その条件を十分考慮して解析する必要 がある。
- (3) 破壊性状
- 目視による観察では、破壊性状を確認することは不可能であったが、高速ビデオ カメラによる破壊瞬間の観察結果より、何れのケースについても破壊はドーム頂 部付近から端部方向へ進展したことが明らかになった。

2) コンクリート製ドーム屋根の破壊性状は、図4.4に示すように、発生断面力が描く 軌跡で評価した。図4.69にCASE1~CASE5の各ケースにおけるドーム頂部のM-N 曲線(図4.56~図4.60参照)を最大曲げモーメント発生時のMおよびNで正規化し たM-N曲線を示す。コンクリート製ドーム屋根の破壊性状としては、実験前に想定 したとおり、モルタル強度が低く、屋根中央部が厚い場合(CASE2、CASE5)は 「①変形による2次的効果が小さい場合の断面破壊」を示し、モルタル強度を高く、 屋根中央部が薄い場合(CASE1、CASE3、CASE4)は「②変形による2次的効果 が卓越した断面破壊」を示した。

		CASE1	CASE2	CASE3	CASE4	CASE5	TEST CASE					
モルタル強度(N/mm ²)		83	33	76	81	41	83					
終局ひずみ(解析値)		0.0037	0.0035	0.0037	0.0038	0.004	0.0037					
破壊荷重 (kN/m ²)	実験値P _e	477	376	133	191	379	-					
	非線形解析值P _n	471	382	146	206	402	82					
P _n /P _e		0.99	1.02	1.10	1.08	1.06	-					

表 4.8 各種供試体と破壊荷重の関係

図 4.40 各種供試体と破壊荷重の関係

図 4.45 ドーム頂部における 荷重と変位の関係 (CASE5)

図 4.46 各荷重における全体変位モード (CASE1)

図 4.47 各荷重における全体変位モード (CASE2)

図 4.48 各荷重における全体変位モード (CASE3)

図 4.49 各荷重における全体変位モード (CASE4)

図 4.50 各荷重における全体変位モード (CASE5)

図 4.51 ドーム頂部における荷重とひずみの関係(CASE1)

図 4.52 ドーム頂部における荷重とひずみの関係 (CASE2)

図 4.54 ドーム頂部における荷重とひずみの関係 (CASE4)

図 4.55 ドーム頂部における荷重とひずみの関係 (CASE5)

図 4.58 ドーム頂部における M-N 曲線 (CASE3)

図 4.60 ドーム頂部における M-N 曲線 (CASE5)

図 4.57 ドーム頂部における M-N 曲線 (CASE2)

図 4.59 ドーム頂部における M-N 曲線 (CASE4)

図 4.61 実験供試体に発生した初期ひび割れの状況

図 4.62 バネ支承も考慮した線形解析における解析方法・モデルおよび境界条件

図 4.63 境界条件の相違による供試体変形モードの比較(CASE5 その 1)

図 4.64 境界条件の相違による供試体変形モードの比較(CASE5 その 2)

図 4.65 境界条件の相違による供試体変形モードの比較(CASE5 その 3)

図 4.66 境界条件の相違による供試体変形モードの比較(CASE3 その 1)

図 4.67 境界条件の相違による供試体変形モードの比較(CASE3 その 2)

図 4.68 境界条件の相違による供試体変形モードの比較(CASE3 その 3)

図 4.69 ドーム頂部における M-N 曲線(解析結果)

4.6 構造安定性に関する各種規準による照査

4.6.1 各種規準による座屈荷重の算定

コンクリート製ドーム屋根構造の座屈に対する安全性の照査を既存の解析手法または 各種規準により実施した。既存の解析手法、各種規準としては、以下のものが考えられる。

- IASS (International Association for Shell and Spatial Structures、国際シェル立体構 造学会(案)鉄筋コンクリートシェルの座屈指針による方法(以下IASS指針(案) と呼ぶ)
- ② ACI ASCE Joint Committee 344 "Concrete Shell Buckling"による方法¹²⁾
- ③ ACI344R 70による方法¹⁾
- ④ ACI Journal "Buckling of Thin Concrete Domes"¹³⁾による方法

図4.70にIASS指針(案)による座屈荷重算定方法を示す。また、ACI344R - 70の座屈 荷重算定方法を以下に示す。

$$q_{cr} = \frac{t_d^2 \times K \times E_c}{S \times r^2}$$

ここで、 q_{cr}:座屈荷重、t_d:部材厚さ、E_c:コンクリートのヤング係数、
 K:定数(=0.25)、S:安全率(=1.0)、r:ドームの曲率半径

②、④の算定方法についてその詳細は記述しないが、①~④の算定方法は以下のように 大きく2つに大別することができる。

・線形固有値解析により算定された座屈荷重に対し低減係数を乗じ評価する方法

---①、②

・理論解により算定された座屈荷重に対し低減係数等を乗じ評価する方法

---(3), (4)

なお、算定方法①、②については、低減係数の設定方法の相違のみで、計算結果はほぼ 同じような値が得られる。

また、算定方法③、④については、係数を実験および実績により設定しており、特に④ については、特定構造物(エレクトロンビーム加速器設備用ドーム)に対して設定された 係数となっている。

以上のことから、①IASS指針(案)と③ACI344R-70の算定方法により座屈荷重を求め、実験および非線形解析から得られた破壊荷重と比較する。

4.6.2 比較結果

IASS指針(案)およびACI344から算出した座屈荷重と模型破壊実験および非線形解析 からの破壊荷重を表4.9に示す。CASE2、5のように変形による2次的効果の小さい場合の 断面破壊では、座屈荷重が大きく算定され、計算値は実験値と大きく相違した。また、

		CASE1	CASE2	CASE3	CASE4	CASE5	TEST CASE
ドーム頂部部材厚(cm)		3.33	5.50	1.74	1.89	4.67	1.00
モルタルヤング 係数(N/m ²)		33,600	17,400	32,000	33,600	18,100	32,000
実験値(kN/m ²)		477	376	133	191	379	-
非線形解析值(kN/m ²)		471	382	146	206	402	82
IASS指針(案)	線形固有値(kN/m ²)	1371	2037	384	470	1611	153
	座屈荷重(kN/m ²)	651	815	192	229	740	76
ACI344	曲率半径(m)	7.313	7.313	7.313	7.313	7.313	7.313
	座屈荷重(kN/m ²)	172	245	45	56	185	16

表 4.9 各種規準による座屈荷重算定結果

CASE1、3、4のように変形による2次的効果が卓越する場合の断面破壊では、座屈荷重と 破壊荷重は比較的近い値となった。IASS指針(案)では、破壊性状を座屈と限定している が、実験では何れも座屈を生じる前に断面破壊が発生しているため、IASS指針(案)によ る値は実験値よりも大きな値を示したと考えられる。

しかし、座屈破壊を生じやすくするため、CASE3と同じ条件で頂部の部材厚を1cmとした非線形解析結果(前述のTEST CASE)とIASS指針(案)による値を比較したところ $P_{IASS}/P_n=0.93$ (P_{IASS} :IASS指針(案)の値、 P_n :非線形解析値)となり、IASS指針(案)による座屈荷重は非線形解析から得られた破壊荷重とほぼ同等の値を示した。したがって、IASS指(案)による座屈荷重は、低減係数および安全係数を適切に選定することにより、その概略値を得ることができると考えられる。また、ACI344の場合には、算定式中に経験的な係数を含んでいるため、かなり安全側の座屈荷重が算出されると考えられる。

4.7 コンクリート製屋根の構造安定性に関する照査方法の提案

図4.71に、本研究成果を踏まえて提案したコンクリート製ドーム屋根の構造安定性に関 する照査方法を考慮した設計フローを示す。屋根の部材寸法、使用材料等屋根の諸元を設 定した後、座屈を考慮しない構造物の設計および構造物の性能照査を行う。その後、線形 固有値解析手法を用いたIASS指針(案)により構造安定性に関する概略の検討を行い、必 要に応じて屋根の諸元を見直す。最後に、材料の非線形性を考慮した幾何学的非線形解析 により、構造安定性の照査を行う。なお、構造安定性を照査する際には、施工に伴う初期 不整を適切に評価する必要がある。

図4.70 「IASS指針(案)」による座屈荷重算定方法

図 4.71 コンクリート製ドーム屋根の設計フロー

4.8 まとめ

ライズ・スパン比を1/16としたコンクリート製ドーム屋根を対象とした1/20縮尺モデル の模型破壊実験および材料の非線形性を考慮した幾何学的非線形解析と各種規準による構 造安定性に関する照査を実施した結果、以下の結論を得た。

- モルタルと鉄筋の材料特性、供試体の施工時初期不整量・部材厚、破壊荷重および変 形形状等、低ライズのコンクリート製ドーム屋根の挙動を把握するための非常に貴重 な実験データを獲得した。
- 材料の非線形性を考慮した幾何学的非線形解析により、低ライズのコンクリート製ド ーム屋根の変形挙動を精度良く追従できるとともに、破壊荷重を的確に算定しかつ破 壊性状を判定できる。
- 材料の非線形特性を考慮した幾何学的非線形解析による構造安定性照査方法の妥当 性を実証できた。
- 変形による2次的効果が卓越した低ライズのコンクリート製ドーム屋根においては、 IASS鉄筋コンクリートシェルの座屈指針(案)によっても、座屈荷重の概略値を得 ることができる。
- 5) コンクリート製ドーム屋根の構造安定性に関する照査として、以下の方法を提案する。
- a) 部材寸法、使用材料等屋根の諸元を設定し、座屈を考慮しない構造物の設計および 構造物の性能照査を実施する。
- b) 線形固有値解析手法を用いたIASS指針(案)により、構造安定性に関する概略の検 討を行い、必要に応じて屋根の諸元を見直す。
- c) さらに、材料の非線形特性を考慮した幾何学的非線形解析により、構造安定性を照 査する。

- 4.9 第4章の参考文献
- [↑]Design and Construction of Circular Prestressed Concrete Structure J, pp.344R-3~pp.344R-8, ACI Journal, 1970.9
- 2) 半谷裕彦他:「IASS鉄筋コンクリートシェルの座屈指針-E.Dulacskaによる指針 案の紹介」、カラム101号、新日本製鉄株式会社、pp.75~pp.81、1986.7
- 3) 高山誠, 半谷祐彦:「鉄筋コンクリート偏平ドーム屋根の破壊実験」, コンクリート工学年次論文報告会11-2, pp.153~pp.158, 1989
- A) Robert Nicholls, Vistasp Karbhart : [[]Nondestructive Load Predictions of Concrete Shell Buckling], Journal of Structure Engineering, Voll.115.No.5, pp.1191~1211, 1989.5
- 5) Vandepitte.D Rathe.J, Weymeis.G : ^{[Experimental investigation into the buckling and creep buckling of shallow spherical caps subjected to uniform radial pressure], Proc.IASS World Congress 1.1-1-15, 1979.1}
- 6) M.TAKAYAMA, Y.HANGAI : [Effect of initial imperfection on buckling behaviour of reinforced concrete shallow domes], IASS Symposioum, pp.9~pp.14, 1991.9
- 7) 「ABAQUS Standard User's Manual」
- Crisfield, M.A. : 「A Fast Incremental/Iteration Solution Procedure That Handles Snap-Through」, Computers and Structures, vol.13, pp.55~pp.62, 1981
- 9) Kupfer, H., Hilsdorf, H.K. and Rusch, H.: ^[Behavior of concrete under bi-axial stresses], Journal of ACI, vol.66 no.8, pp.656-666, 1969.8
- 10) Cedlin.L. and Deipoli S. : 「Finite element studies of shear-critical R/C beams」,
 ASCE Journal of the Engineering Mechanics Division, Vol.103, No.EM3, pp.395
 ~ pp.410, 1977
- 11) Hinton, E. and Owen, D.R.J.: Finite Element Software for plates and shells, Pineridge Press, Swansea, U.K., 1984.
- 12) [Concrete Shell Buckling], ACI, sp-67, 1981
- Mehdi S.Zarghamee and Frank J. Heger : [Buckling of Thin Concrete Domes], ACI JOURNAL/November-December, pp.487~pp.500, 1983

第5章 低ライズのコンクリート製ドーム屋根に関する構築技術

~ 合理的なエアーサポート工法の提案 ~

5.1 概要

低ライズのコンクリート製ドーム屋根を底版上方50~60mの空間で確実に構築する技術 としてトラス支保工がある。直径72m、高さ7m、および頂部で1m、端部で2m厚さのコン クリート製ドーム屋根をトラス支保工で構築する場合、その鋼材量は約2,000 t にもなり、 コンクリート製ドーム屋根全体の構築費に占める割合も約60%にも達する。

このトラス支保工に替わり屋根工事費の低減を図るための構築技術として、仮設鋼製屋 根を底型枠として利用し、鉄筋およびコンクリート打設時荷重を仮設鋼製屋根と空気圧で 支えるエアーサポート工法が考えられる。このエアーサポート工法は、鋼製屋根を有する 地下式貯槽または地上式貯槽において、屋根表面に厚さ50cm程度のコンクリートを覆工す る際に利用されている。この場合、鋼製屋根を構成する屋根板および屋根骨の仕様は、コ ンクリート打設時でなく、貯槽運転時における内圧から決定される。これに対して、仮設 鋼製屋根はコンクリート打設方法等に起因する施工時荷重によりその仕様が決定されるた め、コンクリート打設方法を工夫することにより鋼製屋根の仕様を合理的にすることがで きる。

本研究では、仮設鋼製屋根の仕様を決定する条件であるエアーサポート圧力、コンクリ ート打設方法をパラーメータとした仮設鋼製屋根の座屈安定解析を実施し、その結果を基 に仮設鋼製屋根の仕様検討を行い、エアーサポート工法によりコンクリート製屋根を合理 的に構築する方法を提案する。

5.2 コンクリート製屋根構築技術

これまで、埋設式地下式貯槽は、容量20万KLのLNG貯槽が3基、6万KLのLPG貯槽が1基 建設されている。容量20万KLの埋設式LNG地下式貯槽のコンクリート製ドーム屋根を構築 する際には、メンブレン溶接時の肌合せ等の許容誤差から段差は6mm以下、多面体の稜線 のズレと平面内の凹凸は10mm以下という厳しい内面精度を確保しながら、約6,000m³のコ ンクリートを打設しなければならない。また、保冷材・メンブレンをコンクリート製屋根 内面に取り付けるための足場を考慮しながらコンクリート製屋根の構築計画を立てる必要 がある。コンクリート製ドーム屋根の構築技術としては、トラス支保工、エアーサポート 工法および鉄筋コンクリート製ドーム屋根のリフトアップ工法があるが、何れの工法も設 計、施工関係者が総力をあげて技術的な課題を解決し実現してきたものである。

5.2.1 トラス支保工

トラス支保工¹⁾は、図5.1および写真5.1に示すように、中央構台と側壁に設置したブラケ ットを支点とした剛性が高く変形を制御しやすい傘状の立体鋼製トラスで構成されている。 型枠としては、加工が容易で耐候性のあるコーティング付き合板型枠が採用されている。

屋根のコンクリートは、分割して打設するとトラスの変形により打設ブロック間に段差が生じ、メンブレンから要求される内面精度が確保できないため、約6,000m³のコンクリ

ートを連続で打設している。

トラス支保工によるコンクリート製ドーム屋根の構築は、図5.2に示す手順で実施されている。

- ①側壁頂部にブラケットを設置し、また、底版上に中央構台を組立てる。トラスを 架設した後、トラス上面に合板型枠を設置する。
- ② 合板型枠上で鉄筋を配置した後、コンクリートを打設する。なお、打設前に側壁 頂部のPCテンドンを1部(1/8の緊張力)緊張する。
- ③中央構台およびトラスを2.1m降下するとともに、残りのPCテンドンを緊張する。 降下したトラスを足場として屋根内面の保冷材・メンブレン工事を行う。
- ④ 中央構台とトラスを解体し、屋根外周部の工事用開口(6m×9m)より搬出する。 工事用開口を閉合した後、覆土し完成に至る。

図 5.1 トラス支保工概要図

写真 5.1 トラス支保工

5.2.2 リフトアップ工法

6万KLのLPG 地下式貯槽では、屋根工事のコスト削減および工程短縮を目的として、重量4,000t のコンクリート製ドーム屋根をリフトアップ工法²⁾で構築した。図5.3に屋根構築 概要を、また、図5.4に油圧ジャッキ部詳細を示す。

本工法では、側壁工事と併行して屋根の鉄筋コンクリート工事を底版上で構築し、自重 による水平スラストカ相当のプレストレストを導入した後に、型枠支保工を解体する。さ らに、屋根内面に保冷材・メンブレンを取り付けた後、写真5.2に示すように側壁頂部に設 置した油圧ジャッキを利用してコンクリート製ドーム屋根のリフトアップを実施する。

吊り上げ箇所は、側壁頂部上でのジャッキ配置のバランス、1基当りのジャッキの能力 4,900kN等から16ヶ所としている。ジャッキの油圧系統はリフトアップ時の制御を考慮し て4系統とし、また、1系統内の4ジャッキは同一油圧となる様に計画されている。

屋根をシェル要素で、また、リフトアップケーブルをバネ要素でモデル化した3次元FEM 解析により、リフトアップ時のコンクリート製ドーム屋根各部の応力を確認した結果、鉄 筋応力度は最大でも120N/mm²以下と構造上全く支障のない範囲であった。

地切りは3日間かけて行い、5mの高さまでは変位の計測を行いながらゆっくりと屋根を 上昇させた。その後2.2m/hの速度でリフトアップし、系統間の鉛直変位差を制御しながら 3日間で側壁頂部まで上昇させ、同部に仮受けした。

本工法のポイントは、地切り時、リフトアップ時にコンクリート製ドーム屋根をできる だけ水平に保ち、たわみを極力小さくすることにより、屋根に有害なクラックが発生しな いように管理することである。そのため、表5.1に示す鉄筋応力度、ジャッキ油圧および鉛 直・水平方向変位等を計測した。また、管理基準値は下記のように設定した。

- ① 1次管理値:系統境界から左右4.2mの位置に設置した計測ポイント間の鉛直変位 差が10mmのケース(2次管理値に安全率を考慮し設定)
- ② 2次管理値:屋根の鉄筋応力度が120N/mm²となるケース(有害なひびわれが発生しないと考えられる鉄筋応力度)

図5.5に系統間の鉛直方向変位差の管理値および計測値を示す。系統間の鉛直方向の変位 差は2mm程度で全て1次管理値以内に収まり、安全にリフトアップすることができた。ま た、屋根の鉄筋応力度は最大で30N/mm²程度の変動であり、リフトアップ前後で屋根の応 力状態はほとんど変化しなかったと考えられる。

図 5.3 リフトアップによる屋根構築概要

図 5.4 油圧ジャッキ部詳細

写真 5.2 コンクリート製屋根のリフトアップ

	計測項目	計測方法
地切り前	鉄筋応力度	鉄筋計
地切り時	ジャッキ油圧	圧力センサー
地列外府	鉛直方向変位	水位管
	ジャッキ油圧	圧力センサー
リフトアップ時	鉛直方向変位	水位管、光波距離計
	水平方向変位	レーザー鉛直器
	ジャッキ油圧	圧力センサー
侧辟顶或仮驾吁	仮受鋼材ひずみ	ひずみゲージ
侧空頂印放文时	仮受鋼材鉛直変位	スケール
	仮受鋼材水平変位	スケール
側壁頂部仮受後	鉄筋応力度	鉄筋計

表 5.1 計測項目

角度(deg.)	12	78	102	168	192	258	282	348
1 % 答评 () 古	4.1	-1.0	2.9	6.0	9.3	4.0	3.3	5.6
1 八目/王恒	-4.4	-6.6	-7.9	-0.1	-2.0	-4.1	-6.0	-2.3
0%答理店	11.2	4.9	12.9	18.8	17.1	10.5	14.6	17.1
21八目49回	-15.6	-19.3	-15.6	-6.3	-11.7	-15.3	-13.5	-8.8
地切り時	0.5	-1.0	-1.8	1.0	1.7	-0.1	-0.9	0.5
17mJフトアップ時	2.6	-1.2	-2.1	0.0	-0.1	-1.9	-0.3	3.1
リフトアップ 完了時	0.6	-2.3	-3.0	0.6	1.9	-0.1	0.6	1.8

図 5.5 系統間鉛直方向変位差

5.2.3 エアーサポート工法

エアーサポート工法³⁾は仮設鋼製屋根を底型枠として利用し、鉄筋およびコンクリート 打設時荷重を仮設鋼製屋根と空気圧で支える工法であり、仮設用鋼材量の大幅な低減が期 待できる合理的な工法である。

エアーサポート工法により、LNG地下式貯槽のコンクリート製ドーム屋根を構築する手順を図5.6に示す。また、写真5.3にエアーサポート工法実施状況を示す。底版上で仮設鋼 製屋根の組立ておよび鋼製屋根内面への保冷材・メンブレンの取り付けが完了した後、仮 設鋼製屋根をジャッキアップ、または、エアーレイジングにより側壁頂部までリフトアッ プする。エアーレイジング工法の場合、仮設鋼製屋根の浮上は図5.7に示すように、バラン スワイヤを用いて姿勢制御を行いながら実施する。本浮上する前には仮浮上を行い、全体 の重量バランスと変形およびバランスワイヤ張力等を確認し、バランスウェイトの調整を 行っている。本浮上では、屋根傾斜、ワイヤー張力、タンク内圧、浮上スピードおよび芯 ズレ量が表5.2に示す管理値を超えない様に送風量を調節することにより浮上速度を制御 し、3時間半で所定の高さ46.4mの浮上を完了させている。また、屋根の芯ズレは9mmと 非常に精度の良い結果であった。

その後、コンクリート打設を2リフトに分けて実施する。第1リフトは仮設鋼製屋根を底 型枠としたエアーサポート工法で鉄筋組立ておよびコンクリート打設を行う。第2リフト は自立した第1リフトのコンクリート製ドーム屋根を型枠支保として鉄筋コンクリート工 事を実施する。

エアーサポート工法は、以下の4つのシステムにより構成される。

① コンプレッサー系設備

タンク内圧降下時にタンク内に空気を送り込む設備

② 放散弁系設備

温度・気圧などの変化によるタンク内圧上昇時にタンク内の空気を放出する設備 ③ 制御設備

①、②の設備を自動運転するための設備

④ 高圧ブロワー系設備

台風時等の急激な圧力変化によるタンク内圧降下時にタンク内に空気を送る設備

エアーサポートシステム系統図を図5.8に示す。システムを自動運転するために、常用お よび予備用のコンプレッサー、ブロワーを配置し、電源としては常用の電源に加え停電時 のバックアップ用として発電機を設置する。自動弁の開閉は、タンク内からの圧力を導圧 管経由で圧力発信器に導き、信号を制御盤に送ることにより行う。

〔第2リフトの鉄筋コンクリート工事は、硬化した第1リフトを型枠支保工として利用する〕

図 5.6 エアーサポート工法によるコンクリート製屋根構築手順

図 5.7 エアーレイジングエ法概要

表 5.2 計測項目および管理値

項目	管理値	限界値
屋根傾斜	最大 160mm	最大 200mm(D/350)
ワイヤー張力	最大 19.6kN	最大 22.5kN
タンク内圧	1.7 ~ 3.0kPa	-
浮上スピード	最大 300mm/hr	-
芯ズレ量	目標 15mm	最大 30mm

②仮設鋼製屋根リフトアップ

▽ DL+ 4, 750

<u> ∇DL-60,500</u>

nana nanan

① 底版上で仮設鋼製屋根構築

② エアーレイジング中の仮設鋼製屋根

③ 側壁頂部と固定中の仮設鋼製屋根

⑤ 送風管取り付け状況

④ コンクリート打設時の仮設鋼製屋根

写真 5.3 エアーサポート工法実施状況

図 5.8 エアーサポートシステム系統図

5.2.4 コンクリート製屋根構築費

図5.9に各種工法によるコンクリート製屋根構築費の比較を示す。トラス支保工は最も確 実にコンクリート打設工事を行える方法であるが、容量20万KL地下式貯槽の場合、図5.10 に示すように型枠支保工の屋根構築費に占める割合は60%にも達する。これに対して、エ アーサポート工法およびリフトアップ工法は、大規模な仮設支保工が不要であること、ま た、屋根と側壁工事を同時に施工できるため、トラス支保工に比較し工程短縮およびコス ト削減が可能である。容量20万KL、内径70mクラスの貯槽における屋根をエアーサポート 工法で構築する場合、トラス支保工に比較し約4ヶ月間工程を短縮できるとともに、約 15%⁴⁾の屋根構築費削減が可能である。また、リフトアップ工法を利用した場合において も、約5%⁵⁾屋根構築費を削減できる。

容量6万KL、内径50mクラスの貯槽 においては、コンクリート製屋根のリ フトアップ工法が工程、コスト面にお いても有利であり、トラス支保工に比 較し約3ヶ月間の工程短縮および約 10%⁶⁾の屋根構築費削減が可能である。 以上述べたように内径70mクラスの大 容量地下式貯槽では、エアーサポート 工法が最も経済的な構築方法である。

図 5.10 トラス支保工による屋根構築費内訳

図 5.9 各種工法におけるコンクリート製ドーム屋根構築費の比較

5.3 研究対象の仮設鋼製屋根

5.3.1 構造概要

研究対象の仮設鋼製屋根は次に示す理由により、内径70mのコンクリート製ドーム屋根 を構築する際に適用される大きさとした。

- ・第2章のLNG地下式貯槽の変遷で述べたように、最近の地下式貯槽は大容量化の傾向にある。
- ・大規模なコンクリート製ドーム屋根工事ほど地下式貯槽全体の工期および建設費
 に与える影響は大きい。
- ・図5.11に示すように、10万KL以上の大容量地下式貯槽における内径は70m前後である。

仮設鋼製屋根の構造概要を図5.12に示すが、本構造は直径71.54m、高さ7.787mおよび 曲率半径86.055mの球殻シェルである。仮設鋼製屋根は、厚さ7mmの屋根板、厚さ20mm のリングプレートおよびラフター・リングからなる高さ150mmの屋根骨から構成されてい る。また、リングプレートの端部は鉄筋コンクリート製側壁の頂部に埋め込まれ固定され ている。

仮設鋼製屋根は、その内面に直接保冷材・メンブレンが取り付けられるため、コンクリ ート打設後には取り外しが不可能な構造物である。保冷材およびメンブレンはアンカーを 介してコンクリート屋根に支持されるが、コンクリート打設前までは、これらのアンカー は仮設鋼製屋根に溶接で固定されている。地下式貯槽運転後、鋼製屋根の温度雰囲気は、 冬季において、頂部で約-85℃、リングプレート先端近傍で約-40℃程度となるため、仮設 鋼製屋根には次に示す低温材料を使用し、低温脆性破壊により保冷材およびメンブレンが 被る影響を排除している。

図 5.11 地下式貯槽の貯蔵容量と内径の関係

図 5.12 仮設鋼製屋根の構造概要

- : SLA360⁷⁾ ・屋根板
- ・屋根骨 : SLA360+0.5%Ni
- ・リングプレート : SLA360

5.3.2 構造的特徴

研究対象の仮設鋼製屋根は、写真5.4に示すように一般的な地下式貯槽の本設鋼製屋根に 比較しライズ・スパン比が約1/10と低ライズなドーム屋根である。表5.3に研究対象の仮設 鋼製屋根と一般的な本設鋼製屋根の仕様および座屈荷重を比較したものを示す。仮設鋼製 屋根の座屈荷重は25.1kN/m²と本設鋼製屋根の3分の1程度で、本設鋼製屋根に比較し座屈 に対する構造安定性が小さいドーム屋根である。比較対象とした本設鋼製屋根は、エアー サポート工法で屋根表面にコンクリート覆工が実施されたものであり、ライズ・スパン比 は約1/6である。 座屈荷重は線形固有値解析により算出しており、境界条件は鋼製屋根端部 が変位、回転とも完全拘束された状態とし、荷重としては鋼製屋根の自重に相当する一様 分布荷重だけを考慮している。

表5.4にコンクリート打設時における仮設鋼製屋根の応力比(発生応力度を許容応力度で 除した値)を示す。応力比は最大でも0.36であり、発生応力度の観点からは、仮設鋼製屋 根は大きな裕度を有していると評価できる。なお、応力度の算出に際しては、次項5.5で記 述する仮設鋼製屋根の座屈解析時と同じ解析モデル、プログラムを使用している。仮設鋼 製屋根の許容応力度は、鋼構造設計規準⁸⁾にしたがい設定している。この際、仮設である こと考慮して同規準で規定されている長期許容応力に対して割増係数1.25⁹⁾を乗じたもの を長期許容応力度としている。また、コンクリート打設時は短期として取扱い、許容応力 度は同規準で規定されている長期の許容応力度の1.5倍としている。表5.5に各部材の仕様 および材料特性を示す。

以上より、構造力学的な観点から、研究対象である仮設鋼製屋根の仕様は座屈に対する 構造安定性から決定される。このため、合理的なコンクリート打設方法を検討する際には、 仮設鋼製屋根の構造安定性に対する安全率を示す指標である座屈荷重係数(座屈破壊荷重/ コンクリート打設時荷重)に着目し、この座屈荷重係数が最大となる打設方法を選定する。

(埋設式地下式貯槽の仮設鋼製屋根) (一般的な地下式貯槽の本設鋼製屋根)

写真 5.4 仮設鋼製屋根と本設鋼製屋根の比較

鋼製屋根の主要寸注 座屈荷重	L •	コンクリート製ドーム屋根 (研究対象の仮設鋼製屋根)	コンクリート覆工鋼製屋根 (本設鋼製屋根)					
ヤング係数	kN/cm ²	19,221.0	19,221.0					
屋根板外面の曲率半径	cm	8,605.5	5,650.8					
屋根板の板厚	cm	0.7	0.8					
屋根底面半径	cm	3,577.0	3,501.6					
屋根高さ	cm	778.6	1,215.5					
ライズ・スパン比		1/9.2	1/5.7					
ラフター本数	_	84	96					
ラフター	—	H150×150×7×10	H200×150×6×9					
間隔	cm	203.64	195.50					
リング	_	H150×150×7×10	H300×300×10×15					
間隔	cm	272.58	622.83					
座屈荷重 (線形固有値解析)	kN/m ²	25.1	67.8					

表 5.3 仮設鋼製屋根および本設鋼製屋根における仕様と座屈荷重の比較

表 5.4 コンクリート打設時における仮設鋼製屋根の応力比

Ring No.	屋根端部からの 距離 X(m)	半径比 X/a	応力比(発生応力度/許容応力度)
00	35.72	1.00	0.31
01	33.60	0.94	0.31
02	31.07	0.87	0.31
03	28.52	0.80	0.31
04	25.93	0.73	0.32
05	23.32	0.65	0.34
06	20.69	0.58	0.34
07	18.03	0.50	0.35
08	15.36	0.43	0.36
09	12.67	0.35	0.36
10	9.97	0.28	0.32
11	7.25	0.20	0.31

(発生応力度が高い屋根骨(各リング)における応力比)

部位	++ 66	ヤング 率E	引張強さ σ _B	降伏点 σ _y	F值
部位		(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)
屋根板	SLA360	192,210	490	360	343
リンク゛フ゜レート	SLA360	192,210	490	360	343
屋根骨	SLA360+0.5%Ni	192,210	490	360	343

表 5.5 各部材における仕様と材料特性

F值 = min{σ_B×0.7, σ_v}

5.4 仮設鋼製屋根の仕様を決定する要因

仮設鋼製屋根は屋根板および屋根骨で構成されており、その仕様を決定する要因として エアーサポート圧力および打設順序、打設回数(リフト数)、打設層数等コンクリート打設 方法が考えられる。板厚はエアーサポート圧力作用時の引張強度から、また、屋根骨はコ ンクリート打設時における座屈に対する構造安定性より決定される。以下に、屋根構築時 の制約条件等を踏まえ仮設鋼製屋根の仕様を合理的にするための方策を述べる。図5.13に 仮設鋼製屋根の仕様を合理化するための検討フローを示す。

5.4.1 エアーサポート圧力

仮設鋼製屋根には、コンクリート打設時の型枠支保工およびタンク運転開始後の非耐圧 性としての機能が要求される。第3章のコンクリート製屋根型式LNG地下式貯槽の定義で 述べたように、屋根における耐圧性能は、配管貫通部を除きコンクリート製屋根がその機 能を全て受けもつ。このため、コンクリート製屋根内面に取り付けられた仮設鋼製屋根が 単独で内圧を支持する状態、すなわち、仮設鋼製屋根がコンクリート製屋根から剥離した 状態を生じさせてはならない。したがって、貯槽運転後の全ての期間において、仮設鋼製 屋根がコンクリート製屋根から剥離せずに、常に接触しているという非耐圧性を確認する 必要がある。

エアーサポート圧力を高く設定すればするほど、型枠支保工としての安全性は高まるが、 サポート圧力除圧後には、鉄筋コンクリート製屋根と仮設鋼製屋根の剛性の相違から両者 間に隙間が生じる可能性が高くなり、非耐圧性としての機能が満足されにくくなる傾向に ある。型枠支保工としての機能は屋根骨を補強することにより満足させられるが、以下に 述べるように、仮設鋼製屋根の非耐圧性はエアーサポート圧力の大きさに依存する。した がって、エアーサポート圧力の設定においては、型枠支保工としての機能より非耐圧機能 の保持が優先されることになる。

図5.14に仮設鋼製屋根の非耐圧性に関する検討フローを示す。最初にコンクリート製屋 根構築時の上載荷重およびエアーサポート圧力を設定する。次に、仮設鋼製屋根の剥離に 大きな影響を与えると考えられる第1リフトコンクリート硬化時、エアーサポート圧力除 圧時および貯槽運転後温度荷重作用時の3ケースについて、有限要素法によりコンクリー ト製屋根および仮設鋼製屋根の変形解析を実施し、それぞれの屋根における鉛直方向変位 量を算出する。この結果より、仮設鋼製屋根とコンクリート製屋根との鉛直方向相対変位 量が最大となる部位を特定する。この特定部位を対象として、コンクリート製屋根を立体 要素、仮設鋼製屋根を板要素および鋼製屋根とコンクリート製屋根の接触部を梁要素で連 結したモデルを作成する。第1リフトのコンクリート打設時から貯槽運転後の全ての期間 において、接触部に作用する相互作用力を算定し、仮設鋼製屋根剥離状況の有無を評価す る。非耐圧性の評価に影響を与える要因である上載荷重およびエアーサポート圧力のうち、 仮設鋼製屋根重量およびコンクリート重量等上載荷重は構造設計で決定される値であるた め、仮設鋼製屋根の非耐圧性はエアーサポート圧力の大きさに依存する。

エアーサポート工法は、コンクリート打設時に作用する全ての上載荷重に対して、屋根 内面に作用させるエアーサポート圧力と仮設鋼製屋根とが一体となってコンクリート打設 時載荷重を支持する方法である。このため、エアーサポート圧力としては、鋼製屋根・メ ンブレン・保冷材・鉄筋の自重にコンクリート打設荷重を加えた上載荷重に、エアーサポ ート時の圧力変動等を勘案し、上載荷重に1割程度の裕度を考慮した圧力を設定している。

研究対象の仮設鋼製屋根においては、コンクリート打設時の上載荷重総計に対して1.1 倍のエアーサポート圧力を作用させた場合、貯槽完成後の全ての状態において仮設鋼製屋 根とコンクリート製屋根間には圧縮力が作用しており、仮設鋼製屋根は剥離せずに非耐圧 性を有していることが確認されている¹⁰⁾。

図 5.13 仮設構成屋根の仕様を合理化するための検討フロー

図 5.14 仮設鋼製屋根の非耐圧性検討フロー

5.4.2 コンクリート打設方法

(1) コンクリート打設順序

コンクリート打設順序としては、「屋根外周部→頂部」、「頂部→外周部」、または「外周 部→頂部→中間部」等様々な方法が考えられる。写真5.5に示すような傾斜部におけるコン クリート打設、打継目部のコールドジョイント発生防止およびコンクリート打設作業の効 率性等を考慮すると、「屋根外周部→頂部」が唯一現実的な打設順序である。具体的には、 図5.15に示すように屋根全体を扇形状に分割し、偶数班は時計廻りに、また、奇数班は反 時計廻りで屋根外周部から頂部へ向け均一にコンクリート打設を行う。

(2) コンクリート打設回数(リフト数)

コンクリート打設回数は、頂部1m、端部2m厚さのコンクリート製ドーム屋根を構築す る際に考慮する鉛直方向の分割数(リフト数)を表す。第1リフトのコンクリートが硬化 した後、次のリフトである第2リフトのコンクリート打設を行う。打設回数を1回、すなわ ち1度で全てのコンクリート打設を行う場合には、屋根端部のコンクリート打設厚さ2mを 考慮したエアーサポート圧力に抵抗できる仮設鋼製屋根の板厚が必要となる。これに対し て、打設回数を2回以上にした場合は、図5.16に示すように第1リフトの鉄筋コンクリート エ事をエアーサポート工法で行い、また、第2リフト以降については、既に硬化している コンクリート製ドーム屋根を型枠支保工として利用することができる。したがって、1回 打設に比較して屋根板を薄くすることが可能であるが、コンクリートの打ち継目処理、第 1リフト用上側鉄筋量の増加等コストアップとなる要因が増える。

コンクリート製屋根を数回に分けて構築する場合、屋根の主筋である下側鉄筋および第 2リフト構築時の鉄筋重量およびコンクリート打設荷重を支持するための中段筋の配置を 考慮すると、第1リフトは最小でも50cmの厚さは必要である。第1リフトに設置される屋 根骨および鉄筋の状況を図5.17に示す。第1リフトの最小厚さは、この図に示される①下 側鉄筋のかぶり(屋根骨の最小高さ=100mm)¹¹⁾、②下側鉄筋の直径、③下側鉄筋と中段 鉄筋とのあき(20mm以上、鉄筋直径以上¹²⁾に配筋時の施工誤差〔±鉄筋直径〕を考慮)、 ④中段鉄筋の直径および⑤中段鉄筋かぶり(30mm)¹³⁾の総計で求められる。研究対象規 模のコンクリート製屋根における設計実績¹⁴⁾では、下側鉄筋がD51の格子配筋、中段鉄筋

写真 5.5 仮設鋼製屋根傾斜部におけるコンクリート打設

がD25の格子配筋であるため、第1リフトは少なくとも50cmの厚さが必要である(100mm +51mm×2+(50mm+100mm)+25mm×2+30mm≒500mm)。

上述したように第1リフトの厚さは、設計上および構築上の理由から最小50cmが決定されるが、この50cmの均一な厚さのコンクリート製ドーム屋根で、頂部50cm、端部150cm 厚さの残り全てのコンクリートを打設するために必要な耐力を十分に有していることが確 認されている¹⁵⁾。したがって、第2リフト以降を2回以上分割したとしても打設手間と打ち 継目処理が増えるだけであり、コストメリットは創出されない。このため、合理的なコン クリート打設回数は、1回または2回のどちらかとなる。

1回打設の場合、55.1kN/m²のエアーサポートを作用させる必要があり、鋼製屋根の板厚 は、式(A)¹⁶⁾より突き合わせ溶接で20%のX線透過試験実施時において11mmとなる。こ れに対して、2回打設の場合は、厚さ50cmの第1リフトのコンクリートをエアーサポート 工法で構築するため、仮設鋼製屋根は、式(A)より片側全厚すみ肉重ね溶接において7mm の板厚が必要となる。

$$t = \frac{P \cdot R}{200 \cdot f_t \cdot \eta - 0.2 \cdot P} + C \qquad (A)$$

t :屋根板厚(最小厚さ7mm)

- P : 設計圧力 (1回打設:55.1kN/m²、2回打設:16.4kN/m²)
- R : 球殻内半径 (86,048 mm)
- f_t : 材料の許容引張応力 (285 N/mm²)
- η : 溶接継手効率 (0.45:片側全厚すみ肉重ね溶接の場合)

(0.85: 突き合わせ溶接、X線透過試験 20%の場合)

C : 腐れ代 (0.5 mm)

図5.18に1回打設時および2回打設時におけるコンクリート製屋根構築費の比較検討結 果を示す。コンクリート製屋根の構築費は、仮設鋼製屋根工事費(鋼材の材料・加工費、 組立て費等)、鉄筋コンクリート工事費(鉄筋材料・鉄筋組立て費、コンクリート打設費、 打ち継目処理費等)および共通クレーン費他の総計で算出される。2回打設時の屋根構築 費は、鉄筋コンクリート工事費の増額分に比較し仮設鋼製屋根工事費の減額分が大きく上 回っており、2回打設が経済性の面で最も合理的な打設回数となる。

(3) 第1リフトのコンクリート打設層数

打設層数は、厚さ50cmの第1リフトのコンクリートを打設する際に考慮すべき鉛直方向 の分割数を表す。各層のコンクリートは第1リフトのコンクリート打設が全て完了するま でフレッシュ性状を維持し硬化しないため、仮設鋼製屋根には全層厚に相当するコンクリ ート重量が作用する。

第1層目のコンクリート打設では、図5.17に示す屋根骨の上側フランジ裏側および下側 鉄筋直下部分も含めコンクリートを隅々まで充てんさせるために、下側鉄筋が覆われるま で一気にコンクリートを打設する必要がある。屋根骨の最小高さ100mmおよび下側格子状 鉄筋の直径51mmを考慮すると、1層目の厚さは20cm以上必要である。また、下側鉄筋と 中段鉄筋のあき150mmおよび傾斜部でのコンクリート打設を考慮すると、第2層目の打設 高さを下側鉄筋と中段鉄筋の間で管理することは現実的には不可能である。このため、厚 さ50cmのコンクリートを打設する際に考慮すべき打設層数は1層または2層のどちかとな る。1層打設は厚さ50cmのコンクリート打設である。2層打設においては、1層目の打設厚 さを20cm以上は確保する必要がある。次項において、打設層数および打設厚をパラーメー タとした座屈解析を行い、仮設鋼製屋根の仕様を合理的にするための最適な打設層数およ び打設厚を評価する。

図 5.15 コンクリート打設順序

図 5.16 エアーサポート工法における 2 回打設

- ① 下側鉄筋のかぶり(屋根骨の最小高さ)
- ア側鉄筋の直径
- ③ 下側鉄筋と中段鉄筋とのあき
- ④ 中段鉄筋の直径

図 5.17 コンクリート製屋根第1リフトの配筋状況

図 5.18 1回打設と2回打設におけるコンクリート製屋根構築費の比較

5.5 仮設鋼製屋根の座屈解析

エアーサポート工法で厚さ50cmの第1リフトのコンクリート打設する場合において、打 設層数および打設厚をパラーメータとした仮設鋼製屋根の座屈解析を行い、コンクリート 打設荷重に対する座屈荷重係数が最大となる打設層数および打設厚を求める。

5.5.1 解析方法

屋根板をシェル要素、リングおよびラフターを梁要素とした有限要素法による線形固有 値解析を実施した。なお、パネルの剛性についてはパネルの座屈後の剛性としてリングお よびラフターの両側に片側16t (t:屋根板厚)を考慮した。

仮設鋼製屋根・メンブレン・保冷材・鉄筋の自重およびエアーサポート圧力を作用させ た状態を仮設鋼製屋根の初期条件とし、コンクリート打設荷重に対する座屈荷重係数を算 出する。2層打設の場合には、1層目のコンクリート打設が屋根頂部まで完全に終了した状 態における仮設鋼製屋根の変形を初期条件として、2層目のコンクリート打設荷重に対す る座屈荷重係数を求める。この際、仮設鋼製屋根には、既に打設された1層目のコンクリ ート密度に相当する水頭圧が作用している。

5.5.2 解析モデル

リングプレートを含む鋼製屋根は平面的に180°の3次元モデルとし、対称面上の節点に は対称境界条件を与えている。また、屋根骨(ラフター、リング)を梁要素とし、屋根板・ リングプレートは板要素としてモデル化している。ラフター、リングの部材端は全て剛結 合とする。支持条件としては、リングプレート端部の節点を完全拘束としている。図5.19 および図5.20に解析モデルとその詳細を示す。

5.5.3 荷重条件

(1) 自重(単位面積当たり)

(a) 仮設鋼製屋根

屋根を構成している屋根板、リングプレート、屋根骨(リング、ラフター)の各部材の 総重量を表面積(4204.5m²)で除した値が仮設鋼製屋根の自重である。本研究においては、 屋根骨の仕様として、H150×150×7×10、リング13本、ラフター84本を基本仕様とし、 この基本仕様に対して屋根骨のサイズを1ランク低減したケースおよび屋根骨の本数を低 減したケースについて線形固有値解析を実施した。それぞれのケースにおける仮設鋼製屋 根の自重を以下に示す。

- ・屋根骨仕様、H150×150×7×10、リング13本、ラフター84本の場合 自重=総重量/表面積=4,003,800N/4,204.5 m²=952.3N/m²
- ・屋根骨仕様、H100×100×6×8、リング13本、ラフター84本の場合 自重=総重量/表面積=3,409,400N/4,204.5 m²=810.9N/m²
- ・屋根骨仕様、H150×150×7×10、リング10本、ラフター60本の場合 自重=総重量/表面積=3,613,000N/4,204.5 m²=859.3N/m²
- (b) メンブレン

板厚2mmのステンレス鋼板であるメンブレンの自重は、186.6N/m²である。

(c) 保冷材

厚さ153mmの硬質ウレタンフォーム (PUF)の両面に6mmの合板を接着した保冷材の自 重は、151.3 N/m²である。

(d) 鉄筋

第1リフト構築時の鉄筋は、2,328.5N/m²である。

(e) 平均自重

仮設鋼製屋根、メンブレン、保冷材、鉄筋の重量を合計した平均自重を表5.6に示す。

(2) コンクリート打設荷重

コンクリートの密度は2,300kg/m³であるため、打設厚さ50cmの場合は、11.28kN/m²となる。

(3) エアーサポート圧力

5.4.1項で記述したように、エアーサポート時の圧力変動等を勘案し、鋼製屋根・メンブ レン・保冷材・鉄筋の自重にコンクリート打設荷重を加えた上載荷重に対して1割の裕度 を考慮した圧力をエアーサポート圧力として設定する。表5.7に屋根骨の仕様に対応するエ アーサポート圧力を示す。

5.5.4 解析ケース

表5.8の解析ケースに示すとおり、屋根骨仕様、打設層数および打設厚をパラーメータと した12ケースについて線形固有値解析を実施する。

打設層数としては、1層50cm、2層(20cm+30cm)および2層(30cm+20cm)の3ケースを基本とするが、座屈荷重の変化を把握するために2層(10cm+40cm)も解析ケースに加える。また、打設順序は、外周部から頂部とする。仮設鋼製屋根の仕様については、5.5.3項で記述したように、「H150×150×7×10、リング13本、ラフター84本」を基本仕様とし、 屋根骨のサイズを低減した「H100×100×6×8、リング13本、ラフター84本」および屋根骨の本数を低減した「H150×150×7×10、リング10本、ラフター60本」の3種類とする。

5.5.5 解析結果と考察

各解析ケースに対する座屈荷重係数を表5.9、表5.10、表5.11、および図5.21~図5.35に 示す。座屈荷重係数については、コンクリート打設が屋根外周部から頂部に向かって連続 的に打設することを考慮して、コンクリート打設範囲が各リング位置に達した時点の値を 示す。また、50cm 1層打設時における基本仕様の仮設鋼製屋根の変位状態を図5.36および 図5.37に示す。

(1) コンクリート打設層数と座屈荷重係数の関係

基本仕様の屋根骨における1層打設時のコンクリート打設範囲と座屈荷重係数の関係を 図5.21に示す。外周部と頂部の中間あたり(x/a=0.43,0.50)で座屈荷重係数は最小値3.06 を示す。設計上必要な座屈荷重係数は2.5であり、この構造が設計上合理的な構造である。 なお、設計上必要な座屈荷重係数2.5は、座屈荷重安全率1.5¹⁷⁾に形状初期不整による座屈 荷重の低減係数0.63¹⁸⁾を考慮して設定している。

変位状態については、図5.36および図5.37に示すようにコンクリート打設荷重が載荷さ れた範囲において屋根が下向きに変形し、それ以外の部分は上向きの変形状態を示してい る。打設の進行に伴い、外周部における下向きの変形量が緩和されるとともに、屋根全体 が下向きの変形状態を示すようになる。

次に、2打層打設におけるコンクリート打設範囲と座屈荷重係数の関係を図5.22~図5.24 に示す。2層打設の場合、1層目打設に対する座屈荷重係数と2層目打設に対する座屈荷重 係数をそれぞれ算出し、小さい方の値を2層打設の場合の座屈荷重係数と定義する。

図5.22~図5.24から明らかなように、2層打設の場合の座屈荷重係数は1層目と2層目の 厚さに依存する。

コンクリート打設範囲と座屈荷重係数の関係は、1層目および2層目とも1層打設の場合 と同じ傾向であり、外周部と頂部の中間あたりで座屈荷重係数は最小値を示す。1層目打 設については10cm+40cmの場合x/a=0.50で15.29、20cm+30cmの場合x/a=0.50で7.64、 30cm+20cmの場合x/a=0.50で5.10であり、2層目打設については10cm+40cmの場合 x/a=0.50で3.64、20cm+30cmの場合x/a=0.50で4.59、30cm+20cmの場合x/a=0.50で6.47 である。

x/a=0.50における1層目打設厚さと座屈荷重係数の関係を図5.33に示す。各打設厚さに対 する座屈荷重係数は、1層目と2層目の包絡線で得られる。座屈荷重係数が最大となる最も 合理的な1層目の打設厚さは、1層目と2層目が交差する27cm、座屈荷重係数は6.0である。

設計上必要な座屈荷重係数は2.5であるため、1 層目打設厚さを27cmとする2層打設方法 を採用することで、座屈強度上2.4倍の余裕が得られる。このことは、2層打設方法を採用 することで、1層打設の場合に合理的であった仮設鋼製屋根の構造を簡易化・軽量化するこ とが可能になることを示している。

2層打設方法を採用することで得られる効果を、仮設鋼製屋根の屋根骨重量を指標とし て次項以降で示す。屋根骨重量を低減する場合、サイズを低減する方法と本数を低減する 方法が考えられる。そこで、(2)項でサイズを低減する場合、(3)項で本数を低減する場合を 示す。

(2) 2層打設とサイズ低減による屋根骨重量の関係

サイズを低減した屋根骨における2層打設時のコンクリート打設範囲と座屈荷重係数の

関係を図5.26~図5.28に示す。1層目および2層目とも外周部と頂部の中間あたりで座屈荷 重係数は最小値を示す。1層目打設については10cm+40cmの場合x/a=0.50で9.94、 20cm+30cmの場合x/a=0.50で4.97、30cm+20cmの場合x/a=0.50で3.31であり、2層目打設 については10cm+40cmの場合x/a=0.50で2.30、20cm+30cmの場合x/a=0.50で2.81、 30cm+20cmの場合x/a=0.50で3.83である。

x/a=0.50における1層目打設厚さと座屈荷重係数の関係を図5.34に示す。各打設厚さに対 する座屈荷重係数は、1層目と2層目の包絡線で得られる。座屈荷重係数が最大となる最も 合理的な1層目の打設厚さは、1層目と2層目が交差する28cm、座屈荷重係数は3.6であり、 設計上必要な座屈荷重係数2.5を満足している。その結果、表5.12に示すように基本仕様の 屋根骨に対して45%、また、基本仕様の仮設屋根に対して15%もの鋼材重量を低減するこ と(仮設鋼製屋根構築費1.6億円相当の削減)が可能である。

(3) 2層打設と本数低減による屋根骨重量の関係

本数を低減した屋根骨における2層打設時のコンクリート打設範囲と座屈荷重係数の関 係を図5.30~図5.32に示す。1層目および2層目とも外周部と頂部の中間あたりで座屈荷重 係数は最小値を示す。1層目打設については10cm+40cmの場合x/a=0.50で9.29、 20cm+30cmの場合x/a=0.50で4.64、30cm+20cmの場合x/a=0.50で3.10であり、2層目打設 については10cm+40cmの場合x/a=0.50で2.40、20cm+30cmの場合x/a=0.50で3.03、 30cm+20cmの場合x/a=0.50で4.30である。

x/a=0.50における1層目打設厚さと座屈荷重係数の関係を図5.35に示す。各打設厚さに対 する座屈荷重係数は、1層目と2層目の包絡線で得られる。座屈荷重係数が最大となる最も 合理的な1層目の打設厚さは、1層目と2層目が交差する26cm、座屈荷重係数は3.8であり、 設計上必要な座屈荷重係数2.5を満足している。その結果、表5.12に示すように基本仕様の 屋根骨に対して30%、また、基本仕様の仮設屋根に対して10%もの鋼材重量を低減するこ と(仮設鋼製屋根構築費1.1億円相当の削減)が可能である。

屋根	骨仕様		重量									
サイブ	本	数	屋根	メンブレン	保冷材	鉄筋	平均自重					
ታ1 ላ	リング	ラフター	N/m ²	N/m ²	N/m ²	N/m ²	kN/m ²					
H150×150×7×10	13 84		952.3	186.6	151.3	2,328.50	3.62					
H100×100×6×8	13	84	810.9	186.6	151.3	2,328.50	3.48					
H150×150×7×10	10	60	859.3	186.6	151.3	2,328.50	3.53					

表 5.6 仮設鋼製屋根の仕様と平均自重

表 5.7 仮設鋼製屋根の仕様とエアーサポート圧力

屋根	骨仕様		上載	战荷重(kN∕		
サノブ	本	数	亚均白舌	コンクリート	스러	エアーサホー下庄刀 (kN/m ²)
91 🔨	リング	ラフター	平均日里	打設荷重		
H150×150×7×10	13	84	3.62	11.28	14.90	16.39
H100×100×6×8	13	84	3.48	11.28	14.76	16.24
H150×150×7×10	10	60	3.53	11.28	14.81	16.29

図 5.19 解析モデル

図 5.20 解析モデル詳細

- 118 -

検討ケース	仮設鋼製屋根仕様	コング	フリート打設	厚さ	打設順序	内圧 P _I	平均自重 P _{DS}	コンクリート 打設荷重 P _{DC}							
CASE 1		1層排	打設	50cm		K N/M	K N/M	<u>k N/m</u> 11.28							
			1層目	10cm	t i i i i i i i i i i i i i i i i i i i			2.26							
CASE 2	00.000 00 00 00 00 00 00 00 00 00 00 00		2層目	40cm				9.02							
	H150×150×7×10	ᇬᇛᆂᆉᇌ	1層目	20cm		16.39	3.62	4.51							
CASE 3	リング 13本	2唐打設	2層目	30cm				6.77							
	H150×150×7×10		1層目	30cm]			6.77							
CASE 4			2層目	20cm				4.51							
CASE 5		1層打	打設	50cm				11.28							
	板厚 t=7mm		1層目	10cm				2.26							
CASE 0	ラフター 84本	2層打設	- 2層打設 -	- 2層打設 -	2層打設	2層目	40cm				9.02				
	H100×100×6×8					2届打設	2届打設	2屆打設	2屆打設	1層目	20cm	外周部→頂部	16.23	3.48	4.51
	リング 13本					2層目	30cm				6.77				
	H100×100×0×0		1層目	30cm				6.77							
			2層目	20cm				4.51							
CASE 9		1層打	打設	50cm				11.28							
CASE 10			1層目	10cm				2.26							
	极厚 t=/mm ラフター 60木		2層目	40cm				9.02							
CASE 11	H150×150×7×10	~ 문 누 = 7	1層目	20cm		16.29	3.53	4.51							
CASE 11 CASE 12	リング 10本	2層打設	2層目	30cm				6.77							
	H150×150×7×10		1層目	30cm				6.77							
			2層目	20cm				4.51							

表 5.8 仮設鋼製屋根の線形固有値解析における解析ケース

				内圧	平均自重	コンクリート					コン	クリート	> 打設範	囲					
検討						打設何里	Ring No.	00	01	02	03	04	05	06	07	08	09	10	11
ケース	コンクリ	ート打敲	と厚さ	Pı	P _{DS}	P _{DC}	屋根外周部から の距離 X(m)	35.72	33.60	31.07	28.52	25.93	23.32	20.69	18.03	15.36	12.67	9.97	7.25
				k N/m ²	k N/m ²	k N/m ²	半径比 X/a	1.00	0.94	0.87	0.80	0.73	0.65	0.58	0.50	0.43	0.35	0.28	0.20
	1 届 5	r記	50om			11 29	座屈荷重係数	3.98	3.97	3.92	3.64	3.39	3.23	3.12	3.06	3.06	3.18	3.51	4.23
CASE I	1/言1.		50011			11.20	波数	8	8	8	9	10	11	13	14	15	16	17	16
		1 図 日	1000			2.26	座屈荷重係数	19.89	19.87	19.59	18.19	16.97	16.15	15.60	15.29	15.32	15.90	17.57	21.13
		「眉日	TUCITI			2.20	波数	8	8	8	9	10	11	13	14	15	16	17	16
CASE 2		2層目	10 om			9.02	座屈荷重係数	4.73	4.73	4.66	4.31	4.01	3.82	3.69	3.64	3.69	3.88	4.36	5.42
				40011			9.02	波数	8	8	8	9	10	11	13	14	15	16	17
		1届日	20om	16 20	3.62	4.51	座屈荷重係数	9.94	9.94	9.80	9.10	8.48	8.07	7.80	7.64	7.66	7.95	8.78	10.56
	2屆打設	1/2日	20011	10.39	3.02	4.51	波数	8	8	8	9	10	11	13	14	15	16	17	16
CASE 3	2階1] 設	2回日	20.00			6 77	座屈荷重係数	5.96	5.95	5.87	5.42	5.00	4.80	4.65	4.59	4.64	4.86	5.45	6.59
		2周日	30011			0.77	波数	8	8	8	9	10	11	13	14	15	16	17	16
		1届日	20om			6 77	座屈荷重係数	6.63	6.62	6.53	6.06	5.66	5.38	5.20	5.10	5.11	5.30	5.86	7.04
			30011			0.77	波数	8	8	8	9	10	11	13	14	15	16	17	16
CASE 4		2届日	20cm			4 51	座屈荷重係数	8.40	8.39	8.25	7.63	7.10	6.76	6.56	6.47	6.53	6.83	7.64	8.92
		∠/盲 ロ	20011			4.51	波数	8	8	8	9	10	11	12	14	15	16	17	16

表 5.9 コンクリート打設厚さと座屈荷重係数の関係(屋根骨 H150、リング 13 本、ラフター84 本)

				фΕ	亚坎白香	コンクリート					コン	クリート	丶 打設範	囲						
+≎=+				PIL	十均日里	打設荷重	Ring No.	00	01	02	03	04	05	06	07	08	09	10	11	
快討 ケース	コンクリ	ート打設	と厚さ	Pı	P_{DS}	P _{DC}	屋根外周部から の距離 X(m)	35.72	33.60	31.07	28.52	25.93	23.32	20.69	18.03	15.36	12.67	9.97	7.25	
				k N/m ²	k N/m ²	k N/m ²	半径比 X/a	1.00	0.94	0.87	0.80	0.73	0.65	0.58	0.50	0.43	0.35	0.28	0.20	
CASE 5	1屆5	г≣д	50cm			11 28	座屈荷重係数	2.87	2.74	2.59	2.35	2.18	2.08	2.02	1.99	1.99	2.05	2.24	2.75	
CASE 5	1/言1.		500111			11.20	波数	12	8	9	11	13	14	16	17	19	20	2	21	
		1 届日	10cm			2.26	座屈荷重係数	14.37	13.68	12.96	11.75	10.92	10.42	10.10	9.94	9.94	10.25	11.18	13.76	
		「百口	TUCITI			2.20	波数	12	8	9	11	13	14	16	17	19	20	2	21	
CASE 0		2層目 400	40cm			0.02	座屈荷重係数	3.35	3.18	3.00	2.69	2.45	2.38	2.31	2.30	2.33	2.45	2.73	3.50	
				400111			9.02	波数	12	8	9	11	13	14	16	17	19	20	21	21
		1屆日	20cm	16.23	3 48	4 51	座屈荷重係数	7.18	6.84	6.48	5.88	5.46	5.21	5.05	4.97	4.97	5.12	5.59	6.88	
	2届打設	「一一	200111	10.25	5.40	4.51	波数	12	8	9	11	13	14	16	17	19	20	2	21	
CASE 7	2)皆打政	2届日	30cm			6 77	座屈荷重係数	4.12	3.89	3.66	3.29	3.04	2.90	2.83	2.81	2.85	2.99	3.34	4.14	
		2/百口	500111			0.77	波数	12	8	8	11	13	14	16	17	19	20	21	20	
		1届日	30cm			6 77	座屈荷重係数	4.79	4.56	4.32	3.92	3.64	3.47	3.37	3.31	3.31	3.42	3.73	4.59	
		「一一	500111			0.77	波数	12	8	9	11	13	14	16	17	19	20	2	21	
CASE 8		2屋日		2 屈日 20.0mm		ŀ	4 51	座屈荷重係数	5.66	5.25	4.93	4.45	4.12	3.94	3.85	3.83	3.90	4.09	4.55	5.41
	2層目 20cm				4.51	波数	12	8	8	11	12	14	16	17	18	20	21	20		

表 5.10 コンクリート打設厚さと座屈荷重係数の関係(屋根骨 H100、リング 13 本、ラフター84 本)

				фп	亚均白素	コンクリート					コン	クリート	- 打設範	囲								
拾計				内庄	平均日里	打設荷重	Ring No.	00	01	02	03	04	05	06	07	08	09	10	11			
ケース	コンクリ	ート打診	と厚さ	Pı	P_{DS}	P _{DC}	屋根外周部から の距離 X(m)	35.72	33.60	31.07	28.52	25.93	23.32	20.69	18.03	15.36	12.67	9.97	7.25			
				k N/m ²	k N/m ²	k N/m ²	半径比 X/a	1.00	0.94	0.87	0.80	0.73	0.65	0.58	0.50	0.43	0.35	0.28	0.20			
CASE 9	1屆打	□設	50cm			11 28	座屈荷重係数	2.42	2.42	2.38	2.21	2.06	1.96	1.90	1.86	1.86	1.93	2.13	2.57			
UNDE 5	1/目11		50011			11.20	波数	12	8	9	11	13	14	16	17	19	20	2	21			
		1屆日	10cm			2.26	座屈荷重係数	12.08	12.08	11.91	11.05	10.31	9.81	9.48	9.29	9.31	9.66	10.67	12.84			
CASE 10			TOCITI			2.20	波数	12	8	9	11	13	14	16	17	19	20	2	21			
CASE 10		2層目 40cm	40cm			9.02	座屈荷重係数	3.38	3.12	3.07	2.85	2.66	2.53	2.44	2.40	2.41	2.50	2.77	3.39			
					5.02	波数	12	8	9	11	13	14	16	17	19	20	21	21				
		1 屈 日	20cm	m 16.20 3	3 53	4 51	座屈荷重係数	6.04	6.04	5.95	5.53	5.16	4.91	4.74	4.64	4.66	4.83	5.34	6.42			
CASE 11	2届打設		200111	10.29	5.55	4.51	波数	12	8	9	11	13	14	16	17	19	20	2	21			
	2/61100	っ国日	30cm			6 77	座屈荷重係数	4.27	3.94	3.89	3.61	3.37	3.20	3.09	3.03	3.04	3.15	3.47	4.12			
		2/6日	50011			0.77	波数	12	8	8	11	13	14	16	17	19	20	21	20			
		1 届日	30cm			6 77	座屈荷重係数	4.03	4.03	3.97	3.68	3.44	3.27	3.16	3.10	3.10	3.22	3.56	4.28			
CASE 12			50011			0.77	波数	12	8	9	11	13	14	16	17	19	20	2	21			
CASE 12		2層目 20cm	088 0000	0岡日 00	20日 20	20cm			4 51	座屈荷重係数	6.05	5.58	5.50	5.10	4.76	4.54	4.39	4.30	4.30	4.44	4.88	5.60
			20011	20cm		4.01	波数	12	8	8	11	12	14	16	17	18	20	21	20			

表 5.11 コンクリート打設厚さと座屈荷重係数の関係(屋根骨 H150、リング 10 本、ラフター60 本)

図 5.23 コンクリート打設範囲と座屈荷重係数の関係 (CASE3)

図 5.24 コンクリート打設範囲と座屈荷重係数の関係(CASE4)

図 5.26 コンクリート打設範囲と座屈荷重係数の関係(CASE6)

図 5.27 コンクリート打設範囲と座屈荷重係数の関係(CASE7)

図 5.30 コンクリート打設範囲と座屈荷重係数の関係(CASE10)

図 5.31 コンクリート打設範囲と座屈荷重係数の関係(CASE11)

図 5.32 コンクリート打設範囲と座屈荷重係数の関係(CASE12)

図 5.34 厚さ 50 c mのコンクリート打設を行う際の1層目打設厚さと 座屈荷重係数の関係(屋根骨 H100、ラフター84 本、リング 13 本)

図 5.35 厚さ 50 c mのコンクリート打設を行う際の1層目打設厚さと 座屈荷重係数の関係(屋根骨 H150、ラフター60本、リング 10本)

	屋根骨		屋根骨重量				屋根全体重量	
サイズ		本	数	リング	ラフター	合計	①に対する	①に対する割合
		リング	ラフター	(t)	(t)	(t)	割合	「「」」とどうの言口
1	H150×150×7×10	13	84	85.4	48.1	133.5	100%	100%
2	H100×100×6×8	13	84	46.6	26.3	72.9	55%	85%
3	H150×150×7×10	10	60	59.1	34.6	93.7	70%	90%

表 5.12 仮設鋼製屋根の仕様と屋根重量

図 5.36 仮設鋼製屋根の変位状態(H150、基本仕様)その1

図 5.37 仮設鋼製屋根の変位状態(H150、基本仕様)その2

5.6 まとめ

研究対象とする直径70m、ライズ・スパン比約1/10、頂部で1m、外周部で2m厚さのコンクリート製ドーム屋根をエアーサポート工法で合理的に構築する方法を以下に提案する。

- (1) コンクリート打設方法
 - 打設順序:コンクリート打設順序としては、「屋根外周部→頂部」、「頂部→外周部」、 または「外周部→頂部→中間部」等様々な方法が考えられる。傾斜部におけるコ ンクリート打設、打継目部のコールドジョイント発生防止およびコンクリート打 設作業の効率性等を考慮すると、「屋根外周部→頂部」が唯一現実的な打設順序で ある。
 - 2) 打設回数:コンクリート製ドーム屋根の配筋状況および2回目以降のコンクリート 打設荷重を支持する第1リフトのコンクリート製ドーム屋根の耐力を考慮すると、 コンクリート打設回数は、1回打設(頂部1m厚さ、端部2m厚さ)または2回打設(1 回目50cm均一厚さ、2回目頂部50cm厚さおよび端部150cm厚さ)のどちらかを選 択することになる。2回打設の場合は、第1リフトの鉄筋コンクリート工事はエア ーサポート工法で行い、第2リフト以降については、既に硬化しているコンクリー ト製ドーム屋根を型枠支保工として利用することができる。1回打設または2回打 設を決定する要因は、コンクリート製屋根の構築費であり、鋼材の材料・加工費、 組立て費等仮設鋼製屋根工事費および鉄筋材料・鉄筋組立て費、コンクリート打 設費、打ち継目処理費等の鉄筋コンクリート工事費等を十分に検討し、経済的な 打設回数を決定する。研究対象の屋根においては、経済性の面で最も合理的な打 設回数は2回である。
 - 3) 第1リフトの打設層数:50cm均一厚さの第1リフトのコンクリートをエアーサポート工法で打設する場合、屋根骨、下側鉄筋および中段筋の配置状況を考慮すると、打設層数は1層または2層のどちらかとなる。1層打設は厚さ50cmのコンクリート打設である。また、2層打設においては、屋根骨高さおよび下側格子状鉄筋の配置状況より、1層目は少なくとも20cm以上の厚さは必要である。2層打設時における1層目打設厚さに対する座屈荷重係数は、1層目と2層目の包絡線で得られる。座屈荷重係数が最大となる最も合理的な1層目の打設厚さは、1層目と2層目の交点で求められる。研究対象とする仮設鋼製屋根における線形固有値解析の結果を以下に示す。
 - a) 「H150×150×7×10、リング13本、ラフター84本」の基本仕様では、1層打設時の場合、設計上必要な座屈荷重係数2.5に対して座屈荷重係数の最小値は3.06であり、設計上合理的な構造である。これに対して2層打設の場合、1層目の打設厚さ27cmの時に座屈荷重係数は最小値6.0を示す。つまり、1層打設の場合に合理的であった仮設鋼製屋根の構造を簡易化・軽量化することが可能になることを示している。屋根骨重量を低減する場合、本数を低減する方法とサイズを低減する方法が考えられる。
 - b) 「H100×100×6×8、リング13本、ラフター84本」の屋根骨サイズを低減したケ ースでは、1層目の打設厚さ28cmの時に最小の座屈荷重係数3.6が得られ、基本

仕様の屋根骨に対して45%、基本仕様の仮設鋼製屋根に対して15%もの鋼材重量 を低減すること(仮設鋼製屋根構築費1.6億円相当の削減)が可能である。

- c) 「H150×150×7×10、リング10本、ラフター60本」の屋根骨本数を低減したケ ースでは、1層目の打設厚さ26cmの時に最小の座屈荷重係数3.8が得られ、基本 仕様の屋根骨に対して30%、基本仕様の仮設鋼製屋根に対して10%もの鋼材重量 を低減すること(仮設鋼製屋根構築費1.1億円相当の削減)が可能である。
- (2) エアーサポート圧力
 - エアーサポート圧力はサポート時の圧力変動等を勘案し、仮設鋼製屋根自重、メンブ レン・保冷材自重、鉄筋重量に50cm厚さ相当のコンクリート打設荷重を加えた上載荷 重の総計に1割程度の裕度を乗じた圧力とする。

- 5.7 第5章の参考文献
- 1) 後藤貞雄, 中野正文, 中澤亨, 黒田正信:「世界初の埋設式LNG地下タンクの開発と 建設」, コンクリート工学, Vol.35.No.2, pp.18~pp.25, 1997.2
- 2) 堤洋一他:「コンクリート製ドーム屋根のリフトアップ」, 土木学会年次学術講演会, VI-219, 1997.9
- 3) 中野正文,小河知之,綱川浩文:「世界最大級200,000KL埋設式LNG地下タンクの建設」,建設の機械化,pp.10~pp.16,1998.4
- 4) 中野正文:「LNG地下タンク建設技術の変遷と最新の技術開発」, 土木学会論文集 VOL No.39, pp.10, 2001.6
- 5) 「LNG地下式貯槽の合理的な建設に係わる検討報告書」, 大成建設, pp.16~pp.17, 1996.4
- 6) 「扇島工場建設第 I 期工事プロジェクト報告 土木技術編 (2/7)」, 扇島プロジェク トグループ, 資料 - 2, pp.1, 1999.1
- 7) 低温圧力容器用炭素鋼鋼板 JIS G 3126-1990
- 8) 「鋼構造設計規準」, 日本建築学会, pp.11~pp.13, 1988.11
- 9) 「道路橋示方書・同解説」, 日本道路協会, pp.173~pp.175, 1996.12
- 10) 「仮設鋼製屋根の非耐圧性の検討」,大林・三井・竹中TL12建設工事共同企業体, PP.1 ~PP.52, 2000.8
- 11) 「積算資料」, 経済調査会, pp.20, 2003.7
- 12) 「コンクリート標準示方書[構造性能照査編],土木学会, pp.119~pp.121, 2002.3
- 13) 「コンクリート標準示方書[構造性能照査編],土木学会, pp.121~pp.123, 2002.3
- 14) 「扇島工場 TL12LNG地下式貯槽建設工事 屋根第2リフトコンクリート打設時構造 安定性の検討(その1)」、大林・三井・竹中TL12建設工事共同企業体、pp.9-1~pp.9-7、 2001.4
- 15)「扇島工場 TL12LNG地下式貯槽建設工事 屋根第2リフトコンクリート打設時構造 安定性の検討(その1)」、大林・三井・竹中TL12建設工事共同企業体、pp.1-1~pp.10-12、 2001.4
- 16) 「LNG地下式貯槽指針」, 日本ガス協会, pp.203, 2002.8
- 17) 「LNG地下式貯槽指針」, 日本ガス協会, pp.213, 2002.8
- 18) 櫻井尚俊:「内圧と軸対称偏載荷重を受ける補剛球形シェルの座屈特性に関する研究」,
 東北大学学位論文, pp.200~pp.205, 2001.10

第6章 掘削土の植栽基盤への有効利用技術

~ パーライト土質改良工法の開発 ~

6.1 概要

LNG基地には、環境保全の観点から緑地の確保が義務づけられており、LNG地下式貯槽 外周盛土法面等に植栽が施されている。これら植栽用の基盤としては、購入客土が用いら れているが、緑化工事に伴うコスト削減と建設残土量の低減を図るために、地下式貯槽の 建設に伴い発生する掘削土を植栽基盤材等良質な土砂へ土質改良する技術開発とその実現 が重要な課題であった。本研究では、この課題を解決するためにパーライト土質改良工法 を開発するとともに、高含水の均質な粘性土とパーライトを用いた室内混合試験および現 地発生土を利用した実機プラント混合試験を行い、混合土の土質改良効果および植栽基盤 材としての土壤改良効果を評価した。

一般に、建設工事に伴って発生する建設発生土については、良質土はそのまま現場内で 再利用されている。しかし、粘性の高い土や含水比の高い土については、転圧ができない ため場外に搬出して埋め立て処分するか、生石灰およびセメントと混合し用途別の要求品 質まで改良した後再利用している。これらの改良土については、強度は増加するがアルカ リ分が多く含まれており浸透水のpHが高くなるため、環境に優しい土質改良方法とは言え ない。当然のことながら植栽基盤材としては再利用できるものではない。これに対して、 今回開発したパーライト土質改良工法は中性であるパーライトを土質改良材として使用し ているため、土質改良した後でもpH等化学的性質に影響を与えない環境に優しい土質改良 工法である。

6.2 植栽基盤の要求品質

LNG基地の緑化を形成している樹木は地上部と土壌部の2つの生育場¹⁾をもっている。地 上部は幹・枝・葉から構成された部分で、樹木はこの部分で炭酸ガスを吸収して、光をエ ネルギーとして光合成を行い、樹体を育てている。一方、土壌部は土壌中に伸びた根の部 分であり、根は地上部の樹体を支えるとともに、土壌中から養分と水分を吸収し、地上部 へ送る機能を有している。この根の機能の良否が、樹木の生育を左右する大きな要因とな っている。

このように、根が伸長し養分の吸収を行っている場を植栽基盤と呼ぶ。良好な環境保全 林を形成するためには、根の機能が十分発揮できるように植栽基盤を整備することが必要 になる。

樹木が長期間に渡り健全に生育するためには、次に示す4つの条件²⁾³⁾を満足する必要が ある。

- ① 根が自由に伸長できること。
- ② 伸びた根の活力が正常に保たれること。
- ③ 樹木が吸収できる水分が適量保持されていること。
- ④ 樹木が吸収できる養分が適量保持されていること。

表6.1に、この4つの条件を基に植栽基盤の問題点と整備方針および考えられる具体的方法²⁾³⁾をまとめたものを示す。また、植栽基盤整備に関する各種規準⁴⁾⁵⁾⁶⁾の分級値の抜粋および本研究における土壌改良土に対する要求品質を表6.2に示す。なお、要求品質の目標値については日本造園学会分科会試案の「II(良)」以上とした。

評価因子のうち、飽和透水係数は土壌中の水の移動性を表すもので、降雨後における排水の良否および通気性と強く関係している。土壌は鉱物や有機物などの固体と土壌中に含まれる水すなわち液体と、それらの隙間に存在する気体の3つの成分から構成されている。これら3つの相の容積比を測定したものを三相分布と呼び、それぞれの容積比は、固相率、液相率および気相率と呼ばれている。三相成分のうち、植栽基盤として評価を行う場合に最も重要となる項目は固相率である。固相以外の部分、すなわち気体と液体が占める空間を間隙という。このうち水分特性(pF)がpF1.8~3.0の中間隙を易有効水分量と呼び、植物の生育に必要な水の供給に役立っている。この易有効水分量の多い土壌ほど保水力の大きい土壌といえる。⁷⁾

陽イオン交換容量(塩基置換容量)は土壌のもつ負の電荷の総量をいい、陽イオン(Al⁺³、 Ca⁺²、Mg⁺²など)を交換できる最大量を表すものであり、土壌の地力を評価する指標であ る。塩類集積による植物の生育障害は、土壌溶液の塩類濃度上昇・浸透圧増加による植物 根の養分吸収阻害が原因となっているものが多く、土壌溶液の電気伝導度を測る方法は、 植物の生育障害との関係を推測する有力な方法である。

ここで、本文中で使われている土壌という用語に対する補足説明を以下に記す。土は、 土木、農業土木、建築に関わる学問分野である土質工学で用いられている用語であり、道 路、鉄道、堤防、住宅等の構造物を支持する媒体としての性格が強く求められる。このた め、土の土質工学的性質としては、荷重に対する支持力、耐震性、圧密に対する挙動、透 水性、構造安定性等が問題となる。これに対して、土壌は、植物の栽培に関わる学問分野 である農学で用いられている用語である。したがって、土壌の性質としては、植物に対す る養分および水分の供給能とそれに関与する条件が重視される。⁸⁾

4つの冬州	は井甘般の問題占	は共甘般敦供の士社	百日		時期		老うこれる目体的大法
4 500未什	植私基盤の问題品	植栽茶盛空哺の力動	項日	А	В	С	考えられる共体的力法
有効土層厚の不足 有効土層厚の確保		有効土層厚の確保		0		まきだし厚さの管理	
旧の白山た体目	土壤固結化	土壌の膨軟化	土体の形あれ	0			土壌改良材による物理性の改善
恨の日田は仲長	「「「「」」「「」」」、「」」、「」」、「」」、「」、「」」、「」、「」、「」、	通気・透水性の確保	工場の膨軟化		0		締固め管理
	通気・透水性の不良	排水	ふた、添水性の確保	0			土壌改良材の混合(パーライトetc)、砂の混合
	土焼融美の不見	通気・透水性の確保	通気・透水性の確保		0		締固め管理
	工壌酸系の不足	還元土壌の酸化	排水		0		表面排水処理、開渠、暗渠etc
根の活力を保つ	塩類過剰	過剰塩類の除去	増売土権の融化	0			土壌改良材による通気性の改善、酸化剤の使用
	土壌酸素の不適	pHの矯正	遠北上場の酸化		0		自然酸化(耕運等による通気性の確保)
	有害物の存在	有害物の除去	過剰店新の除土	0			硫酸カルシウムの混合
	根域土層の不足	有効土層厚の確保	迴利塩類の际去		0		降雨、散水、放置期間の確保
水公の供給	土壌有効水分の不足	有効水分保持量の増加	p Hの矯正	0			土壌改良材の使用(過燐酸石灰etc)
小力の浜和	土体のお帰	雨水の有効利用	有害物の除去	0			重金属溶出の問題がないことを確認済み
	工壌の紀除	かん水	ち効水公保持号の増加	0			土壌改良材の混合(ピートモスet c)
	土壤養分欠乏	施肥	有効小力体付重の増加			0	マルチング
素公の供給	腐植の欠乏	腐植の増加	かん水			0	スプリンクラーの設置
食力の供和	土壌酸度の不適	pHの矯正	施肥			0	元肥、追肥etc
	保肥力の不足	塩基交換容量の増大	府はの進き	0			ピートモスetcの混合
	-		腐胆の垣加			0	バーク堆肥etc
			塩基交換容量の増大	0			土壌改良材の混合(ピートモスet c)
			(保肥力の改善)			0	バーク堆肥etc

表 6.1 植栽基盤の条件、問題点と整備方針および考えられる具体的方法

注) A:植栽基盤材製造工事

B:植栽基盤造成工事

C:植栽工事

			住宅都市整備公団 4)		東京電力㈱東扇島 ⁵⁾		日本造園学会分科会試案 ⁶⁾		本研究におけ	
	評価因子		分級 I	分級Ⅱ	I	Π	I	Π	る土壌改良土	
			旺盛な生育	正常な育成	適正が高い	適正がある	優	良	の要求品質	
	的和本业区数	om/coo	1×10 ⁻² ∼	5×10 ⁻⁴ ∼	1×10 ⁻² ∼	1×10 ⁻³ ~	1×10 ⁻³	1×10⁻³~	4×40 ⁻⁴ 11 F	
物田朴	即和迈小徐毅	CIII/SEC	5×10 ⁻⁴	5×10⁻⁵	1 × 10⁻³	5×10 ⁻⁴	1×10	1×10^{-4}	1×10 以上	
彻垤仼	有効水分量*	l/m ³	100以上	100~60	120以上	120~60	120以上	120~80	80以上	
	固相率	%	40以下	40~50	45未満	45~50	20未満	20~30	30未満	
	陽イオン交換容量 (塩基置換容量)	meq/100g	10以上	10~5	12以上	12~6	20以上	20~6	6以上	
化学性	рН (H ₂ O)		5.5~7 4.5~7		5~7	4.5~7.5	5.6~6.8	4.5~8.0	4.5~8.0	
	塩素イオン	%	0.02以下	0.02~0.04	0.04未満	0.04~0.1	0.05未満	0.05~0.20	0.2以下	
	電気伝導度	ms/cm	0.1~0.4	0.4~0.8	0.1~0.5	0.5~1.5	0.2未満	0.2~1.0	1.0以下	

表 6.2 植栽基盤整備に関する各種規準の分級値の抜粋と本研究における土壌改良土に対する要求品質

*pF1.8~3.0の易有効水分量

6.3 パーライト土質改良工法(サラット工法)の開発

サラット工法⁹⁾ という呼び名は、Soil Active Recovery Advanced Technologyの頭文字を とって命名したものである。これは、粘性の強い軟弱土がパーライトと混合されることに より、砂質土のようにさらさら(さらっと)の状態に変化し、盛土材や植栽基盤材として 有効活用できる優れた工法であることを表している。

パーライトは、火山岩の一種である真珠岩あるいはその同系統の岩石(黒曜石、松脂岩) を粉砕し、摂氏900~1,200度に焼成して10~20倍に膨張させた白~灰白色の顆粒状の材料 である。パーライトは、かさ比重が小さく、断熱性、吸水性に優れていることから、軽量 骨材や保冷用断熱材等に用いられている。表6.3に真珠岩パーライトの性質を示す。

サラット工法は、パーライトを土質改良材として使用し、土と短時間混合させることに よって簡単に土の物理的・力学的性質を改善することができ、しかもパーライトの焼成・ 発泡から土砂との混合まで一貫した工程(システム)で運用されるため非常に経済的であ る。この工法は、図 6.1、写真 6.1に示すようにパーライト焼成プラントと混合プラント から構成されている。パーライト焼成プラントでは、原料の真珠岩を粉砕、粒度調整した 精石を高温の焼成炉で急速に加熱・発泡させた後、サイクロンで分級した細粒分をパーラ イトコレクターに導きパーライトとして回収する。一方、混合プラントでは、原土とパー ライトを強制2軸ミキサーで撹拌混合した後、改良土がミキサーの底部から排出されベル トコンベアーでダンプトラックに積込まれる。この工法では、パーライト焼成プラントか ら貯蔵バックおよび混合プラントまでの設備が密封されているため、パーライトの飛散に 伴う環境問題は生じない。また、パーライト焼成プラントを併設することで現場において 必要量のパーライトが即時に入手できるという利点もある。以下にパーライト土質改良工 法の開発経緯について述べる。

近年、LNGおよびLPG用低温金属二重殻タンクの老朽化や都市開発により撤去される低 温タンクの解体に伴って発生する使用済みの保冷パーライトの大量処分が最大のネックに なっている。その理由として、保冷パーライトは微粒子で非常に軽いため、産業廃棄物と して処理する際に飛散公害を招きかねないこと、かさ高なので処分場に運ぶまでの運送費 がかかる等があげられる。これに対して、既に、パーライト処理に関わる画期的な技術「パ ーライト土砂混合処理工法」¹⁰⁾を開発、実用化している。この工法は、パーライトの容積 を1/10程度に減らすことが可能なため処理コストが低減でき、しかも完全密封型のため土 砂との混合時にパーライトが飛散するという心配もなく環境に優しい特徴を有している。 パーライト土砂混合工法は、1987年、東京ガス根岸工場において冷熱発電用コールドボッ クスの定期補修に伴い発生するパーライト処理の実証実験および表6.4に示す低温タンク の撤去工事をとおして、タンク解体等に伴って発生する大量のパーライトを短期間で大量 に処理する工法として確立された。

パーライト土砂混合工法では、減容効果に加え、パーライトと土砂を混合させることに より土質や土壌が改良されるという効果も認められたことから、この性質を利用して建設 発生土や河川・湖沼等から出る底泥浚渫土を良質土に変えて盛土や植栽基盤材として有効 利用できる「パーライト土質改良工法(サラット工法)」を開発した。図6.2にパーライト 土砂混合工法およびパーライト土質改良工法の概要を示す。 次項のパーライト土質改良工法の評価では、土質改良効果、土壌改良効果に加え、パー ライトの減容化についても評価する。

原材料		真珠岩									
組成(標準)	SiO ₂	AI_2O_3	Fe ₂ O ₃	CaO	K ₂ O	Na ₂ O					
(%)	75	14	0.9	0.1	4.2	3.5					
密度	0.076g/cn	0.076g/cm ³ (発泡ビーズ状)									
pН	中性(7)										
	耐火性	1,200℃で溶融しない									
	断熱性	熱伝導率0.042~0.058w/mkと低い									
特徴	耐薬品性	ガラス質のため化学的に極めて安定									
	その他										

表 6.3 真珠岩パーライトの性質

【パーライト焼成プラント】

【混合プラント】

- 真珠岩を粉砕粒度調整した精石をパーライト焼成プラントにて高温で焼成 発泡させパーライトを製造する。
- 2 発泡したパーライトをサイクロンで分級し、細粒分をパーライトコレクター に導きパーライトとして回収する。
- ③ 混合プラントでは、原土とパーライトを強制2軸ミキサーにて撹拌混合し、 良質土に改良する。
- ④ 混合プラントでは、土壌改良資材等の投入も可能で、改良土を植栽基盤材として利用することもできる。

図 6.1 パーライト土質改良工法

パーライト焼成プラント

混合プラント

写真 6.1 パーライト土質改良プラント現場設置状況

場所	タンク規模	保冷パーライト量	撤去時期
東京ガス根岸工場	2.5万kL LPGタンク×2基	4,000m ³	1989~90年
	1.7万kL LPGタンク×1基		
東京ガス豊洲工場	1.25万kL LPGタンク×1基	4,600m ³	1994~95年
	0.9万kL LPGタンク×1基		

表 6.4 パーライト土砂混合工法の適用実績

図 6.2 パーライト土砂混合処理工法とパーライト土質改良工法の概要

6.4 パーライト土質改良工法の評価 – パーライト減容化

新品パーライトおよびLPG低温タンクの解体に伴い発生する保冷用パーライトと現地発 生土等を用いた混合試験を行い、パーライトの減容化を評価した。

6.4.1 室内混合試験

(1) 試料および試験条件

試験に使用した試料を表6.5に示す。試料1は今回の実験用に購入した含水比48.4%のシ ルトである。試料2は東京ガス根岸工場で採取されたシルトであり、72.9%の含水比を示す。 また、試料3は豊洲工場で採取された火山灰質粘性土であり、46.9%の含水比を有している。 試料3については、事前に実施した室内混合試験により得られた含水比とパーライト減容 率の関係を基に¹¹⁾、パーライトの減容率が最小となるように含水比(w=64.2%)を調整し ている。なお、含水比の相違によるパーライト減容率の最大と最小との差は僅か1.4%であ った。

表6.6に混合試験に使用したパーライトの密度を示す。LPG低温タンクから抜取った保冷 用パーライトは、長期間使用されている間に圧縮や磨耗によって体積が減少したため、新 品のパーライトに比較し密度が高くなったと考えられる。根岸工場のパーライトは豊洲工 場のものに比較し劣化による体積減少程度が大きく、密度はρ_d=0.15g/cm³であった。

写真6.2に示すホバート型ミキサーを使用して、試料とパーライトを5分間混合した。

(2) 試験結果

図6.3にシルトにおけるパーライト混合比とパーライト減容率の関係を示す。混合比は、 「原土」と「パーライト」との混合割合(体積比)を示す。また、パーライト減容率は、 「混合前のパーライト体積」に対する「混合後のパーライト体積」の割合を百分率で表し たものである。

新品パーライトの体積は混合前の体積の1/10(減容率約10%)に、また、保冷用パーラ イトにおいても、混合前の1/5(減容率20%)程度に減容化している。

図6.4に火山灰質粘性土におけるパーライト混合比とパーライト減容率の関係を示す。シ ルトと同様に混合比が増加するにしたがい減容率が増加する。保冷用パーライトの場合、 混合比1:2の時に減容率が6%と最小になり、混合前の体積の1/15程度に減少することが 明らかになった。

図6.5にパーライトの種類とパーライト減容率の関係を示す。混合する土砂の種類に関係 なく新品パーライトの減容率は保冷用パーライトに比較し小さな値を示しており、パーラ イトの密度が減容率に大きな影響を与えていると考えられる。

6.4.2 実機プラント混合試験

(1) 試料および試験条件

混合試験には、表6.5に示す試料2の根岸工場での発生したシルトと試料3の豊洲工場で 発生した火山灰質粘性土を用いた。また、パーライトは表6.6に示す低温タンクから抜取っ た保冷用パーライトを利用した。混合方法としては、写真6.1に示す混合プラントにより保 冷用パーライトと現地発生土を3分間混合した。 (2) 試験結果

図6.6にシルトにおけるパーライト混合比とパーライト減容率の関係を示す。多少のばら つきはあるが、室内混合試験結果と同様、混合比の増加にしたがいパーライト減容率は増 加傾向を示すとともに、混合比1:3で減容率は10~20%となる。図6.7に火山灰質粘性土 における混合比とパーライト減容率の関係を示す。火山灰質粘性土を利用した実機プラン ト混合試験では、減容率の測定に加え、写真6.3に示すように現場で盛土を行い、盛土の体 積を測量した。その結果、データにばらつきは見られるものの平均的には室内混合試験と 同様7%程度の減容率が認められた。

6.4.3 パーライト減容化の評価

- 1) LPG低温タンクから抜取った保冷用パーライトと現地発生土を用いた混合試験に より、パーライトの減容化が定量的に把握された。
- 2) パーライトの劣化状況により減容化の程度は異なるが、劣化程度が比較的小さいパ ーライトの場合は、現地発生土と混合することにより2~12%減容化することが明 らかになった。また、劣化程度が大きいパーライトの場合においても、適切な混合 比を選定することにより減量率を平均的に15%程度にすることが可能である。
- 3) パーライト土質改良工法を利用して、低温タンクの解体に伴って発生する使用済みの保冷パーライトを現地発生土と混合することにより、混合土の体積を15%程度増加させるだけでパーライトを処理することが可能である。また、次項で述べるが混合土が良質土に改良されることも確認されている。このため、パーライト土質改良工法は、使用済みパーライトの処分方法とし大変有用な工法であると評価できる。

≒支支利	計約夕故	含水比	土粒子の密度	液性限界	塑性限界		粒度	分布	
武科宙方	武社口小	(%)	(g/cm ³)	(%)	(%)	礫	砂	シルト	粘土
1	シルト	48.4	2.71	42	30	0	17	57	26
2	シルト	72.9	2.64	85	39	0	6	65	29
3	火山灰質粘性土	46.9	2.79	83	46	10	29	34	27

表 6.5 試験に使用した土質試料の物理的性質

表 6.6 試験用いたパーライトの種類と密度

パーライトの種類	パーライトの密度 (g/cm ³)	
新品パーライト	0.06	
低温タンクから抜取った	根岸工場	0.15
保冷用パーライト	豊洲工場	0.08

写真 6.2 ホバート型ミキサー

写真 6.3 プラントで混合試験した混合土の体積測量

図 6.3 混合比とパーライト減容率の関係(現地発生土〔シルト〕および実験用シルト)

図 6.4 混合比とパーライト減容率の関係(現地発生土[火山灰質粘性土])

図 6.5 パーライトの種類とパーライト減容率との関係

図 6.6 混合比とパーライト減容率の関係(現地発生土〔シルト〕、実機プラント混合試験)

図 6.7 混合比とパーライト減容率との関係(現地発生土、実機プラント混合試験)

6.5 パーライト土質改良工法の評価 – 土質改良効果

土質改良が困難な粘性土を対象とした室内混合試験および現地発生土を利用した実機プ ラント混合試験を行いパーライト土質改良工法の土質改良効果を評価した。

6.5.1 室内混合試験

高含水の均質な粘性土を原土とし、パーライトと室内で混合した試料を用いて室内土質 試験を行い、混合土の土質改良効果を確認した。

(1) 試料および試験条件

試験に用いた原土の物理的性質および試験条件を表6.7および表6.8に示す。また、表6.9 に高含水の粘性土を用いた室内土質試験の試験項目と試験数量を示す。

含水比79.8%、粘土分59%の粘性土を原土とし、この原土とパーライトとをホバート型 ミキサーで3分間混合したものを試験試料として用いる。原土とパーライトの混合比は、 体積比で1:1、1:2、1:3、1:4、1:5である。試験としては、土粒子密度試験、含水比試験、 締固め試験、コーン試験および一軸圧縮試験を実施した。

(2) 試験結果

(a) 土粒子密度、単位体積重量の低下

図6.8にパーライト混合比と土粒子密度の関係を、また、図6.9に混合比と混合土の単位 体積重量、密度、飽和度との関係を示す。パーライトの混合量が増加するにしたがい、土 粒子密度、単位体積重量、乾燥密度および飽和度は何れも減少する傾向にある。

(b) 粒度分布の変化

図6.10に混合土の粒径加積曲線を示す。原土の砂分が1%程度に対して、混合比1:3、1:4 および1:5の混合土においては14%~21%と砂分が増加している。これは、パーライトを混 合することによりベトベトした泥土がさらさらの粒状体に変化したことからも明らかであ る。

(c) コンシステンシーの改善

図6.11に混合土のコンシステンシーを示す。原土が液性限界 W_L =85.4%、塑性限界 W_P =41.5%を示すのに対し、混合土は W_L =80.1%~82.1、 W_P =43.9%~54.1%を示す。また、 塑性指数は前者が I_P (W_L - W_P) =43.9%、後者が I_P =26.0%~38.2%を示す。この両者を比較 すると、液性限界はほぼ変らないが塑性限界は大きくなるため、塑性指数が小さくなる傾 向を示している。

液性限界と塑性限界、および自然含水比との関係から求められるコンシステンシー指数 に着目すると、原土がI_C=0.1に対して混合土はI_C=0.3~1.0を示す。コンシステンシー指 数は、軟弱土の流動に対する抵抗性を示す指数であり、粘性土の相対的な硬さおよび安定 度を意味する。原土はI_C≒0であり自然含水比が液性限界に近く、原土を乱せば液状化を呈 するなど著しく不安定化する危険性があることを示している。これに対して、混合土はパ ーライトの混合割合が増えるに伴いI_Cが1に近づくため、安定性が向上していることが明ら かである。

(d) 含水比の低下

図6.12にパーライト混合比と混合土の含水比の関係を示す。パーライトの混合量が増加

するにしたがい混合土の含水比は減少する。その減少割合(勾配)は初期含水比に関係な くほぼ一様な値を示す。

図6.13にパーライト混合比と混合土の含水比および最適含水比の関係を示す。パーライトの混合量が増加するにしたがい含水比は低下するとともに、最適含水比に近づく。この ことから、パーライトの混合比が大きくなるにしたがい、土は締固めやすくなり盛土などの施工が容易になる。

(e) 締固め特性の向上

図6.14にパーライト混合比毎の含水比と乾燥密度の関係を示す。また、図6.15に混合比 と乾燥密度の関係について示す。最大乾燥密度は、パーライトの混合量が増加するに伴い 減少し、混合比が1:3以上になると乾燥密度が最大乾燥密度の90%(一般に盛土施工で要求 される締固め度)を上回ることがわかる。

(f) 強度の増加

図6.16、図6.17、図6.18および図6.19にパーライト混合比と混合土のコーン指数、一軸 圧縮強さ、CBR値および三軸圧縮強さの関係を示す。コーン指数、一軸圧縮強さ、CBR値 および粘着力、せん断抵抗角は、パーライトの混合量とともに増加し、特に混合比1:3以上 (CBR値は1:4以上)になると急増していることが明らかである。

6.5.2 実機プラント混合試験

LPG用低温金属二重殻タンクの解体に伴い抜取った保冷用パーライトと現地発生土を 利用して実機プラントによる混合試験を実施した。本試験に先立ち、同様の試料を用いた 室内混合試験を行っている。

(1) 試料および試験条件

表6.10に試料および試験条件を示す。なお、室内混合試験には、パーライトの減容化を 評価する際と同様の試料、すなわち、表6.5に示す試料3の火山灰質粘性土を用い、パーラ イトの減容率が最小となるように¹¹⁾含水比(w=64.2%)を調整している。また、実機プラ ント混合試験においては、現地発生土とパーライトとの混合割合が1:2および1:3になるよ うにパーライト供給量を調整したが、実際は1:2.25および1:3.38の混合割合となっている。 含水比については、65%となるように加水調整している。

(2) 試験結果

図6.20、図6.21に各試験より得られた混合比と乾燥密度およびコーン指数との関係を示 す。この結果から以下のことが明らかである。

混合土の乾燥密度については、室内混合試験、実機プラント混合試験の何れにおいても、 混合比1:2~1:3付近の88%のデータが最大乾燥密度の90%以上の値を示しており、転圧後 の混合土は締固め度の高い良好な状態になっていると考えられる。

混合土のコーン指数については、混合比1:2以上の95%のデータがブルドーザーの走行可 能なqc≧0.5Mpaとなっており、さらに混合比が1:3を越えるとqcは急激に増加することから、 良好な改良効果が得られていると考えられる。

- 6.5.3 土質改良効果の評価
- 1) 高含水の均質な粘性土とパーライトを混合することにより、粘性土がさらさらの状態に土質改良されることが明らかになった。これは、微細粒土が密に詰まった状態の単粒構造であった粘性土が、パーライトと混合されることにより一種の団粒構造に変化するとともに、土粒子間に存在していた間隙水がパーライト中に吸収されたため、高含水の粘性土が砂質土のように改善されると考えられる。写真6.4に混合前のパーライト粒子と混合後の土粒子・パーライト粒子の破片を示す。また、写真6.5に高含水の粘性土とパーライト混合処理(混合比1:3)後のさらさらの混合土を示す。
- 2) 転圧敷均しが困難である高含水の軟弱な粘性土とパーライトを用いた室内混合試験において、パーライトの混合割合を増加させるにしたがい、締固め特性、コーン指数および一軸圧縮強度等力学的性質が向上することが明らかとなった。特に、混合比が1:3以上になると乾燥密度が最大乾燥密度の90%以上の値になるとともに、コーン指数、一軸圧縮強度等が急激に増加している。
- 3) 現地発生土(火山灰質粘性土)と低温タンクから抜取ったパーライトを用いた実機 プラント混合試験においても室内混合試験結果と同様の土質改良効果が得られ、混 合比1:2でブルドーザーの走行が可能である状態までコーン指数が改善されている。

採日	取場所	茅ヶ崎住宅造成工場現場における田圃の土						
土質分類		粘性土						
	土粒子密度	$\rho_s=2.712$ g/cm ³						
<i>th</i> m	自然含水比		W _n =79.8%					
初理	液性限界	W _L =85.4%						
的	塑性限界	W _P =41.5%						
性	粒度	砂分	2%					
貝		シルト分	39%					
		粘土分	59%					

表 6.7 試験に使用した原土の物理的性質

表 6.8 試験条件

項目	内容
試験	 1 土粒子密度試験 (JIS A 1202) ② 含水比試験 (JIS A 1203) ③ 締固め試験 (JIS A 1210) ④ コーン指数試験 (JGS T 716) ⑤ 一軸圧縮試験 (JIS A 1216)
試料	① 原土(粘土、W _n =79.8%) ② 原土とパーライトの混合土 ここに、原土とパーライトの混合比は、 体積比で 1:1、1:2、1:3、1:4、1:5とする。
混合時間	3分を標準とする。(ホバート型ミキサー使用)

	試験項目				試験数量				
検討項目		百十	 混合土 (原土:パーライト)						—————————————————————————————————————
		原工	1:1	1:2	1:3	1:4	1:5		偏考
	含水比	3	3	3	3	3	3	18	初期含水比:3種類(Wn,Wn+10,Wn+20)
	土粒子密度	1	1	1	1	1	1	6	_
物理的特性	粒度	1	1	1	1	1	1	6	_
初连的特任	液性限界、塑性限界	1	1	1	1	1	1	6	_
	単位体積重量	1	1	1	1	1	1	6	_
	締固め試験	1	1	1	1	1	1	6	_
	コーン試験	1	1	1	1	1	1	6	_
	一軸圧縮試験	-	1	1	1	1	1	5	供試体作成
刀字的符性(强度、 支持力、耐久性)	三軸圧縮試験(UU)	-	1	1	1	1	1	5	拘束圧3種類、供試体作成
	室内CBR試験	1	1	1	1	1	1	6	水浸4日、供試体作成
	長期浸水室内CBR試験	3	3	3	3	3	3	18	水浸10日、30日、90日、供試体作成
	三相分布測定	1	1	1	3	1	1	8	試験にはJISA 1210(突固めによる土の締固
	透水試験	1	1	1	3	1	1	8	め試験)に準拠して作成された試料を用い ろ
植栽基盤としての適	有効水分(PF)測定	1	1	1	3	1	1	8	° 0 °
用性	pH試験	1	1	1	1	1	1	6	
	電気伝導度(EC)	1	1	1	1	1	1	6	
	陽イン交換容量(CEC)	1	-	-	-	-	-	1]
その他	比表面積試験	1	-	-	1	-	-	2	

表 6.9 高含水の粘性土を用いた室内土質試験の試験項目と試験数量

図 6.8 パーライト混合比と土粒子密度の関係

図 6.9 パーライト混合比と単位体積重量、密度、飽和度の関係

図 6.10 パーライト混合土の粒径加積曲線

図 6.11 パーライト混合比とコンシステンシーの関係

図 6.12 パーライト混合比と含水比の関係(その 1)

図 6.13 パーライト混合比と含水比の関係 (その 2)

図 6.14 含水比と乾燥密度の関係

図 6.15 パーライト混合比と乾燥密度の関係

図 6.17 パーライト混合比と一軸圧縮強さの関係

図 6.19 パーライト混合比と三軸圧縮強さの関係

表	6.10	試料お	よび試験条件
	0.10	H=11100	

項目	内容
計略	①締固め試験(JIS A 1210)
言 氏 尚史	②コーン指数試験(JGS T 716)
	〔室内混合試験用〕
	① 原土(火山灰質粘性土、自然含水比46.9%)
	② 原土とパーライトの混合土
	ここに、原土とパーライトの混合比は、
	体積比で 1:1、1:2、1:3、1:4、1:5とする。
	また、原土の含水比が約65%になるように加水する。
試料	加水後の原土の含水比は64.2%である。
	〔実機プラント混合試験用〕
	① 原土(火山灰質粘性土、自然含水比39.9~57.2%)
	② 原土とパーライトの混合土
	ここに、原土とパーライトの混合比は、
	体積比で 1:1、1:2、1:3、1:4、1:5とする。
	また、原土の含水比が約65%になるように加水する。
混合時間	5分間(ホハート型ミチサー使用) 「史地プニン」に見る計除)
	こ夫歳ノフノト派言訊験」 3分間(混合プラントの二軸横型ミキサー使用)

混合前のパーライト粒子 混合後の土粒子とパーライト粒子の破片

写真 6.4 混合前のパーライト粒子と混合後の土粒子・パーライト粒子の破片

高含水の粘性土

パーライトと混合処理後の粘性土

写真 6.5 高含水の粘性土とパーライト混合処理後の粘性土

6.6 パーライト土質改良工法の評価 – 土壌改良効果

パーライト土質改良工法により水分飽和状態の軟弱な粘性土が植栽に適した土に改良さ れるか否かを確認するために、前項の高含水の粘性土を用いた室内混合試験で調整した試 料を用いて、水分特性、三相分布、透水性等の物理性試験、および、pH、電気伝導度等の 化学性試験を実施した。その結果を表6.2で示す土壌改良土に対する要求品質と照合して本 工法の土壌改良効果を評価した。

6.6.1 試料および試験条件

試験に用いた試料および試験条件を表6.11に示す。

含水比79.8%の粘性土を原土とし、この原土とパーライトをホバート型ミキサーで3分間 混合する。その後、締固め試験方法に準拠し突き固めた混合土を試験試料として用いる。 原土とパーライトの混合比は、体積比で1:1、1:2、1:3、1:4、1:5である。物理試験として は、水分特性(pF)試験¹²⁾、三相分布試験¹³⁾、飽和透水性試験¹⁴⁾および比表面積試験¹⁵⁾を 実施した。また、化学性試験としては、pH測定¹⁶⁾、電気伝導率測定¹⁷⁾および陽イオン交換 容量測定¹⁸⁾を実施した。

6.6.2 物理性試験結果

- (1) 水分特性(pF)
- 表6.12および図6.22に混合土の水分特性(pF)試験結果を示す。
- (a) 最大容水量と圃場容水量

図6.22に示すpFと体積含水率の関係より、最大容水量(pF0)は原土および各混合土と も58.7~63.8%と概ね60%前後である。これに対して、圃場容水量(pF1.8)は、原土およ びパーライト混合比が1:1、1:2の混合土では55.4~58.4%となっているが、混合比が1:3以 上の混合では46.8~47.3%と低くなっている。この最大容水量と圃場容水量の差は重力水 量(低ポテンシャル水量)であり、この差の大きい混合比1:3以上の混合土には、原土およ び混合比1:1、1:2の混合土よりも多くの重力水が存在している。重力水量は、大量の灌漑 水あるいは降水を受け水分で飽和したpF0の最大容水量の土壌から、毛管張力によって保 持されるほぼ上限であるpF1.8の圃場容水量まで重力によって容易に排除される水量であ る。この重力水量の増加は次項の粗間隙と毛管間隙で述べる粗間隙量の増加によるものと 考えられる。

(b) 全有効水分量と易有効水分量

表6.12および図6.22より圃場容水量と永久しおれ点(pF4.2)の差である全有効水分量 (pF1.8~pF4.2)は、原土および混合比1:1、1:2の混合土で11.4~18.6%であるのに対し て、混合比1:3以上の混合土では21.9~29.7%と増加している。また、植物が吸収しやすい 易有効水分量(pF1.8~pF3.0)も原土および混合比1:1、1:2の混合土で9.1%以下であった ものが、混合比1:4以上の混合土では17.0~20.4%まで増加している。この有効水分量は pF1.8の圃場容水量からpF3.0の植物生育阻害水分点まで、あるいはpF4.2の永久しおれ点 までの細かい土粒子間および粒子内の間隙に保持される毛管水量である。これは次項「粗 間隙と毛管間隙」で述べる毛管間隙量の増加によるものである。 (c) 結合水分量(永久しおれ点=pF4.2以上)

永久しおれ点以上になると、水分は高ポテンシャルな結合水の領域となってくる。図6.22 より結合水分量(永久しおれ点=pF4.2以上)は原土および混合比が1:1、1:2の混合土につ いては39.2%~47.0%となっているが、混合比1:3以上になると17.1%~25.4%と減少して いることがわかる。

この試験結果は、パーライトを混合しても高ポテンシャルな結合水分量が増加しないこ とを示している。これは比表面積試験結果で述べるようにパーライト自体の比表面積が非 常に小さいことから考えて、パーライト自身がもつ結合水間隙量が少ないことが一因であ ると考えられる。植物は永久しおれ点以上の高ポテンシャルな水分は利用できないため、 パーライト混合によって結合水分量が増加しなくても植物の生育は問題ないと考えられる。

以上、水分特性試験の結果から、粘性土に混合するパーライト量を増加させていくと、 最大容水量はそれほど変化しないが、容易に排除される重量水量および植物にとって利用 可能な有効水分量が増加し、また、植物にとって利用不可能な結合水分量が減少すること が明確になった。図6.23に混合比と易有効水分量の関係を示す。この図より、パーライト との混合比を1:3以上にすることにより、混合土が易有効水分量の要求品質である80l/m³ を満足することが明らかである。

(2) 粗間隙と毛管間隙

表6.12を基に混合土と各水分特性(pF)間の体積含水率との関係を作成したものを図6.24 に示す。この図において、各水分特性(pF)間の体積含水率の差は、径を異にする間隙量を 表している。

間隙には大小様々な大きさがあり、pF0の体積含水率とpF1.8の体積含水率との差を粗間 隙量、pF1.8~pF3.0との差を細間隙量、pF3.0~pF4.2の差を微細間隙量、pF4.2以上を結 合水間隙量と呼ぶ。なお、細間隙量と微細間隙量を合わせて毛管間隙量と呼ばれている。

これらの間隙のうち、植物の生育にとって重要なのは粗間隙と毛管間隙である。粗間隙 は粗い土粒子間の非毛管間隙であり、約50μmより大きな相当直径の間隙である。この粗 間隙の中の水は前述の重力水であり、この粗間隙は土壌に良い透水性と通気性を与えてい る。

一方、毛管間隙は植物へ容易に供給できる毛管水分および易有効水分を保持している。 原土およびパーライト混合比1:1、1:2の混合土と比較して、混合比1:3以上の混合土では 粗間隙量が2.1~6.0%から11.6~17.0%へ、また、毛管間隙量は11.4~18.6%から21.9~
29.7%へ増加する。これに対して、結合水間隙量は39.2~47.0%から17.1~25.4%へ減少し ている。これは、原土とパーライトを混合することにより、微細粒土が密に詰まった状態 の単粒構造であった原土が一種の団粒構造を形成し、団粒内の間隙量が増加したことによ るものと考えられる。図6.25に混合比と粗間隙率の関係を示す。パーライトとの混合比を 1:3以上にすることにより、植物にとって望ましい粗間隙量10~20%程度を満足する。

(3) 三相分布・密度

(a) 初期締固め状態の三相分布

表6.13および図6.26に三相分布試験結果を示す。

図6.26に混合比と三相分布との関係を示す。原土および混合比1:1、1:2の混合土につい

ては、三相の中で液相の占める割合が55~65%と多く、気相が2~10%と少ない。これに 対して、混合比が1:3以上になると液相は27~42%に低下するが、気相は28%~50%にま で増加している。

原土および混合比が1:1、1:2の混合土では気相が少なく、通気性が悪い状態と考えられる。この様な土壌に植栽すると湿害の発生する恐れがある。これに対して、混合比1:3以上の混合では気相の占める割合が増加することにより通気性が向上している。混合比1:3以上の混合土において要求品質である固相率30%以下および有効根群域の条件である気相率 15~20%以上を満足する。

(b) 密度

図6.27に混合比と湿潤密度および間隙率の関係を示す。パーライトの混合比が大きくな るにしたがい湿潤密度が小さくなり、逆に間隙率が大きくなる。これは、多孔質な粒子で あるパーライト自体が混合されたことにより、混合土中の間隙が増加したことが要因と考 えられる。

このようにパーライトを混合することにより、パーライト混合土の湿潤密度が顕著に下 がることを考えると、最近普及してきている構築物上の人工地盤緑地帯に用いる軽量土と しての活用も十分に期待できる。

(4) 飽和透水係数

図6.28に混合比と飽和透水係数の関係を示す。これより、飽和透水係数は図6.25の混合 比と粗間隙量と同様な傾向示し、粗間隙量が増加するとともに、飽和透水係数も増加する ことがわかる。植栽基盤における要求品質と比較すると、混合土の飽和透水係数は、混合 比1:3以上で1×10⁻⁴ cm/s 以上となり要求品質を満足する透水性が得られる。飽和透水係数 が10⁻⁷ cm/s オーダーの土壌は透水性が非常に悪い粘性土に該当する。また、10⁻⁴ ~ 10⁻³ cm/s のオーダーになると微細砂あるいは砂・シルト・粘性土混合土などに該当する。

(5) 比表面積

表6.14に原土、パーライトおよびパーライト混合土の比表面積を示す。原土に比較しパ ーライト(ビーズ状、粉末状)の比表面積が約1/20~1/30と非常に小さいことが判明した。 原土の場合は、図6.24から明らかなように、pF4.2以上の結合水間隙を多くもっているた めに比表面積も大きい。また、親水的な表面をもっているため後述する陽イオン交換容量 も比較的高い。しかし、パーライト中には結合水間隙が少ないため、比表面積が非常に小 さな値を示していると推察される。この結果は、先に述べた混合土の水分特性において、 混合比が1:4あるいは1:5のように大きくなるとpF4.2以上の結合水分量が少なくなること、 さらに後述するパーライト自体の陽イオン交換容量の値が非常に小さいことからも妥当で あると考えられる。
6.6.3 化学性試験結果

表6.15にpH、電気伝導度および陽イオン交換容量の化学性試験結果を示す。

この表より、パーライト自身がpH=7.0(中性)であることから中性を示す原土と混合しても混合土のpHは6.9~7.1とほとんど変化せず、pHの値は要求品質である4.5<pH<8.0を 満足している。

混合土の電気伝導度(EC)はパーライトが塩分濃度に関与しないことから、原土の性質 をそのまま反映するとともに、要求品質である1.0ms/cm>ECを満足している。一方、陽イ オン交換容量(CEC)については、原土は32meq/乾土100gと植栽基盤における要求品質 と比較しても高い値を示しているが、パーライト自体は2meqと非常に低い値であることか ら、混合土としては、混合比1:1~1:5に対して23~30meqと原土より低くなっている。し かし、要求品質である6meq/乾土100g以上は満足していることから、土壌の肥料成分保持 能や植物養分供給能を評価する上で特に問題になることはない。

以上のことから、パーライトを混合しても原土の化学的性質を大きく変えることがなく、 パーライト自体が植物の生育に対して支障をきたすものでないことが明らかになった。

6.6.4 土壌改良効果の評価

- 高含水の粘性土とパーライトを混合すると、パーライト混合比の増加に伴い植物にとって利用可能な易有効水分量が増加するとともに、利用不可能な結合水分量が減少することが明確になった。
- パーライト混合比の増加に伴い粗間隙量が増加し、混合土の透水性、通気性が向上 することが明らかになった。
- 3) パーライト混合土の湿潤密度および乾燥密度が顕著に下がることを考えると、最近 普及してきている構築物上の人工地盤緑地帯に用いる軽量土としての活用も十分 に期待できる。
- 4) 試験試料である高含水の粘性土においては、パーライトを体積比で原土の3倍以上 混合すると物理性に対する要求品質である易有効水分量、飽和透水係数、固相率を 満足することが明らかになった。
- 5) 化学的性質を示すpH、EC、CECについてもパーライト混合土は要求品質を満足し ており、パーライト自体が植物の生育に支障をきたすものではないと評価できる。

項目	内容
試験	①物理性試験 水分特性(pF)試験、三相分布試験、飽和透水性試験、比表面積試験 ②化学性試験 pH測定、電気伝導度(EC)測定、陽イオン交換容量(CEC)測定
試料	 原土(粘性土、自然含水比 79.8%) 原土とパーライトの混合土 ここに、原土とパーライトの混合比は、 体積比で 1:1、1:2、1:3、1:4、1:5とする。
混合時間	3分を標準とする。(ホバート型ミキサー使用)
試料調整	物理性試験に用いる試料については、JISA 1210突き固めによる土の締め固め試験方法に準拠し、10cmモールドに1層17.5cm、2.5kg ランマーで落下回数10回の突き固めを行い、作成したモールド試料の中心部から100mlのコアサンプルを採取した。

表 6.11 試料および試験条件

図 6.22 原土およびパーライト混合土における水分特性(pF)と体積含水率の関係

図 6.23 パーライト混合比と易有効水分量の関係

	pF0(飽和)	pF1.8	pF3.0	pF3.5	pF4.2	全有効水分量(%)	易有効水分量(%)
試料名	体積含水率(%)	体積含水率(%)	体積含水率(%)	体積含水率(%)	体積含水率(%)	pF1.8-pF4.2	pF1.8-pF3.0
	最大容水量	圃場容水量	植物生長阻害水分点	初期しおれ点	永久しおれ点	体積含水率で表示	体積含水率で表示
原土	63.8	57.8	48.7	43.0	39.2	18.6	9.1
混合土(1:1)	60.5	58.4	51.9	50.4	47.0	11.4	6.5
混合土(1:2)	58.7	55.4	48.5	46.3	41.0	14.4	6.9
混合土(1:3)	58.9	47.3	38.1	31.4	25.4	21.9	9.2
混合土(1:4)	62.6	46.9	29.9	22.9	19.0	27.9	17.0
混合土(1:5)	63.8	46.8	26.4	20.1	17.1	29.7	20.4

表 6.12 原土および混合土の水分特性 (pF) 試験結果《体積含水率で表示》

()内は原土:パーライトの混合比を示す

試料名	固相率(%)	液相(%)	気相(%)	間隙比	間隙率(%)	飽和度(%)	湿潤密度(g/cm ³)	乾燥密度(g/cm ³)
原土	33	65	2	2.02	67	97	1.523	0.872
混合土(1:1)	35	60	5	1.89	65	92	1.488	0.889
混合土(1:2)	35	55	10	1.83	65	85	1.447	0.900
混合土(1:3)	30	42	28	2.33	70	60	1.154	0.734
混合土(1:4)	25	32	43	3.07	75	43	0.938	0.631
混合土(1:5)	23	27	50	3.34	77	36	0.831	0.558

表 6.13 原土および混合土の三相分布試験結果《初期締固め状態》

()内は原土:パーライトの混合比を示す

図 6.24 パーライト混合比と各 pF 段階の体積含水率(間隙量)の関係

図 6.25 パーライト混合比と粗間隙率の関係

図 6.26 パーライト混合比と三相分布の関係

図 6.27 パーライト混合比と湿潤密度、間隙率の関係

図 6.28 パーライト混合比と飽和透水係数の関係

試料名	比表面積(m ² /g) (実測値)	比表面積(m ² /g) (計算値)※		
原土	35.1	-		
混合土(1:1)	-	31		
混合土(1:2)	-	26.9		
混合土(1:4)	-	22.4		
混合土(1:5)	-	21.6		
パーライト (ビーズ)状	1.3	-		
パーライト(粉末)状	2.2	-		

表 6.14 原土、パーライトおよびパーライト混合土の比表面積

()内は原土:パーライトの混合比を示す

※: 原土およびパーライト(ビーズ状)の実測値を基に算出した。

表 6.15 化学性試験結果

試料	百十	混合土(原土:パーライト)					
測定項目	原工	1 : 1	1:2	1:3	1:4	1:5	
р H(H ₂ O)	7	7	7	6.9	7.1	7.1	
電気伝導度(EC) (ms/cm)	0.08	0.08	0.08	0.09	0.08	0.07	
陽イヤン交換容量(CEC) (meq/乾土100g)	32	30	28	26	24	23	

6.7 パーライト土質改良工法の適用による成果

東京ガス扇島工場では、パーライト土質改良工法を適用して、埋設式地下タンクの建設 に伴い発生した掘削土の内約2万m³を植栽基盤として有効利用¹⁹⁾²⁰⁾することにより、緑化 工事において約30%(約8,000万円)²¹⁾²²⁾のコスト削減を実現した。植栽基盤として土質 改良した掘削土は、砂と粘性土が約7:3の割合で混在する混合土であった。また、高いpH を示すとともに高塩分濃度を含有していた。このため、改良材としては、パーライトに加 え、pH低下を目的とした過燐酸石灰およびNaイオン溶脱促進用に硫酸カルシウムを使用 した。

図6.29に植栽基盤材の必要量とパーライト土質改良工法による土質改良費の関係を示す。 客土を購入する場合は、その量に相当する建設残土を構外処分する必要がある。扇島工場 の実績では、約8,000m³以上の掘削土を土質改良し植栽基盤として有効利用することによ り、客土購入に残土構外処分を加えた費用に対してコスト削減を図ることが可能であった。

図 6.29 植栽基盤材必要量とパーライト土質改良工法による土質改良費

6.8 まとめ

パーライト土質改良工法の土質および土壌改良効果を確認するために、高含水の均質な 粘性土とパーライトを混合させた試料を用いた室内混合試験および現地発生土を利用した 実機プラント混合試験を行い、以下の結論を得た。

- パーライト土質改良工法は原土のpHを変化させない環境に優しい土質改良工法であり、高含水の粘性土に対してパーライトの混合割合を増加させるにしたがい、締固め特性およびコーン指数、一軸圧縮強度等力学的性質の向上を図ることができ、 盛土等に有効利用できることが明らかになった。
 - a)室内混合試験で使用した高含水の均質な粘性土とパーライトを混合することにより、土粒子間に存在する間隙水がパーライト中に吸収され、粘性土がさらさらの状態に土質改良されるとともに、力学的特性が向上する。特に、混合比が1:3以上になると乾燥密度が最大乾燥密度の90%以上の値になるとともに、コーン指数および一軸圧縮強度等が急激に増加する。
 - b) 現地発生土(火山灰質粘性土)とパーライトを実機プラントで混合処理した現地 試験においても室内混合試験と同様の土質改良効果が得られ、混合比1:2でブルド ーザーの走行が可能である状態までコーン指数が改善された。
- 2) LNGおよびLPG用低温タンクの解体に伴って発生する使用済みの保冷パーライト を大量処分する際に本工法を適用することにより、現地でパーライトを処理するこ とができるばかりでなく、現地の軟弱な土砂を土質改良することが可能である。また、保冷用パーライトを産業廃棄物として運搬処理する必要がないためコストの大 幅な削減が期待できる。
- 3) 高含水の均質な粘性土に対してパーライトの混合割合を増加させるにしたがい、植 栽基盤として必要な有効水分量、粗間隙率、三相分布、飽和透水係数等物理的性質 が向上することが明らかになった。また、パーライト自身が、pH、電気伝導度、 陽イオン交換容量等化学的性質に関して植物の生育に支障を与えないことが明ら かになった。室内土質試験で用いた高含水の粘性土に対して体積比で3倍以上のパ ーライトを混合することにより、有効水分量、粗間隙率、三相分布、飽和透水係数 において植栽基盤として必要な要求品質を満足した。
- 4) パーライト土質改良工法により、建設発生土、河川・湖沼等から発生する底泥浚渫 土をさらさらな良質土に改良することができ、その改良土を盛土および植栽基盤等 に有効利用することが可能である。
- 5) パーライト混合土の湿潤密度および乾燥密度が顕著に下がることを考えると、最近 普及してきている構築物上の人工地盤緑地帯に用いる軽量土としての活用も十分 に期待できる。
- 6) パーライト土質改良工法を適用し、約2万m³もの掘削土を植栽基盤として有効利用 することにより、緑化工事において約30%(約8,000万円)のコスト削減を実現した。

- 6.9 第6章の参考文献
 - 1)「緑化のための植栽基盤整備マニュアル」、東京電力、pp.4、1985.3
 - 2)「環境保全林形成のための理論と実践」、(財)国際生態学センター、pp.74、1995.10
 - 3) 「緑化のための植栽基盤整備マニュアル」、東京電力、pp.38~66、1985.3
 - 4) 「公園・歩行者専用道路等設計要領(案)」,住都公団, pp.8~pp.12, 1984.5
 - 5)「緑化のための植栽基盤整備マニュアル」、東京電力、pp.20、1985.3
 - 6)「緑化事業における植栽基盤整備マニュアル(分科会試案)」,日本造園学会造園雑誌, Vol.48, NO.2, pp.138, 1984
 - 7)「緑化のための植栽基盤整備マニュアル」、東京電力、pp.26~pp.27, 1985.3
 - 8)「緑化・植栽工の基礎と応用」,地盤工学会 土質工学ライブラリー20, pp.13~pp.16, 1995,10
 - 9) 中野正文, 高橋行茂, 伊佐山輝洋, 前田勝司:「パーライト土質改良システム(サラット工法)の 開発と利用」, 土木技術53巻8号, pp.103, 1998.8
 - 10) 中野正文, 高橋行茂, 伊佐山輝洋, 前田勝司: 「パーライト土質改良システム (サラットエ法)の 開発と利用」, 土木技術53巻8号, pp.101~pp.103, 1998.8
 - 11)「パーライト土砂混合処理工事報告」,東京ガスエンジニアリング・三井建設, pp.30 ~pp.34, 1995.5
 - 12)「土壤標準分析・測定法」、日本土壌肥料学会、pp.36~pp.42、1986.11
 - 13)「土の理工学性実験ガイド」、農業土木学会、pp.58~pp.61, 1983.11
 - 14)「土壌標準分析・測定法」、日本土壌肥料学会、pp.54~pp.59、1986.11
 - 15)「土の理工学性実験ガイド」、農業土木学会、pp.45~pp.49, 1983.11
 - 16)「土壌標準分析・測定法」、日本土壌肥料学会、pp.70~pp.71、1986.11
 - 17)「土壌標準分析・測定法」、日本土壌肥料学会、pp.74~pp.76、1986.11
 - 18)「土壌標準分析・測定法」、日本土壌肥料学会、pp.150~pp.154, 1986.11
 - 19)「建設残土を再利用」、ガス事業新聞 第1815号、1997.6.11
 - 20) 「掘削残土を客土に」, 日本工業新聞 第15743号, 1997.7.18
 - 21)「扇島工場建設第 I 期工事プロジェクト報告 土木技術編 (7/7)」, 扇島プロジェク トグループ, pp.9, 1999.1
 - 22)「実例 コストダウンの手法40選」、日経コンストラクション、pp.39、1998.10.9

第7章 結論

LNG基地の立地については近年厳しさを増しており、立地環境によっては、近隣火災、 飛来物に対する高い安全性を有し、景観にさらに配慮したLNG貯蔵設備が求められている。 この様な厳しい立地環境に対応するために、屋根をコンクリート製とし貯槽設備全体を地 盤面下に埋設し、さらに屋根上部に植栽による緑化を施したLNG地下式貯槽の開発が必要 とされていた。本論文は、厳しい立地環境に建設する埋設式LNG地下式貯槽を実現するた めに、低ライズのコンクリート製ドーム屋根の設計技術と構築技術、および掘削土の植栽 基盤への有効利用技術に関する研究を取りまとめたものである。

これらの研究成果を基に、容量20万KLの埋設式LNG地下式貯槽3基¹⁾²⁾³⁾⁴⁾と容量6万KLの 埋設式LPG地下式貯槽1基⁵⁾⁶⁾を実現することができた。20万KLの埋設式貯槽では、屋根の 高さを7.8mと従来の鋼製屋根型式地下式貯槽に比較し2.4m屋根高さを低くすることによ り、約8.7億円⁷⁾のコスト削減を達成した。さらに、パーライト土質改良工法を適用し、約 2万m³もの掘削土を植栽基盤として有効利用することにより、緑化工事において約30%(約 8,000万円)のコスト削減を実現した。

「低ライズのコンクリート製ドーム屋根に関する設計技術」では、材料の非線形性を考 慮した幾何学的非線形解析による構造安定性照査方法の妥当性とドーム屋根の構造安定性 に関する照査方法について論じた。

ライズ・スパン比を1/16としたコンクリート製ドーム屋根を対象に1/20縮尺モデルの模 型破壊実験を実施した結果、材料の非線形性を考慮した幾何学的非線形解析によりコンク リート製ドーム屋根の変形挙動を精度良く追従できるとともに、破壊荷重を的確に算定し かつ破壊性状を判定でき、非線形解析による構造安定性照査方法の妥当性を実証できた。 さらに、既存の解析手法および各種基準による照査結果と比較するとともにそれぞれの方 法を総合的に評価し、低ライズのコンクリート製ドーム屋根の構造安定性に関する照査方 法を提案した。

「低ライズのコンクリート製ドーム屋根に関する構築技術」では、仮設鋼製屋根を底型 枠とし、コンクリート打設時の荷重を空気圧で支持するエアーサポート工法によりコンク リート製ドーム屋根を合理的に構築する方法について論じた。コンクリート製ドーム屋根 の構築技術として、トラス支保工、コンクリート製屋根のリフトアップ工法およびエアー サポート工法があるが、直径60、70m規模の大容量地下式貯槽においてはエアーサポート 工法が最も経済性に優れた構築方法であることを述べた。次に、エアーサポート圧力、コ ンクリート打設方法をパラーメータとした仮設鋼製屋根の座屈安定性に関するシミュレー ション解析を実施した。その解析結果を基に仮設鋼製屋根の仕様検討を行い、仮設鋼製屋 根の鋼材量を低減し、コンクリート製屋根の構築費を合理的にするためのエアーサポート 圧力およびコンクリート打設方法を提案した。

「掘削土の植栽基盤への有効利用技術」では、地下式貯槽の建設に伴い発生する掘削土 を植栽基盤等に有効利用するために開発したパーライト土質改良工法と本工法の土質改良 効果および土壌改良効果について論じた。パーライトと高含水の均質な粘性土を混合させ た試料を用いた室内混合試験および現地発生土を利用した実機プラント混合試験を実施し、 混合土の土質改良効果と植栽基盤材としての土壌改良効果を評価した。その結果、パーラ イト土質改良工法が原土のpHを変化させない環境に優しい土質改良工法であるとともに、 原土に対してパーライトの混合割合を増加させるにしたがい、締固め特性、コーン指数、 一軸圧縮強度等力学的性質の向上、および植栽基盤として必要な有効水分量、三相分布、 飽和透水係数等物理的性質の向上を図れることが明らかになった。

- 7.1 第7章の参考文献
 - 1) 中野正文:「LNG地下タンク建設技術の変遷と最新の技術開発」, 土木学会論文集 VOL No.39, pp.6~pp.12, 2001.6
 - 2)後藤貞雄、中野正文、中澤亨、黒田正信:「世界初の埋設式LNG地下タンクの開発と 建設」、コンクリート工学 Vol.35 No2、pp.18~pp.25、1997.2
 - 3) 中野正文,小河知之,綱川浩文:「世界最大級200,000kL埋設式LNG地下タンクの建設」,建設の機械化, pp.10~pp.16, 1998.4
 - 4) 中野正文,宮崎信一,瀬戸重喜,社本芳明:「埋設式LNG地下タンクのドーム屋根の施工 ~エアーサポート工法を利用した鉄筋コンクリート製屋根の施工~」,土木施工 Vol No.39, pp.74~pp.79, 1998.11
 - 5)津田勝利,中野正文,堤洋一,坪根康雄:「コンクリート製ドーム屋根の設計及び 構築概要」, 土木学会第52回年次学術講演会 VI-218, pp.131~pp.134, 1997.9
 - M.Moriya, M.Nakano, Y.Tsubone : Design and construction of prestressed concrete domed roof, Proceeding of the 13th FIP Congress, pp.147~pp.151, 1998.5
 - 7)「実例 コストダウンの手法40選」、日経コンストラクション、pp.35、1998.10.9

写真Ⅲ 屋根上部に植栽を施した埋設式地下式貯槽の外観【東京ガス㈱ 扇島 LNG 基地】 (左から、6万 KL LPG 貯槽、20万 KL LNG 貯槽×2基、20万 KL LNG 貯槽(仮設鋼製屋 根ジャッキアップ完了直後の状況)

写真Ⅳ エアーサポートエ法によるコン クリート製ドーム屋根第1リフト のコンクリート打設状況

写真V

埋設式 LNG 地下式貯槽の盛土法 面に植栽された樹木 (パーライト 土質改良工法による掘削土の植 栽基盤としての有効利用) 本論文は、筆者が東京ガス株式会社の技術者として、約10年間に渡り携わってきました 埋設式LNG地下式貯槽の建設に関わる技術開発である、低ライズのコンクリート製ドーム 屋根の設計、構築技術および地下式貯槽の建設に伴う掘削土を植栽用基盤に有効利用する ための土質改良技術をまとめたものです。

高知工科大学 学長 岡村 甫 先生には、コンクリート製屋根型式LNG地下式貯槽の開発 当初から本論文をまとめるまでの長期間に渡り懇切丁寧なるご指導とご教示を賜りました ことを心より御礼申し上げます。また、論文のご審査と、適切なご助言をいただきました、 高知工科大学大学院 社会システム工学コース 教授 島 弘 先生、草柳 俊二 先生、中田 愼 介 先生、藤澤 伸光 先生に心から御礼申し上げます。

東京大学 名誉教授 石原 研而 先生には、パーライト土質改良工法について開発から現 場の適用に至るまで懇切なるご指導を賜りましたことに心より感謝の意を表します。

筆者は、東京ガス株式会社に入社して以来約25年間一貫して、LNG地下式貯槽を初めと するLNG基地における土木建築設備に関する技術開発、設計、施工管理およびコンサルテ ィング業務を担当して参りましたが、この度の研究対象である埋設式地下式貯槽に関する 技術開発に携わる機会を与えて頂きました東京ガス株式会社の上司、先輩方にこの場を借 りまして深く感謝申し上げます。また、高知工科大学大学院博士課程において論文をまと めるに際して、深い理解を示していただくとともに、励まし、ご支援をいただきました東 京ガス株式会社 生産部 技術総括 エグゼクティブスペシャリスト 後藤 貞雄氏、生産部 設備管理グループマネージャー 神谷 篤志氏、生産部 生産エンジニアリンググループマネ ージャー 伊藤 健氏および生産部 生産エンジニアリンググループ 扇島建設プロジェクト チームの方々に厚く御礼を申し上げます。

低ライズコンクリート製屋根の設計技術および構築技術の開発を進める際には、株式会 社大林組、鹿島建設株式会社、清水建設株式会社、大成建設株式会社、三井住友建設株式 会社にご協力を賜りましたことに心より感謝いたします。

低ライズドーム屋根の模型実験およびその解析については、大成建設株式会社 土木本 部土木設計部 陸上第2設計室 課長 山本 平氏にご助言とご協力を賜りました。また、仮 設鋼製屋根の座屈解析においては、JFEエンジニアリング株式会社 エネルギーシステム技 術部 貯蔵・基地技術室 課長 櫻井 尚俊氏、設計室 松本 昌信氏にご指導とご協力を賜りま した。謹んで感謝の意を表します。

パーライト土質改良工法の開発に際しては、元三井建設株式会社 営業部長 前田 勝司氏、 JFEホールディング株式会社 DMEプロジェクトグループマネージャー 伊佐山 輝洋氏、東 京ガスエンジニアリング株式会社 設計部長 高橋 行茂氏、東京ガス株式会社 生産部 生産 エンジニアリンググループ 扇島建設プロジェクトチーム 主幹 川村 佳則氏、株式会社エ ムアンドピーエンジニアリング 設計第一部 部長代理 山田 悟氏に的確なご指導とご意見を 頂きましたことに対して、心より御礼申し上げます。

東京ガス株式会社 生産部 技術総括 エグゼクティブスペシャリスト 後藤 貞雄氏、株式 会社大林組 土木技術本部 統括部長 理事 白砂 健氏には、論文を査読していただき、適切 なご助言およびご指導を受け賜りましたことに心より感謝申し上げます。

最後に、この2年間、陰ながらあらゆる面で応援していただいた妻みどりに感謝の意を 表します。

