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Abstract

The remote sensing using satellites provides periodical homogeneous data which
cover wide area, thus remotely sensed data have been used widely for land cover change
detection. The change detection is one of the most important analyses for understand-
ing the change phenomena of natural environments. Natural environments exist in
continuous spaces. The continuous spaces are sampled by remote sensing sensors, and
the sampled area can be changed by the pointing direction shift of remote sensing
sensors. Currently change detections have been carried out under an assumption that
the registered pixels of time series data on the same coordinates are covering the same
locations. However the assumption is incorrect because the pointing direction shift of
a satellite sensor in each observation is not considered.

For typical change detection using satellite images, an arithmetic comparison is car-
ried out using the geometrically registered classification results of time series data. To
improve accuracy of change detection, radiometric difference of time series data, the lin-
ear mixture analysis, registration accuracy and a comparison method were considered.
Xiaojun et al. (2000) evaluated the performance relative radiometric normalization
methods. Linear mixture analysis was developed to investigate landcover proportion
in pixel. Settle and Drake (1993) found that all possible mixtures with non-negative
proportions of the end members should be enclosed by a polyhedron. The accurate
acquisition of control points is required for an accurate registration. Gruen (1985),
Gruen and Baltsavias (1985) proposed the adaptive least squares correlation for obtain-
ing highly accurate control points. The error in change detection by pointing direction
shift can be reduced using an adapted comparison method. Gong et al. (1992) and
Stow (1999) tried to reduce change detection errors due to misregistration. However
the methods cannot reduce error due to pointing direction. An advanced resampling
method should be developed to reduce the errors due to pointing direction shift of a
satellite sensor. Image normalization, linear mixture analysis, registration and com-
parison method have been investigated independently. This study aimed to build an
adapted methodology of change detection by combining the four elements. Especially,
the advanced resampling method will perform highly accurate change detection.

The Visual Near Infra Red bands of ASTER (Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer) acquired in October 2001, January 2002, and March
2002 were used for a change detection using the proposed method. An IKONOS im-
age which was geometrically corrected by three-dimensional Affine transformation was
used as the reference data for establishing geometrical transformations and performing
classification of the three ASTER scenes.

The linear stretch method was applied to the radiometric normalization of the
ASTER images. The DN values of Maximum and minimum were used to make linear
radiometrical transformations. The training pixels of the maximum and minimum were
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taken from unchangeable pure bare soil areas and water areas respectively. The same
locations of each ASTER image were selected to take the training pixels.

The land classification result by conventional method is not appropriate for the
proposed resampling method because the classification result represent only major
landcover in a pixel, there fore the classification result by the conventional method can
not be resampled. In this study, the linear mixture analyses of the normalized ASTER
images were carried out using same spectral unmixing equations. The proportion of
bare soil, water, and vegetation were calculated.

Geometric transforms were required to plot pixel boundaries of the three ASTER
images on a geometrically fixed grid. Accurate control points were necessary for ob-
taining transforms. Template images were taken from the IKONOS image, then the
corresponding points on the three ASTER images were searched using the area based
image matching method. Affine transforms were calculated using the control points.
The accuracies of the Affine transforms showed less than three meters (0.2 pixel of the
ASTER image) of root mean square error. The subpixel accuracy of the transforms
could be obtained using the image templates from the IKONOS image.

A geometrically fixed grid was proposed to compare the same location of remotely
sensed time series data. Pixel boundaries of the three ASTER images were plotted on
the fixed grid. The cell values of the fixed grid were obtained using a resampling method
using the proportional adjustment of pixels’ existence ratio and landcover proportion
in the grid cell. The proposed method was evaluated in a simulation. The proposed
method and pixel by pixel comparison method were compared in the simulation. When
a half of pixel shifted, the change detection error by pixel by pixel method was almost
50% higher than the proposed method. The proposed method made more accurate
change detection than pixel by pixel comparison method.

A solution for reducing change detection errors due to pointing direction shift was
proposed in this study. The adapted methodology will perform important role for
producing an accurate change detection result.
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Chapter 1

INTRODUCTION

1.1 General overview

Remote sensing is the science that acquires information about objects or phenomena without
physical contact with them (Lillesand, 2002). A typical remote sensing process (Jensen, 1996)
is shown in figure 1.1. Users such like a scientist, government and company state problems
relate to objects or phenomena. Data acquisitions are performed according to their demands
using passive or active sensors which are mounted on an airborne or spaceborne craft. The
objects or phenomena exist in continuous spaces. The continuous spaces are sampled by a
remote sensing sensor, and stored in a pixel-based data. the pixel based data are registered on a
coordinate system using a resampling method for the convenience of data analyses, processing
and interpretation. The data are processed and analyzed to obtain information. Finally the
extracted information are distributed to the users.

Change detection is one of most important analyses for solving problems relate to change
phenomena. Remotely sensed data is widely used for change detection because periodical con-
sistent data which cover wide areas are available. When a change detection is performed using
registered remotely sensed time series data, the remote sensor system and environmental system
should be considered carefully (Jenson, 1996). Poor understanding of the various parameters
on the change detection process can lead inaccurate change detection results (Dobson, 1995).
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Figure 1.1: Remote sensing processes

1.2 Literature review and research problems

Figure 1.2 shows conventional change detection process and research problems considered in
this study. In the process of data acquisition for change detection, time series data is required,
and the radiometrical normalization of them should be carrried out because the changes of atmo-
spheric condition of the time series data can be greater than landcover changes. The geometrical
transforms of the time series data are carried to be compared; the accuracy of change detection
are much depend on the accuracy of the geometrical transforms. The affect of pointing direction
shift of remotely sensed time series data on change detection is rarely investigated, the shift of
pointing direction of the time series data may cause the errors in change detection because the
pixels of timeseries data can cover slightly different areas. Therefore studies about radiometric
image normalization, linear mixture analysis, image matching to build higly accurate transform
and comparison methods were reviewed.

A large number of remotely sensed time series data may be used for change detection. The
data can be influenced by many factors such as the sun angle and atmospheric condition. In or-
der to detect the change of landcover without the influences, radiometric difference of the data
should be reduced. Gong et al. (1992) proposed a method to reduce the change detection errrors
due to misregistration, however he did not perform the radiometrical normalization of the time
series data in the study. Xiaojun et al. (2000) evaluated the performance of the five relative
radiometric normalization methods: pseudo invariant features, radiometric control set, image
regression, no-change set determined from scatter diagrams, and histogram matching. Linear
regression showed best performance. E.A. Mcgovern et al. (2002) claimed that every radio-
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Figure 1.2: Change detection process and research problems considered in this study

metric normalization task must be considered separately and appropriate solutions devise, and
single approach of image normalization can not be the universal application because solutions
depend on location, application and the types of satellite images. The affects of radiometrical
normalization to landcover classification and change detection are rarely investigated.

Linear mixture analysis is a decomposition method to investigate landcover proportion
within a pixel. Settle and Drake (1993) found that all possible mixtures with non-negative
proportions of the endmembers (pure information class) should be enclosed by a polyhedron.
A polyhedron is shaped by connecting the positions of endmembers in a hyperspace. During
decomposition process in the linear mixture analysis, negative fractions of landcovers are ob-
tained. Gross and Schott (1998) described that negative fraction can be generated due to poor
endmember selection, including an improper number of endmembers, or because of spectral
ambiguity. Shimabukuro and Smith (1991) proposed least square mixing models to generate
fraction images derived from remote sensing multispectral data. The least square method and
the weighted least square method examined to derive the proportion of each endmember from
spectral unmixing equations. The weighted least square method was superior to the least square
method. Stefaine et al. (1997) considered the situation when pure endmember is not exiting in
a hyperspectral image; they proposed ”virtual endmember” to represent inexistent endmember.

For highly accurate change detection using time series remotely sensed data, registrations of
them in subpixel level are required, however it is difficult to achieve the registration of images in
subpixel level by using GCP obtained by visual interpretation. Figure 1.3 depicts the difficulty
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in finding corresponding points between the IKONOS image and the ASTER image. Image
matching is one of the most important techniques to find control points of two or more images
in photogrammetry. Helava (1978) started the research about image correlation. Gruen (1985),
Gruen and Baltsavias (1985) proposed the adaptive least squares correlation which based on
the combination of area and edge based matching. The method can be applied to the matching
problems of various image data. Gong et al. (1992), Townshend et al. (1992) and Stow (1999)
might use control points obtained by visual interpretation, however that is not systematic and
practical when many data are used for landcover change detection.

Figure 1.3: It is difficult to find highly accurate control points on a high resolution satellite
image such like ASTER.

The geometrical transformations of remotely sensed time series data are performed for
change detection. Geometrical distortions exist in the result of the registrations. Following
researchers proposed methods to reduce the distortions; Gong et al. (1992) tried to reduce
change detection errors due to misregistration; the band 3 of two Landsat TM satellite images
were filtered using median and adapted gray-level filters, and then the filtered images subtracted
from the other. The median filer ruined the change detection result. The adapted filtering was a
reliable for reduction of registration noise. Townshend et al. (1992) used MODIS images with
250m and 500m spatial resolution. The two NDVI of the two images were generated, and then
misregistrations of them were simulated by moving them in 45 degree on densely and sparsely
vegetated area. The simulation result showed that misregistration can affect the ability of re-
motely sensed data to detect changes in land cover. In the result of the simulation, the effect
of misregistration in 250m resolution data was higher than that of misregistration in 500m res-
olution data. More misregistration errors were generated on densely vegetated area than that
on sparsely vegetated area. Stow (1999) proposed a miregistration compensation model for re-
ducing misregisration effects on change detection results; two landsat TM3 bands were used.
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The misregistration carried out by moving an image from -4.0 to 0.0 pixels in both x and y
immersions. His model showed promising for enhancing land features and reducing noises by
misregistration.

Although highly accurate registrations of remotely sensed time series data are performed us-
ing a resampling method, the resampled pixels of the data are not covering geometrically same
areas; before resampling, the source data may cover slightly different areas due to pointing di-
rection shift of a remote sensing sensor. When pixel by pixel comparisons in change detection
are carried out using the registered data, the incompletely overlaid areas of time series data are
compared. Figure 1.4 shows plotted pixel boundary of two seasonal data without geometrical
resampling, pixels of the two scenes are covering slightly different area. This may cause one of
change detection errors. The pointing direction shifts of remotely sensed time series data can
lead incorrect change detections. Gong (1992), Townsahend (1992), and Stow (1999) consid-
ered the change detection errors due to ?misregistration?; another source of change detection
error due to pointing direction shift of remotely sensed time series data was considered in this
study. Figure 1.5 shows the differences between misregistration and pointing direction shift:
misregistration can be occurred by the distortion of a geometrical transformation and resam-
pling method which often expressed in Root Mean Square Errors (RMSE), while the pointing
direction shifts are caused by the sampling area shift by a satellite sensor.

Figure 1.4: Two pointing direction different remotely sensed data are overlaid on an IKONOS
image. The comparison of pixels covering slightly different areas may cause change detection
errors.
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Figure 1.5: (a) shows misregistration, (b) shows pointing direction shift.

Gong (1992) and Stow (1999) used Image Algebra Change Detection method (Band Dif-
ferencing), thus they considered only that the target area is changed or not; this study however
considered the change of landcover proportions, and a method was proposed to reduce the point-
ing direction shift error when landcover proportions in pixels are compared.

1.3 Objectives

Based on the research problems, following objectives are established:

1. Developing a method for reducing the errors in change detection due to pointing direction
shifts of remotely sensed time series data.

2. Building an adapted methodology of change detection by combining image normaliza-
tion, linear mixture model, accurate transformation and the proposed method.

1.4 The thesis overview

Chapter 2 explains data used in this study. The Visual Near Infra Red bands (VNIR) of the
ASTER acquired in October 2001, January 2002, and March 2002 were used for a change de-
tection using the proposed method. An IKONOS image which was geometrically corrected by
the three-dimensional Affine transformation was used for establishing geometrical transforma-
tions and performing classification of the ASTER images.
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Chapter 3 describes the relative image normalization of remotely sensed time series data.
The linear stretch method was applied to the ASTER images for their radiometric normaliza-
tion. The DN values of maximum and minimum were used to make a radiometrical linear
transformation. The training pixels of maximum and minimum were taken from unchangeable
pure bare soil area and water areas. The same location of each ASTER image was selected
to take the training pixels. Two representative image normalization methods were compared;
linear contrast stretch method was used for reducing the influence of radiometric differences of
the three ASTER images.

Chapter 4 describes linear mixture analysis. The land use classification result by conven-
tional method was not appropriate for the proposed landcover resampling method because the
landcover proportions are required to perform the proposed method. In this study, the linear
mixture analyses of the normalized ASTER images were performed using the same spectral
unmixing equations. The proportion of bare soil, water, and vegetation were calculated.

A method for building accurate image transformation using the IKONOS image are intro-
duced in the chapter 5. Three transformations were established to convert the ASTER images’
coordinate system into the IKONOS image’s coordinate system. The control points for the
transformations were obtained by using area based image matching method: template images
were taken from the IKONOS image, then the corresponding points on the three ASTER images
were searched. The transformation error of each ASTER image was less than three meters (0.2
pixel of the ASTER image).

Chapter 6 describes the proposed method for reducing the errors in change detection due
to pointing direction shift of remotely sensed time series data. A geometrically fixed grid was
proposed to compare the same locations of remotely sensed time series data. Pixel boundaries
of the ASTER images were plotted on the geometrically fixed grid. The cell values of the
grid were obtained using a resampling method by proportional adjustment of pixels’ existence
ratio and landcover proportion in the grid cells, then the resampled grid values of each scene
are compared other scenes’. The proposed method was evaluated in a simulation; the pointing
direction shifted data were simulated, then the change detection of them carried out using the
proposed method and pixel by pixel comparison method. The proposed method result more
accurate change detection. For change detection, linear mixture analyses of the three ASTER
images were carried out. The landuse classification was carried out using the change detection
results and the linear mixture results of the ASTER images. Bare soil area, forest, water, water
field including water side area, agricultural field, and dark urban area could be classified.

Chapter 7 decribes conclusions and discussions of this study.
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Chapter 2

DATA DESCRIPTION

Two kinds of satellite images were used in this study to develop a methodology of accurate
change detection: three ASTER images and an IKONOS image. The cost of ASTER data
is quite cheaper than IKONOS data, and the ASTER data can be easily obtained through
the web interface provided by EARSDAC and NASA. Although the IKONOS data are
expensive, they provide spatially detail information.

2.1 Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER)

2.1.1 Introduction

The ASTER was developed through a cooperative project between NASA and Japan‘s
Ministry of Economy Trade and Industry (METI). In December 1999, ASTER was launched
on board NASA‘s Terra spacecraft which is a series of multi-instrument spacecraft form-
ing Earth Observation System (EOS). Besides ASTER, the Moderate-resolution Imaging
Spectrometere (MODIS), Multi-angle Imaging Spectro-Radiometer (MISR), Clouds and
the Earth‘s Radiant Energy System (CERES), and Measurements of Pollution in the Tro-
posphere (MOPITT) were installed in the Terra spacecraft. The orbit system of Terra is
sun-synchronous with equatorial crossing at 10:30 am local time, and revisit time is every
96 days. All ASTER products are provided in Hierarchical Data Format (HDF-EOS).

2.1.2 ASTER sensors

The ASTER consists of three sensors (Table 2.1): the Visible and Near-infrared (VNIR)
which has three bands with 15m spatial resolution including backward telescope for stereo,
the Shortwave Infrared (SWIR) which has six bands with 30m spatial resolution, and the
Thermal Infrared (TIR) which has five bands with 90m spatial resolution, each system
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was developed by a different Japanese company.

2.1.3 ASTER products

The ASTER sensors produce two levels of data: Leve-1A (L1A) and Level-1B (L1B).
L1A data are reconstructed and unprocessed instrument data from Level-0 (raw) data,
and it contains raw data and coefficients for geometric correction and radiometric cor-
rection. The coefficients are not applied in the L1A data. L1B data are L1A data with
the radiometric and geometric coefficients applied; and cubic-convolution resampling was
performed in the geometric correction.

Table 2.1: Characteristics of the three ASTER sensor systems (copyright on NASA JPL)

Subsystem Band No Spectral Spatial Quantization
Range ( µm) Resolution Levels

VNIR 1 0.52-0.60 15m 8 bit
(3 Nadir, 1 Backward) 2 0.63-0.69

3N 0.78-0.86
3B 0.78-0.86

SWIR 4 1.60-1.70 30m 8 bit
5 2.14-2.18
6 2.18-2.22
7 2.23-2.28
8 2.29-2.36
9 2.36-2.43

TIR 10 8.12-8.47 90m 12 bit
11 8.47-8.82
12 8.92-9.27
13 10.25-10.95
14 10.95-11.65

2.1.4 HDF-EOS data

HDF was invented by National Center for Supercomputing Application (NCSA). HDF was
adapted by NASA as a standard data format for storing data from the Earth Observation
System, and was named HDF-EOS, thus all ASTER data are provided in HDF-EOS.
Figure 2.1 and 2.2 show the data structure of leve-1A and level-1B. The data structure
of HDF-EOS is similar to a computer directory file system, both raw type data and
parameter data are included in a HDF-EOS file.
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Figure 2.1: Data structure of Level-1A (copyrights on NASA JPL)
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Figure 2.2: Data structure of Level-1B (copyrights on NASA JPL)
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2.1.5 ASTER Data used

In this study, VNIR scenes of ASTER acquired in October 2001, January 2002, and March
2002 were used. Figure 2.3, 2.4 and 2.5 show the false composite (R: band3, G: band2,
B: band1) of the ASTER images, the vegetation areas show red color due to the false
composite. The coordinate system of the ASTER scenes is UTM53, and their datum is
WGS84. The sun aspect angle and azimuth angle of the three ASTER scenes are shown
in table 2.2.

Figure 2.3: The October scene
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Figure 2.4: The January scene
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Figure 2.5: The March scene
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Table 2.2: The sun’s aspect and azimuth angle of the ASTER images

Date of acquisition Aspect angle of the sun Azimuth angle of the sun
(degree) (degree)

10.31.2001 163.22 40.55
1.03.2002 160.25 30.53
3.08.2002 149.14 46.56

2.2 IKONOS

2.2.1 Introduction

IKONOS is the first commercial satellite which can produce 1m resolution satellite images.
The IKONOS was launched in September 1999, its orbit system is sun-synchronous.

2.2.2 IKONOS-2 sensor and image specification

Table 2.3 shows the characteristics of the IKONOS sensor system. IKONOS sensor system
produces panchromatic data with 1m resolution and hyperspectral data with 1m and 4m
resolution. The one meter resolution hyperspectral data are produced by combining the
panchromatic band and hyperspectral band using pan-sharpening process.

Table 2.3: The characteristics of the IKONOS Sensor Systems (copyrights on Space imag-
ing).

System Band Spectral range Spatial Resolution Quantization Levels

Black-and-White Panchromatic 0.45-0.90 1-meter 11bits

Multispectral Band 1 (blue) 0.45-0.52 1meter 11bits
Band 2 (green) 0.51-0.60 or 4-meter color
Band 3 (red) 0.63-0.70

Band 4
(near infrared) 0.76-0.85
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2.2.3 IKONOS data product

Table 2.4 shows the products of the IKONOS image classified by positional accuracy. A
GEO product of an IKONOS image was used in this study.

Table 2.4: IKONOS data products (copyrights on Space imaging).

Product Positional accuracy Ortho corrected Stereo option
CE90 RMS

GEO 15.0m N/A No No
Standard Ortho 50.0m 25m Yes no
Reference 24.5m 11.8m Yes yes
Pro 10.2m 4.8m Yes no
Precision 4.1m 1.9m Yes yes
Precision Plus 2.0m 0.9m Yes no

2.2.4 IKONOS data used

A pan-sharpened 1m resolution IKONOS data with 4 spectral bands was used in this
study. The geometric correction of the IKONOS data was carried out using three di-
mensional Affine transformation (KADOTA, 2002), because the swath width (11.3 km)
is narrow enough to be applied the Affine transformation. This data was acquired in Jun
2000. The sun’s azimuth angle was 114.7 degrees, and elevation angle was 69.3 degrees.

1) Geo-metric correction of IKONOS image using three dimensional affine
transformation

This data was registered by KADOTA (2002) who was a master student of the Kochi
University of Technology, and was submitted as a result of her master research. This
IKONOS image was geometrically corrected using the three dimensional Affine transfor-
mation. Equation 2.1 shows the three-dimensional affine transformation. Eight ground
control points were used to calculate parameter of the equation. The RMS errors of the
geo-metric correction were less than 1m (KADOTA, 2002).

u = a1x + a2y + a3z + a4 (2.1)

v = b1x + b2y + b3z + b4

where u and v is image coordinate system; x,y,z is map coordinate system.
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2.3 Test area

Nankoku and Tosayamada town in Shikoku island, Japan were selected as the test area.
Figure 2.6 shows the IKONOS data used and the test area.

Figure 2.6: The test area
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Chapter 3

RELATIVE NORMALIZATION OF
REMOTELY SENSED TIME
SERIES DATA

Spectral data obtained by satellite sensors can be affected by some factors such as illumi-
nations of objects on earth surface and atmospheric condition (Teillet, 1986). The main
target of relative normalization of multi-temporal data is reducing radiometric differences.
If the radiometric differences of time series data can be reduced, the data can be processed
under the same conditions. In this study two approaches were considered: linear contrast
stretch and histogram contras matching. The linear contrast stretch was adapted for the
normalization of the ASTER images.

3.1 Linear contrast stretch

Linear contrast stretch is used to improve the visibility of images using a linear trans-
formation. Figure 3.1 shows the conceptual process of the linear stretch: the minimum
and maximum values in a target image are selected, and then the linear transformation
that represents the relationship between the input (minimum and maximum) and corre-
sponding output can be established. Finally the source image can be converted using the
transformation.
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Figure 3.1: Conceptual process of the linear contrast stretch

3.2 Histogram matching

The cumulated histograms of a source image and a reference image are compared to make
their contrast as much close as each other, thus this method has been used when a pair of
continuous images are connected to form a mosaic image. Figure 3.2 depicts an example
of histogram matching process: the cumulated histogram of a source image and reference
image are prepared. Each level of digital number (DN) in the cumulated histogram of the
source image matches the corresponding number of pixel in the cumulated histogram of
the reference image; in case, corresponding DN is not in the available range, the nearest
DN can be taken; the DN 6 in the cumulated histogram of the source image match the
DN values between 1 and 2, in that case the nearest value DN 2 can be taken as the
corresponding value. Figure3.2-c shows the result of the histogram matching: DN 5, 6, 7,
8, 9 and 10 in the source image change to 1,2,3,4 and 5 respectively.

3.3 Relative normalization of the ASTER images

The Linear contrast stretch method was used for the normalization of the ASTER images.
There is a reason for using the method: the radiometric normalization in this study aimed
to reduce the radiometric difference of time series data according to landcover types, an
operator can make a transformation using manually decided inputs and outputs, however
the output of normalization cannot be set manually in the histogram matching because
the output values are decided by the cumulated histogram of a reference image as shown
in the figure 3.2-c.

The equations for the normalization of each ASTER image could be obtained by using
the same output values, which were decided by the author, figure 3.3 shows an example:
the linear transformations of the three seasonal images can be obtained using the same
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(a) (b)

(c)

(d)

Figure 3.2: Histogram matching process, (a) The histogram of source image, (b) The his-
togram of reference image, (c) Histogram matching, (d) The result of histogram matching
(Richard, Jia, 1998)
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outputs.

Min

Max

season A season B season C

water bare soil water bare soil water bare soil

transform A transform B transform C

Figure 3.3: Building normalization equations for three seasonal images with the same
outputs

For the radiometrical normalization of the ASTER images, the DNs of minimums
and maximums were taken from the each band of the ASTER images. The ten pixels
of minimums and maximums for each band of each scene were taken from unchangeable
dark pure sea and bright bare soil area respectively (figure 3.4). The averages of them
were used for the input minimum and maximum. Table 3.1 and 3.2 show each ASTER
scene’s minimum and maximum inputs.

Figure 3.4: The input of minimum and maximum values were taken from dark pure water
and pure bare soil areas
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Table 3.1: The minimum inputs of each ASTER scene

Band October January March

Band1 42 32 43
Band2 17 14 18
Band3 11 10 12

Table 3.2: The maximum inputs of each ASTER scene

Band October January March

Band1 117 97 136
Band2 106 86 125
Band3 83 71 92

Table 3.3 shows the outputs of the minimum and maximum inputs which were set by
the author, secondary offset value 91 was added to avoid minus values.

Table 3.3: The outputs of the minimum and maximum inputs for the ASTER images

Band Minimum Maximum

Band1 31 118
Band2 13 107
Band3 9 84

Table 3.4, 3.5 and 3.6 show the gains and offsets of the normalization equations.

Table 3.4: The gains and offsets of the normalization equations for the October ASTER
scene

Band Gain Offset

Band1 1.16 -17.72
Band2 1.06 -4.96
Band3 1.04 -2.46
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Table 3.5: The gains and offsets of the normalization equations for the January ASTER
scene

Band Gain Offset

Band1 1.34 -11.83
Band2 1.31 -5.28
Band3 1.23 -3.30

Table 3.6: The gains and offsets of the normalization equations for the March ASTER
scene

Band Gain Offset

Band1 0.94 -9.22
Band2 0.88 -2.81
Band3 0.94 -2.25

Figure 3.5, 3.6, and 3.7 show the histogram of VNIR bands for the ASTER images.
Especially the brightness of the January scene is lower than other scenes because the
scene’s sun angle is lower than other scenes’.

Figure 3.5: The histogram of VNIR bands for the October scene
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Figure 3.6: The histogram of VNIR bands for the January scene

Figure 3.7: The histogram of VNIR bands for the March scene

Following figures show the normalization results of each band of the three scenes, the
widths and positions of DN distributions of the three scenes could be controlled. Figure
3.8, 3.9 and 3.10 show the histogram of normalization results of band1 for the ASTER
images.
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(a) (b)

Figure 3.8: The normalization result of October scene’s band1, (a) before normalization,
(b) after normalization

(a) (b)

Figure 3.9: The normalization result of January scene’s band1, (a) before normalization,
(b) after normalization

(a) (b)

Figure 3.10: The normalization result of March scene’s band1, (a) before normalization,
(b) after normalization
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Figure 3.11, 3.12, and 3.13 show the histogram of normalization result of band2 for
the ASTER images

(a) (b)

Figure 3.11: The normalization result of October scene’s band2, (a) before normalization,
(b) after normalization

(a) (b)

Figure 3.12: The normalization result of January scene’s band2, (a) before normalization,
(b) after normalization
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(a) (b)

Figure 3.13: The normalization result of March scene’s band2, (a) before normalization,
(b) after normalization

Figure 3.14, 3.15, and 3.16 show the histogram of normalization result of band3 for
the ASTER images.

(a) (b)

Figure 3.14: The normalization result of October scene’s band3, (a) before normalization,
(b) after normalization
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(a) (b)

Figure 3.15: The normalization result of January scene’s band3, (a) before normalization,
(b) after normalization

(a) (b)

Figure 3.16: The normalization result of March scene’s band3, (a) before normalization,
(b) after normalization
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Chapter 4

LINEAR MIXTURE ANALYSIS

The proportions of land covers in a pixel are used in the proposed method to reduce the
change detection errors, thus conventional classification methods, which represent only one
major class in a pixel, are not fit to this study. The linear mixture analyses of the ASTER
images were carried out to investigate landcover proportions.

4.1 Linear mixture analysis

Linear mixture analysis is a commonly used method to decompose mixture proportions of pure
landcovers in a pixel. This method is different from statistical classification approach because
it is based on the physical mixture model of various spectral reflectances.

The linear mixture analysis is based on several assumptions: limited numbers of pure land-
cover elements are existed in a pixel, and the sum of the proportion of the all endmembers
which are pure information classes in a pixel, should be equal to one (Equation 4.1), and the
proportion of each endmember f must be exist between zero and one.

N∑

i=1

= f1 + f2 + . . . + . . . + fN (4.1)

where f1 fN is the proportion of each endmemebers in a pixel,N is the total number of
endmembers. Additionally, the observed spectraDNi in the bandi consists of some unknown
errors (e) and the numbers (f DN) which were generated by multiplying the fraction of each
endmember (f ) and each DNs that would be observed in each band (Equation 4.2).

DNi = f1DNi,1 + f2DNi,2 + . . . + . . . + fnDNi,N + ei (4.2)

The proportions of endmembersf become unknown in the linear mixture analysis. Spectral
unmixing equations are required to obtainf . To establish spectral unmixing equations, the spec-
tral signatures of endmembers (C) which are the coefficients of a spectral unmixing equations,
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are estimated using training data (equation 4.3). In this process, proportions of endmembers
f in the equation 4.2 become the existence proportions of landcovers (R) in a pixel (known)
because the existence proportions of landcovers are obtained from the training data, theDNi

which are obtained from training data also become known,DNi,N in the equation 4.2 become
theCi,N which are the spectral signatures of endmembers. The coefficients (C) can be obtained
using least square method: equation 4.4 shows the matrix form of the equation 4.3, residuals
minimized solution (C) can be obtained from equation 4.5 and equation 4.6.

DNi = R1Ci,1 + R2Ci,2 + . . . + . . . + RNCi,N + ei (4.3)

where,DN are observed digital numbers (known),C are spectral signatures of endmembers
(unkown) ,R are the existence proportions of landcovers in a pixel (known) ,e are unknown
errors ,i is pixel order ,andN is band.

DNn =

M∑

i=1

= RiCi,n + en (4.4)

ρ =

k∑

n=1

(DNn −
M∑

i=1

RiCn,i)
2 =

k∑

n=1

en (4.5)

whereρ is the sum of the squares of the residuals.

∂ρ

∂C1
=

∂ρ

∂C2
= . . . =

∂ρ

∂Ck
= 0 (4.6)

The number of necessary equations is decided according to the number of endmembers
because the unkown is the proportion of each endmember in the spectral unmixing equations.
Equation 4.7 shows the typical form of linear spectral unmixing equation. Spectral unmixing
can be carried out using the DN of each band and the spectral signature of each endmemberC.
In this process, theR in the equation 4.4 becomesf those are unknown. Equation 4.8 shows
the matrix form of the Equation 4.7. Least square solution can be obtained by using the pseudo
inverse (Equation 4.9). The calculated proportion of each endmember must be existed between
zero and one.

DNn =

M∑

i=1

fiCi,n + en (4.7)

where DN are observed digital numbers (known),C are spectral signature of endmembers (known),
f are the existence proportion of endmembers in a pixel (unknown), e are unknown errors, i is
pixel order,and n is band.

DN = fC + e (4.8)

f = (CtC)−1CtDN 0 ≤ f ≤ 1 (4.9)
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4.2 Linear mixture analysis of the ASTER images

Water, vegetation and bare soil were selected as endmemebers for the linear mixture analyses
of the ASTER images, and thus it was assumed that pixels consisted of the three pure informa-
tion classes. Three bands were required to calculate the proportion of the three endmembers,
thus three VNIR bands of the ASTER images (15 meter resolution) were used for the spectral
unmixing.

Equation 4.10 shows the linear mixture form in this study, DN and R taken from the training
data were known in the eqaution. The sum of the existence ratios of the endmembers should be
one(equation 4.11).

DNi = (CwiRw + CviRv + CbiRb) (4.10)

whereR are ratios of landcovers (known),C are spectral signatures of endmembers (unkown)
,DN are digital numbers (known),i is band,w is water,v is vegetation, andb is bare soil
including urban.

Rw + Rv + Rb = 1 (4.11)

To establish the linear mixture form for each endmember, the spectral signature was calcu-
lated using the thirty pixels of training data (ten per each endmember), and the training data
were obtained from unchangeable area (Figure 4.1). The ratio of land covers and DNs were
input to the equation 4.10, then the spectral signature of endmembersC could be obtained using
least square method.
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Figure 4.1: The locations where the training data were collected

Table 4.1 shows the result of spectral signature of each endmember. Table 4.2 shows the
tolerance of the spectral unmixing calculated using equation 4.10.

Table 4.1: Spectral signature of each endmember

Cw (Water) Cv (Vegetation) Cs (Soil)

Band 1 0.5451 0.5695 0.8031
Band 2 0.4655 0.4912 0.7004
Band 3 0.4440 0.7380 0.6058

Table 4.2: Spectral unmixing tolerances (average, square meters)

October, 2001 January, 2002 March, 2002

Tolerance 16.33 23.00 24.78
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∑10
i=1 |Ewater,i −Cwater,i | + ∑10

i=1 |Evegetation,i −Cvegetation,i | + ∑10
i=1 |Esoil,i −Csoil,i |

30
(4.12)

where E is expected the proportion of endmember, C is calculated the proportion of endmember.

The spectral unmixing could be performed with the calculated spectral signatures of the
endmembers (Equation 4.11) out using the three linear mixture equations. The proportion of
each endmember became unknown in the spectral unmixing. The DNs from the ASTER im-
ages and spectral signatures of endmembers were input to the linear mixture equation, then the
decomposition of mixed pixel could be carried out.

Theoretically least square solution can be obtained by using the pseudo inverse; however
the solutions are usually unstable due to the error term (Equation 4.6), thus an iterative method
was used to obtain stable solutions of the spectral unmixing equations.

DNi = (Cw,i fw + Cv,i fv + Cb,i fb) (4.13)

where f are the proportions of endmembers (unknown), C are spectral signatures of endmembers
(known), DN are digital numbers (known), i is band, w is water, v is vegetation, and b is bare
soil including urban.

Algorithm 1 shows the iterative method. The three unmixing equations were set up, then
the DNs from an image were input. The estimated proportion of each endmember was input to
the equation until the estimated proportion of each endmember became one. The differences (e:
the error term) between input DNs and calculated DNs (Cw,i fw +Cv,i fv +Cb,i fb) were calculated;
when the error term reached the most minimum, the input proportions of enmemebers became
the solution of the spectral unmixing. Although this method is computationally expensive,
stable solutions could be resulted.
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e1,e2,e3 = 0
solf w, solf v, solf b = 0
min = 1

Begin
f or f w = 0, f w = f w + 0.1, until f equal 1
f or f v = 0, f v = f v + 0.1, until f equal 1
f or f b = 0, f b = f b + 0.1, until f equal 1

if ( fw + fv + fb) equal 1
e1 = DN1 − (Cw,1 fw + Cv,1 f v + Cb,1 fb)
e2 = DN2 − (Cw,2 fw + Cv,2 f v + Cb,2 fb)
e3 = DN3 − (Cw,3 fw + Cv,3 f v + Cb,3 fb)

end i f

if (e1+e2+e3)≤ min
solf w = fw, solf v = fv, solf b = fb
min = (e1 + e2 + e3)

end i f

end f or
end f or
end f or

end

Algorithm 1. An iterative method for obtaining the stable solutions from the spectral unmixing
equations

From figure 4.2 to 4.4 show the three normalized ASTER images and the scatter plot of
their band2 and band3, the squared area represents shadow area, the shadow areas of the three
images are close to water. From figure 4.5 to 4.7 show the linear mixture analysis results of
three ASTER images. Shadowed vegetation areas of the three ASTER images contain water
class because the spectral characteristic of shadow area was close to water class.
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(a) (b)

Figure 4.2: (a) The ASTER scene acquired in October 2001, (b) The scatter plot between band2 and band3
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(a) (b)

Figure 4.3: (a) The ASTER scene acquired in January 2002 , (b) The scatter plot between band2 and band3
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(a) (b)

Figure 4.4: (a) The ASTER scene acquired in March 2002, (b) The scatter plot between band2 and band3
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Figure 4.5: The result of linear mixture analysis of October scene
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Figure 4.6: The result of linear mixture analysis of January scene
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Figure 4.7: The result of linear mixture analysis of March scene
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Chapter 5

ESTABLISHEING GEOMETRICAL
TRANFORMS USING VERY HIGH
RESOLUTION SATELLITE IMAGE

Geometrical transformations were required to perform the change detections using the ASTER
images. Control points are required to establish a transformation. The accuracy of a transfor-
mation depends on the accuracy of control points. To obtain highly accurate control points,
image matchings between the IKONOS image (very-high resolution data) and ASTER images
(high resolution data) were carried out. In this study, the accuracy levels of the transformation
were aimed to result less than 1/4 pixel in transformation error for effective change detection
(Illsand, 2002).

5.1 Transformations

Transformations are carried out to convert a coordinate system into another coordinate system,
to reduce geometrical distortion of a scanned map, and to register a satellite image.

5.1.1 Herlmert Transformation

Herlmert Transformation is used to correct the distortions of scale and rotation (Equation 5.1).
To perform the transformation, at least two known points are necessary.

[
u
v

]
=

[
a b
−b a

] [
x
y

]
+

[
x0

y0

]
(5.1)

where equation parameters area andb, map coordinates arex andy, the origin points ofx and
y arex0 andy0 ,corresponding coordinates ofx andy in an image areu andv, scale is

√
a2 + b2
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,and rotation angle istanθ = b/a.

5.1.2 Two-dimensional Affine transformation

Affine transformation is a two more parameter added Herlmert transformation, can correct dis-
tortions of scale, rotation and nonorthogonality (skew) (Equation 5.2). To perform the two-
dimensional Affine transformation, at least three known points are necessary.

[
u
v

]
=

[
a b
c d

] [
x
y

]
+

[
x0

y0

]
(5.2)

where equation parameters are a,b,c and d.

5.1.3 Two-dimensional projective coordinate transformation

Two-dimensional projective coordinate transformation is used for the rectification of tilted im-
ages such as aerial photographs (Equation5.3). At least five known points are required to per-
form the transformation.

u =
a1x + b1y + c1

a3x + b3y + 1
v =

a2x + b2y + c2

a3x + b3y + 1
(5.3)

where equation parameters area1,a2,a3,b1,b2 andb3; corresponding coordinates ofx andy
in an image areu andv.

5.2 Affine Transformation of the IKONOS

To build the geometrical transformations between the IKONOS image and the ASTER images,
Affine transformation was used because the swath width of the IKONOS satellite is narrow
(11km) enough to be applied the Affine transformation. Geometrical correction of the IKONOS
and the ASTER images were already carried out, thus the adjustments of scale, rotation and
skew were necessary.

5.2.1 Establishing transformations using the geometrically corrected IKONOS
image

The Affine transformation of the IKONOS image was carried out two times (figure 5.1), because
the image matching could not be carried out directly due to the coarse geometric correction of
the ASTER images (figure 5.2). The first transformation was performed to align the ASTER
images and the IKONOS image geometrically parallel, five control points obtained by visual
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interpretation for each transformation were used for the first transformations. The detailed
adjustments of the first transformations were performed using control points obtained by the
area based image matching method. In this study, the IKONOS image was transformed to the
three ASTER images, then the direct transformation which covert IKONOS coordinate system
into the ASTER’s, and the inverse transformation which covert the ASTER coordinate system
into IKONOS coordinate system could be established.

Figure 5.1: The direct transformation and inverse transformation

(a) (b)

Figure 5.2: (a) The IKONOS image (b) the ASTER image acquired in October 2001

5.2.2 Digital image matching to obtain highly accurate GCP

As explained in the earlier section, control points are required to establish a transformation,
thus finding control points is one of important processes. In this study, image matching method
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was used to obtain accurate control points. Image matching is a computer based method for
searching corresponding points between two images.

Digital image matching techniques can be divided into three categories: area-based, feature-
based, and hybrid methods (Paul R. Wolf, 2000). Area-based matching known as cross corre-
lation is a commonly used matching method in digital photogrammetry, the array of a template
image is compared with the sub array of a target image in area-based image matching, while
characteristics of extracted features are compared in feature-based image matching. Hybrid
method is a combination of the area-based matching and the feature-based matching.

The feature based and hybrid methods cannot be used due to the resolution difference be-
tween the ASTER (15m) and IKONOS (1m), thus the area-based matching method was used in
this study. For image matching, the source image and target image should be put on an epipolar
line which is a geometrical constraint to set searching area and direction (Figure 5.3).

Figure 5.3: Area based template matching
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The correlations between template images and searching templates were evaluated to mea-
sure the degree of the two images’ similarity, then the corresponding locations of the templates
could be found when the correlation reaches maximum pick (Figure 5.4).

Figure 5.4: Finding corresponding location of a template using correlation

The correlation between a template image and a target image can be calculated using equa-
tion 5.4.

C =

∑m
i=1

∑n
j=1[(Ai j − A)(Bi j − B)]

√∑m
i=1

∑n
j=1(Ai j − A)2

∑m
i=1

∑n
j=1(Bi j − B)2

(5.4)

whereC is the correlation of the two images,i is column, andj is row.

5.2.3 Image matchings between the IKONOS templates and ASTER im-
ages

Accurate GCP points were required to perform more detailed registration, thus image matchings
between the two images were carried out. The spectral range of IKONOS’ band2 is close to
ASTER’s band1, and the spectral range of IKONOS’ band3 is close to ASTER’s band2, thus
the correlations between the template images from IKONOS’ band2 and the ASTER’s band1
image on one hand, and between the template images from IKONOS’ band3 and ASTER’s
band2 images on the other hand were carried out. Five GCPs for the October scene, four GCPs
for the January scene, and five GCPs for March scene could be obtained.

From figure 5.5 to 5.10 show the searching areas on the ASTER acquired in October 2001
(false composite, r: band3, g: band2, b: band1), template images from the IKONOS image
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(false composite, r: band4, g: band3, b: band2), and the results of image matchings.

(a) (b) (c)

Figure 5.5: GCP 1 for the October scene, (a) searching area on the ASTER acquired in October
2001, (b) a template on the IKONOS, (c) correlation image, correlation: 0.92 (band 2), 0.90
(band 3)

(a) (b) (c)

Figure 5.6: GCP 2 for the October scene, (a) searching area on the ASTER acquired in October
2001, (b) a template on the IKONOS, (c) correlation image,correlation: 0.85 (band2), 0.79
(band3)
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(a) (b) (c)

Figure 5.7: GCP 3 for the October scene,(a) searching area on the ASTER acquired in October
2001, (b) a template on the IKONOS, (c) correlation image, correlation: 0.86 (band2), 0.86
(band3)

(a) (b) (c)

Figure 5.8: GCP 4 for the October scene,(a) searching area on the ASTER acquired in October
2001, (b) a template on the IKONOS, (c) correlation image, correlation: 0.75 (band 2), 0.74
(band 3)
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(a) (b) (c)

Figure 5.9: GCP 5 for the October scene,(a) searching area on the ASTER acquired in October
2001, (b) a template on the IKONOS, (c) correlation image, correlation: 0.67 (band2), 0.65
(band3)

(a) (b) (c)

Figure 5.10: GCP 5 for the October scene, (a) searching area on the ASTER acquired in October
2001, (b) a template on the IKONOS, (c) correlation image,correlation: 0.90 (band2), 0.83
(band3)
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From figure 5.11 to 5.14 show the searching areas on the ASTER acquired in January 2002,
template images from the IKONOS image, and the results of image matchings.

(a) (b) (c)

Figure 5.11: GCP 1 for the January scene, (a) searching area on the ASTER acquired in January
2002, (b) a template on the IKONOS, (c) correlation image,correlation: 0.90 (band2), 0.83
(band3)

(a) (b) (c)

Figure 5.12: GCP 2 for the January scene,(a) searching area on the ASTER acquired in Jan-
uary 2002, (b) a template on the IKONOS, (c) correlation image, correlation: 0.84 (band2),
0.82(band3)
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(a) (b) (c)

Figure 5.13: GCP 3 for the January scene,(a) searching area on the ASTER acquired in January
2002, (b) a template on the IKONOS, (c) correlation image, correlation: 0.83 (band2), 0.81
(band3)

(a) (b) (c)

Figure 5.14: GCP 4 for the January scene,(a) searching area on the ASTER acquired in January
2002, (b) a template on the IKONOS, (c) correlation image, correlation: 0.67 (band1), 0.61
(band2)

From figure 5.15 to 5.19 show the searching areas on the ASTER acquired in March 2002,
template images from the IKONOS image, and the results of image matchings.
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(a) (b) (c)

Figure 5.15: GCP 1 for the March scene,(a) searching area on the ASTER acquired in March
2002, (b) a template on the IKONOS, (c) correlation image, correlation: 0.82 (band1), 0.76
(band2)

(a) (b) (c)

Figure 5.16: GCP 2 for the March scene,(a) searching area on the ASTER acquired in
March 2002, (b) a template on the IKONOS, (c) correlation image, correlation: 0.84 (band2),
0.82(band3)
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(a) (b) (c)

Figure 5.17: GCP 3 for the March scene,(a) searching area on the ASTER acquired in March
2002, (b) a template on the IKONOS, (c) correlation image, correlation: 0.74 (band2), 0.72
(band3)

(a) (b) (c)

Figure 5.18: GCP 4 for the March scene,(a) searching area on the ASTER acquired in March
2002, (b) a template on the IKONOS, (c) correlation image, correlation: 0.85 (band2), 0.85
(band3)
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(a) (b) (c)

Figure 5.19: GCP 5 for the March scene,(a) searching area on the ASTER acquired in
March 2002, (b) a template on the IKONOS, (c) correlation image, correlation: 0.72 (band2),
0.68(band 3)

5.3 The results of the transformations

The maximum correlation of each image matching was significant enough to be recognized
as the matching point. Most of correlations showed over 0.7 which results reliable accuracy
of transformations (Konencny, 2003). Man-made objects are used for the template matching
because they are not much influenced by seasonal change. The image correlations could be
changed according to the seasonal landcover change around the man-made objects. The GCPs
obtained from image matching were used for the second transformations of the IKONOS im-
age. The direct transformations between the original IKONOS image and each ASTER image
geometrically could be obtained using the first and second transformations. Table 5.1 shows
the maximum errors of the three geometrical transforms. Table 5.2 shows the root mean square
errors (RMSE) of the three transformations. The RMSE of each transformation was less than
the ? pixel of the ASTER image (15m) and the result shows that enough accuracy was achieved
for the change detection. From Figure 5.20 to 5.22 show the results of the three direct transfor-
mations.
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Table 5.1: Maximum errors of the three transformations (unit: meter)

Max error X Max error Y

October 2001 1.43 2.07
January 2002 2.34 0.95
March 2002 2.64 0.96

Table 5.2: RMS error of the three transformations (unit: meter)

RMS error X RMS error Y

October 2001 0.93 1.42
January 2002 1.56 0.60
March 2002 1.72 0.59

(a) (b)

Figure 5.20: The result of direct transformation between the IKONOS and the October scene:(a)
the IKONOS image, (b) the ASTER image acquired in October 2001.
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(a) (b)

Figure 5.21: The result of direct transformation between the IKONOS and the January scene:(a)
the IKONOS image, (b) the ASTER image acquired in October 2001.

(a) (b)

Figure 5.22: The result of direct transformation between the IKONOS and the March scene:(a)
the IKONOS image, (b) the ASTER image acquired in March 2001.
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Chapter 6

CHANGE DETECTION AND
CLASSIFICATION

6.1 solution proposed for reducing the errors in change de-
tection

As described in the chapter one, a change detection result by pixel by pixel comparison method
can contain the errors in change detection due to the pointing direction shift of time series
data. In this chapter, a solution for reducing the error was described, and the evaluation of
the proposed method was carried out. The land use classification using the result of mixture
analyses and change detection of the ASTER images was performed.

6.1.1 Resampling linear mixture analysis results of the ASTER images
using geometrically fixed grids

The errors in change detection due to pointing direction shift are generated when incompletely
overlaid areas of time series data are compared. If exactly the same area of time series data can
be compared, the error in change detection due to pointing direction shift can be reduced.

In this study, a common space which is geometrically fixed grid was proposed to compare
the same area of time series data. The linear mixture analysis results of the ASTER scenes were
resampled into the fixed grid for each data using the equation 6.1: the grid cell value could be
calculated by multiplying the value of each pixel (from pixel 1 to N) included in a fixed grid cell
and the existence ratio of each of them (R). Change detections were performed by comparing
the fixed grids of the ASTER scenes.
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f ixed grid value=

n∑

i=1

Rj � pixel valuej (6.1)

wherei is pixel order.

For example, the existence ratio of each pixel included in the zoomed grid cell shown in
figure 6.1 (E: 23%, F: 67%, H: 2%, I: 8%) can be calculated, then the cell value can be obtained
by multiplying each pixel’s value and its existence ratio in the cell (Equation 6.2).

Figure 6.1: A fixed grid overlaid on a classification result of an ASTER scene, existence ratio
of each pixel included in the zoomed cell was calculated.

(6.2)

6.1.2 Simulation using the classification result of the IKONOS image

It was impossible to examine whether the proposed method is more reliable than the pixel
by pixel comparison because exact the ground truths of each time series data were unknown.
Therefore a simulation was carried out using a high resolution landcover data which was derived
from the IKONOS image.
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In this simulation, the change detection of the simulated data carried out by using the pro-
posed method and pixel by the pixel comparison method, then the results of the two change
detections were evaluated. Figure 6.2 shows the simulation flow. The simulation was performed
on the assumptions that the pointing direction shifted data are acquired in the same period, and
changes in the simulation were accepted as change detection errors due to pointing direction
shift because the change should not occurred in the change detection of data acquired in the
same period.

Figure 6.2: The simulation flow

1) Change detection using pixel by pixel comparison method

A test area near riverside where consisted of simple landcover was selected. Firstly, the classi-
fication of the test area in the IKONOS image was carried out by visual interpretation (Figure
6.3).
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(a) (b)

Figure 6.3: Classification of the test area for the simulation by visual interpretation, (a): The
test area in the IKONOS image, (b): The classification result (green: vegetation, blue: river,
orange: bare soil)

To simulate the pointing direction shifted data, the pixel boundary of an ASTER image was
plotted on the classification result using the inverse transformation of the ASTER scene acquired
in October. The shift from zero to half of a pixel of the ASTER image (7m) was simulated, thus
from zero to seven meters pointing direction shifted data were established (Figure 6.4).

Figure 6.4: Simulated pointing direction shifted data

59



Land cover attributes were assigned to each cell of the simulated pixel boundary of each
pointing direction shifted data. Figure 6.5 shows an example of land cover attribute assign-
ments.

Figure 6.5: Example of Landcover attribute assignments process

The change detections of the simulated data were carried out by using pixel by pixel com-
parison method. In the change detection, the attribute of zero meter shifted data was compared
with one to seven meters shifted data (Figure 6.6).

Figure 6.6: Change detection by comparing zero meters shifted data and one meter to seven
meters shifted data
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2) Change detection using the proposed method

For the change detections using the fixed grids, the fixed grids of zero to seven meters of point-
ing direction shifted data were generated (Figure 6.7), and the corresponding landcover at-
tributes were assigned to each fixed grid. The change detections were performed by comparing
the fixed grid of zero meter pointing direction shifted data with the fixed grids of one to seven
meter pointing direction shifted data (Figure 6.8).

Figure 6.7: Fixed grids for the pointing direction shifted data.

Figure 6.8: Change detection by comparing the fixed grid of zero meter pointing direction
shifted data with one meter to seven meters shifted data

Equation 6.3 shows how the average of the change detection error was estimated: the land-
cover differences between 0m shifted data and a pointing direction shifted data was calculated,
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then the sum of the absolute value of their difference was obtained, finally the average of change
detection error could be calculated by dividing the sum of landcover differences with the total
number of pixel (M).

the average o f change detection error=

∑m
j=1

∑n
i=1 |0m shi f ted datai j − Nm shi f ted datai j |

M
(6.3)

wherei is pixel order,j k are landcover types,andM is the total number of pixels

Figure 6.9 shows the result of the change detection. In the result, the average change detec-
tion errors by proposed method showed maximum 50% less than the average errors by pixel-
by-pixel when the half of an ASTER pixel shifted.

Figure 6.9: Comparison between change detection errors generated by the fixed grid and by the
pixel by pixel comparison

6.2 Case study using the ASTER images acquired in October
2001 and January 2002

Change detection between the ASTER scene acquired in October 2001 and January 2002 was
carried out using pixel by pixel comparison method and the proposed method. The pointing
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direction shift between the two ASTER images is approximately 1m in Easting, 7m in Northing.

6.2.1 Change detection using ASTER images acquired in October 2001
and January 2002 using the two change detection methods

For the change detections, the linear mixture analysis results of the two ASTER images were
transformed to the IKONOS coordinate system using the inverse transformation. Figure 6.10
and figure 6.11 show the transformation results of the two classified ASTER images. To keep
the original pixel values of the images, the nearest neighborhood resampling method was used
in the transformations. Resampling with 15m resolution was carried out for the pixel by pixel
comparison method.
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Figure 6.10: Rectified ASTER scene acquired in October 2001.
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Figure 6.11: Rectified ASTER scene acquired in January 2002.
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The change detections using the pixel by pixel comparison method was performed. Figure
6.12 shows the two ASTER images transformed with 15m interval resampling, the insides of
the two boundaries were compared.

In the simulation, the pixel boundary of the ASTER image was plotted for the change de-
tection using the proposed method, however it was impossible to plot the pixel boundary of
ASTER image on pixel based data, thus detailed resampling with 1m resolution was carried
out in the transformation, then the transformed result were resampled into 15m resolution fixed
grids, the grids of the ASTER images were compared (figure 6.13).

As a result of change detection, the degree of change was calculated using the equation 6.4.
The degree of change shows the quantity of land cover change per a pixel.

the degree o f change

=

∑row
j=0

∑column
i=0 (

∑M
k=1 |endmember k′s existence proportion di f f erence|

number o f endmember )

total number o f pixels
(6.4)

whereM is number of endmember.

Table 6.1 shows the degree of change by the two change detection methods, the degree of
change resulted by the fixed grid was lower than that by pixel by pixel comparison method,
this result showed that the pixel by pixel comparison method can contain the change detection
errors due to pointing direction shift of the time series data. Figure 6.14 shows the histogram
of degrees of change by the two change detection methods, the figure shows that pixel by pixel
comparison result more change detection as the degree of change growing.

Table 6.1: The degrees of change by the two change detection methods

The degree of change per a pixel

Pixel by pixel 24.03
the fixed grid 23.16
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(a) (b)

Figure 6.12: Change detection between ASTER scene acquired in October 2001(a) and the rectified ASTER scene acquired in
January 2002 (b) using the pixel by pixel comparison: the boxed areas in the two images were compared.
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(a) (b)

Figure 6.13: Change detection between ASTER scene acquired in October 2001(a) and the ASTER scene acquired in January 2002
(b) using the proposed method: the fixed grids in the two images were compared.

68



Figure 6.14: The histogram of degrees of change by the two change detection methods

Figure 6.15 shows the change detection results by the two change detection methods and the
IKONOS image. The bright area shows landcover change occurred area, while the dark area
shows no or less change area. The change detection results by the pixel by pixel comparison
methods resulted unstable change detection, and the boundary between asphalt area and grass
field shows the evidence that the pixel by pixel comparison is much influenced by the pointing
direction shift of time series remotely sensed data. Contrary of the pixel by pixel comparison
method, the proposed method resulted more meaningful and reliable change detection. The
figure 6.15 shows the significant advantage of the proposed method.

(a) (b) (c)

Figure 6.15: (a) the change detection result by pixel by pixel comparison, (b) the change detec-
tion result by the proposed method, (c) the IKONOS image.
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6.3 Landcover classification using the classification results of
time series remotely sensed data

The three ASTER data were normalized, then the linear mixture analyses of the ASTER scenes
were carried out, then the linear mixture analysis results of the three ASTER images were trans-
formed into the IKONOS coordinate system using the inverse transformations with 1m interval
nearest neighborhood resampling the fixed grids of them were compared each other to perform
change detections. The changes of landcovers were quantified by subtracting the classification
result of a remotely sensed imagery of one date from that of another date (Equation 6.5). For
landcover classification, the results of the linear mixture analyses and change detections of the
ASTER images were used.

Di jk = CV(season1)i jk −CV(season2)i jk (6.5)

whereDi jk is the amount of land cover change,CVi jk is the amount of landcover,i is line
number,j is column number,k is the type of landcover.

The result of a linear mixture analysis can be detailed with the compositions of endmembers
(water, vegetation, bare soil). Seven classes were generated using the three landcover types in
the results of linear mixture analyses of the ASTER images. Table 6.2 shows the classes in the
first classification. From the figure 6.16 to 6.18 show the classification results using the three
linear mixture analysis results.

Table 6.2: The result of linear mixture analysis classified into seven classes

Water Vegetation Soil

Class 1 [water+vegetation+soil] Exist Exist Exist
Class 2 [water+vegetation] Exist Exist None
Class 3 [water+soil] Exist None Exist
Class 4 [vegetation+soil] None Exist Exist
Class 5 [water] Exist None None
Class 6 [vegetation] None Exist None
Class 7 [soil] None None Exist

In the classification results with seven classes; dark urban area (dark man-made objects such
like asphalt), water field (including river and sea side), river, and shallow sea were classified into
class3. The dark urban area and water field were separated from the river and shallow sea using
Euclid distance of them from the waster and soil class. Twenty training data of water and that
of soil were used to calculate the average of them. The Euclid distances between class3 and
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soil, and class3 and water were calculated using the equation 6.6.

di =

√√
k∑

l=1

(xi,l − µl)2 (6.6)

whered is Euclid distance,x is classification result of each landcover type,µ is the average of
training data of each landcover type,l is landcover type, andi is each pixel.

If the Euclid distance of a pixel in class3 was close to soil, the pixel was classified into [dark
bare soil+ water field] class. If Euclid distance of a pixel was close to water, the pixel was
classified into water (river, shallow water) class. From figure 6.19 to 6.21 show the results of
the separation of dark urban and water filed from water class.

Next, the dark urban was separated from [dark urban+ water field] class. A phenological
rule was applied to the separation: The changes of water proportion among the three scenes
were examined, if the water proportion in [urban+ water] class is decreasing from October
to March, the class classified into the water field, otherwise the class was classified into dark
urban. From figure 6.22 to 6.24 show the result of the separation in the three ASTER scenes.
The water field clearly separated from dark urban with the rule. Nine classes were generated;
[water+vegetation+soil], soil, vegetation, water, [water+vegetation], water (river, shallow wa-
ter), [vegetation+soil], dark urban and water field.

The nine classes were classified into bare soil, forest, water, water field including waterside,
agricultural field, and dark urban could be classified using 68 phonological rules shown in the
table 6.5. In the table 6.3, VG indicates vegetation group, the vegetation group is consisted of
[water+vegetation+soil], [water+vegetation], and [vegetation+soil]. UrbanG indicates urban
group which is consisted of soil and dark urban. Figure 6.25 shows the final result of the
classification using the 68 phenological rules.
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Figure 6.16: Test area of the October scene for the change detection

72



Figure 6.17: Test area of the January scene for the change detection
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Figure 6.18: Test area of the March scene for the change detection
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Figure 6.19: Dark urban and water field in the October scene was separated from water class.
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Figure 6.20: Dark urban and water field in the January scene was separated from water class.
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Figure 6.21: Dark urban and water field in the March scene was separated from water class.
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Figure 6.22: Water field in the classification result of the October scene could be separated from dark urban
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Figure 6.23: Water field in the classification result of the January scene could be separated from dark urban
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Figure 6.24: Water field in the classification result of the March scene could be separated from dark urban
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Figure 6.25: The final result of the classification using 68 phenological rules
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Table 6.3: 68 phenological rules for the final landcover classification

Rule 1030 103 308 class

1 V G V G V G forest
2 V G V G waterfield waterfield
3 V G V G urbanG agriclulturalfield
4 V G V G water water
5 V G waterfield V G waterfield
6 V G waterfield waterfield waterfield
7 V G waterfield urbanG waterfield
8 V G waterfield water waterfield
9 V G urbanG V G agriclulturalfield
10 V G urbanG waterfield waterfield
11 V G urbanG urbanG agriclulturalfield
12 V G urbanG water water
13 V G water VG agriclulturalfield
14 V G water waterfield agriclulturalfield
15 V G water urbanG agriclulturalfield
16 V G water water agriclulturalfield
17 waterfield V G V G waterfield
18 waterfield V G waterfield waterfield
19 waterfield V G urbanG waterfield
20 waterfield V G water waterfield
21 waterfield waterfield V G waterfield
22 waterfield waterfield waterfield waterfield
23 waterfield waterfield urbanG waterfield
24 waterfield waterfield water waterfield
25 waterfield urbanG V G waterfield
26 waterfield urbanG waterfield waterfield
27 waterfield urbanG urbanG waterfield
28 waterfield urbanG water waterfield
29 waterfield water VG waterfield
30 waterfield water waterfield waterfield
31 waterfield water urbanG waterfield
32 waterfield water water waterfield
33 bare soil VG V G agriclulturalfield
34 bare soil VG waterfield bare soil
35 bare soil VG urbanG bare soil
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36 bare soil VG water water
37 bare soil waterfield V G waterfield
38 bare soil waterfield waterfield waterfield
39 bare soil waterfield urbanG waterfield
40 bare soil waterfield water waterfield
41 bare soil urbanG V G agriclulturalfield
42 bare soil urbanG waterfield waterfield
43 bare soil urbanG urbanG bare soil
44 bare soil urbanG water water
45 bare soil water VG agriclulturalfield
46 bare soil water waterfield waterfield
47 bare soil water urbanG bare soil
48 bare soil water water water
49 bare soil darkurban VG darkurban
50 bare soil darkurban waterfield darkurban
51 bare soil darkurban urbanG darkurban
52 bare soil darkurban water water
53 water VG V G agriclulturalfield
54 water VG waterfield waterfield
55 water VG urbanG bare soil
56 water VG water water
57 water waterfield V G waterfield
58 water waterfield waterfield waterfield
59 water waterfield urbanG water
60 water waterfield water water
61 water urbanG V G bare soil
62 water urbanG waterfield water
63 water urbanG urbanG water
64 water urbanG water water
65 water water VG bare soil
66 water water waterfield water
67 water water urbanG water
68 water water water water

In the final result of the classification, bare soil class represents bare soil, bright urban area,
non agricultural fields and man made objects; forest represents the mountainous area, vegetated
hill and forest; water represents rivers and the sea; [water filed, water side] class represents
water field, river sides and sea shores; agricultural field represents agricultural fields and grass
fields; dark urban class represents dark man -made objects.

The evaluation of the landuse classification could not be carried out due to the lack of time
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series data, however although spectral unmixing equations of the October scene used for the
linear mixture analyses of the ASTER scenes, abstract landcovers such like water, vegetation
and soil could be successfully classified.
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Chapter 7

CONCLUSIONS AND DISCUSSIONS

7.1 The errors in change detection due to the pointing direc-
tion shift should be considered for the accurate change
detection

The accurate trasformations were obtained, then pointing direction shift (x:1m, y:7m) between
the two ASTER images acquired in October 2001 and January 2002 could be calculated using
the trasformations. The pointing direction shift were larger than trasformations’ RMSE (less
than 2m), this means that the errors in change detection due to pointing direction shift can influ-
ence the result of change detection more than the ”misregistration”. Gong (1992), Townsahend
(1992), and Stow (1999) considered the errors in change detection after registration, while this
study considered the errors in change detection before and after registration.

7.2 Resampling method using geometrically fixed grid was
developed to reduce the errors in change detection due to
the pointing direction shift of remotely sensed time series
data.

The comparison between incompletely overlaid areas is a fatal problem in the change detection
using pixel by pixel comparison. The proposed method enables the comparison between the
same areas of time series data, and can reduces errors generated in pixel based calculation. In
the simulation, at most 50% of change detection error due to pointing direction shift could be
reduced, and the result of case study showed that the pixel by pixel comparison method have
tendency to generate more changes than the proposed method. That how much of the error can
be corrected depends on the amount of pointing direction shift. This method can be applied to
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other calculations which need pixel based arithmetic calculation.

7.3 The adapted methodology of change detection was estab-
lished

The proposed method for reducing the change detection error can not be implemented by only
itself; the proposed method required the methodology which contains image normalization,
linear mixture analysis, image trasformation using the very high resolution data. Systematic
process for accurate change detection was developed.

Many spatial data and statistical data have been derived from remotely sensed data, however
this study showed that one of unknown errors can be exist in the processing of remotely sensed
data. This study alarms that careful attentions of remote sensing systems and data processing are
required. The proposed method will play important role to produce accurate change detection
results and to prevent errors from propagating in data processing.

7.4 Future works

The evaluation of the proposed method was carried out in the simulation due to lack of ground
truth data. Although the proposed method can reduce the errors due to pointing direction shift
theoretically, the other factors such like the accuracy of linear mixture analysis and image nor-
malization can influence the accuracy of the proposed method in actual situations. The ground
truth data will be used to evaluate the efficiency of the proposed method. Finally the effect of
the proposed method to the total error in change detection will be investigated.

In this study, the pointing direction shift effects to change detection accuracy was investi-
gated in the scope of 15m resolution; more various resolutions need to be investigated because
the size of incompletely overlaid areas can be changed according to the resolution. MODIS
can be a suitable data for the investigation because this data have multi-resolution (250m, 500m
and 1000m) and various spectral bands (36 bands), moreover same date of ASTER and MODIS
data are available because the two sensors are on board the TERRA space craft.

The nearest neighbor hood resampling method is commonly used for change diction be-
cause the resampling method does not modify the original DN value of satellite images, thus
this study only considered the pixel by pixel comparison of time series data which are resam-
pled by the nearest neighbor hood method. This study showed that although highly accurate
geometrical trasformation are carried out, the effect of pointing direction in change detection
can not be handled because the limitation of The nearest neighbor hood resampling method.
Bilinear or cubic convolution methods may be more reliable than the nearest neighbor hood
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method because the method can estimate the same location’s DN or land cover value of time
series data.

87



Bibliography

[1] Civico, D.L.,1989, Topographic normalization of Landsat Thematic Mapper digital im-
agery,Photogrammetric Engineering and Remote Sensing, 55(9):1303-1328.

[2] Dobson, J. E., R. L. Ferguson, D. W. Field, L. L. Wood, K. D. Haddad, H. Iredale., J. R.
Jensen, V. Vklemas, R. J. Orth, and J. P. Thomas, 1995, NOAA Coastal Change Analysis
Project (C-CAP):Guidance for Regional Implementation, National Oceanic and Atmo-
spheric Administration, NMFS 123, 92p.

[3] E.A. Mcgovern, N. M. Holden, S. M. Ward, and J. F. Collins, 2002, The radiometric nor-
malization of multitemporal Thematic Mapper imagery of the midlands of Ireland-a case
study,International Journal of Remote Sensing, 23, 751-766

[4] Gong, P., Ledrew, E. F., and Miller, J. R., 1992, Registration-noise reduction in difference
image for change detection.International Journal of Remote Sensing, 13, 773-779.

[5] Gruen, A (1985). Adaptive least-squares correlation: powerful image matching technique.
South Africa Journal of Photogrammetry, Remote Sensing and Cartography, 14(3), 175-
187.

[6] Harry N. Gross and John R. Schott, 1998, Application of spectral mixture analysis and
image fusion techniques,Remote Sensing Environment, 63, 85-94.

[7] Helava, U (1978). Digital correlation in photogrammeteric instruments.Photogrammetria,
34, 19-41.

[8] JEONG Jong Hyeok and Masataka TAKAGI, An Accuracy Adjustment by Fusion Method
with GIS Data and Remote Sensing Data,Proceedings of the Joint International Symposium
on Geospatial Theory, Processing and Applications, 2002.

[9] JEONG Jong Hyeok and Masataka TAKAGI, Extraction of Bridge Positions from IKONOS
Images for Accuracy Control of Bridge Database,Proceedings of the 23rd Asian Confer-
ence on Remote Sensing, Kathmoandu, No. 172, 2002.

[10] JEONG Jong Hyeok and Masataka TAKAGI, A Classification Method Based on Mixed
Pixel Analysis For Change Detection,Proceedings of the 24rd Asian Conference on Remote
Sensing, Pusan, 2003.

88



[11] JEONG Jong Hyock and Masataka TAKAGI, Accuracy Evaluation of Change Detection
using ASTER and IKONOS Image,日本写真測量学会平成 16年度年次学術講演会発表
論文集, pp.119-121, 2004.

[12] Jong Hyeok JEONG and Masataka TAKAGI, Reducing Change Detection Errors due to
Different Pointing Direction of Time Series Data,Proceedings of the 25th Asian Conference
on Remote Sensing, Chiangmai THAILAND, pp.1551-1556, 2004.

[13] Konecny, G., 2003,Geoinformation, Taylor & Francis, New Fetter Lane, London, pp 166.

[14] Lillesand, T., Kiefer, R., 1994.Remote Sensing and Image Interpretation, 3rd Edition.
John Wiley and Sons, New York, U.S.A.

[15] Richards, J., 1993.Remote Sensing and Digital Image Analysis: An Introduction, 2nd
Edition. Springer-Verlag, New York, U.S.A.

[16] Settle, J. J. and Drake, N. A. 1993, Linear mixing and the estimation of ground cover
proportions,International Journal of Remote Sensing, 14, 1159-1177

[17] Schenk, A. F., 1999.Digital Photogrammetry, 1st Edition. Vol. I (in Japanese). Japan
Association of Surveyors, Japan

[18] Stefanie Tompkins, John F. Mustard, Carle M. pieters, 1997 and Donald W. Forsyth, Opti-
mization of Endmembers for Spectral Mixture Analysis,Remote Sensing Environment, 59,
472-489.

[19] Teillet, P.M, 1986, Image correction for radiometric effects in remote sensing,Canadian
Journal of Remote Sensing, 7(12):1637-1651.

[20] Townshend, J. R. G., Justice, C. O., Gurency, C. , and Mcmanus, J., 1992, The impact
of misregeistration on change detection.IEEE Transactions on Geoscience and Remote
Sensing, 30, 1054-1060.

[21] Yoshio Edemir Shimabukuro and James A. Smith, 1991, Least-square mixing models to
generate fraction images derived from remote sensing multispectral data,IEEE Transac-
tions on Geoscience and Remote Sensing, 29, 16-20.

[22] Xiaojun Yang and C.P. Lo, 2000, Relative radiometric normalization performance for
change detection from Multi-date satellite image,Photogrammetric Engineering and Re-
mote Sensing, 66(9): 967-980.

89


	List_of_Figures.pdf
	LIST OF FIGURES




