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Abstract 
 
The integrated computational model in this study is to calculate the chloride concentration 

in concrete under actual environmental conditions in the atmosphere. The integrated model 

consists of 3 minor models for understanding the mechanisms of environmental parameters 

influencing the chlorides attack to concrete struc tures. 

(1) The first model is considered as the study on airborne chlorides formation and 

transportation. The simplification model on the airborne chlorides formation and flying 

upward to the atmosphere is proposed. In sequence, the model of airborne chlorides 

transportation to the surface of concrete is further simulated. The wind speed is one of 

main parameters in airborne chlorides formation and transportation. The calculated 

result in this model is the accumulative airborne chlorides in a time interval. In this 

model is verified by the measurement of airborne chlorides by Public Work Research 

Institute, 1984-1986. 

(2) The second model is the calculation of accumulative chloride concentration on surface 

of concrete. The related parameters in this model are amount of airborne chlorides, 

surface roughness of concrete, types of structural members and rain. Rain effect is 

thought as the largest effect on the removal of chloride concentration on the surface of 

concrete. In the verification of this model, the experimental observation of chloride 

concentration on surface of existing structures in Kochi prefecture with time history is 

compared. 

(3) The third model is the computation for chloride concentration in concrete. The 

distribution of chloride concentration on surface of concrete obtained from the second 

model is used as the input of this model. The computation of chloride concentration in 

concrete is calculated by DuCOM program. The integrated model of these 3 steps of 

calculation is proved by comparing the monitoring data of chloride concentration of 

existing structures from Public Work Research Institute 2000. 
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1.1 General 

The asset management and sustainable construction is the aims of the future 

construction projects. For achieving management system, the service life-span 

prediction model is necessary due to the degradation of structures by the ambient 

environmental attack. One of the most noteworthy environmental problems  on the 

concrete structure is chloride attack resulting corrosion of steel bars. A simple schematic 

work on the service life prediction and maintenance [2,27] is shown as in Fig1.1. The 

model of life-span simulation due to the chloride attack only expresses in this study. It is 

shown that the infrastructure management on the structures near seashore needs a model 

that can predict the mechanism of chloride attack to concrete. 
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Fig.1.1: A simple Schematic of infrastructure management [2]. 

 

Life-span prediction of some infrastructures is necessary for durability, reliability and 

safety performances. The sustainable development of infrastructures is required to 
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maintain their performances over the long life. Maekawa, et al developed a life-span 

simulation model named DuCOM and COM3 for predicting overall structural behaviors 

[3-5]. The 3-D multi-scale coupled system is built on the thermo-hydro physics coded 

by DuCOM for early-aged concrete and nonlinear mechanics FEM coded by COM3 for 

seismic performance assessment of reinforced concrete. In the mechanic actions such as 

ground acceleration, gravity, temperature and shrinkage effects simulates in the COM3 

section. The concrete durability by environmental attacks can be simulated by DuCOM 

in any input data of environmental conditions. Therefore the analysis of chloride 

transport by DuCOM required the boundary condition of the ambient chloride contents. 

At this moment, there is none of the method to create such a boundary condition for a 

structure exposed in the atmosphere. In considering the chloride attack in concrete, 

time-step simulation model is necessary for calculating the amount of chloride 

penetration into concrete with time dependency. DuCOM is one of the appropriate 

computational program for analyzing chloride transport behavior. Whenever, the 

appropriate boundary condition is known, DuCOM is able to simulate the chloride 

transport in concrete. Thus the study of chloride transport in the atmosphere to the 

boundary surface layer under actual environment is required as shown in Fig.1.2. In an 

actual environmental condition, a particular location has a typical weather and a variety 

of the wetting-drying cycles. The wetting-drying cycle is one of the factors that 

influence the rate of chlorides penetration in concrete [6]. It is necessary to make the 

parametric study on the main environmental parameters, such as the wetting-drying 

cycles, relative humidity and amount of airborne chlorides. From preliminary study of 

the wetting-drying cycles and the ambient relative humidity cannot clarify the severity 

of the locations around Japan4). In sequence, other parameters are simulated on how 
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much each parameter has an effect on the chloride transport in concrete. The most 

effective parameter is declared as amount of airborne chloride available in a specific 

distance from seashore. It is also necessary to know the airborne chlorides at the 

location of the structure for use as complementary for chloride transport through 

concrete. The airborne chlorides in the atmosphere are able to classify the severity in 

each location around Japan. The airborne chlorides in various distances from the 

seashore were collected around Japan by ‘Public Works Research Institute’ [1]. 

However, the proper simulation based on this database is still in the progress by many 

researchers. In general discussion, the relationships among the available airborne 

chlorides, wind speed & directions, surface conditions of concrete, and amount of 

absorbed chlorides at surface of concrete are necessary for quantitative identification. 

Thus, a systematic computational model in analyzing environmental effect on the 

chlorides penetration in concrete is the most required in recent times.  

 

The systematic computational model of the chloride attack in concrete structure is 

divided into three sub-models. The first sub-model of the chloride attack has to be 

considered starting from the seashore just after forming of breaking water. The 

characteristic of coastline, landscape, seashore slope, and artificial landscape are 

important to regard as the supplement  of airborne chlorides at seashore. Then the 

transportation of airborne chlorides from breaking seawater through the atmosphere to 

the surface of concrete is extended. The second sub-model is the analysis on how many 

airborne chlorides accumulate on surface layer of concrete. After all, the computation on 

chloride transport in concrete is to obtain the chloride concentration along the covering 

depth of concrete. As a result, the systematic computation on real behavior with actual 
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environments is succeeded.  

  

 

 

 

 

 

 

 

 

 

Fig.1.2 Schematic of integrated simulation of chloride transport in concrete structures  

 

1.2 State of Problems 

 

As mentions above, the integrated multi-scale computational program named DuCOM 

had developed for support the simulation of chloride transport in any environmental 

conditions. DuCOM can simulate the chloride distribution in concrete in the severe 

environmental condition as submerged and tidal zones. The chloride attack on the 

structure in the atmosphere is able to simulate if the boundary condition and 

environmental effect were known. Thus, the analysis of chloride concentration by 

DuCOM requires an appropriate input data under actual environment. At present, there 

is no a proper method to simulate the actual environment and create a boundary 

condition for analysis by DuCOM. Moreover, the creation of the boundary condition at 

Airborne chlorides 
formation & Transportation

Input Output
Verification by 
data from 
PWRI 

1.

Accumulative chloride 
concentration on surface of 
concrete

Input Output
Verification by 
Experimental 
data (Kochi) 

2.

Chloride concentration in 
concrete by DuCOM

Input Output
Verification by 
data from 
PWRI 

3.

1. Input = U, distance, offshore topography               Output = Cair (mdh) 

2. Input =  Cair, concrete roughness, rain, wind, member types   Output = Time dependent Co

3. Input = Time dependent Co, w/c Output =  Cl concentration in concrete



 
New Durability Design Specification on Chloride Ions Penetration for RC Structures        Swatekititham S. 2004 

 6 

surface layer of concrete is complicated due to distribution of weather.  

The environmental factors of wind speed, wind direction, temperature, RH, airborne 

chloride and rain are mainly factors on accumulative chloride concentration at surface 

of concrete. Wind speed is thought as the driven force for transporting airborne particles 

to the surface of a structure. This medium is due to the directions, which has possibility 

to reach their destination. Temperature and RH are the nature pointing out the 

wetting-drying ratio and have effect on the penetration in concrete. Airborne chloride 

formation is a key factor to know how much airborne is formed at seashore and ready to 

transport whenever wind blows. Airborne chloride particles are supplied by the 

formation after wave breaking at seashore and wind speed. Rain is the main factor to 

reduce the amount of chlorides on the surface of concrete. At the same time, the 

increment of the degree of saturation allows the diffusion mechanism to occur rapidly. 

The equations for calculating the quantitative effects of the parameters are still not 

existed. The problems have to be solved systematically and it is time to do it 

immediately.   

 

1.3 Objectives of Study 

 

The objectives of this study are shown in Fig1.1 in a macro scale. The necessity of this 

study provides the systematic life-span simulation under actual environments. In order 

to succeed this aim, the computational model for the chloride formation, transportation 

and accumulation on concrete surface are necessary in order to obtain the chloride 

distribution in concrete under atmospheric environment. Next, the computational model 

can be used for the development of recent design method. This is also fulfilling the 
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design of the chloride distribution in concrete in any locations, specific types. Later on, 

the advantage of model is able to use as the prediction of the service life simulation in 

the field of asset management.  

 

Without this model, JSCE specification is a prediction model, which can be used to 

predict the service life. However the model in JSCE specification is a conservative 

method, this is only parameter of distance from seashore as the main parameter. From 

the monitoring of the existing structures in any locations around Japan, the chloride 

attack depends on the particular environmental conditions. As the result, the prediction 

of service life has low precision and high error leading to inefficient management 

system. For solving this problem, the new prediction proposed in this study can be 

applied instead of the present method. The improvement of the model helps the 

management and monitoring system being better decisive factor.  

 

Afterward, the new service life prediction model is pertinent for the development on this 

field. The individual analysis of the structures or the integration of the entire structural 

situation is a supporting tools in the asset management system both sections of micro 

and macro economies.  
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2.1 Airborne chloride transportation in the atmosphere 

 

In 1983, Japan Roads Associa tion [7] started monitoring the structural conditions about 

chloride attack and cracking provision. The selection of investigated structures is mostly 

aging up to 50 years. The limitation of the investigated structures is within the distance 

500m from seashore, Bridge with span larger than 15 m, Constructed structure before 

year 1972. The RC and PC structures are examined totally 920 structures around Japan. 

The Fig.2.1.1 shows the investigation of soundness condition of the structure around 

Japan. This figures include various ages of structures, thus the details of each 

investigated structures are necessary. Nevertheless, the consideration of time history for 

overall investigated structures is able to elucidate the severity of each zone. The 

summarization of the severity was proposed as shown in Fig. 2.1.2.  

 

Table 2.1.1: Classification of severity of chloride attack 

 

The investigation of the airborne measurement [1,7] in various locations has been 

organized followed JIS Z2381 [28]. The apparatus is the steel plate of 10x10cm 

dimensions. Windblown transports airborne chlorides to attach with the steel plate. The 

collection is done for 1-month interval for enough noticeable quantity. The roof is also 

Zone Locations Distance from seashore SEVERITY
Up to 100m from seashore I
Other distances II
Up to 100m from seashore I
100-200 m II
200-300 m III
Splash zone I
Up to 100m from seashore II
100-200 m III

C Others

B
Japan Sea
Coastline

A Okinawa
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set for protecting the rain effect to the removal of airborne chloride. The total airborne 

chlorides were measured and calculated the amount in mg/dm2/month. The average 

chloride content is calculated by  

 

                      

At
WCL

C air ×
×

=
 

where, Cair is daily average of airborne chloride (mg/dm2/day) 

      CL is collected airborne chloride (mg/ml) 

      W is amount of water used for washing out from steel plate (ml) 

       t is exposure time (days) 

      A is specific surface area (= 1dm2) 

 

The airborne chloride observed value with the distance from seashore is the exponential 

function with the attitude of airborne chloride content at seashore as shown in Eq.2.1.2.  

 

  1000
55.1

, .
l

airoair eCC
−

=     (2.1.2) 

 

where, Cair is daily average airborne chlorides (mg/dm2/day) 

      Co,air is daily average of airborne chloride at seashore (mg/dm2/day) 

       l  is distance from seashore (m) 

 

(2.1.1) 
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Fig.2.1.2: Level of severity in the particular region around Japan 

 

Another relationship of airborne chloride with distance from seashore was purposed 

later by PWRI [1] in 1985. The overall investigation of airborne chloride around Japan 

was organized and observation was done during 1984-1986 in monthly data. The level 

of airborne chlorides around Japan is shown in Fig.2.1.4, and the relationship is 

averaged by Eq. 2.1.3. 

 

   Cair = Cair,1 (0.001*l)-0.6                   (2.1.3) 

where, Cair,1 is airborne chlorides at 1 km from seashore (mg/dm2/day) 

 

The consideration of wind speed and wind direction is developed subsequently, but a 

precise function between wind speed and airborne chlorides is complicated. 

 

The most severe 
Moderate Severe 
Mild conditions 
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Fig.2.1.4: The investigation of airborne chlorides by PWRI [1] 

 

Many relationships were purposed in a high scatter. From literatures [1,8,9,10], the 

amount of airborne chlorides in a distance is thought as the function of the third power 

of wind speed, and wind direction as shown below,   

 

    Cair = f (U3, r)            (2.1.4) 

 

where,  Cair is daily average airborne chloride (mg/dm2 /day) 

U is wind speed (m/s) 

r is wind ratio in landward direction 

 

The regression analysis of a numbers of experimental results was proposed as a choice 

for analyzing wind speed relationship [19]. The formulas do not show a particular 
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function, but they were recommended by classifying the data into 

- Low-scale of airborne chlorides 

Cair =0.0515.r. U2.27  R=0.488 (2.1.5) 

- Large-scale of airborne chlorides 

Cair =0.0150.r. U3.29  R=0.671 (2.1.6) 

where, R is regression value 

 

Wind speed, wind direction and distance from seashore were examined by many 

literatures. Conversely, the amount of airborne chlorides cannot explain how it affects to 

the chloride transportation. The medium to link between the available chloride ions and 

the penetration into concrete should be analyzed.  

 

2.2 Computational program on chloride transport in concrete 

 

The three-dimensional multi-scale couple system of thermo-hygro interaction is 

constructed and coded by DuCOM. DuCOM is a simulation tool for early aged concrete 

in basic hardened concrete properties with time scale. The Integrating of DuCOM with 

the non- linear mechanics FEM coded by COM3 described in Fig.2.2.1 [5] for seismic 

performance of reinforced concrete conducts the durability simulation considering with 

both damage by loads and weather actions. The scheme of this simulation model of 

chloride transport in concrete named DuCOM involves the incorporation with mainly, 

  

2.2.1  Cement hydration and thermal conduction [3] 

2.2.2  Pore structure formation and moisture equilibrium and transport [3] 



 
New Durability Design Specification on Chloride Ions Penetration for RC Structures        Swatekititham S. 2004 

 16 

2.2.3  Free/bound chloride equilibrium and transport [4] 

2.2.4  Carbonation and dissolved carbon dioxide migration [4] 

2.2.5  Corrosion of steel and dissolved oxygen transport [4] 

 

Mention in the Section 2.2.3, the governing equations for chloride transport in 

cementitious materials by advective-diffusive phenomenon with time dependent are 

shown as 

 

   ∂(φ.S.Ccl)/∂t + divJcl – Qcl = 0            (2.2.1) 

 

             Jcl = (-φ.S.Dcl.∇Ccl/Ω) + φS.u.Ccl         (2.2.2) 

 

where,  φ is porosity,  S is degree of saturation,  

Ccl is free chloride concentration in pore solution (mol/l), 

Jcl is flux of chloride ion (mol/m2.s),  

Qcl is reduction of free chloride,  

Dcl is chloride ion diffusivity in pore solution phase (m2/s),  

Ω is tortuosity of pore as equal to (π/2)2 

 

Chloride transport in cementitious materials under actual conditions is an 

advection-diffusion phenomenon. Mass balance of free chlorides can be expressed 

Eq.2.2.1 and Eq.2.2.2. 
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Fig.2.2.1: Integration of microphysics-DuCOM and macro-structural analysis-COM3 [5] 

Fig.2.2.2: Relationship between total chloride content and fixed chloride factor [11] 
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Chlorides in cementitious materials have free and bound components. The bound 

chlorides are settled by reaction with aluminates and formed in quantitative value as in 

Fig.2.2.2. The bound chlorides were classified into 2 phases of adsorbed and chemically 

combined components. From the formulations, the total and free chlorides can be 

obtained whenever mix proportion, powder properties, curing, RH, temperature and 

ambient chloride concentration (mol/l) were set.  

 

Fig.2.2.3: Example of chloride concentration in concrete submerged in 3% NaCl  

Fig.2.2.4: Example of chloride concentration in concrete in looping of 3-days wetting +   

         1 0 -days drying 
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The diffusion and condensation expressed the mechanism of chloride transport in 

submerged conditions. Considering the constant boundary condition, the ambient 

chloride concentration is 3% of NaCl. In Fig.2.2.3, the analyzed results show time 

dependent chloride concentration in various depths. The chloride concentrations at 

surface from 1 year to 40 years are constant. This is explained by the constant boundary 

condition. The analysis is extent to the simulation of non-steady state of ambient 

condition on fluctuated RH. The advection affects by wetting-drying cycles, and the 

ratio of the cycles has a difference of inside concentration. The surface layer of chloride 

content at 2-3 cm from surface fluctuates due to wetting and drying periods. Wetting 

period leads the diffusion and advection become highly effective. Drying period causes 

the declination of chloride content and RH at surface layer, afterward the wetting can 

have a big influence of advection. At 2-3 cm from surface, chloride concentration is 

condensed higher than the value of boundary condition as shown in Fig.2.2.4.  

 

2.3 Design Specification and investigation of existing structures 

 

The investigation of deterioration and structural status was done around Japan by PWRI 

[12]. More than 2000 members were observed in various conditions of rust, corrosion, 

crack and spalling.152 members were examined the chloride concentration in concrete 

by coring the samples from non-reinforced section as shown in Table.2.3.1. Locations 

and structural types were classified in the table as well. 10 zones around Japan were 

divided for individual characteristic of weather conditions. 6 types of concrete structures 

were also categorized by crest structure, abutment, retaining wall, culvert, rivers 

structure and tunnel. 
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Table2.3.1: Investigation of structures in each location 

Structural types Hokkaido Tohoku Kanto Hokuriku Chubu Kinki Chukoku Shikoku Kyushu Okinawa Total

Crest structure 40 28 63 24 31 53 37 32 55 8 371
Abutment 40 38 65 24 38 52 40 31 54 8 390

Retaining wall 40 25 56 24 36 44 40 31 43 9 348
Culvert 40 35 64 24 34 53 39 27 48 6 370

Rivers structure 40 41 60 27 32 47 37 28 52 0 364
Tunnel 37 35 25 16 22 27 30 27 32 5 256
Total 237 202 333 139 193 276 223 176 284 36 2099

 

Fig.2.3.1: Concrete coring for chloride concentration test and strength test  

 

The Fig.2.3.1 shows the coring sample in the length longer than 200mm. 5 pieces of 

2cm size were cut and tested for chloride concentration by averaging at middle of 

section. Thus, the average chloride contents express 5 positions of 1,3,5,7 and 9cm. 

Later section, 10cm depth was cut for strength test to evaluate the hardened properties 

of concrete. The observed values were compared with the results from Fick’2nd Law 

equation recommended by JSCE Specification, 2002 [13]. 

      

 

where,   C(x,t) is chloride ions concentration at time t (kg/m3) 

  Co is chloride ions concentration at surface of concrete (kg/m3) 

   x is covering depth (cm) 

   D is apparent diffusion coefficient (cm2/yr) 
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   t is exposure time (yrs) 

   C(x,o) is initial chloride ions concentration (kg/m3) 

 

Fig. 2.3.2: Estimation of initial chloride concentration from the examination [12] 

 

Fig.2.3.3: Surface chloride concentration and distance relationship. 
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The 152 structures were classified into 4 groups, 

Group A: Eq.2.2.1 fits to 5 investigated points to the calculation 

Group B: Chlorides in the depth 0-2 cm is little smaller than the calculated value and 

other points are in trend 

Group C: Chlorides in the depth 0-2 cm is dramatically smaller than calculated value 

and other points are in trend 

Group D: Chlorides in the depth 0-2 cm and 2-4 cm are dramatically smaller than 

calculated value and other points are in trend 

 

In Fig.2.3.2, the calculation of initial chloride concentrations in this investigation was 

plotted with the year of construction. In general of the structures constructed before 

1985, the initial chloride concentration was observed at larger than 0.6 kg/m3. The 

appendix A. shows the selected investigated data on the chloride concentration and the 

depth of carbonation. The data was selected due to the enough information in analysis 

only. The surface chlorides at 0-2 cm of the samples in group A, B and C were plotted 

with the relationship with distance from seashore. At the same time, the comparison 

with the recommended value in JSCE specification was done in log-scale. It expressed 

high dispersion more than two times difference. However this is necessary to find out 

the cause of deviated data from the real structures in a particular location.  
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3.1 Introduction 

 

The purpose of this chapter is to investigate the mechanism of chlorides transport, 

especially focusing on the effect of wetting-drying conditions on the penetration. 

Basically, the movement of chloride ion into concrete is due to two main mechanisms; 

the diffusive movement caused by concentration differences of chlorides, and advective 

transport due to bulk suction of pore water. The moisture content or RH inside concrete 

subjected to an ambient environment, such as complex wetting-drying condition, does 

not have constant distribution throughout the depth. The surface region at 0-3 cm could 

have a fluctuation in terms of RH inside pore structure when it is subjected to wetting 

and drying conditions. Moreover, a value of an ambient RH also controls the rate of the 

chlorides penetration. Of course, properties of concrete, such as strength, porosity and 

its distribution, are used to determine how chloride ions behave in concrete. In this 

paper, the mechanisms of chloride movement under steady-state condition and several 

types of wetting-drying cycles are discussed. As usual of real environment, each season 

has a typical environmental condition and all of them have different wetting-drying 

cycles. At each location in Japan from East to West or from Hokkaido to Okinawa, the 

difference of environmental condition brings some difficulties to evaluate severity of 

chloride ions. The important point is to show some facts of the real mechanism of 

chloride movement as a basic knowledge to evaluate the effect on the chlorides 

transport in actual environments. 

 

A numerical tool simulating concrete properties, such as the microstructure 

development has been proposed by Maekawa, et al [3]. Then the target of this 
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technology has been widened by installing the chloride transport model [4]. The 

combination of these 2 models can simulate the development of microstructure and RH 

with time and the amount of total chloride ions concentration in each period. The 

software calculating the chloride ions concentration in concrete based on the above 

model is named as DuCOM program. Following these models, the simulated results on 

the chlorides transport in several wetting-drying cycles are obtained. The adaptation of 

this model can be used to realize the quantitative effect of concerned parameters in 

macro level. Thus, DuCOM is a tool to obtain the result for analysis in this paper. 

 

3.2 Steady-State Simulation 

 

In order to understand how CL moves inside and outside along concrete depth, many 

cases of environment were set partially starting from steady state of environment and 

various wetting and drying period. Some parameters such as ambient RH and wetting 

and drying interval were studied by Swatekititham et al [14]. The concrete property is 

concrete with w/c of 0.55 under standard curing condition of submerged 28-days 

condition. The steady-state chloride concentration in the ambient relative humidity 

under constant of ambient chloride concentration at 3% NaCl is simulated. The results 

of 3 different RH of 30%, 70% and 99.9% show in Fig.2.3.1-2.3.3. 

 

In low level of ambient RH, the RH distribution inside concrete at surface layer 

decreases to reach equilibrium of hydraulic pressure in pore solution to environment. 

However, in deeper position inside concrete, RH decreases gradually until all position is 

equilibrium. Within long-term analysis until 40 years, RH is same as ambient 
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environment throughout the depth inside concrete. 
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Fig.3.2.1: Chloride distribution (kg/m3) and relative humidity (%) profiles at 30%   
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Fig.3.2.2: Chloride distribution (kg/m3) and relative humidity (%) profiles at 70%   

         ambient RH, 
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3.3 Cyclic Wetting-Drying Simulation  

 

The input data for replicating the mechanism is the concrete with water to cement ratio 

of 0.55 in 28-days standard curing in water with temperature of 20°c. The chloride ions 

concentration of environment is set equal to 0.51mol/l correspond ing to 3% of salt 

concentration. The first input data in Fig.3.3.1 is the consideration of long-term wetting: 

3-days wetting and 10-days drying condition. The second set in Fig.3.3.2 is short-term 

wetting: 1-day wetting and 10-days drying. In these 2 sets, the same conditions for 

wetting and drying states are given by; 30% RH is given for drying, whereas 99.9% RH 

is set for wetting. The third set in Fig.3.3.3 is short-term iteration of 1-day wetting and 

1-day drying. Moreover, the fourth set in Fig.3.3.4 is the short-term wetting condition 

same as in the third set, nevertheless 60% RH is substituted for drying phase in order to 

compare RH effects.  

 

The results are shown in 4 sets of figures in different wetting and drying conditions. The 

first figure is in steady state condition and the second to fourth figures are 3-days 

wetting and 10-days drying, 1-day wetting and 10-days drying (RH 30%) and 1-day 

wetting and 10-days drying (RH 60%), in sequence. All figures show the distributions 

of chloride ions concentration after having wetting-drying cycles with RH distribution. 

Fig. 3.3.1 shows 2 results under different ambient RH: 30% and 99.9%. In fact, high 

RH condition accelerates diffusive movement of chloride ions. Thus, the concentration 

at surface would be considered as a function of ambient RH. The maximum 

concentration in concrete is about 2% by weight of cement in case of 30% RH and 4% 

in case of 99.9% RH.  
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Fig. 3.3.1: Chloride distribution (% Wcement) in the cyclic wetting-drying condition 

of 3-10 case [Drying RH = 30% and Wetting RH = 99.9%] 
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Fig.3.3.4: Chloride distribution (% Wcement) in the cyclic wetting-drying 

condition of 1-10 case [Drying RH = 60% and Wetting RH = 99.9%] 

By this result, the steady state of RH condition, the chlorides concentration has a peak at 



 
New Durability Design Specification on Chloride Ions Penetration for RC Structures        Swatekititham S. 2004 

 30 

the surface of concrete. Next, Fig. 3.3.2 is set as long-term wetting of 3-days wetting 

and 10-days drying. The wetting period is set as 99.9% RH and the drying period is set 

as 30% RH. As a results, the RH gradient from wet-to-dry relates with condensation and 

advection force in pore solution in an exponential function. 

 

Looking at the RH distribution, the RH increases up to 99.9% during the wetting and 

decreases to 30% during the drying. In a cycle of wetting and drying, RH is nearly 

constant throughout the depth after 5cm because of very low rate of moisture transfer 

forward and backward. The combination of high gradient of RH near surface and a 

constant RH after 5cm results in the non-recovered of RH at the depth of 3.5-5 cm. That 

leads us to understand that wetting cannot increase RH all over the depth to be the level 

of 99.9% at last of wetting time. However, the case of long-term wetting can prevent 

dropping of RH at later 5cm depth and keep constant with time. Compared with the case 

in Fig. 3.3.3 of short-term wetting, that is 1-day wetting and 10-days drying condition, 

the wetting period is too short in order to prevent the decreasing of RH inside as in the 

long-term wetting. The large gradient in terms of RH distribution, especially at 3-5 cm, 

causes large water suction, which accelerates chloride migration into concrete. The 

analytical results show that the peak of chloride concentration exists at the position of 

lowest RH. During the wetting period, RH from surface and inside will be transferred to 

the depth of 3.5 cm and bringing chloride ions to accumulate in this position. In 

opposite, the peak of chloride ions is decreased by diffusing and moisture movement 

outward from concrete during drying. Comparing influences in wetting with those in 

drying, the effect during the wetting has higher impact than that during drying. The 

parameters influencing on the chloride content at peak position are the wetting period 
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and the ambient RH. According with the  samples of several wetting-drying cycles, 1-10 

case in Fig 3.3.2 is the most severe in condensation at the peak position inside concrete. 

The gradient of RH in dry-to-wet state is large as 30% to 99.9%. However the gradient 

of RH is reduced to 60% to 99.9% range, how much it influences to the condensation 

inside concrete. The peak position had been thought that the chloride concentration is 

not as severe as in case of large gradient of RH. This phenomenon is expressed in Fig. 

3.3.4 of short-term wetting with 60% RH during drying. Its RH distribution is not 

dramatically different, as the result the chloride content at peak position is not shown as 

high as previous case. As mention above, the peak chloride concentration in concrete 

increases exponential when the gradient of wet-to-dry RH is large.  

 

3.4 Actual Cyclic Wetting and Drying Simulation 

 

The simulation in this section is done in the objective of analyzing actual environmental 

effects for structures in the atmosphere. The environmental conditions in Kochi 

Prefecture are used to simulate the chloride transport. The change of the weather is not 

as severe as the uniform wetting-drying cycles due to the gradually change in 

temperature and relative humidity. Therefore the relative humidity in a year is scattered 

due to the change of the seasons. The chlorides transport in the winter season and the 

rainy season are totally different. During a month in each season, the amount of raining 

day is different, thus the wetting period to drying period ratio makes the chloride 

transport in different amount and results to different of the total chloride concentration. 

The environmental conditions are investigated in every hour. The study was separated 

into three particular environmental conditions of  
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Case 1) 10-years iteration of monthly weather in the winter of (Feb 2003); the 25-93% 

of ambient relative humidity and 5-10% of raining period are expressed as the 

environmental conditions. 

Case 2) 10-years iteration of monthly weather in the rainy season of (Jul, 2003); the 

45-93% of ambient relative humidity and 15-20% of raining period are expressed as the 

environmental conditions 

Case 3) 10-years iteration of the weather in one-year period (Sep 2002 to Aug 2003); 

the 25-93% of ambient relative humidity and 10% average of raining period are 

expressed as the environmental conditions. 

 

The scattering of the ambient relative humidity in the atmosphere does not effect on the 

chloride transport as severe as the uniform wetting-drying cycles described as in 

Section 3.3. The scattering of the environmental conditions of Kochi in Feb and Jul are 

shown in Fig.3.4.1 and Fig.3.4.2.  

Fig.3.4.1: Ambient Rain and RH in Kochi prefecture, February 2002  
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Fig.3.4.2: Ambient Rain and RH in Kochi prefecture, July 2002 

 

The actual environment is modified during raining by assuming ambient RH is 99.9% 

due to surface saturation. It is noted that RH of 99.9% represents wet condition instead 

of 100% due to the capable of equilibrium achievement. The characteristic of weather 

condition in Feb has low raining and high scattering of RH. Contrasting with, the 

weather in Jul has high raining and low scattering of RH.  

Fig.3.4.3: Chloride distribution in case 1 calculated by DuCOM  
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Fig.3.4.4: Chloride distribution in case 1 calculated by DuCOM 

Fig.3.4.5: Chloride distribution in case 1 calculated by DuCOM 

 

The ambient chloride concentration is fixed constant at 0.51mol/l. The concrete of water 

to cement ratio of 0.55 with 28-days water curing is applied. The simulation result s of 
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relative humidity changes much. The scattering of the ambient relative humidity in the 

atmosphere does not effect on the chloride transport as severe as the uniform 

wetting-drying cycles. The actual environments change gradually and lead the 

consequence of low advection in concrete similar to the uniform wetting-drying cycles. 

 

3.5 Summary  

 

The study of macro analysis of environmental effect of ambient relative humidity and 

cyclic wetting-drying condition tells us what the main parameter on chloride transport is. 

The results from this study are in steady and non steady states. The wetting-drying 

cycles are used to compare with the actual investigated data existing at this moment. 

Therefore, the actual environment cannot explain the different of severity in various 

locations around Japan. Next, the simulation of chloride transport for the structures in 

the atmosphere has mainly parameters on the available airborne chlorides and how they 

transport to concrete. Flow chart in Fig.1.2 shows the dimension of this research work 

and environmental condition has the effect on the surface chloride accumulation more 

than its on chloride transportation in concrete. Thus scope of this research work is set as 

the study of the airborne formation, transportation and accumulation at the surface of 

concrete structures. Others environmental factors, such as wind and seashore scenery 

become the parametric study.  

 

 

 

 



 
New Durability Design Specification on Chloride Ions Penetration for RC Structures        Swatekititham S. 2004 

 36 

CHAPTER 4 

 

 

Mechanisms of airborne 
chloride formation and 
transport  
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4.1 General 

Recently, some coastal areas are being utilized as residential areas. However, various 

salt damages of the structures in coastal areas are well known experimentally. The basic 

mechanism of salt damage has been clarified depending on the concentration of chloride 

ions available in the atmosphere, humidity and temperature. 

 

In thinking of countermeasures for salt damage, it is important to know how sea salt is 

formed, transported in the atmosphere and adsorbed on the structural surface. The 

prediction of airborne chlorides volume and sizes distribution at the coastal areas is 

dependent on the condition of the weather and location. 

 

The airborne chloride is formed by the sea wave breaking produces spray droplets, 

which is estimated as the second power of the wind speed. In high wind speed, spray 

droplets rapidly increases the effective surface area of the ocean and therefore, should 

enhance the exchange of any constituent or property normally transferred across the 

air-sea interface. In addition, wind causes the driven force to form a certain wave height. 

Thus energy form wave in the relationship with wave height was proposed [35-36]. 

 

Sea spray plays a role in the marine boundary layer as well. Spray dehydrates into 

sea-salt aerosol (a major component of marine aerosol) and, thus contributes to climate 

forcing either directly by sunlight [15]. Relative to bulk seawater, the bubbles from 

which most spray droplets and sea-salt aerosols originate are also concentrated in 

marine surfactants and, consequently, enhance the air-sea fluxes of particular organic 

matter. Moreover, breaking seawater by hitting a breaking wall and wave-blocked 
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concrete is thought as a main criterion of the formation. The magnitude of the spray 

effect as a function of wind speed, however, is a subject of heated debate. Likewise, 

Makin 1998 concluded from his modeling that ‘for wind speeds below 18 m/s, there is 

no drastic impact of spray on heat and moisture flux. However, it is considered as a 

minor factor that is ignored in the analysis in this paper. The formation and 

transportation of airborne chlorides is summarized as   

- Wave breaking and airborne chlorides formation 

- Particle size and weight distribution 

- Gravitational falling out 

- Adsorption & absorption on surface of building structures 

 

The formation of aerosol particles at seashore in the atmosphere has distribution in the 

large size of available airborne particles in the air [18]. The airborne particle sizes are 

from 2 µm to more than 100 µm in the range of coarse particle distribution. Most of the 

particles in the coarse mode are formed by the frictional processes of comminuting, 

such as sea spray from breaking waves and the slow growth of particles from the 

accumulation mode. Typically, the airborne particles of a few tens to hundreds per cm3 

are in the coarse mode in an urban area. The transport process depends on the 

mechanisms of meteorological conditions of wind velocity, wind direction, turbulence 

by wind atmospheric stability. The transportation of each particle differs in distance due 

to the gravitation falling out. The speed of falling out and time consuming before 

touching the ground surface is able to use for simulation as the time which windblown 

can carry the particles to further distance. The anonymous of airborne chlorides 

formation by wave breaking at seashore leads the problem as unknown boundary 



 
New Durability Design Specification on Chloride Ions Penetration for RC Structures        Swatekititham S. 2004 

 39 

conditions. There are some of the methodologies for measuring airborne particles [33, 

34], but it is not a simple device and also expensive. The apparatus can measure the 

volumetric value, but it seems really impossible to obtain particle size distribution. Even 

the apparatus is able to measure; the guarantee of accuracy is not approved. Thus the 

simplification on the model of airborne chloride transport is modeled under the related 

parameters which discuss later.  

 

4.2 Model on airborne chlorides formation  

 

The mechanism of airborne particles formation is due to sea wave, sea slope, and 

offshore topography. The amount of airborne particle s flying to the atmosphere is 

considered as in the function of wind speed and wave height. However, the factor 

causing wave in a certain height depends on the wind speed and movement of sea base. 

The model explains the mechanism of airborne particle formation in an assumption of 

wave breaking by concrete obstacle along shoreline. After breaking, the overall particles 

fly to a certain height. In fact, the particle size distribution along the height is necessary 

for the transportation in the atmosphere. In this study, the entire particles are flown 

upward to the same height. This equivalent height is called as the initial flying height. 

 

Fig. 4.2.1: The simple figure of airborne chloride transport 
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In Fig.4.2.1, the wind speed at sea surface acts as driven force to the wave to concrete 

water breakings. Simultaneously, the upper wind acts as the driven force to the airborne 

chlorides transport along the distance from seashore. Thus, the energy from the wind 

transfers to the airborne particles and allow the particles to move with the speed of U, 

horizontally. Again, the wind speed data using in this analysis is used the average wind 

speed in hourly constantly with distance from seashore and height from mean sea level, 

as well. 

 

Applying the energy theorem, the height of particles movement at point A to point B in 

Fig 4.2.1 is related with wind speed in the second power. In addition, sea wave in a 

certain height gives extra energy for driving airborne particles moving in higher 

distance. The energy from wave [35] is proportional to the wave height and wind speed 

as shown  

 

where,  ρsea is the density of seawater (kg/m3) 

 hwave is height of wave (m/s) (= proportional to wind speed, U) 

 g is gravitational acceleration (m/s2) 

 h is the initial flying height (m)  

 U is the wind speed (m/s) 

 

The calculation of the initial height is simplified depending on the function of wind 

speed only. The initial flying height (h) at B point is calculated by  

2
8
1

wavesea ghE ρ= (4.2.1) 
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where,  β  is the modification factor due to wave energy (= 4/3) 

 α is the modification factor due to wind speed (= 1/2g) 

  

Despite the fact that, wave energy in the equation is containing in the wave before 

breaking by concrete blocks. Hence, some of energy is absorbed by the concrete wave 

breaking, and the residual energy still stored within the airborne particles. The energy of 

the airborne particles driving upward is the combination between kinetic energy and 

residual energy inside the airborne droplets. At this moment, the amount of absorbed 

energy after wave breaking giving to the airborne particles is unknown. Therefore, the 

airborne particles movement in upward direction is due to the combination of both wind 

and wave energy. In fact, the wave energy due to wave height is also related with wind 

speed, the speed of upward movement should be in the function of wind, as well. In fact 

of the combination between kinetic energy and the residual energy from wave, the 

initial flying height is higher than that in the case of neglecting wave energy. According 

to this unknown of residual energy from breaking wave, the simplification on the 

equivalent of flying height should be done for more precise calculation. Value of h 

calculated by Eq.4.2.2 is the empirical formula estimating the actual flying height of the 

airborne particles. The multiplication factors are proposed in this study as β  and α. The 

value of α is considered as the coefficient expressing the relationship between the initial 

flying height and the wind speed. In this paper, the value of α is recommended as equal 

to 1/2g. Furthermore, the value of β  is expressed as the multiplication factor due to the 

(4.2.2) 2.. Uh αβ=
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additional of residual energy from wave. The consideration of sea slope and shape of the 

obstacles along shoreline is neglected. Thus, the average residual energy of wave after 

breaking is thought as 4/3 of the initial flying height due to the driving energy of wind 

speed. Thus, the computation of airborne particles formation flying to a certain height is 

averaged for the verification of data allover Japan. The relationship between the initial 

flying height and the wind speed is computed as shown in Fig.4.2.2. 

 

Fig. 4.2.2: Relation of height of aerosol and wind speed in Eq.4.2.2 

 

4.3 Model on airborne chlorides transportation  

 

Next the transportation from an initial flying height through the distance is considered 

by the law of motion of a particle in the air. At the same time the gravitational force 

makes the particle fall down to the ground. This phenomenon is called as gravitational 

settlement. The rate at which a particle falls through air under the action of gravity 

depends not only upon the size  and density of the particle but also its shape. The 

majority of analyses in this subject assume that each particle is the spherical shape. 
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In general, the mechanism of transportation is due to gravitational settlement. However, 

the complicate simulation of the particles movement needs the computational program. 

Moreover, the actual scenery at seashore such as, residents, tree, and etc., has a 

difficulty of the particles transport. The computational model should be proposed in an 

average free-space movement without obstacle along the moving path. The mechanisms 

are the advection due to winds and the gravitational settlement as criteria for simulating 

the transportation. 

 

When a body is suspended in airflow, 3 components of forces are acting on the airborne 

particle. One is the self-weight of the body within prevailing gravitational field. The 

weight of sphere of diameter d is 

 

               W = 1/6.ρs.π.d3.g                        (4.3.1) 

 

Second is the resisting force due to the volumetric up trust force. During gravity, the 

sphere displaces it own volume of fluid and will experience the up trust force equal to 

the weight of fluid displaced, i.e.  

 

        Nuptrust = 1/6.ρair.π.d3.g                      (4.3.2) 

 

where, .ρs is density of particles (kg/m3) = 1086 kg/m3 

 .ρa is density of air (kg/m3) = 1.29 kg/m3 at 1 atm [29] 

 d is particle diameter (m) 

 



 
New Durability Design Specification on Chloride Ions Penetration for RC Structures        Swatekititham S. 2004 

 44 

Thirdly is the drag force on resisting on the projected area of spherical shape of airborne 

particle. The particle is moving relative to airflow then it will experience a further 

resistance due to drag. A general expression of drag force is  

       

Ndrag = 1/2 Cd Ab.ρair v
2                    (4.3.3)  

 

where,  Cd is coefficient of drag 

 Ab is projected area (πd2/4), m2 

 v is constant dropping speed (m/s) 

 

Many investigators have investigated relationships between drag coefficient, Cd, and 

Reynolds’ Number, Re, for fully submerged bodies. For the particular case of laminar 

flow around a particle, Sir George G. Stokes (1819-1903) proposed that  

 

     Cd = 24 / Re           (4.3.4) 

And  

   Re = ρair .v.d / µair      (4.3.5) 

where, µa is dynamic viscosity of air (Ns/m2) 

 

Substitution of Eq. (4.3.4-4.3.5) to Eq. (4.3.3) gets  

 

   Ndrag = 3πv.µair.d     (4.3.6) 

 

The equilibrium of the vertical motion due to the balancing of force acting at the 
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airborne particle is shown in Fig. 4.3.1. Therefore the up trust or uplift force resisting 

the particle is much smaller than the gravitational force according to the density of air 

medium is only 1.29 kg/m3 in 1 STP. The particle accelerates downwards, its velocity, v, 

and increases until the drag equals the downward force. As described above, the 

equilibrium of gravitational motion is written as 

dvgd iraairs µπρρπ 3)(
6
1 3 =−

 

 

 

 

 

 

 

 

 

 

Fig. 4.3.1: Equilibrium of vertical force by gravitational settlement. 

 

The equation is referred as Stokes’ Law, where up trust force is negligible (ρs>>ρair). The 

value of µair is calculated by kinematic viscosity divided by density of air. The 

kinematic viscosity of air at 1atm shows the function of temperature as in Fig. 4.3.2.  

 

Referred to Fig. 4.3.3, the vertical motion by gravitational force at the maximum height 

falls down with gravity acceleration (m/s2). The decreasing of acceleration occurs from 

the drag resistance. At a certain height, h, the vertical acceleration is zero and vertical 

 (4.3.7) 
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movement is in constant wind speed. 

 

Fig. 4.3.2: Kinematic viscosity (m2/s) of air at 1atm as a function of temperature (°c)  

obtained from (www.ce.utexas.edu) 

 

During vertical motion, horizontal wind speed brings the particle transport for a distance. 

Wind speed and particle size affect to how long it can be blown. Thus, total time of 

transportation t is computable as the equilibrium of motion in both vertical and 

horizontal direction. 

 

 

 

 

 

 

Fig. 4.3.3: Transport mechanism due to vertical and horizontal motion. 
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  t = h/v = X/U            (4.3.8) 

 
where,  X is the horizontal distance (m) 

 t is the transportation time to the ground (sec) 

 v, is vertical speed (m/s) 

The Eq.4.3.7 integrates with Eq.4.3.8 and the result shows the relationship between 

vertical speed and the specific particle size as illustrated in Fig.4.3.4. 
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Fig. 4.3.4: Relationship between dropping velocity and specific particle sizes  

 

At a constant wind speed, a water particle size is dropped at a distance depending on 

size. In this behavior, it becomes the important of this model on the hypothesis that a 

structural location, only 1-size of airborne chlorides can fly to it. This assumption is 

under the condition of constant wind speed. Conversely, the actual environment has 

fluctuation of wind speed in a period of time, thus in this study, the consideration of 

wind speed is necessary in the hourly interval. This is a laborious  work on simulating 

chloride concentration at surface of concrete accumulated a numbers of years, but the 

simulation in every hours is done for high accuracy. As a result, wind fluctuation during 

an hour is averaged as a constant value. This constant wind speed is used to analyze the 

particle size that can fly to a considered structure. As shown in Fig.4.3.5, one effective  
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size can fly to a specific distance as followed the Newton’s Law.  

 

 

 

 

 

Fig. 4.3.5: Profile of 1-size particle affects on a distance in a constant wind speed U 

 

The results of wind speed and particle size relationship with the distance from seashore 

are shown in Fig. 4.3.6. Next the volume of each particle size is unknown; consequently 

the investigation of particle size distribution and volume is necessary. Although, there is 

no means to observe the volume and size distribution at seashore area, the indirect 

method is proposed in this model. The method is done in backward from the 

investigated data by PWRI [1] combining with above discussion. Thus, the particle size 

distribution and volume of salt is assumed for reaching the investigated results. In 

addition, the wind speed influences the volume and size distribution as well. This 

phenomenon happens because winds result strong wave and large volume of aerosol. 

The reference of volumetric water particle at seashore is set as 2.0mm3/dm2 /hr with 

wind relationship at 2m/s. Inside the water particle, it contains 3% of salt concentration 

as same as the concentration form sea. The value of 0.06mg/dm2/hr is the calculation of 

weight of chlorides content in the water particle. The particle distribution the reference 

wind speed is calculated by the assumption of normal distribution with the standard 

deviation,σ, of 18 µm. The conversion from volume of airborne water particles flying to 

a structure is done to obtain the weight of chlorides content (mg). In the Fig. 4.3.7, the 
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x-axis is the particle size, which relates to the distance from seashore. At the peak value 

of chloride content by weight, it is equivalent to the distance at seashore (= about 10m 

length from concrete wave breaking to average coastline). The smaller particle sizes can 

transport in further distance from seashore. The particle size at 33µm is the particle size 

dropping at seashore, and the particle sizes in right-half of the normal distribution do 

not take into account. Since, the large size particles drops at very short distance within 

10m from the concrete wave breaking.   

Fig. 4.3.7: The reference value of chloride content with particle size (µm) under the        

condition of 2 m/s wind speed and standard deviation at 18 (µm) 

 

The normal distributions of weight of airborne chloride in other wind speeds are 

calculated by the relationship of third power on reference wind speed. The weight of 

water particle at seashore in higher wind speed cause the larger volume of aerosol and 

bigger size distribution. The standard deviation of the size distribution is also 

considered as the max size ratio. The max size ratio means the proportion between 

maximum size at a wind speed (particle size at seashore) and reference wind sped 

(2m/s). The formula of modification for weight of chloride content is shown below 

3
)/2(, ]

2
[
U

WW smpeakipeak ×= (4.3.9) 
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Fig. 4.3.6: The airborne particle size (µm) influence at a specific distance (m) in various  

wind speeds (m/s) 

 

The formulation of modification for the standard deviation is shown as 
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where,  di,max is maximum airborne particle size at seashore at a particular U 

 d2,max is maximum airborne particle size at seashore at U = 2m/s 

 Wpeak is the peak weight of airborne chloride at U (mg/dm2/hr) 

 Wpeak(2m/s) is the peak weight of airborne chloride at U=2 m/s (mg/dm2 /hr) 

 σi is standard deviation at U ((µm) 

 σ(2m/s) is standard deviation at U = 2 m/s (µm) 

 

The interrelation among wind speed, distance and chlorides content are known as shown 

in Table 4.3.1. Then, wind directions are important parameters, the consideration of 

wind directions should be linked with the formula described above. In each location, the 

effective wind speed is defined as the shortest distance from sea to the considered 

distance. For example, the investigation of a structure in Kochi prefecture is due to 

South wind. Other wind directions in ± 67.5° from south generally influence to flying of 

airborne chloride to the structure. It is noted that the wind direction may not be always 

fixed at ± 67.5°, due to the panorama of coastline. However the effect of wind direct is 

considered by equivalent to the distance from seashore. For example, a structure locates 

at X (m) from seashore with the efficient wind direction from South. Once wind 

direction changed to S-W direction, the distance that airborne chlorides fly to the 

structure is longer. The distance in an efficient wind speed (X’) is calculated by  

 

X’ = X /cosϕ                        (4.3.11) 

where, ϕ is angle of an efficient wind to effective wind direction [Ex. S-W is 45°] 
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Table 4.3.1: Value of airborne particle size and chloride content related with wind and     

   distance from seashore calculated from reference value in Fig. 4.3.7 with      

   Eq.(4.3.9-4.3.10) 

 

10 30 50 100 200 300 400 500 600 700 800
1 12 7 6 4 3 2 0 0 0 0 0

2 33 19 15 10.5 7.4 5.9 5 4 3 0 0

3 55 35 27 19 14 11 9.5 9 8 7 6

4 90 55 42 30 21 17 15 13 12 11 10

5 123 80 60 40 30 24 21 19 17 16 15
6 170 100 78 55 39 31 27 24 22 20 19

7 220 120 97 68 50 39 34 31 29 26 24

8 250 160 120 85 60 49 41 36 34 31 29

9 300 180 150 98 70 58 50 45 41 37 34

10 350 250 170 120 82 65 58 53 47 44 40
11 390 240 190 130 95 75 65 60 55 51 47

12 440 270 220 160 110 89 76 70 65 60 56

13 470 313 242 174 125 101 88 80 70 67 62

14 510 340 274 195 135 114 97 87 79 73 69

15 545 378 300 214 154 125 109 96 88 82 76
20 640 497 410 299 213 174 151 136 124 114 107

25 830 690 595 452 326 267 232 207 190 176 165

30 934 820 728 579 426 350 305 270 248 230 220

U= SD

1 6.5 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 18.0 0.06 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00

3 30.0 0.20 0.10 0.07 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.02

4 49.1 0.48 0.22 0.16 0.11 0.08 0.07 0.06 0.06 0.05 0.05 0.05

5 67.1 0.94 0.50 0.33 0.20 0.16 0.13 0.12 0.11 0.11 0.10 0.10

6 92.7 1.62 0.70 0.52 0.35 0.26 0.22 0.20 0.19 0.18 0.17 0.17
7 120.0 2.40 0.84 0.73 0.49 0.38 0.32 0.29 0.28 0.27 0.25 0.25

8 136.4 3.84 1.97 1.31 0.87 0.63 0.54 0.48 0.45 0.43 0.42 0.40

9 163.6 5.47 2.34 1.96 1.19 0.87 0.76 0.69 0.65 0.62 0.59 0.57

10 190.9 7.50 5.27 2.59 1.71 1.20 1.02 0.95 0.90 0.84 0.82 0.78

11 212.7 9.98 5.50 3.47 2.21 1.65 1.38 1.26 1.21 1.15 1.11 1.07
12 240.0 12.96 6.20 4.66 3.15 2.19 1.86 1.68 1.60 1.53 1.47 1.42

13 256.4 16.48 8.90 6.16 4.09 2.94 2.47 2.24 2.11 1.96 1.91 1.84

14 278.2 20.58 11.14 8.15 5.30 3.66 3.18 2.83 2.64 2.50 2.39 2.32

15 297.3 25.31 14.54 10.37 6.72 4.77 3.99 3.61 3.31 3.14 3.02 2.90

Weight of chloride content (mg/dm2/hr)

Airborne Particle Size (m x10-6)
U  / Dist (m) 
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Table 4.3.2: The example of calculation method in order to obtain the total chloride  

 content in mg/dm2/month  

 

In Table 4.3.2, the calculation of airborne chloride accumulation in a month has to 

consider in every hour. The wind speed in each hour is set as a constant with a direction. 

In the example, S-W direction is the effective wind direction for this location. The wind 

in each direction is calculated using Eq.4.3.11. 

 

The wind without efficient direction is set zero value in the column of (Eff. Wind). The 

procedure in order to obtain the hourly chloride content is calculated using Eq. 

4.3.9-4.3.10. Finally, the total chloride content in a month and average value in a day 

are obtained for verifying with the investigated data [1]. It is noted that the investigated 

data is the salt content which has to covert to the value of chloride content before the 

verification. In the verification, the samples, where are located at seashore, have to be 

generally assumed at 30m as the location of settlement the apparatus. The result of 

verification shows in Fig. 4.3.8. 

 

 Time Wind Eff B*C Eff Eff Eff Peak  Max size SD' Z area Hourly Wind 
hr m/s wind m/s dist dia. Volume weight at seashore value norm dist Weight CL direction 
1st 0 0 0 0 0 0.00 0.00 0.0000 0.0000 - 
2nd 1 0 0 0.0075 12 4.18 0.00 0.0000 0.0000 N-E 
3rd 2 0 0 0.06 33 11.50 0.00 0.0000 0.0000 N-W 
4th 1 0 0 0.0075 12 4.18 0.00 0.0000 0.0000 N-E 
5th 1 1 1 209 3 1E-17 0.0075 12 4.18 -2.15 0.0157 0.0002 N-W-W 
6th 0 0 0 0 0 0.00 0.00 0.0000 0.0000 - 
7th 1 0 0 0.0075 12 4.18 0.00 0.0000 0.0000 N 
8th 1 1 1 86 4.5 5E-17 0.0075 12 4.18 -1.79 0.0364 0.0005 S-S-W 
9th 1 1 1 80 5 7E-17 0.0075 12 4.18 -1.67 0.0471 0.0007 S-W 
10th 2 1 2 86 12 9E-16 0.06 33 11.50 -1.83 0.0339 0.0041 S-S-W 
11th 2 1 2 86 12 9E-16 0.06 33 11.50 -1.83 0.0339 0.0041 S-S-W 
12th 2 1 2 86 12 9E-16 0.06 33 11.50 -1.83 0.0339 0.0041 S-S-W 
13th 1 1 1 80 5 7E-17 0.0075 12 4.18 -1.67 0.0471 0.0007 S-W 
14th 2 1 2 86 12 9E-16 0.06 33 11.50 -1.83 0.0339 0.0041 S-S-W 

744th  8 0.0185 
(mg/dm 2 /month) 

Summation of data from 1st hour to last hour in a 
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Data Notes X(m) Data Cal.
Shikoku-May 80 7.5 6.0
Hokaaido-Dec 20 213.2 210.0
Shikoku-Aug 200 0.7 2.0
Shikoku-Apr 400 0.4 1.2
Shikoku-Nov 50 0.4 1.2

Kochi-Oct 30 2.1 4.0
Kochi-Oct 100 0.6 1.8
Kochi-Oct 300 0.3 1.0

Okinawa-Sep 50 352.8 288.3
Chuukoku-Dec 50 150 144.0
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Fig. 4.3.8: The verification by hourly simulation in selected samples 

 

The overall systematic calculation is expressed in Fig. 4.3.9 and shows the procedures 

of calculation. The 10 individual data were used to verify the model. It is very complex 

to simulate each case by hourly data in a month or year. The standard environmental 

condition should be created for easier simulation. This method is proposed in order to 

reduce the simulation process. Firstly, the standard environments are separated into 4 

zones as below 

 

Zone 1: Okinawa area 

Zone 2: Japan-Sea coastline (Hokkaido to Niigata Prefecture) 

Zone 3: Pacific Ocean Coastline 

Zone 4: Chuubu to Nagasaki 

 

The 4 zones are separated as shown in Fig. 4.3.10 depending on the characteristic of 

environmental conditions and level of severity. The separation of severity has been 

recommended into 3 zones of Okinawa, Japan Sea coastline and others [19-22]. 
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Fig. 4.3.10: The separation of 4 severe zones on chloride attack around Japan. 

 

The 4 red marks in Fig. 4.3.10 represent the selected environmental conditions in each 

zone. The area is selected in a moderate severe region of each zone and the weather 

condition is selected in year 1985 according to the date of investigated data. The data of 

the environmental condition are obtained by the observation of government section (See 

www.data.kishou.go.jp). The providing of average data in different time and locations 

are wind speed, wind direction, rain, sunshine hours, humidity, temperature, and etc. 

The standard weather condition is created due to the information observed in a zone. 

Firstly, the monthly effective wind speed is calculated by referring to Table 4.3.2. The 

monthly average value is done by  
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   Ueff = ΣUe / Σre                           (4.3.12) 

 

where,  Ueff is monthly effective wind speed with equivalent airborne chloride (m/s) 

 ΣUe is monthly summation of wind only in the efficient wind directions (m/s) 

 Σre is monthly summation of efficient wind directions (hrs) 

 

Fig. 4.3.11: The effective wind speed in monthly value in 4 zones  

 

The effective wind speed, Ueff in Fig. 4.3.11 is calculated and found that it is higher than 
the average wind speed. The Ueff is proved as an equivalent of chloride content and 
verified in Fig. 4.3.12.  
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Fig. 4.3.12: The verification of effective wind speed and average wind speed 
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Next, the numbers of efficient wind hours is averaged daily and used for analyzing the 

efficient wind speed as described above. The summarization of results for all 4 zones is 

shown in Fig. 4.3.13. The figures in each zone are consisted of the average wind speed 

in each month and the effective wind direction averaged per days. 

Fig. 4.3.13: The effective wind speeds (m/s) and hours of effective wind (hrs/day)  
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4.4 Verification on airborne chlorides formation and 
transportation 

 

The uniform environmental conditions in Fig. 4.3.13 are used to calculate the chloride 

contents in each month and verify with the investigated data of accumulative airborne 

chlorides. Raining period is no effect to the transportation of airborne particle to 

structures. The data was classified into various distances and only the data at distance of 

0m, 100m and 500m are shown. In zone 1 to 4 (Fig4.4.1-4.4.4), some months are used 

the average value for comparison excluding the severe months in a year. In zone1, the 

most severe is in September due to storm effect; however this analysis is lower in this 

month. It can be said that the calculation is underestimated under the environment 

during storm period as shown in Fig.4.4.1. The storm affect to the wave energy which 

provide large effect to the amount of airborne particle formation in the atmosphere after 

wave breaking. In zone 2, the winter season show high chloride content according to the 

high wind speed during this time. In this case, the calculated results are also 

underestimated and illustrated in Fig.4.4.2. However the formula of wind speed 

relationship in third power is changed to the forth power, the overestimated of data is 

certainly too high. The optimum wind speed value is between third to forth power, but 

the third power is thought as the most accurate relationship in this study.  

 

The calculation of the results in four zones is calculated without the effect of height. In 

general the height effect can be modified as the equivalent to the distance according to 

the calculating procedure described above. The airborne chloride in height 5m- 10m has 

not so large variation of chloride content. The available at the same distance in a 

separated zone is plotted together in order to show the macro-scale comparison of the 
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computational model. The investigated results by PWRI have no supporting data on the 

exact position and real scenery at seashore area. Again, the settlement of the apparatus 

may not set exactly in the effective wind direction. In summary, three unknown 

parameters, which cause the scattering of data in verification,  are height effect, seashore 

scenery, and settlement of the equipment. Moreover the effect due to residual wave 

energy acting on the airborne formation is also considered as further study of this study.  

 

In order to understand the scattering level of overall data comparing with the calculation 

results, the data all around Japan are plotted by separating in macro-scale into 4 zones as 

shown in Fig.4.3.10. The comparison of 1-year accumulative airborne chlorides for all 

available data by PWRI 1988 is illustrated in Fig4.4.5. The further study on airborne 

chlorides formation is vital for reducing the scattering of data. 
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Fig.4.4.5  Verification on 1-year accumulative airborne chlorides for overall data by 

PWRI 
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Fig.4.4.1: Verification of Zone 1 in Okinawa area. (Data from PWRI, 1985 [1]) 
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ZONE 2 

Cair in Zone 2 (0-50m)

0
40
80

120
160
200

0 5 10 15
month

C
ai

r (
m

dd
)

0m

50m

 

Cair in Zone 2 (100m)

0
10
20
30
40
50

0 5 10 15
month

C
ai

r (
m

dd
)

 

Cair in Zone 2 (500m)

0

5
10
15

20

0 5 10 15
month

C
ai

r (
m

dd
)

 
Fig.4.4.2: Verification of Zone 2 in Japan Sea coastline. (Data from PWRI, 1985 [1]) 

 

 

 

 

 



 
New Durability Design Specification on Chloride Ions Penetration for RC Structures        Swatekititham S. 2004 

 63 

ZONE 3 

Cair in Zone 3 (0-50m)

0

5

10

0 5 10 15
month

C
ai

r (
m

dd
)

0m
50m

Cair in Zone 3 (100-150m)

0

1

2

3

0 5 10 15
month

C
ai

r (
m

dd
)

 

Cair in Zone 3 (500m)

0

1

2

3

0 5 10 15month

C
ai

r (
m

dd
)

 

Fig.4.4.3: Verification of Zone 3 in Pacific Ocean coastline. (Data from PWRI, 1985 [1]) 
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ZONE 4 
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Fig.4.4.4: Verification of Zone 4 in Chuubu and Chuukoku Area. (Data from PWRI,  

     1985 [1]) 
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4.5 Model Modification 

 

The model presented above is the average model with free space transport in the 

atmosphere. The modification is necessary due to the scenery of the structure allocation. 

Firstly the costal landscape and artificial seawall are considered as in Fig.4.5.1. The 

recommendation on consideration of this difference is done by modifying the parameter 

of β  in Eq.4.2.2. The natural or artificial offshore topography such as sea slope and 

concrete wave breaking wall in various angels and heights influence to the initial flying 

height. 

 

Fig.4.5.1: Sea-based landscape and seawall influence aerosol formation  

 

Besides, the amounts of airborne chlorides formation in case of with and without 

obstacles for wave breaking along seashore are different. The modification on the 

amount of airborne chlorides in Table 4.3.1 is necessary. The modification factor on the 

amount of airborne chlorides is proposed as R(d) in Eq.4.5.1.  

 

C’air,hr = Cair,hr. R(d)     (4.5.1) 

 

where,  C’air,hr is modified airborne chlorides after obstruction (mg/dm2 /hr) 

 Cair,hr is free transport airborne chlorides in Table 4.3.1 (mg/dm2/hr) 
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 R(d) is modification factor due to obstacle  

 

R(d) is the modification factor due to 2 main items of the obstacles for wave breaking in 

the sea and the obstacles inland along the distance from seashore. R(d) is the parameter 

to modified the free space transportation proposed in the Section 4.2-4.3. One of the 

investigated results is studied for obtaining value of R(d) as illustrated in Fig.4.5.2. The 

R(d) value is approximated by analyzing the reduction on the amount of airborne 

chlorides in a distance due to the residents, buildings and natural topographies. If the 

obstruction is constructed at 100 meter from seashore, the value of R(d) is  

R(d) = 1.0  from 0 meter to the location of an obstacle  

R(d) = 0.4  after passing an obstacle 

R(d) is not always fixed as a constant value, thus many factors affecting to the 

transportation due to variety of obstacles. For the achievement of R(d), many 

investigated data should be considered and analyzed as the further study of this study.  

 

Fig.4.5.2: The investigated of the airborne chloride transport in the obstacle effect [19] 
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CHAPTER 5 
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5.1 Introduction 

 

The model in this chapter is shown the accumulated chloride concentration with the 

parametric study and verification as shown in Fig.5.1.1 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.1.1: Schematic model of accumulative chloride concentration 

 

The simulation in Chapter 4 shows that the airborne transport mechanism to a certain 

distance is known as in the function of wind speed in third power. In general, the 

amount of chloride concentration in concrete for the structures near seashore should be 

high. This causes by the amount of airborne chlorides transport to the structures. The 

airborne chlorides transported with the wind blow are adsorbed on the surface of 

concrete structures. The airborne chlorides are transported with the water particles to the 

surface of structures, so the absorption to the pore structure in the boundary layer 

happens. The literatures were proposed the boundary layer as 1cm depth from surface of 

concrete in unit of kg/m3. This definition of the boundary layer was recommended 

because of unknown amount of airborne chlorides. The chloride concentration inside 

concrete averaged 1 cm depth from surface is represented as the boundary layer. Once, 
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the amount airborne chlorides transported to the surface of structures are known, the 

new definition of boundary layer is more suitable. The boundary layer is thought as the 

layer which is the adsorption layer of airborne chlorides. The boundary layer in this 

study is defined as the adsorption layer in the depth of 0 to 1mm from surface of 

concrete. The rough and smooth surfaces have the boundary layer about 1mm and 

0.08mm, respectively. The unit of chloride concentration in the boundary layer is also in 

kg per volume of concrete in m3. In the boundary layer, the chloride concentration in 

this layer is due to the amount of airborne chlorides transported to it with neglecting of 

diffusive phenomenon into concrete. The reason that the amount of chloride 

concentration at surface of concrete is necessary is to use for calculating the chloride 

concentration in concrete. The DuCOM program can simulate the chloride penetration 

into concrete if the chloride concentration, temperature and relative humidity at the 

boundary layer are known. In this paper, the chloride concentration in the boundary 

layer is the same as the meaning of chloride concentration at surface of concrete. 

 

Firstly, the chloride concentration in the boundary layer might be easily calculated by 

knowing the amount of the amount airborne chlorides adsorbed on surface. The 

conversion of the amount of airborne chlorides in unit of mg per unit area per time to 

the chloride concentration in the unit of kg per unit volume of concrete is vital. By this 

methodology, the structures located near seashore should have high chloride 

concentration on the surface of concrete. However, PWRI examined the chloride 

concentration in concrete and found that the retaining walls along seashore area in two 

different locations have large different chloride contents in concrete. Two examples of 

investigated result are done in Yamagata and Ichikawa prefectures which both are 
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constructed near seashore as shown in Fig.5.1.2. Two structures at the same distance are 

totally different on the chloride concentration in concrete.  
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Fig.5.1.2 Examples of investigated chloride distributions at seashore by PWRI 

 

It is very necessary to study on what the main parameter causes the different of chloride 

concentration in concrete in the same location and type of structure. The environmental 

parameter and the structure itself are both considered in order to explain this 

phenomenon. Many parametric studies such as, temperature, relative humidity, amount 

of airborne chlorides, the deteriorated level of crack and concrete property are not able 

to explain clearly which are the most effective parameter. Finally, raining is thought as 

the parameter which is able to explain this phenomenon evidently. None of the literature 

had ever investigated the raining effect to the removal of chloride concentration in the 

boundary layer. Several structural members out of the roof are subjecting to rainfall 

during raining, and having various surface roughness. The experiment on site is 

necessary for investigate the chloride concentration in boundary layer with time history. 

After that, the parametric observation of rain and wind effects related with the 

accumulation of chloride concentration in the boundary layer is accomplished. Next is 

the creation of the model on accumulative chloride concentration in the boundary layer 
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with time dependence. As the results, the model is applicable to predict amount of 

accumulative chloride concentration in the boundary layer in any locations of Japan, if 

the environmental conditions are known.  

 

5.2 Experimental outlines 

5.2.1 The examination of chloride distribution in surface layer 

 

At the real surface of the structures, the surface concrete has to take out to test for the 

chloride concentration. Firstly, the investigated area on the selected surface of structure 

is set the size of 10 x 10 cm dimensions using sand paper for 1g abrasion. Using of sand 

paper is better to stick with a cubic bar for uniformly abrasion. At the same observed 

10x10 cm section, the samples are taken for 4 layers more with 1g each. Some of 

samples were done in the 3-times bigger area and taken 3g each, such as 15x20 cm, or 

10x30 cm. The bigger area was taken in order to provide three times average. However, 

the results are compared and there is no much different in any area. In conclusion, the 

area of 300cm3 is a better choice for guarantee accuracy. The dustpan with the wind 

blocking is used to collect the sample falling down after abrasion. The initial and final 

weight of sand paper in each layer should be weighed for deduction the influent weight 

of the particles from sand paper out of taken samples. Many existing structures in Kochi 

area have investigated with the several of distance from sea, types of structure, and 

outdoor or indoor members. The different of surface conditions are also investigated in 

3 conditions of smooth, normal and rough as shown in Fig.5.2.1.The taken sample is 

used for testing the acid soluble chloride concentration in samples by the titration 
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method. In this method, the result is the acid soluble chloride content and thought as the 

total chloride concentration in unit of % weight of sample. The chloride concentration in 

kg/m3 of concrete is calculated by assumed that unit weight of concrete is 

approximately 2300 kg/m3 for all samples.  

 

 

 

 

 

Fig.5.2.1: Three surface roughness conditions of investigated structures 

 

The examination was done in three locations with difference distance, and surface 

roughness observed in a location, as well. Fig.5.2.2-5.2.4 are three observed structures, 

which are concrete block, bridge pier, and box girder, pier and foundation, respectively. 

In the Fig.5.2.2, the structure is concrete stairs, which is able to investigate normal and 

rough surface conditions. On the right side of concrete stairs, they turn in  

Fig.5.2.2: The investigated structure in Maehama at 30m from seashore 

 smooth  normal    rough 
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90° to the facing-to-sea direction. Thus rough surface on difference wind direction is 

tested for wind direction effect. There is none of smooth surface in this location 

according to the age of this structure is long term. 

 

 

 

 

 

 

 

Fig.5.2.3: Monobe Bridge pier structure on ground at distance of 300 meters from sea 

 

 

 

 

 

 

 

 

 

Fig. 5.2.4: Box girder, Pier, and foundation in Yasu Town at distance of 100 meters  

from seashore 

The structure in Fig.5.2.3 is bridge pier of Monobe Bridge crossing the Monobe River, 

and the surface condition is smooth case. The scenery is quite clear from trees or 

residents except the bank. The structure in Fig. 5.2.4 consists of three members of box 

Wind 
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girder, foundation and pier in Yasu town. All members are considered as smooth surface. 

This structure is quite new structure located at distance of 100 meters from seashore. 

The rain affects to box girder and foundation excluding pier. All structures are 

investigated with time history. It reminds that the examined surface would not abrade 

again.  

 

5.2.2  The examination of Co by considering as the average of 
chloride in surface depth 

The checking of surface roughness is very important of taking sample of the surface 

depth. The collected sample depends on the level of roughness until the smooth surface 

is achieved. The smooth surface is set as amount of concrete paste on surface. This can 

be explained as the taken layer until the aggregate is found. The surface paste is 

considered as high w/c and porosity, which is considered at the depth at most 0.08 mm. 

The normal and rough surfaces are occurred by erosion of smooth surface by raining. 

The degradation of smooth surface takes a several years to make concrete surface 

become rougher. The selected area is set a bigger area of 500 cm2 and doing abrasion on 

selected surface till surface becomes smooth. Next, the weight of sample taken from 

surface should be weighed and deducted weight of sand paper, and then the amount of 

total weight could be estimated by the experiment in Section 5.2.1. The taken sample in 

this section is used to sieve for finding the distribution of sand particle to powder ratio. 

The max size from sieve analysis is defined as the roughness depth of the considered 

structures. Another means is using the automatic roughness sensor, which can detect the 

roughness during abrasion on surface. The roughness sensor used in this experiment to 

measure the roughness of concrete.  
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5.3 Experimental Results  

The investigation of chloride concentration in the boundary layer is done using abrasion 

test using sand paper. The samples are examined on the surface of concrete within the 

specific area in 5 layers from surface. Each investigated layer is limited by the amount 

of taken sample weight (g). In Section 5.2.2, the relationship of weight of sample from 

abrasion test and surface roughness from the roughness sensor can be obtained, and it is 

used to represent the chloride concentration with the depth. At first, the examination 

results in each member of concrete stairs at 30 meters from average coastline from MSL 

are discussed. The results of normal and rough surface are illustrated in Fig.5.3.1 and 

Fig.5.3.2, respectively. The investigation time is examined 6 times during Jun 20th to 

Sep 26th, which is in raining season. Both rough and normal surfaces are tested at the 

same dates for comparing roughness condition in the same environmental condition. 

Fig.5.3.1: Experimental results in the normal surface (kg/m3) with time dependent at 

Maehama, Kochi Prefecture (30m from seashore) 
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Fig.5.3.2: Experimental results in the rough surface (kg/m3) with time dependent at  

Maehama, Kochi Prefecture (30m from seashore). 

 

These results on June 20th in both roughness show that the chloride concentration in 

normal roughness has higher value than it on rough surface. It does not mean that 
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be considered according to actual environment.  
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Fig.5.3.3: Amount of rain (mm) during Feb to Sep in Kochi prefecture.  

 

At the Maehama, the surface, where is parallel to the south wind direction,  is also 

examined. So the efficient wind direction is narrower and the accumulated chloride is 

less, though the raining effect is same. The result in this case shown in Fig.5.3.4 is less 

than that in the rough surface of results described above. 

Fig.5.3.4: Experimental results on the rough surface parallel to South wind (kg/m3) with 

time dependent at Maehama, Kochi Prefecture (30m from seashore). 
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Next the examination of the indoor pier structure in the farther distance at 300 meters 

from seashore. The experimental is still organizing continuously, but only two samples 

are shown at this moment in Fig.5.3.5. The distance relationship can be referred to the 

model in Chapter4 already, thus the experiment is applicable for verifying distance 

factor. 

Fig.5.3.5: Experimental results on the smooth surface (kg/m3) with time dependent at 

Monobe Bridge, Kochi Prefecture (300m from seashore). 
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has none of rain effect at all. The surface conditions are all smooth surface with 

different strength due to structural types. 

 

Fig.5.3.6: Experimental results on the smooth surface of outside foundation (kg/m3) 

with time dependent at Yasu Town, Kochi Prefecture (100m from seashore) 

 

Fig.5.3.7: Experimental results on the smooth surface of pier (kg/m3) with time  

dependent at Yasu Town, Kochi Prefecture (100m from seashore) 

 

Fig.5.3.8: Experimental results on the smooth surface of girder (kg/m3) with time  

dependent at Yasu Town, Kochi Prefecture (100m from seashore) 
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Fig.5.3.9: The time history of average accumulated chloride concentration, at Maehama, 

Kochi Prefecture 

The chloride concentration along the depth from surface layer of concrete is almost 

same at the boundary layer of 0 to 0.8mm for rough and normal surfaces and 0 to 

0.10mm for smooth surface. Fig.5.3.9 shows the chloride concentration at surface of 

concrete averaged from the experimental results in Fig.5.3.1, 5.3.2 and 5.3.4, and the 

standard deviation is also calculated. The table attached inside Fig.5.3.9, show the 

standard deviation of each experimental data. The maximum standard deviation of the 

average value is up to 0.8kg/m3. The amount of chloride concentration after Jun 20th is 

decreasing with affected by raining duration. During the sunshine period, the increment 

of chloride concentration at surface of concrete can be seen during 6th-23rd of Sep. 

During this period, the raining period is rare comparing with the sunshine period. From 

the results in Fig.5.3.9, the distribution of chloride concentration at surface of concrete 
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is recognized that the raining effect is significantly removed. 

 
Fig.5.3.10: The time history of average accumulated chloride concentration, at  

Monobe Bridge, Kochi Prefecture 

 

The average results of the experiment of the Monobe Bridge are shown in Fig.5.3.10 

with the same display as in Fig.5.3.9. The bridge pier of Monobe Bridge is located 

inside the roof; however the size of roof is not so wide. Sometimes with some strong 

wind in south directions, rainfall might affect to the removal of chloride concentration at 

surface of concrete. It is still in doubt on how strong wind has influence to the surface 

of bridge pier. Again, rainfall might effect to structure by making surface becoming wet 

condition. Rain might outcome the wet surface condition without removal of chloride 

concentration. This phenomenon results the rate of diffusion inside concrete, and the 

amount of chloride concentration at surface of concrete is reduced due to the diffusion 

into concrete. For the bridge in Yasu town, it was constructed recently, so the surface 
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condition is durable. 

 

Fig.5.3.11: The time history of average accumulated chloride concentration, at  

Yasu, Kochi Prefecture 

 

For the pier and box girder of this bridge, the results in Fig.5.3.11 have no effect of rain 

acting on the surfaces, so the accumulation is gradually increasing without removal by 

rainfall. Only two points’ investigation in this structure were done, and found that the 

rate of increasing the amount of accumulative chloride concentration at surface of 

concrete is very low. So, the examination period for indoor structures is not necessary to 

investigate in a short period. 
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5.4 Prediction model of annual accumulated chloride 
concentration. 

 

The assumptions of this prediction model are the consideration of wind in hourly, and 

rain in daily. Moreover, the fact on the various surface roughness and structural types 

are added in this prediction model as well. The model provides the reference value of 

the increment of chloride concentration by wind, and declination due to rain in various 

surface conditions. The computation model considered the quantitative effect of 

environmental conditions and structural surface conditions. The accumulative chloride 

concentration in the boundary layer should be the functions of airborne chlorides, which 

is described in chapter 4, surface conditions of concrete and weather conditions such as 

rain and sunshine. The reference value is based on the experimental results in Kochi 

prefecture, thus the actual environment of Kochi prefecture is used in the verification. 

The average wind speed of Kochi prefecture only for the efficient wind speed is 3 m/s.  

First of all, 1-year weather in Kochi prefecture is introduced. The average value cannot 

be used in analysis according to the fact that wind speed relationship with chloride 

accumulation is in third power. For simple explanation, the chloride accumulation in an 

hour of wind speed at 8m/s is much higher than its 4 hours of wind speed at 2 m/s. The 

best prediction is to make use of hourly wind speed for undoubted calculation. The 

efficient wind directions in Kochi prefecture are illustrated in Fig.5.4.1 and the ratio of 

each wind direction is illustrated in Fig.5.4.2. The efficient wind direction is totally at 

46.3% and South wind represents the effective wind direction in Kochi. 
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Fig.5.4.1: The efficient wind directions at seashore in Kochi prefecture. 

 

Fig.5.4.2: The ratio of wind direction in year 2002-2003 

The model for calculating the accumulative chloride concentration in the boundary layer 

is simply proposed as the coefficient of accumulation per unit of wind speed. The 

amount of airborne chloride at wind speed 3 m/s is converted to the unit of kg/m3 of 
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a constant value in a specific surface condition and raining effect at seashore. The 

recommended values are illustrated in Table 5.4.1. In this study, the shoreline is 

approximately set as 30m from the concrete obstacle constructed in the sea  

 

Table5.4.1: Chloride accumulation in various conditions at seashore (about 30m from 

concrete wave breaking) with the constant wind speed at 3m/s (kg/m3) 

 

For other wind speeds, the equation for calculating the coefficient of accumulative 

chloride concentration in the boundary layer is followed in Eq.5.4.1. The ratio of wind 

speed in the third power is regarded as the model described in chapter 4. The third 

power of the relationship between wind speed and surface chloride accumulation is 

referred to the Eq. 4.3.9. The discussion in chapter 4 expresses the amount of airborne 

chlorides in a distance related with the third power of wind speed, thus the coefficient of 

accumulative chloride concentration in the boundary layer should be in the same 

function.  

 

     ∆Co,i = ∆Co,(3m/s). [U/U(3m/s)]
3                   (5.4.1) 

where  ∆Co,i is coefficient of increasing surface chloride concentration at wind speed U 

Co Accumulation (kg/m3) Smooth Normal Rough

No rain / Little rain 0.0003-0.002 - -

50% Rain Effect 0.004 - -

100% Effect 0.008 0.01375 0.0175

Co Removal (kg/m 3) Smooth Normal Rough

Little rain -0.069 - -

50% Rain Effect -0.138 - -

100% Effect -0.276 -0.45 -0.65
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∆Co,(3m/s) is coefficient of increasing surface chloride concentration at wind 

speed 3m/s 

Next, the amount of chloride accumulation to the surface of structure along the distance 

from seashore is predicted. The calculation of the coefficients of accumulative chloride 

concentration for a structure in a particular distance is directly related with the amount 

of airborne chlorides transportation. The coefficients proposed in Table 5.4.1 are 

converted based on the amount of airborne chlorides of 0.10 mg/dm2/hr under the 

conditions of wind speed at 3m/s and the distance of 30m. The conversion of 

coefficients in the function of transported distance at a constant wind speed is shown 

below, 

 

  ∆Co,x = ∆Co,(30m). [Cair,x/Cair,30m]                   (5.4.2) 

 

where,  ∆Co,x is coefficient of accumulative surface chloride concentration at a distance  

∆Co,(30m) is coefficient of accumulative surface chloride concentration at 30m  

from concrete wave breaking 

Cair,x is amount of airborne chlorides at a distance 

Cair,30m is the reference of the amount of airborne chloride at 30m from  

concrete wave breaking 

 

The relationship between transportation distance and the coefficient of accumulative 

chloride concentration in the boundary layer in Eq.5.4.2 is proposed for the effective 

wind direction. The different wind directions have been discussed in chapter 4, again the 

conversion of wind direction to the equivalent of transportation distance should be 
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considered. After conversion of efficient wind directions to the transportation distance, 

the coefficient of accumulative chloride concentration in the boundary layer is obtained. 

 

Then, the model of the removal of chloride concentration in the boundary layer by 

raining effect is considered. First of all, the raining effect on the removal of chloride 

concentration in the boundary layer should be understood. However raining effect is 

very complex and not well understood, yet. The model in this study is proposed on the 

some basic assumption such as,  

1) The amount  of raining (mm/hr) is independent with the removal of chloride 

concentration in the boundary layer. For example, the removal of raining at 2 mm/hr 

or 10 mm/hr is same. 

2) The removal by raining has an effect in daily scale, because only raining duration in 

hours is not taken absolute effect into account. During pore solution in the boundary 

layer of concrete is absolutely fulfilled with water, the diffusion outward from inside 

concrete is significant. Also, a several hours between two periods of raining affect to 

the dissolving of chloride concentration out of the boundary layer. In the raining 

days, the amount of precipitation is quite small and continuous for whole day. Thus, 

the raining effect on the removal of the chloride concentration in the boundary layer 

is thought as a daily average value. 

3) The removal of chloride concentration in the boundary layer depends on the 

roughness of surface. The removal of chloride concentration on rough surface is the 

largest due to the highest of specific surface area.  

4) The structures are separating into 2 conditions of indoors and outdoors, which rain 

affect to the outdoor structures only. The raining will not affect the removal of 
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chloride concentration on indoor structure, except the rain drainage path passing to 

the surface.  

From above consideration, the coefficients of removal chloride concentration in the 

boundary layer are recommended according to the surface conditions and structural 

circumstances as shown in Table 5.4.1.  

 

For more understanding of target of this model, the 1-year accumulative chloride 

concentration is shown under the analyzing of actual environmental conditions. Due to 

the experimental organized in Kochi prefecture with various distances and structural 

members, the prediction of 1-year accumulative chloride concentration in the boundary 

layer is done for verifying the precision of this computational model. The prediction of 

1-year accumulative chloride concentration for the smooth, normal and rough surfaces, 

and wind direction are shown in Fig.5.4.3 (a) to Fig.5.4.3 (d). The calculation of 

accumulative chloride concentration in the boundary layer starts in the summer season 

in 2002. According to the experimental results, the amount of chloride concentration in 

the boundary layer is nearly zero after long duration of raining. The middle of August is 

the starting period for calculating the accumulative chloride concentration in the 

boundary layer, which is starting at 0 kg/m3 of chloride concentration. 
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Fig.5.4.3 (a): The prediction of 1-year chloride concentration in normal condition of  

Kochi prefecture.  

 

Fig.5.4.3 (b): The prediction of 1-year chloride concentration in rough condition of Kochi 

prefecture 
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Fig.5.4.3 (c): The prediction of 1-year chloride concentration in rough surface with 90° 

perpendicular to seashore of Kochi prefecture 

Fig.5.4.3 (d): The prediction of 1-year chloride concentration in smooth surface with  

100% rain of Kochi prefecture 

 

The predicted results are verified by the experimental data in Fig.5.4.4. The precision of 
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high-accumulated chloride concentration is not good and error is large about 1 kg/m3. 

Although, the reason might be caused by the precision of model and the accuracy of 

experimental results, it may affect to a large deviation. In order to check the precision of 

the model the experimental work should do for whole year. However, the accuracy of 

this model can be verified again in final. This model is used as boundary condition for 

DuCOM simulation on chloride concentration in concrete. Finally, the verification is 

done again with the actual data from PWRI [12].  

Later in Chapter 6, the monitoring of existing structures done by PWRI is discussed. In 

this section, the actual environmental effect of the monitored members is analyzed 

same as the procedure described in this chapter. The various shape of 1-year 

accumulated chloride concentration is known. Importantly, this model is able to explain 

why the chloride concentration in a seashore structure is very low.  

Fig.5.4.4: The verification of predicted accumulated chloride concentration with  

experimental results 
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5.5 The predicting standard accumulated chloride concentration 
around Japan 

 

The prediction of the accumulated chloride concentration around Japan is very tough 

works, thus zoning of the similar severity is grouped into 4 zones as shown in Fig. 

4.3.10. The standard environments representing the overall environment in a specific 

zone are selected as  

Zone 1: Itokazu, Okinawa 2002 

Zone 2: Otaru, Hokkaido 2002 

Zone 3: Irozaki, Shizuoka 2002 

Zone 4: Susa, Yamaguchi 2002 

The environmental conditions in these 4 zones are analyzed as in Chapter 4 and shown 

in Fig. 4.3.13. The accumulated chloride concentration starts with the different month, 

because the model want to calculate the accumulated in 1 year iteration with starting 

and ending point in zero value. It is easier to use 1-year iteration of chloride 

accumulation for simulating the chloride transport in concrete by DuCOM. It helps the 

simplicity of the input data as 1-year iteration until the simulated life is achieved. The 

maximum value of chloride concentration and area under the graph between chloride 

concentration and time is highest in Okinawa area. The second severe location is in 

zone 2. For zone 3 and zone 4 has similar severity but the division was done according 

to the different of efficient wind direction. The predicted results were calculated under 

various conditions as mentions in Table5.4.1. The entire calculated results are 

illustrated in Appendix A. The seashore outer structures have  higher severe condition in 

all 4 zones than those inner structures. The last figure of each zone is the accumulative 

at 1-year interval, and this chloride accumulation is multiplied by number of years for 
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simulating at a considered age. The outer structures in la ter distance from coastline has 

a little chloride attack due to the raining effect is relatively larger than amount of 

adsorption. It might be said that the chloride attack on outer structure is controlled by 

rain and kept very low surface chloride concentration. In the opposite way, inner 

structures without wind effect still have large effect on accumulation.   
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CHAPTER 6 

 

 

Verification of the 
computational model on 
chloride distribution 
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6.1 DuCOM modification 
 

According to the computational program in simulating the chloride transport in 

concrete; the governing equations are described in the Chapter2. The flux movement in 

the surface layer of concrete is due to both diffusion and the condensation of chloride 

ions by ion adsorption [11,23]. Maruya, et al, proposes the surface chloride 

condensation as the quasi-adsorption as in function of chloride concentration at 1cm 

surface layer. However DuCOM is microstructure based simulation model, the 

boundary surface layer is small as the pore structure at surface. The condensation 

influences to the flux movement of free chlorides in surface pore structure. The flux due 

to quasi-adsorption in the computational program was modified as the function of free 

chloride at surface layer,  

 

          qads = 6.5x10-3 exp(-1.15Ccl)             (6.1.1) 

 

where:  qads is flux of quasi-adsorption (mol/cm2/day) 

Ccl is free chloride content at boundary layer, (mol/l) 

 

Referred to Fig.6.1.1, zone1 represents the ambient environment at outer surface of 

concrete, zone 2 is the surface layer due to depth of roughness, and zone 3 corresponds 

to the concrete structure. From previous study of submerged and wetting-drying cycles, 

the ambient environment is known as chloride concentration equaled to sea 

concentration about 3% NaCl. Nevertheless, the ambient environment of a structure in 

the atmosphere is unidentified. Thus the surface layer of zone2 is equivalent as the 

ambient environment of that concrete structure. So the input chloride concentration of 
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ambient environment changes to use the free chloride concentration at surface layer in 

zone2, Ccl, instead. Consequently, the experiment of total chloride concentration at 

surface layer, Co, [see Chapter5] is in unit of (kg/m3). The conversion of the unit of mol 

per liter of pore volume is necessary. Moreover, the condensation term is included in the 

boundary condition already, thus it is abandoned. The adaptation of each 

time-dependence of total chloride concentration in concrete (Co), to the free chloride in 

pore solution (Ccl) is computed by 

 

     Ccl = Co (1-αfixed) . 1000 / [Mcl.Vpore. S]          (6.1.2) 

and,  

                  1.0                 Ctot  ≤ 0.1 

 αfixed =  1- 0.35(Ctot-0.1)0.25  0.1 ≤ Ctot ≥ 3.0             (6.1.3) 

0.543           3.0 ≤ Ctot  

 

where,  Ccl is free chloride concentration at boundary layer (mol/l) 

Co is total chloride concentration at surface (kg/m3) 

Ctot is total chloride concentration (% by weight of cement) 

    is [Co .100 / Wc]  

Wc is weight of cementitious material (kg/m3) 

 Mcl is molecular weight of chloride (35.5 g/mol) 

 Vpore is pore volume (l/m3) of a concrete (computed by DuCOM) 

 S is degree of saturation, [saturated condition is 1.0] 

 αfixed is the ration of fixed chloride [Proposed by Maruya, et al,1992] 
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Fig.6.1.1: Condensation mechanism of chloride ions in the surface layer of concrete [23] 

 

The pore solution and degree of saturation are obtained using the same computational 

program by applying the actual environmental condition. The pore structure and volume 

through the depth of concrete is assumed as a consistent distribution. The result of the 

available water in the pore system is used for calculating Ccl (mol/l) at the surface layer. 

The flux of quasi-adsorption at the surface is ignored because none of the effect from 

the ambient environment. The flux of chloride ions at surface, Fc’ was modified by  

 

         Fc’ = -Dcl (Cfree-Ccl)/∆x                       (6.1.4) 

where  Dcl is chloride ion diffusivity in pore solution phase (m2/s), 

Cfree is free chloride concentration in the pore solution on the inner surface of  

      boundary layer [Between zone2 and zone3] 

 

6.2 Sample calculation for verifying chloride distribution in 
concrete 

 

The verification in this section used the investigated data as shown in Appendix B. The 

data was observed in various structures and locations totally 152 data, but only few of 
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them have enough information in analysis. The exact location and distance, concrete 

property and types of structure by photographs are necessary information to judge the 

suitable condition for analysis referred to Table 5.4.1. According with the required 

information, the data is considered the appropriate circumstance for each as shown in 

Table 6.2.1. The investigated data of strength has to evaluate the water to cement ratio 

as input condition in DuCOM. The evaluate of the structure constructed since long time 

ago, the formula is proposed by Kokubu, 1950 [24] 

 

        f`c(28) = -377+377c/w    6.2.1) 

where,  c/w is cement to water ratio 

 

Table 6.2.1: Conditions in Simulation of each investigated data in Appendix B 

 

 

No. Condition Co accumulation Rain effect Note

(kg/m3) (kg/m3)

A1017
Smooth-normal
100% rain

0.0109 -0.3630 Low efficient wind direction,
Rain drainage path

B1013 Smooth- no rain 0.0020 0.0000 Water drainage sometimes

B2009 Rough-100% rain 0.0175 -0.6500
D2016 Rough-100% rain 0.0175 -0.6500

D3008 Smooth-no rain 0.0020 0.0000
No CL attack, CL initial = 0.03
kg/m3

G1026 Smooth-100% rain 0.0080 -0.2760 CL initial = 2.835 kg/m3

G3003 Smooth-no rain 0.0020 0.0000 Narrow efficient wind direction

H2018 Normal-100% rain 0.0138 -0.4500
surface facing opposite to sea,
CL initial = 1.8 kg/m3

H4017 Normal-100% rain 0.0138 -0.4500 CL initial = 1 kg/m3

K1005 Smooth-no rain 0.0020 0.0000
K2005 Normal-100% rain 0.0138 -0.4500 CL initial = 1.25 kg/m3

K3003 Smooth-no rain 0.0020 0.0000 Low efficient wind direction
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The judgment on how to situate each data is the most important; however some 

unknown factors are assumed. For example, the surface in box culvert is affected in 

narrow wind direction. Wind direction in opposite to the surface in box culvert is 

thought as none of effect. Some indoor structures have to consider the drainage path, 

which can cause the rain effect whenever raining occurs. The surface roughness 

conditions in Fig.5.2.1 are standard performance, and the extrapolation of roughness 

condition can be calculated as in data No.A1017. From the investigated results, the 

initial chloride concentration of each structure is unidentified. The calculated results of 

zero initial chloride contents in min and max curves are shown (Ex. B2009). Moreover, 

the result in the case that initial chloride concentration might exist shows the summation 

curve of the result with the estimated initial chloride concentration (Ex. G3003). The 

accumulated chloride for outdoor structure is using 1-year cyclic for whole life iteration 

(Ex. H4017). For indoor structures, the accumulated chlorides for entire life of that 

structure are necessary (Ex. K1005). Each investigated data is predicted the input data 

by Eq.6.1.2, and the calculation of total chloride concentration in concrete by DuCOM 

is compared with the investigated results as shown in Fig.6.2.1-6.2.12. It is noted that 

the accumulative value in each case is the total chloride concentration in kg/m3. The 

conversion to the free chloride at surface layer is necessary for input in DuCOM. In fact, 

annual environments for whole life duration is not consistent, thus the cyclic of the 

accumulated chloride concentration is not alike. It is very hard work to create the exact 

input data, so the scattering of the environment in the average and the most severe 

weathers are needed to define as the multiplication factors. The distributions of weather 

condition and chloride concentration are a vital further study. In this verification, the 

iteration of 1-year accumulative chloride is applied as an average weather condition. 
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Fig. 6.2.1: Verification of B2009 

Fig. 6.2.2: Verification of D2016 
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Fig. 6.2.3: Verification of D3008 
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Fig. 6.2.4: Verification of G1026 
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Fig. 6.2.5: Verification of G3003 

Fig. 6.2.6: Verification of H2018 
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Fig. 6.2.7: Verification of H4017 

Fig. 6.2.8: Verification of K1005 
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Fig. 6.2.9: Verification of K2005 

Fig. 6.2.10: Verification of K3003 
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 Fig. 6.2.11: Verification of A1017 

 

 

 

 

 

 

 

 

Fig. 6.2.12: Verification of B1013 
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The selected data in Table 6.2.1 has been plotted the calculated chloride concentration 

in concrete at the depth of 1, 3, 5, 7, 9 cm. with the examined data. The comparison is 

plotted without the relationship of covering depth and shown in Fig.6.2.13. The least 

square of regression from this comparison is calculated at 0.723. The scattering of data 

occurs in the range of high chloride concentration where is taken from the depth near to 

surface. The depth of 0-3cm from surface of concrete subjecting to various 

environmental conditions such as wetting-drying cycles, carbonation and shrinkage 

crack is influenced from the fluctuation of chloride concentration with time history.   

 

 

Fig.6.2.13: Comparison of chloride concentration in concrete in actual structures from 

12 selected samples in Table6.2.1 
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CHAPTER 7 

 

 

New proposed design 
method 
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7.1 Recent design 

 

At present, the design of chloride concentration follows the evaluation method proposed 

by Japan Society of Engineers until year 2002 [25-26]. The chloride ion penetration can 

be calculated by Fick’2nd law as below, 

 

              







∂
∂=

∂
∂

2

2

x
CDc

t
C

                       (7 1.1) 

 where; C: is chloride ion concentration 

  Dc: is bulk diffusion coefficient 

  x: is penetration depth 

  t : is exposure time 

The chloride ion concentration at reinforced steel position in concrete is computed by 

the modification of Eq.7.1.1 to 

 

      )0,(
.2

1),( xC
tD

x
erfCotxC +





−=     (7.1.2) 

where,  C(x,0) is the initial chloride ion concentration (kg/m3) 

D is apparent diffusion coefficient, cm2/yr (For Ordinary Portland Cement, 

calculated by  

  log D = -3.9(w/c)2 + 7.2(w/c) - 2.5              (7.1.3) 

  Co is chloride concentration at the surface (kg/m3) [See in Table 7.1.1] 

 C(x,t) is chloride ion concentration at steel position (kg/m3) 

x  is covering depth (cm) 
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Table 7.1.1: The chloride concentration at surface of concrete in a certain distance 

 

 

First of all, the explanation of the specification of JSCE 2002 is needed to realize the 

current thoughts. The evaluation of chloride concentration at the position of reinforcing 

bars is based on the Fick’2nd law equation. There are 3 main dependent variables in the 

Fick’2nd law equation; chloride at the surface (Co), apparent diffusion coefficient (D), 

service life (t). The Co is set as the function distance from sea by the longer distance 

from sea, the less Co is. The apparent diffusion coefficient (D) is computed by the 

equation with related to w/c. The equation is the average apparent diffusion coefficients 

from the observed data among submerge zone, tidal zone, splash zone and atmospheric 

zone as shown in Fig.7.1.1. This technique leads to high fluctuation of diffusion 

coefficient and meaningless in truthful behavior. In a distance, the constant surface 

chloride concentration was proposed, but the zoning separation due to severity level [1, 

7] cannot explain by this specification. The safety factors in calculation of chloride 

transport were introduced for conservation in design. Firstly, the limitation of chloride 

concentration when corrosion started is used 1.2 kg/m3. Actually, the chloride 

concentration for starting corrosion is between 1.2 – 2.4 kg/m3. Secondly, the design 

apparent diffusion coefficient given by Eq.7.1.3 needs a modification factor of 1.3 for 

upper member due to bleeding effect. Thirdly, the safety factor for scattering of surface 

chloride concentration in concrete is compensated by the factor of 1.3 times. The 

modification based on this proposed model in this paper is the criteria for high accuracy 

Splash Seashore 0.1 0.25 0.5 1

13 9 4.5 3 2 1.5

Distance from seashore (km)

Co

(kg/m 3)
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design. The advance and complicated method is not a suitable choice for creating new 

design.  

 

Fig.7.1.1: The apparent diffusion coefficient (cm2/yr) 

 

7.2 New proposed design method 

 

This new proposed design methodology is early-stated developed following the same 

conceptual design as current design. The improvement can be done by many means 

such as; redefine the parameters and the classification of each parameter. Referred to 

Fick’ 2nd Law, the chloride concentration at surface of concrete is classified by zone, 

distance and structural conditions. Each parameter was considered on the mechanism 

and related artificial and environmental factors. The chloride concentration on the 

concrete surface changes dependently with weather condition in a specific region. In 

addition the surface of the structure itself has dissimilar degree of accumulation due to 

concrete roughness. Moreover, the distance from seashore is also the parameter, and the 
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relationship is followed the model in Chapter 4.  On the other hand, the chloride at 

surface of concrete is independent with the water to cement ratio.  

 

The water to cement  ratio is the factor that affects the diffusion behavior represented by 

diffusion coefficient. In previous calculation, the apparent diffusion coefficient is 

defined as material property and functioned with water to cement ratio only. However, 

collecting investigated diffusion coefficients from entire locations such as, tidal, splash 

and atmospheric zone used for the regression method. In fact, the diffusion coefficient 

should be considered with the difference of material usage only. The diffusion 

coefficient is set a standard condition under 91-days submerged condition in 3% of 

NaCl solution. The material is cast and cured under 28-days under water before 

exposure. The entire process keeps the temperature constant at 20°c. The calculating 

standard diffusion coefficient is achieved by using the computational program named 

DuCOM MC. After that, the application of the equation of Fick’ 2nd Law is done for 

trial diffusion coefficient matching with the result. The standard diffusion coefficient of 

concrete using ordinary Portland cement, OPC can be shown as Fig.7.2.1. In usage of 

other cementitious materials, the experimental of the condition above is necessary for 

getting chloride concentration. Arrhenius’s Law of diffusion represents the temperature 

influence on the rate of diffusion as shown below,  

 

where,  DT  is diffusion coefficient at a certain temperature (cm2/yr) 

 D20 is diffusion coefficient at reference temperature of 20°c (cm2 /yr) 

)]
)273(

1
293

1
(2285exp[.20 T

DDT +
−⋅= (7.2.1) 
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 T is an average temperature (K) 

Fig.7.2.1: The diffusion coefficient in function of w/c [calculated by DuCOM] 

 

Last, dependent parameter is service life span, the code was suggested this value as the 

design life of a structure, t. The new proposed time is the equivalent time, teq due to the 

condition of exposure [change t à teq]. By Fick’ 2nd Law, the standard diffusion 

coefficient of submerged condition is applied, thus the equivalent time means the time 

proportion to the time in submerged case. For example, the exposure time of concrete 

under various conditions, equivalent t is 

 Submerged à teq = t 

 Atmosphere à teq = t . f(r)  

where f(r) is reduction factor due to the ratio of diffusion duration. The diffusion 

duration is the equivalent of actual wetting-drying condition in each particular ambient 

environment. Thus f(r) is due to the level of RH inside concrete influenced by weather 

condition.  

The Fig. 7.2.2 shows the relationship between actual time and equivalent time. The 

actual environmental conditions depend on the diversity of climate around Japan. In the 
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design, the concrete structures exposed into the environmental conditions are 

universally classified into outdoors and indoors. The difference of these two conditions 

is the raining affecting to removal of chloride concentration at surface of concrete and 

high wetting to drying ratio. The coefficient of f(r) for outdoor structures is lager than 

that for indoor structures according to the subjecting time of wetting state. 
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Fig. 7.2.2: Relationship between actual and equivalent time of exposure 

 

Next the recommended value of chloride at surface of concrete is functioned with 

zoning, ambient environments, and distance. The equivalent surface chloride 

concentration (Co,eq) is shown in Table 7.2.1. The equivalent surface chloride 

concentration is constant for any designed service life of a structure. The equivalent 

surface chloride concentrations of outside structures are very low in distance further 

than 100m in overall zones. In further distance from seashore, the chloride attack shows 

large effect only on indoor structures. The indoor structures have the increment of 

surface chloride concentration during exposure without the effect of rain taken into 

account. 
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Table 7.2.1: Surface chloride concentration of concrete in 4 zones  

 

Zone 1 Zone 2 Zone 3 Zone 4
Rough 100% rain 12.0 10.0 6.0 4.0
Normal 100% rain 11.0 8.0 4.5 3.0
Smooth 100% rain 7.0 4.0 3.0 2.0
Smoooth 50% rain 3.0 2.0 1.5 1.0

Zone 1 Zone 2 Zone 3 Zone 4
Rough 100% rain 4.0 3.5 2.0 1.2
Normal 100% rain 3.5 3.0 1.5 1.0
Smooth 100% rain 2.0 1.5 1.0 0.8
Smoooth 50% rain 1.0 0.7 0.5 0.4

Zone 1 Zone 2 Zone 3 Zone 4
Seashore 20.0 18.0 14.0 10.0
100m 15.0 14.0 9.0 5.0
500m 7.0 6.0 3.0 1.5

Indoor Co,eq (kg/m3)

Co,eq (kg/m3) at seashoreOutdoor

Outdoor
Co,eq (kg/m3) at 100m from seashore

 

 

The recommendation of equivalent chloride concentration on surface of concrete in this 

study shows in various zones (See Fig. 4.3.10), concrete surface conditions and exposed 

environments. The equivalent chloride concentrations in severe zones of zone 1&2 are 

larger than these in mild zones. Also, the values for indoor structures are very large 

comparing with the recommendation in JSCE specification. Although, the equivalent 

chloride concentration at surface of concrete is large, the equivalent time controls the 

rate of chlorides penetration. The calculations of time to corrosion in this method are 

less than the results by JSCE for all conditions in Table7.2.1.  

 

Once the condition chloride concentration is known, the degree of scattering due to this 
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analysis is decreasing. So, the recommended limitation of chloride concentration at steel 

posit ion is able to use the average value of 1.2 to 2.4 kg/m3 or 1.8 kg/m3. At last, the 

design of a new concrete structure with required service life can be calculated by this 

means. Finally, the additional application of this model is able to predict the service life 

of existing structures whenever the investigation of a structure is examined. If the 

condition of covering depth, strength, surface condition and environmental attack were 

known, the current status and prediction of corrosion starting time are able to calculate. 

This is useful for the simulating existing structure and planning of future maintenance. 
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CHAPTER 8 

 

 

Conclusion 
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The current circumstance of simulating chloride attack to concrete under actual 

environments is successfully by this computational model. The main criteria is to know 

2 main factors of ambient airborne chlorides in the atmosphere and the accumulation on 

the surface of concrete under actual environments. Thus, the computational framework 

in order to make a model considering above two factors is necessary.  

 

The computational model in this study has been proposed by categorizing into three 

sub-models integrating together. Three sub-models consisted of the airborne chlorides 

formation and transportation, the accumulation of airborne chlorides to the surface of 

the structure, and the chloride transportation into concrete. These integrated models 

considered from the source of airborne chlorides generation until obtaining the chloride 

concentration in concrete. Finally, the predicted chloride concentration in concrete is 

comparable with the investigated data from the existing structures. 

 

Discussing the first sub-model, the sea wave produced airborne chlorides in the 

atmosphere is prior to consider. The airborne chlorides are formed after wave breaking 

by the concrete wall along seashore or wave bubble-crusting. The generated airborne 

chlorides fly in a specific height which depends on the residual of wave energy after 

wave breaking, natural or artificial offshore topography, and the horizontal wind speed. 

The amount of airborne chlorides after wave breaking is unknown; therefore the simple 

normal distribution is created as the representative values. The amount of airborne 

chlorides is transported along the distance from seashore by the horizontal wind. The 

transportation is based on the equilibrium of the gravitational settlement and the 

horizontal motion of each airborne particle size. The wind speed, particle size 
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distribution and distance from seashore are known relating to the amount of airborne 

chlorides. After all, the verification of the model is done by comparing with the 

investigated data of monthly accumulative airborne chlorides from Public Work 

Research Institute. 

 

Next, the airborne chlorides transport to the surface of structures. The model is the 

computation of accumulative chloride concentration at the surface of concrete. The 

surface of concrete is the boundary layer in the depth of 0-1mm from surface. The depth 

of the boundary layer is different due to the roughness of surface. The accumulative 

chloride concentration in the boundary layer is considered with the actual environments 

of wind, rain, surface roughness and amount of airborne chlorides. The removal of 

chloride concentration in the boundary layer is affected by rainfall for the outdoor 

structures. During rainy season, the dissolution of chloride concentration out of the 

surface of concrete is significant. Thus the amount of accumulative airborne chloride for 

outdoor structures is less than that in the indoor structures for long term accumulation. 

The structure located near seashore, although the raining duration is large, can have 

very low amount of chloride concentration in concrete. The advantage of this model is 

the ability to calculate the time dependent accumulative chloride concentration in the 

boundary layer, if the actual environmental conditions of wind speed, wind directions 

and raining period are known. The investigation of the chloride concentration at the 

boundary layer in Kochi prefecture is done for approval the calculation in this 

sub-model.  

 

Come to the third sub-model, the DuCOM is the program used to calculate the chloride 
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concentration in concrete if the accumulative chloride concentration, humidity, and 

temperature at the boundary layer are known. The combination of above two models is 

applicable to create the input data of accumulative chloride concentration at the 

boundary layer with time dependence for DuCOM simulation. In this section, the 

verification of the investigated chloride concentration in the existing structures is 

compared with the results from DuCOM simulation. The input data is created 

individually with the environmental conditions at the existing structural location from 

the investigated data by PWRI. The verification of the integrated model with the 

investigated data of actual structure is succeeded. 

 

Finally, the successive integrated computational model in this study is able to simulate 

the chloride concentration in concrete under the actual environmental conditions. In 

various environmental conditions around Japan, the simulation can explain the level of 

severity of chloride attack to the concrete structures following the concept of this study. 

The knowledge of this research is modified the current design code in order to reduce 

the local of safety factor due to the accuracy improvement. At last, the modification of 

the current design code is proposed and the parameters are recommended from the 

calculation using this model. However, the approval of the high accuracy on the details 

of the formula in this study is necessary for further study.  
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List of parameters 

 

Cair:  daily average airborne chlorides (mg/dm2/day) 
CL:  collected airborne chloride (mg/ml) 
W:  amount of water used for washing out from steel plate (ml) 
t: exposure time (days) 
A:  specific surface area (= 1dm2) 
Co,air: daily average of airborne chlorides at seashore (mg/dm2/day) 
l: distance from seashore (m) 
Cair,1: airborne chlorides at 1 km from seashore (mg/dm2/day) 
λ: a multiplication factor  
U: wind speed (m/s) 
r: wind ratio in landward direction 
R: regression value 
φ: porosity 
S: degree of saturation  
Ccl: free chloride concentration in pore solution (mol/l) 
Jcl: flux of chloride ion (mol/m2.s) 
Qcl: reduction of free chloride 
Dcl: chloride ion diffusivity in pore solution phase (m2/s),  
Ω: tortuosity of pore as equal to (π/2)2 

C(x,t): chloride ions concentration at time t (kg/m3) 
Co: chloride ions concentration at surface of concrete (kg/m3) 
x: covering depth (cm) 
D: apparent diffusion coefficient (cm2/yr) 

teq: equivalent exposure time (yrs) 

C(x,o): initial chloride ions concentration (kg/m3) 

ρsea :   the density of seawater (kg/m3) 
E: wave energy density 
hwave: significant mean wave height (m) 
g: gravitational acceleration (m/s2) 
h: height from datum base (m) 
β: the modification factor due to wave energy 
α: the modification factor due to wind speed 
ρs: density of particles (kg/m3) 
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ρair: density of air (kg/m3) at 1 atm 
W: weight of an airborne particle (N) 
Nuptrust up trust force of an airborne particle (N) 
Ndrag:  drag force of an airborne particle (N) 
Cd: coefficient of drag 
Ab: projected area (πd2/4), m2 
v: constant dropping speed (m/s) 
d: airborne particle diameter (m) 
µair: dynamic viscosity of air (Ns/m2) 
Re: Reynolds’ Number 
X: distance of effective wind (m) 
Wpeak: peak weight of airborne chloride at U (mg/dm2/hr) 
Wpeak(2m/s): peak weight of airborne chloride at U=2 m/s (mg/dm2/hr) 
σi: standard deviation at U ((µm) 

σ(2m/s):  standard deviation at U = 2 m/s (µm) 

di,max: maximum airborne particle size at seashore at a particular U 
d2,max: maximum airborne particle size at seashore at U = 2m/s 
X’: horizontal distance in an efficient wind speed (m) 
ϕ: angle of an efficient wind to effective wind direction 
Ueff: monthly effective wind speed with equivalent airborne chloride (m/s) 

ΣUe: monthly summation of wind only in the efficient wind direction (m/s) 
Σre: monthly summation of efficient wind direction (hrs) 
C’air,hr:  modified airborne chloride after obstruction (mg/dm2/hr) 
Cair,hr:  free transport airborne chloride in Table 4.3.1 (mg/dm2 /hr) 
R(d): apparent reduction factor due to obstacle 
∆Co,i: coefficient of increasing surface chloride concentration at wind speed U 

∆Co,(3m/s): coefficient of increasing surface chloride concentration at wind speed 3m/s 
qads: flux of quasi-adsorption (mol/cm2/day) 
Ctot: total chloride concentration at surface (kg/m3) 
C’tot: total chloride concentration (% by weight of cement) 
Wc: weight of cementitious material (kg/m3) 
Mcl: molecular weight of chloride (35.5 g/mol) 
Vpore: pore volume (l/m3) of a concrete (computed by DuCOM) 
αfixed: the ration of fixed chloride  
Cfree: free chloride concentration on the inner surface of boundary layer  
c/w: cement to water ratio 
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C: chloride ion concentration 
Dc: bulk diffusion coefficient 
DT: diffusion coefficient at a certain temperature (cm2/yr) 
D20: diffusion coefficient at reference temperature of 20°c (cm2/yr) 
T: an average temperature (K) 
f(r): reduction factor due to the ratio of diffusion duration 
Co,eq: equivalent surface chloride concentration (kg/m3) 

∆Co,x : coefficient of accumulative surface chloride concentration at a distance  

∆Co,(30m): coefficient of accumulative surface chloride concentration at 30m from  

concrete wave breaking 

Cair,x :  amount of airborne chlorides at a distance 

Cair,30m: the reference of the amount of airborne chloride at 30m from concrete wave  

breaking 
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Predicting results of accumulated 
chloride concentration in various 
zones 
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Zone 2: At coastline in Japan Sea Coastline 
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Zone 3: At coastline in Pacific Ocean Coastline 
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Zone 4: At coastline in Chuubu to Nagasaki 
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Zone 1: At 100m from coastline in Okinawa 
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Zone 2: At 100m from coastline in Japan Sea Coastline 
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Zone 3: At 100m from coastline in Pacific Ocean Coastline 
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Zone 4: At 100m from coastline in Chuubu to Nagasaki 
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Zone 1: At 300m from coastline in Okinawa 
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Zone 2: At 300m from coastline in Japan Sea Coastline 
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Zone 3: At 300m from coastline in Pacific Ocean Coastline 

 

 

 

 

 

0.0

1.0

2.0

3.0

4.0

0 100 200 300 400

Time (1 yr)

C
o 

ac
cu

m
ul

at
e 

(k
g/

m
3 )

ROUGH

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400
Time (1 yr)

C
o 

ac
cu

m
ul

at
e 

(k
g/

m
3 )

NORMAL

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400
Time (1 yr)

C
o 

ac
cu

m
ul

at
e 

(k
g/

m
3 )

SMOOTH-100% RAIN



 
New Durability Design Specification on Chloride Ions Penetration for RC Structures        Swatekititham S. 2004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400
Time (1 yr)

C
o 

ac
cu

m
ul

at
e 

(k
g/

m
3 )

SMOOTH-50% RAIN

0.0

0.3

0.6

0.9

1.2

0 100 200 300 400

Time (1 yr)

C
o 

ac
cu

m
ul

at
e 

(k
g/

m
3 )

SMOOTH-0% RAIN



 
New Durability Design Specification on Chloride Ions Penetration for RC Structures        Swatekititham S. 2004 

Zone 4: At 300m from coastline in Chuubu to Nagasaki 
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Zone1-Zone4: 500m distance from seashore for indoor structures 
only [Others are very low surface chloride concentration at this 
distance] 
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Zone3 
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Appendix B 
 

 

 

 

 

 

 

 

The investigated data by Public 
Works Research Institute for 
model verification 
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STRUCTURE NO. A1017
Structural input data Value
Time after construction, T (yrs) 31 Depth (cm) Value (kg/m3)
Structural area (select one) Hokkaido 1 1.13
Distance from seashore (m) 200 3 0.93
Height from the mean sea level (m) 8 5 0.84
Structure Type (select one) Abutment 7 0.35
Apparent Strength, f'c (MPa) 19 9 0.14

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.66
Weight of cement per m 3 (kg) 256
 

Experimental CL- data
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STRUCTURE NO. B1013
Structural input data Value
Time after construction, T (yrs) 30 Depth (cm) Value (kg/m3)
Structural area (select one) Iwate 1 1.89
Distance from seashore (m) 100 3 4.09
Height from the mean sea level (m) 7 5 2.50
Structure Type (select one) foundation 7 1.33
Apparent Strength, f'c (MPa) 30 9 0.23

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.56
Weight of cement per m 3 (kg) 300
 

Experimental CL- data
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STRUCTURE NO. B2009
Structural input data Value
Time after construction, T (yrs) 29 Depth (cm) Value (kg/m3)
Structural area (select one) yamagata 1 4.91
Distance from seashore (m) 10 3 3.50
Height from the mean sea level (m) 5 5 3.07
Structure Type (select one) Retaining wall 7 2.24
Apparent Strength, f'c (MPa) 12.2 9 1.18

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.76
Weight of cement per m 3 (kg) 234
 

Experimental CL- data
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STRUCTURE NO. D2016
Structural input data Value
Time after construction, T (yrs) 35 Depth (cm) Value (kg/m3)
Structural area (select one) Ichikawa 1 0.60
Distance from seashore (m) 30 3 0.58
Height from the mean sea level (m) 4 5 0.31
Structure Type (select one) Retaining wall 7 0.14
Apparent Strength, f'c (MPa) 23.2 9 0.07

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.62
Weight of cement per m 3 (kg) 266
 

Experimental CL- data
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STRUCTURE NO. D3008
Structural input data Value
Time after construction, T (yrs) 36 Depth (cm) Value (kg/m3)
Structural area (select one) Toyama 1 0.10
Distance from seashore (m) 300 3 0.03
Height from the mean sea level (m) 12.5 5 0.03
Structure Type (select one) Box culvert 7 0.05
Apparent Strength, f'c (MPa) 37.4 9 0.03

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.50
Weight of cement per m 3 (kg) 312
 

Experimental CL- data
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STRUCTURE NO. G1026
Structural input data Value
Time after construction, T (yrs) 29 Depth (cm) Value (kg/m3)
Structural area (select one) Shimane 1 0.20
Distance from seashore (m) 50 3 0.35
Height from the mean sea level (m) 5 5 4.34
Structure Type (select one) T-shape abutment 7 3.99
Apparent Strength, f'c (MPa) 11.4 9 3.11

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.77
Weight of cement per m 3 (kg) 234
 

Experimental CL- data
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STRUCTURE NO. G3003
Structural input data Value
Time after construction, T (yrs) 18 Depth (cm) Value (kg/m3)
Structural area (select one) Tottori 1 8.26
Distance from seashore (m) 50 3 13.94
Height from the mean sea level (m) 4 5 9.30
Structure Type (select one) Box culvert 7 5.11
Apparent Strength, f'c (MPa) 19 9 2.33

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.66
Weight of cement per m 3 (kg) 260
 

Experimental CL- data
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STRUCTURE NO. H2018
Structural input data Value
Time after construction, T (yrs) 36 Depth (cm) Value (kg/m3)
Structural area (select one) Ehime 1 2.85
Distance from seashore (m) 50 3 2.79
Height from the mean sea level (m) 5 5 2.62
Structure Type (select one) Gravity Structure 7 2.54
Apparent Strength, f'c (MPa) 32.8 9 2.85

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.53
Weight of cement per m 3 (kg) 295
 

Experimental CL- data
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STRUCTURE NO. H4017
Structural input data Value
Time after construction, T (yrs) 23 Depth (cm) Value (kg/m3)
Structural area (select one) Ehime 1 2.20
Distance from seashore (m) 251 3 2.68
Height from the mean sea level (m) 0 5 2.06
Structure Type (select one) Gutter 7 1.71
Apparent Strength, f'c (MPa) 31 9 1.66

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.55
Weight of cement per m 3 (kg) 295
 

Experimental CL- data
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STRUCTURE NO. K1005
Structural input data Value
Time after construction, T (yrs) 18 Depth (cm) Value (kg/m3)
Structural area (select one) Okinawa 1 5.42
Distance from seashore (m) 100 3 11.79
Height from the mean sea level (m) 0 5 7.92
Structure Type (select one) Under bridge members 7 4.37
Apparent Strength, f'c (MPa) 26 9 3.08

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.59
Weight of cement per m 3 (kg) 275
 

Experimental CL- data
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STRUCTURE NO. K2005
Structural input data Value
Time after construction, T (yrs) 17 Depth (cm) Value (kg/m3)
Structural area (select one) Okinawa 1 3.74
Distance from seashore (m) 70 3 5.50
Height from the mean sea level (m) 5 5 3.74
Structure Type (select one) Gravity structure 7 2.55
Apparent Strength, f'c (MPa) 23.1 9 1.37

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.62
Weight of cement per m 3 (kg) 269
 

Experimental CL- data
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STRUCTURE NO. K3003
Structural input data Value
Time after construction, T (yrs) 20 Depth (cm) Value (kg/m3)
Structural area (select one) Okinawa 1 4.26
Distance from seashore (m) 10 3 7.26
Height from the mean sea level (m) 0.8 5 2.32
Structure Type (select one) Box culvert 7 1.17
Apparent Strength, f'c (MPa) 28.6 9 0.85

Material input data Value
Cement type (select one) OPC
Estimated w/c = 0.57
Weight of cement per m3 (kg) 284
 

Experimental CL- data


