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 i

Abstract 
 

The thesis deals with studies on organic transformations in subcritical and 

supercritical water (sub-CW and SCW, respectively). Quite unique organic 

transformations, such as non-catalytic oxidation of secondary alcohols benzhydrol 

(1) and benzoin (2) in SCW, non-catalytic Oppenauer oxidation of alcohols 1 and 

benzyl alcohol (3) under solvent-free conditions and in SCW, non-catalytic 

permethylation of catechol (5) and 4-methylcatechol (6) in sub-CW and SCW, and 

sub-CW assisted clean cross-aldol reactions of benzaldehyde (8) with acetone (9) 

and acetophenone (10) with 1,3,5-trioxane (7) in the presence of ZnCl2, are 

investigated to clarify the potential of sub-CW and SCW in organic transformations 

as reaction media.  
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First, oxidation of secondary alcohols, such as benzhydrol (1) and benzoin (2), 

was investigated in the absence of any catalyst or oxidant in SCW. Reaction 

temperature and reaction time dependences were observed in both reactions. Higher 

temperature and longer reaction time caused higher conversions of 1 and 2 as well 

as higher yields of oxidation products, benzophenone (11) and benzil (14), and 

reduction products, diphenylmethane (12) and benzyl phenyl ketone (15), 

respectively. Water played a key role in the product distributions in these reactions. 

Reactions gave larger amounts of oxidation products, 11 and 14, as well as smaller 

amounts of reduction products, 12 and 15, respectively, in the presence of water, 

while the ratios of 11:12 and 14:15 were almost 1:1 in both cases in the absence of 

water. The best yield of 11 (63%) was achieved in the reaction of 1 at 460 °C for 

180 min in 0.35 g mL-1 water density in an SUS 316 batch type tubular reactor. 

Hydrogen gas evolution was confirmed in the reaction of 1 in a quartz tubular 
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reactor. These facts, hydrogen gas evolution, water density dependence of alcohol 

reaction, and more oxidation products than reduction products in SCW, suggest that 

the water-catalyzed hydrogen generation mechanism is favourable to explain the 

reaction behaviour of alcohols in SCW. 

Second, non-catalytic Oppenauer oxidation was applied for the oxidation of 

alcohols, such as benzhydrol (1) and benzyl alcohol (3), by use of a carbonyl 

compound, formaldehyde (4), as an oxidant in SCW in the SUS 316 batch type 

tubular reactor, and the results were compared to those under the most sustainable 

solvent-free conditions. Water was indispensable for the clean Oppenauer oxidation 

of 1 and 3 to produce almost pure oxidation products, benzophenone (11) and 

benzaldehyde (8), respectively, in both oxidations. Under solvent-free conditions, 

Oppenauer oxidation and disproportionation took place simultaneously in both 

reactions of 1 and 3 to afford oxidation products, 11 (64%) and 8 (95%), 

concomitant with small amounts of reduction products, diphenylmethane (12) 

(13%) and toluene (16) (2%), at 400 °C for 10 min in the SUS 316 batch type 

tubular reactor, respectively. Thus, lower yields of oxidation products, 11 (30%) and 
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8 (66%), were obtained in SCW under the conditions of 400 °C, 10 min, and 0.35 g 

mL-1 water density, though the formations of reduction products, 12 (<1%) and 16 

(<1%), were almost completely suppressed, respectively.  

Third, simple and complete aromatic ring-methylation of catechol derivatives, 

such as catechol (5) and 4-methylcatechol (6), was investigated utilizing 

1,3,5-trioxane (7) as a source of methyl groups in sub-CW and SCW without any 

catalyst. The formation of permethylation product, 3,4,5,6-tetramethylcatechol (23), 

was observed under all the conditions examined in sub-CW and SCW in both 

reactions of 5 and 6. Permethylation product 23 was obtained as an almost sole 

product at 350 °C for 10 min in 3.5 mL water in the SUS 316 batch type tubular 

reactor in both reactions. Reaction temperature and time dependences were 

observed in the reaction of 6. A higher temperature and a longer reaction time 

improved the yield of permethylation product 23 as well as the yields of other 

methylation products, 3,4,6-trimethylcatechol (22) and 3,4,5-trimethylcatechol (24). 

Water density dependence was also observed in the permethylation of 6. In the 
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absence of water, only a small amount of permethylation product 23 (4%) was 

obtained at 380 °C for 10 min. However, the formation of permethylation product 

23 (13%) was improved in water under the conditions of 400 °C, 10 min, and 0.35 g 

mL-1 water density.  

 Finally, sub-CW assisted clean cross-aldol reaction was investigated through 

the reactions of benzaldehyde (8) with acetone (9) and acetophenone (10) with 

1,3,5-trioxane (7) in the presence of an inorganic additive, ZnCl2. Clean cross-aldol 

reactions of 8/9 and 10/7 with ZnCl2 were performed in sub-CW in the SUS 316 

batch type tubular reactor with less waste of reagents and/or products as compared 

to the cases under the solvent-free conditions. In the absence of water, almost 

complete consumption of 8 and 10 (conversion: >99%) was observed, while no 

product was obtained at 250 °C for 20 and 5 min, respectively. However, the 

consumption of 8 and 10 was suppressed to 42 and 81%, respectively, in the 

presence of 3.5 mL water. Water assisted the cross-aldol reactions to afford a 

satisfactory yield (23%) of cross-aldol reaction product, benzalacetone (32), in the 
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reaction of 8 with 9 and a satisfactory total yield (63%) of 1-phenylprop-2-en-1-one 

(33), 3-hydroxy-1-phenylpropan-1-one (34), and 2-hydroxymethyl-1-phenylprop-2- 

en-1-one (35) in the reaction of 10 with 7 in the presence of ZnCl2 under the 

conditions of 250 °C and 3.5 mL water in short reaction times (1–20 min). 
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Chapter 1. 

General Introduction 

 

Water has been studied intensively as a medium for organic reactions to 

establish sustainable reaction systems, since water is not only a green solvent but 

also one of the most abundant substances on the earth.1 Water shows different 

phases, such as solid phase, liquid phase, and gas phase, by changing temperature 

and pressure (Figure 1-1). In addition, water has a critical point (Tc = 374 °C, Pc = 

22.1 MPa, and dc = 0.32 g mL-1) and supercritical phase situates at the region over 

the critical point. Supercritical water (SCW) is defined as the water which situates 

in the supercritical region, and subcritical water (sub-CW) is broadly defined as the 

water in liquid phase whose temperature (200–374 °C) is lower than the critical 

temperature.  
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Figure 1-1. Water pressure-temperature phase diagram. 
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Although ambient water is an excellent reaction medium for many electrolytes, 

its very poor miscibility for many organic compounds due to the high polarity (εr = 

79 at 25 °C and 0.1 MPa) limits its application for the organic reactions as a 

medium. However, the polarity of water is tunable simply by changing the 

temperature and pressure. With an increase of temperature and pressure, the 

dielectric constant of water decreases dramatically, especially, at the critical point. 

For example, the specific dielectric constant of water becomes 27 at 250 °C in 5 

MPa and it decreases to 6 at 400 °C in 25 MPa.2 Additionally, the specific 

dielectric constants (εr = 35, 20, 10, and 2) of water at 200, 300, 370, and 500 °C in 

a fixed pressure of 24 MPa are quite similar to those of ambient methanol (εr = 33), 

acetone (εr = 21), dichloromethane (εr = 9), and hexane (εr = 2), respectively.3  

From a microscopic view, however, the aggregation state of SCW is fluctuated 

in time and space to afford a cluster structure of water molecules due to mutually 

exclusive events of the high pressure for aggregation and the high temperature for 

diffusion. When organic molecules are introduced into the fluctuated SCW, strong 

hydration due to high pressure occurs to afford water cages around the organic 

 
Organic molecule

 

water 
molecule 

cluster structure strong hydration 
water cage

Figure 1-2. Water cage structure of supercritical water. 
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molecules (Figure 1-2).4 Moreover, some special interactions between the organic 

and water molecules can be expected, due to vigorous vibrations of hydrated water 

molecules which surround the organic molecules closely at high temperatures. 

Furthermore, the ionic product of sub-CW and SCW is also bigger than that of 

ambient water. For example, the ionic product of water at the critical point become 

higher in 3 orders of magnitude than those of ambient water, which means higher 

concentrations of H+ and OH- than those of ambient water. Sub-CW and SCW is, 

therefore, very favorable for the acid-catalyzed or base-catalyzed reactions without 

any additional acid or base.5 Some quite intriguing organic transformations have 

been reported concerning these quite unique properties of sub-CW and SCW.5  

The application of sub-CW and SCW as reaction media started to grow in the 

early 1980s when Modell et al reported the complete oxidation of some hazardous 

organic materials in SCW.6 For the last two decades with deep investigation of 

sub-CW and SCW, organic reactions in sub-CW and SCW became more and more 

important from the standpoints of science and engineering. It progressed very fast 

throughout the 1990s and 2000s with the further reorganization of sub-CW and 

SCW as media for the organic reactions in order to invent cleaner, safer, and more 

environmentally sustainable reaction systems.7 Recently, sub-CW and SCW have 

been applied intensively for chemical synthesis, materials synthesis, wastes 

destruction, plastics recycling, and biomass processing as reaction media.8 Among 

these applications, sub-CW and SCW are in common use in organic reactions as 

reaction systems.  

In industrial chemistry, sub-CW and SCW have been investigated in the field 
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of the waste treatment especially in the presence of a large excess amount of oxygen 

(Scheme 1-1). For example, dioxins and polyvinyl chloride (PVC) were oxidized 

completely to afford carbon dioxide, water, and hydrogen chloride (sodium 

chloride) without any catalyst.9 Sub-CW and SCW were also utilized in the 

recovery of monomers from plastics, such as hydrolysis of polyethylene 

terephthalate (PET) to recover terephthalic acid and ethane-1,2-diol. 10  The 

degradation or gasification of cellulose was also reported to produce useful raw 

materials, such as glucose, fructose, cellobiose, and hydrogen gas, without any 

additive or catalyst in sub-CW and SCW.11  
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Scheme 1-1. Degradations of organic materials by subcritical and supercritical 
water. 
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Recently, quite unique organic transformations in sub-CW and SCW have been 

investigated. For example, carbon-carbon bond formation reactions, such as 

non-catalytic Heck reaction of iodobenzene12 and non-catalytic cross-aldol reaction 

of benzaldehyde with acetone or acetophenone in sub-CW and SCW, have been 

reported.13 Several famous rearrangements, such as Beckmann rearrangement of 

cyclohexanone oxime,14 pinacol rearrangement of 2,3-dimethyl-2,3-butanediol,15 

and benzil-benzilic acid rearrangement of benzil,16 have been investigated in SCW 

in the absence of any catalyst. Hydration and hydrolysis, such as non-catalytic 

hydration and hydrolysis of nitriles in SCW17 and non-catalytic hydrolysis of ethers, 

esters, and amides, in sub-CW and SCW have been studied. 18  Some other 

interesting organic transformations, such as H-D exchange of aromatic compound in 

supercritical deuterium oxide, 19  Cannizzaro reaction of formaldehyde or 

benzaldehyde, and C-Si bond cleavage,20 have been studied in sub-CW and SCW 

without any catalyst. In addition, in these quite interesting organic transformations, 

water was not only a simple reaction solvent but also played a very curial role for 

these organic transformations in sub-CW and SCW. For example, water was a 

reactant in hydrolysis, hydration, and free radical oxidation chemistry.17,18 On the 

other hand, water also participated as an acid/base catalyst in acid-catalyzed or 

base-catalyzed reactions and assisted as a catalyst in some transition states.14-16 

These interesting examples suggested that sub-CW and SCW are very suitable for 

organic transformations. 
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Although sub-CW and SCW have been investigated for the organic reactions 

as reaction media intensively, only a few examples such as oxidation of hazards 

wastes and degradation of organic materials have been applied on industry. Organic 

syntheses in sub-CW and SCW are still at the stage of laboratorial research. A lot of 

quite unique organic transformations in sub-CW and SCW should be investigated 

continuously to know the potential of using sub-CW and SCW as reaction media for 

organic synthesis and further to realize the organic syntheses in sub-CW and SCW 

on the industrial chemistry. In this thesis, the author investigates several quite 

unique organic transformations in sub-CW and SCW.  

First, oxidation of alcohols to the corresponding ketones or aldehydes is one of 

the most important reactions in organic synthesis as well as industrial chemistry.21 

Usually, the oxidation of alcohols needs oxidants and catalysts. 22  Recently, 

Kajimoto et al reported a unique oxidation of ethanol in SCW at 450–500 °C in the 

absence of an oxidizing agent or a catalyst. 23  Takahashi et al proposed a 

water-catalyzed hydrogen formation mechanism consisting of a very unique 

8-membered ring transition state with an ethanol molecule and two water 

molecules.21 Unfortunately, side reactions, such as dehydration, occurred to give 

ethene simultaneously, which hindered the author from knowing the intrinsic 
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alcohol oxidation ability of SCW. Alternative alcohols with no such side reaction 

should be considered to discuss the inherent oxidation ability of SCW. In chapter 2, 

benzhydrol (1) and its higher homologue benzoin (2) are selected due to the 

advantages of the benzene subunits exhibiting high affinity to SCW24 and of 

secondary alcohol with no hydrogen atom on the β-position of the hydroxyl group 

leading to dehydration, in order to evaluate the intrinsic alcohol oxidation ability of 

SCW.  

Second, the Oppenauer oxidation of alcohol is one of the highly selective 

oxidation methods of alcohols producing the corresponding aldehydes or ketones. 

However, typical Oppenauer oxidation requires metal alkoxide as a catalyst to 

achieve good yields of desired ketones or aldehydes.25 Recently, non-catalytic 

Meerwein-Ponndorf-Verley (MPV) reduction of ketones and aldehydes, which is an 

opposite reaction of Oppenauer oxidation, in supercritical alcohols have been 

reported.26 The attractive non-catalytic MPV reduction of aldehydes and ketones in 

supercritical alcohols indicates that the Oppenauer oxidation of alcohols occurs in 

the presence of carbonyl compounds as oxidants under the similar reaction 

conditions in the absence of any catalyst. In chapter 3, the non-catalytic Oppenauer 

oxidation of alcohols, such as benzhydrol (1) and benzyl alcohol (3), is investigated 

by use of a small amount of formaldehyde (4) as an oxidant in SCW and the results 

 

43
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are compared to those under solvent-free conditions to accomplish a highly 

selective Oppenauer oxidation.  

Third, alkylation of catechol derivatives is an important process in organic 

synthesis.27 A typical alkylation method of catechol derivatives is the Friedel-Crafts 

process using strong acid catalysts.28 Methylation of catechol derivatives is one of 

the most important processes, since methylcatechol derivatives, such as 

3-methylcatechol, 4-methylcatechol, and 2,3,5-trimethylhydroquinone, are widely 

applied in the synthesis of agricultural chemicals and pharmaceuticals as 

intermediates.27 In the methylation of catechol derivatives, permethylation 

processes are relatively difficult, while little was reported about non-catalytic 

permethylation of catechol derivatives. Recently, non-catalytic methylation of 

hydroquinone has been reported in supercritical methanol, while only a 

mono-methylation product, 2-methylhydroquinone, was observed even in the 

presence of an excess amount of methanol.29 On the other hand, non-catalytic 

alkylation of phenol derivatives has been reported, such as non-catalytic 

methylation of phenol derivatives in supercritical methanol30 and non-catalytic 

alkylation of phenol with propionaldehyde in SCW.31 Among them, the alkylation 

of phenol with aldehyde in SCW requires a shorter reaction time than those in 
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supercritical methanol, which suggests methylation with formaldehyde in SCW is 

more effective than that in supercritical methanol. In chapter 4, the author 

investigates permethylation of catechol derivatives, catechol (5) and 

4-methylcatechol (6), with 1,3,5-trioxane (7)32 as a source of methyl groups in 

sub-CW and SCW. 

At last, organic reactions under solvent-free conditions have attracted much 

attention in organic synthesis, since it is one of the most sustainable reaction 

systems. Heating is one of the easiest methods to accelerate the reactions under 

solvent-free conditions, however it sometimes causes considerable decomposition 

of starting materials and/or reaction products because of the high temperature. On 

the other hand, SCW is another choice for green reaction systems, while the high 

temperature of SCW also leads to considerable decomposition of chemicals in the 

reactions. Meanwhile, sub-CW has a lower temperature (200–374 °C), which is 

easily anticipated to suppress the decomposition of organic compounds. In chapter 5, 

sub-CW assisted clean cross-aldol reaction is investigated using the cross-aldol 

reactions of benzaldehyde (8) with acetone (9) and acetophenone (10) with 

1,3,5-trioxane (7) in the presence of an inorganic additive, ZnCl2, in sub-CW and 

the results are compared to those under solvent-free conditions. 

The details of the researches are described in chapter 2, chapter 3, chapter 4, 
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and chapter 5. Chapter 2 treats with the investigation on non-catalytic oxidation of 

secondary alcohols, benzehydrol (1) and benzoin (2), in SCW. Chapter 3 describes 

non-catalytic Oppenauer oxidation of alcohols, 1 and benzyl alcohol (3), using 

formaldehyde (4) as an oxidant, both under solvent-free conditions and in SCW. 

Chapter 4 deals with a simple non-catalytic permethylation method of catechol 

derivatives, catechol (5) and 4-methylcatechol (6), with 1,3,5-trioxane (7) as a 

source of methyl group in sub-CW and SCW. At last, chapter 5 describes sub-CW 

assisted clean cross-aldol reactions of benzaldehyde (8) with acetone (9) and 

acetophenone (10) with 7 in the presence of an inorganic additive, ZnCl2. 
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Chapter 2.  

Reaction Behavior of Secondary Alcohols in 

Supercritical Water  

 

2-1 Introduction 
 

Alcohol oxidation affording ketone or aldehyde is one of the most important 

reactions in organic synthesis.1 Usually, the oxidation of alcohols requires catalysts 

and considerable amounts of oxidants.2 Recently, Kajimoto et al reported a quite 

unique oxidation of ethanol in SCW.3 When ethanol was treated in SCW at 

450–500 °C even without any oxidant or catalyst, oxidation occurred to give 

acetaldehyde concomitant with hydrogen gas generation. Concerning this reaction, 

Takahashi et al proposed a quite unique water-catalyzed hydrogen formation 

mechanism based on theoretical calculations. 4  The transition state of this 

mechanism consisted of an ethanol molecule and two water molecules, in which 

two water molecules catalyzed the reaction by making an eight-membered ring 
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Scheme 2-1. Water-catalyzed hydrogen formation mechanism. 
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bridging over two hydrogen atoms of the ethanol to give a H2 molecule (Scheme 

2-1). Unfortunately, dehydration of ethanol also occurred to give ethene 

simultaneously as a side reaction, which hindered us from knowing the intrinsic 

alcohol oxidation ability of SCW. In order to discuss the inherent oxidation ability 

of SCW, alternative substrates with no such side reaction should be considered. 

Benzhydrol (1) and benzoin (2) were selected as substrates to evaluate the 

intrinsic alcohol oxidation ability of SCW due to advantages of (i) the benzene 

subunits exhibiting high affinity to SCW5 and (ii) the secondary alcohol with no 

hydrogen atom on the β-position of the hydroxyl group leading to dehydration. In 

this chapter, the author investigates the alcohol oxidation property of SCW through 

secondary alcohols 1 and 2. 

 

OH

1

OH

O
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2-2 Results and Discussion 
2-2-1 Reaction of benzhydrol (1) in supercritical water 
 

Alcohol 1 was treated in SCW in an SUS 316 batch type tubular reactor under 

various conditions (Table 2-1). 6  Small amounts of benzophenone (11) and 

diphenylmethane (12) were produced, when 1 was treated at the temperature near 

 

Table 2-1. Reaction of benzhydrol (1) in supercritical watera) 

OH

1 11

O

12

SCW

 

Product 

(%) Entry 
Mole of 1

(mmol) 

Temperature

(°C) 

Water density

(g mL-1)b) 

Reaction 

time (Min)

Conversion 

(%) 
11 12

1 0.272 380 0.35 180 19 6 4 

2 0.272 400 0.35 180 26 16 5 

3 0.272 420 0.35 180 77 46 4 

4 0.272 440 0.35 180 87 53 9 

5 0.272 460 0.35 180 >99 63 10

6 1.09 460 0.35 180 96 60 10

7 2.00 460 0.35 180 >99 60 17

8 0.272 460 0.35 20 38 16 <1

9 0.272 460 0.35 60 82 53 7 

10 0.272 460 0.35 120 93 49 7 

11 0.272 440 0 180 >99 48 53

12 0.272 440 0.05 180 86 50 29

a) Under N2, in the SUS 316 batch type tubular reactor. 

b) Value of water density water (g)/volume of the reactor. 
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the critical point (Entry 1). The conversion of 1 and yields of 11 and 12 became 

higher with an increase in the reaction temperature (Entries 1–5). A remarkable 

change was observed at 420 °C (Entry 3). Reaction time dependence was also 

examined in the reaction of 1 and the reaction almost finished within about 120 min 

(Entry 10). The best yield of oxidation product 11 was achieved at 460 °C for 180 

min (Entry 5). The required high temperature (>420 °C) as well as long reaction 

time (>120 min) suggests that the activation energy of this reaction is quite high. 

Even though a higher concentration of alcohol 1 was used in this reaction, almost 

no influence on the conversion of 1 and the yield of 11 as well as a little influence 

on the yield of 12 was achieved (Entries 6 and 7). It is noteworthy that yields of 11 

were always higher than those of 12 under all the conditions the author examined in 

water (Entries 5, 6, and 7). 

The role of water was examined by changing the water density in this reaction. 

Almost same amounts of oxidation product 11 and reduction product 12 were 

obtained in the absence of water (Entry 11, pyrolysis), suggesting that 

disproportionation between two molecules of alcohol 1 took place thermally. 

However, in the presence of water, the ratio of 11:12 always exceeded unity and 

increased with increasing water density (Entries 11, 12, and 4). Even within shorter 

reaction times (Entries 8, 9, and 10), the yield of 11 was always higher than that of 

12 at 460 °C in 0.35 g mL-1 water density. These observations imply that reaction of 

alcohol 1 proceeded via a new reaction pathway other than the disproportionation 

under the conditions of higher water density and higher temperature. Water must 

play a key role in the new reaction. 



 21

Next, in order to ascertain the gaseous products, a quartz tubular reactor was 

adopted instead of the SUS 316 one. Evolution of hydrogen gas was observed, 

along with oxidation product 11 and reduction product 12 in the reaction of 1 in 

SCW at 420 °C in the quartz tubular reactor (Table 2-2). However, slight differences 

of the product distributions were observed between the quartz tubular reactor and 

the SUS 316 one. These differences between the reactions would be explained by 

the different reactor materials of the SUS 316 and quartz as exemplified by 

Kajimoto et al.3 Although smaller ratios of 11:12 were obtained in the quartz tubular 

reactor than those in the SUS 316 reactor, the oxidation product 11 was the major 

product in SCW in both reactors. On the other hand, the total amount of obtained H2 

and 12 was almost equal to the amount of 11, showing no discrepancy supposing 

 

Table 2-2. Generation of hydrogen gas in reaction of benzhydrol (1) in supercritical 

watera) 

OH

1 11

H2

O

12

SCW

 

Products (%) 
Entry 

Temperature 

(°C) 

Reaction time 

(min) 

Conversion 

of 1 (%)b) H2 11 12 

1 422 10 1 0.6 2.4 1.5

2 420 60 7 1.2 5.1 2.8

a) Reaction conditions: 0.272 mmol of 1 and 0.34 mL of water in 1 mL quartz 

batch type tubular reactor, water density 0.34 g mL-1. 

b) Conversions was suppressed with low level to avoid explosion of the quartz 

tubings by inner pressure of generated hydrogen gas. 
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that reduction product 12 was afforded via the reduction of 1 and/or 11 by the 

generated hydrogen in the reaction system. Then, influence of hydrogen gas on the 

product distributions was examined. When alcohol 1 was treated with and without 

additional hydrogen gas in SCW (1: 0.054 mmol, H2: 0 or 0.29 mmol, at 440 °C for 

180 min in 0.35 g mL-1 water density in the SUS 316 reactor), no difference in the 

product distributions was observed between the reactions with and without 

additional hydrogen gas (with H2, 11: 24%, 12: 15%; without H2, 11: 25%, 12: 

13%). These results indicate that 1 and/or 11 may not be reduced by hydrogen gas 

generated in situ but may be reduced by nascent hydrogen under the reaction 

conditions. Katritzky et al reported, in a related study, that 1 and 11 were 

successfully reduced to give 12 in 15% aqueous formic acid or 15% aqueous 

sodium formate under supercritical conditions (460 °C, 60 min). 7  Prolonged 

reaction time led to higher conversion of 1 and higher yields of hydrogen gas, 11, 

and 12 (Entry 2).8 The yields of 11 were almost two times higher than those of 12 

in both reactions. 

Hatano et al studied a similar reaction using the same substrate 1 in sub-CW 

and SCW in a steel bomb reactor.9 The same products, 11 and 12, were obtained as 

us, while the distributions of 11 and 12 were quite different from ours. The ratios of 

11:12 were always almost 1:1 under all conditions they tested. The water density 

did not effect the product distributions in their experiments. On the other hand, they 

obtained ether 13 in the reaction at 200 °C. When ether 13 was treated under 

supercritical conditions as a starting material, same amounts of 11 and 12 were 

obtained. They concluded, therefore, that equal amounts of 11 and 12 were derived 
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from disproportionation of ether 13, which was produced at an early stage of the 

reaction.10 The proposed reaction mechanism would be quite reasonable, if a 1:1 

mixture of 11 and 12 were obtained even in our experiments. However, our 

experiments always gave larger amounts of 11 than those of 12. The lability of 12 

could result in the low yield of 12 in our experiments under the reaction conditions. 

A control experiment involving 12 was performed in SCW (460 °C, 180 min, 0.35 g 

mL-1 water density). However, complete recovery of 12 (>99%) was observed, 

indicating that compound 12 was quite stable under the reaction conditions. 

Especially, it is noteworthy that the yield of 11 exceeded 50% to reach 63% under 

the reaction conditions of Entry 5 in Table 2-1. The observed temperature and water 

density dependence of the reaction (Table 2-1) and the evolution of hydrogen are of 

considerable importance for discussion of the reaction mechanism. In our 

experiment, the formation of ether 13 could be suppressed by hydrolysis of 13 itself 

under extreme supercritical conditions, even if ether 13 was generated in the 

reactions. Concerning the difference between the results of Hatano’s and ours, it is 

difficult to put forward a conclusive discussion. The crucial differences could be 

resulted in the different materials of the metal reactors. Although the reaction 

 

O

13  
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mechanism is not well understood, the water-catalyzed hydrogen formation 

mechanism seems to be the most favorable one at present for our experiment in 

SCW.  
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2-2-2 Reaction of benzoin (2) in subcritical and supercritical water 
 

Another secondary alcohol, benzoin (2), which also has two benzene subunits, 

a secondary hydroxyl group, and a carbonyl group, was treated in sub-CW and 

SCW (Table 2-3). Oxidation product benzil (14) and reduction product benzyl 

phenyl ketone (15) with small amounts of benzaldehyde (8), which can be derived 

from decomposition of 2, 14, and/or 15, were obtained even at low temperatures 

(Entries 1 (300 °C) and 2 (340 °C)) and in a short reaction time (10 min), indicating 

that the reactions of 2 in sub-CW and SCW proceed more easily as compared to 

those of 1. With an increase in the reaction temperature, conversion of 2 and yields 

of 14 and 15 became higher (Entries 1, 2, and 6) and then saturated at 380 °C (Entry 

10). Prolonged reaction time improved conversion of 2 as well as yields of 14 and 

15, concomitant with small amounts of 1, which should be derived from the 

benzil-benzilic acid rearrangement of 14, followed by decarboxylation, as reported 

by Comisar et al, 11  and quite small amounts of benzophenone (11) and 

diphenylmethane (12) from 1, as discussed in the reaction of 1. Water density effect 

was also observed in this reaction. In the absence of water (Entry 7, pyrolysis), 

however, a high conversion of 2 (95%) and almost same total yield of the oxidation 

products (~29%, defined as the sum of 14, 1, 11, and 12) and reduction product 15 

(30%) were obtained, which was quite similar to the results of the pyrolysis of 

alcohol 1 (Entry 11 in Table 2-1). With an increase in the water density, conversion 

of 2 as well as yields of 14 and 15 became lower (Entries 7–10 and 6), which 

suggested that disproportionation of 2 was suppressed by water in the reaction. 

Again, total yield of the oxidation products as defined above was always larger than 
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Table 2-3. Reaction of benzoin (2) in subcritical and supercritical watera) 

OH

O
2

11

O

12

OH

1

O

O
14

O
15

O

8

sub-CW
and SCW H

 

Product (%) 
Entry 

Temperature 

(°C) 

Water density

(g mL-1)b) 

Reaction time

(min) 

Conversion

(%) 14 15 8 1 11 12

1 300 0.35c) 10 42 8 2 1 <1 —d) —d)

2 340 0.35c) 10 47 15 5 2 2 —d) —d)

3 380 0.35 0e) 27 10 1 <1 <1 —
d) —d)

4 380 0.35 1 36 15 3 1 1 —d) —d)

5 380 0.35 5 59 16 6 4 4 <1 <1

6 380 0.35 10 66 19 9 6 6 <1 <1

7 380 0 10 95 26 30 6 <1 <1 <1

8 380 0.05 10 81 19 16 12 <1 <1 <1

9 380 0.15 10 73 18 10 12 2 <1 <1

10 380 0.25 10 68 16 7 8 3 <1 <1

11 400 0.35 10 67 18 9 15 7 <1 <1
a) Reaction conditions: 0.236 mmol of 2, water, under N2 in the SUS 316 batch

type tubular reactor. 
b) Value of water density: water (g)/volume of the reactor. 
c) Reaction medium was not homogeneous, because reaction temperature was

under the critical temperature of water. 
d) Not detected. 
e) As soon as the temperature reached 380 °C, the reaction was quenched by rapid

cooling of the reactor in ice water. 

 



 27

the yield of reduction product 15 in every reaction in the presence of water. 

As a conclusion, the reactivity of 2 was higher than that of 1 in sub-CW and 

SCW. The temperature-dependence and time-dependence in the reaction of 2 in 

SCW were also observed. Alcohol 2 reacted more rapidly than alcohol 1 with an 

increase in reaction temperature up to 380 °C. Prolonged reaction time caused 

higher conversion of 2 and higher yields of products. The total yield of oxidation 

product 14 and its secondary products (1, 11, and 12) was always higher than that of 

reduction product 15 in the presence of water. 
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2-2-3 Reaction of benzyl alcohol (3) in supercritical water 
 

The reaction behaviour of a primary alcohol, benzyl alcohol (3), in SCW, was 

compared to those of 1 and 2. When alcohol 3 was treated in SCW under the 

conditions of 380–440 °C, 180 min, and 0.35 g mL-1 water density in the SUS 316 

batch type tubular reactor, oxidation product benzaldehyde (8) and reduction 

product toluene (16) were obtained (Table 2-4). Lower conversion of 3 than that of 

benzhydrol (1) was observed under the similar reaction conditions, indicating lower 

reactivity of 3 than that of 1. Benzene (17) was also obtained in the reaction, which 

should be generated by thermal decomposition of 8.12 Again, the total amount of 

 

Table 2-4. Reaction of benzyl alcohol (3) in supercritical watera) 

OH

3 8

O

16 17

SCW H CH3

 

Product (%)
Entry 

Temperature 

(°C) 

Water density

(g mL-1)b) 

Reaction time

(min) 

Conversion 

(%) 8 16 17

1 380 0.35 180 9 5 <1 —c)

2 400 0.35 180 18 10 2 <1

3 420 0.35 180 26 14 5 1 

4 440 0.35 180 40 21 10 8 
a) Reaction conditions: 1.09 mmol of 3, water, under N2 in the SUS 316 batch type 

tubular reactor. 
b) Value of water density: water (g)/volume of the reactor. 
c) Not detected. 
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the oxidation products 8 and 17 in this reaction is always larger than that of the 

reduction product 16. 
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2-3 Conclusions 
 

The reaction behavior of secondary alcohols, benzhydrol (1) and its higher 

homologue benzoin (2), both of which have two benzene subunits, a secondary 

hydroxyl group, and no hydrogen atom on the β-position of the hydroxyl group in 

sub-CW and SCW in the absence of any oxidizing reagent or catalyst was 

demonstrated. Oxidation product benzophenone (11) and reduction product 

diphenylmethane (12) were produced in the reaction of 1. In the absence of water, 

almost equal amounts of 11 and 12 were obtained, suggesting that 

disproportionation between two molecules of alcohol 1 occurred thermally. The 

yields of 11 were always higher than those of 12 in SCW under all conditions 

examined. Efficient oxidation of 1 was achieved to give 63% of 11 at 460 °C for 

180 min in 0.35 g mL-1 water density in an SUS 316 reactor. Water played a key 

role in this reaction. The ratio of 11:12 always exceeded unity and rapidly increased 

with an increase in the water density and temperature. Evolution of hydrogen gas 

was confirmed in the reaction of 1 in SCW in a quartz tubular reactor. In the 

reaction of 2, the total yield of oxidation product 14 and its secondary reaction 

products 1, 11, and 12 was also higher than that of reduction product 15 in the 

presence of water. The evolution of hydrogen gas, water density dependence of 

alcohol reaction, and larger amounts of oxidation products than those of reduction 

products in SCW indicate that the water-catalyzed hydrogen generation mechanism 

is the most favorable mechanism to explain the reaction behavior of alcohols in 

SCW. 
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2-4 Experimental Section 

2-4-1 General 
 

1H NMR spectra were obtained on a Varian Unity Inova spectrometer 

operating 400 MHz. GC-MS analyses were performed on a Shimadzu GCMS-QP 

5050. GC analyses were done on a Shimadzu GC-17A gas chromatograph with 

CBP-5 and/or DB-1 columns. Benzhydrol and benzyl alcohol were purchased from 

Nacalai Tesque Inc. and benzoin was purchased from Wako Pure Chemical 

Industries Ltd.  

The reagents and reverse osmosis water, into which N2 gas bubbled for 30 min 

to remove the dissolved oxygen, were introduced into an SUS 316 batch type 

tubular reactor (10 mL volume). The reactor was purged with N2 for 10 min to 

remove the oxygen in the reactor and sealed with a screw cap, which was equipped 

with a thermocouple for measuring the inner reactor temperature. The reactor was 

then put in a molten salt bath, which was kept at an appropriate temperature, and 

heated for an appropriate time. It took about 20−30 s to raise the inner reactor 

temperature up to 300−460 °C. After the reaction, the reactor was placed into an ice 

water bath to quench the reaction. When the reactor was completely cooled down, 

the screw cap was opened. The reaction mixture was extracted 3 times with ethyl 

ether. The organic phase was separated and the solvent was evaporated in vacuo to 

give crude products. The crude products were purified by using silica gel 

chromatography (Wako C-200, ether and hexane) and GPC (JAI gel 1H and 2H, 

chloroform), if necessary. The products were identified using 1H NMR and GC-MS 
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by comparing the spectra with those of authentic samples. Conversions of the 

starting materials and yields of the products were determined using an internal 

standard method in the GC analysis. Heptadecane and dodecane were used as 

internal standards. 
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2-4-2 Reaction of benzhydrol (1) in quartz tubular reactor 
 

To a quartz tubular reactor was introduced benzhydrol (1) (50 mg, 0.272 

mmol) and water (0.34 mL). The quartz tubular reactor, which had an inner volume 

of 1 mL, was sealed with a flame under N2. The sealed quartz reactor was inserted 

into the SUS 316 reactor, which was filled with 4 mL of water, and then the SUS 

316 reactor was closed tightly. The SUS 316 reactor with the small quartz reactor 

inside was heated at a desired temperature by the method similar to that described 

above. Evolved gases were identified and quantified with GC. 
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Chapter 3.  

Non-Catalytic Oppenauer Oxidation of 

Alcohols under Solvent-Free Conditions and 

in Supercritical Water  

 

3-1 Introduction 
 

Recently, solvent-free reaction system has attracted much attention in organic 

reactions, since it is one of the most sustainable reaction systems.1,2 Several 

reactions under solvent-free conditions have been reported, such as 

DMAP-catalyzed esterification,3 Pd(0) catalyzed diamination of terminal olefins,4 

asymmetric catalyzed alkyl additions to ketones,5 and asymmetric hetero-Diels- 

Alder reaction.6 On the other hand, SCW has also been applied for some organic 

reactions as a green reaction medium, due to its quite unique properties as 

mentioned in chapter 1.  

The Oppenauer oxidation is one of the highly selective oxidation methods of 

alcohols producing the corresponding aldehydes or ketones, which requires metal 

alkoxide as a catalyst.7 Very recently, non-catalytic Meerwein-Ponndorf-Velery 

(MPV) reduction of ketones and aldehydes, which is the opposite reaction of the 

Oppenauer oxidation of alcohols, has been reported in supercritical alcohols.8 In 

these reactions, ketones and aldehydes were reduced to alcohols without any 

catalyst in excess amounts of supercritical alcohols, such as methanol, 1-propanol, 
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and 2-propanol, which acted as both reaction media and reductants. The very 

intriguing non-catalytic MPV reduction of aldehydes and ketones in supercritical 

alcohols indicates that non-catalytic Oppenauer oxidation of alcohols proceeds in 

the presence of carbonyl compounds as oxidants under the similar reaction 

conditions. Unfortunately, it would be a problem to expose carbonyl compounds to 

such high temperature and pressure because of the lability of carbonyl compounds 

under such drastic conditions. So far, little has been known about the non-catalytic 

Oppenauer oxidation of alcohols. In this chapter, the author investigates 

non-catalytic Oppenauer oxidation of alcohols, benzhydrol (1) and benzyl alcohol 

(3), by formaldehyde (4) as an oxidant and compares the results between under 

solvent-free conditions and in SCW. 
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3 4

H H
O
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3-2 Results and Discussion 
3-2-1 Non-catalytic Oppenauer oxidation of benzhydrol (1) under 
solvent-free conditions and in supercritical water 
 

A secondary alcohol, benzhydrol (1), was treated with and without an oxidant, 

formaldehyde (4), under solvent-free conditions (0 g mL-1 water density, no water) 

 

Table 3-1. Oxidation of benzhydrol (1) with and without formaldehyde (4) under 
solvent-free conditions and in supercritical watera) 

H H
O

1 4 11

OH O
400 oC, 10 min

12

Yield (%) 
Entry 

Mole Ratio of 
1:4 

Water Density
(g mL-1)b) 

Conversion of 1
(%) 11 12 

1 ―c) 0 46 17 19 
2 ―c) 0.35 9 2 <1 
3 1:1d) 0 47 27 16 
4 1:1 0.35 21 15 <1 
5 1:5d) 0 86 64 13 
6 1:5 0.35 36 30 <1 

a) Reaction conditions: 0.54 mmol of 1 and different mole equivalent of 4 was 
treated in SCW (0.35 g mL-1 water density) and under solvent-free conditions 
under N2 at 400 °C for 10 min in SUS 316 batch type tubular reactor. 

b) Value of water density: water (g)/volume of the reactor. 
c) No compound 4 was applied in the reaction. 
d) 1,3,5-Trioxane (7), which affords 4 under the reaction conditions, was used 

instead of 4. The mole ratio of 1:4 was calculated using the mole ratio of 1:7. 
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and in SCW (0.35 g mL-1 water density) at 400 °C for 10 min in the SUS 316 batch 

type tubular reactor (Table 3-1). Under solvent-free conditions, almost equal 

amounts of oxidation product, benzophenone (11), and reduction product, 

diphenylmethane (12), were obtained even in the absence of any oxidant (Entry 1), 

indicating disproportionation between two molecules of 1 took place thermally as 

mentioned in chapter 2 (Scheme 3-1). However, in the presence of 3.5 mL water, 

consumption as well as oxidation of 1 was suppressed to afford a very small amount 

of oxidation product 11 (yield: 2%) with almost no reduction product 12 in SCW 

(Entry 2). These observations indicate clearly that water suppressed the 

disproportionation of 1 leading to reduction product 12. By using an equivalent 

amount of 4 to 1 as an oxidant, however, oxidation of 1 was accelerated to afford a 

satisfactory yield of oxidation product 11 (27%) even under the solvent-free 

conditions. In SCW, although conversion of 1 (21%) and yield of 11 (15%) became 

lower as compared to those under solvent-free conditions, almost no side reaction 

product 12 (<1%) was obtained which made the selectivity of oxidation product 

very high (Entry 4). More oxidant 4 (5 equivalent to 1) caused more oxidation of 1 

(conversions: 86%) to achieve a good yield of oxidation product 11 (yield: 64%), 

 

OH
O

O

1 11 12
 

Scheme 3-1. Proposed disproportionation mechanism. 
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while a small amount of reduction product 12 (yield: 13%) was still observed under 

solvent-free conditions (Entry 5). Again, the conversion of 1 (36%) as well as yield 

of 11 (30%) decreased in SCW with almost no reduction product 12 (<1%) (Entry 

6). Water played a crucial role in suppressing the formation of side reaction product 

12 for the highly selective Oppenauer oxidation of 1. In addition, oxidation of 1 was 

also suppressed in SCW as compared to that under solvent-free conditions. These 

results can be explained as follows: the proposed six-membered ring transition state 

consisting of one alcohol molecule and a ketone or aldehyde molecule for the 

Oppenauer oxidation (Scheme 3-2)9 should be broken by water in SCW.  

In chapter 2, the author discussed non-catalytic oxidation of 1 in SCW. It took 

as much as 3 h to oxidize alcohol 1 in SCW at a higher temperature 460 °C and 0.35 

g mL-1 water density to reach 63% yield of oxidation product 11 and 10% yield of 

reduction product 12. Here, similar yields of 11 (64%) and 12 (13%) were achieved 

under the solvent-free conditions (Entry 5). In SCW, although the yield of 11 (30%) 

were not high enough as compare to that under solvent-free conditions, effective 

suppression of reduction product 12 led to a very high selectivity for oxidation in a 

 

R1 R2

OH

A1 R3
R4

O
R1

R2

O H

HR3 R4

O

B1
R3 R4

OH

R1 R2

O

A2 B2

six-membered ring
transition state

Scheme 3-2. Proposed six-membered ring transitions of non-catalytic Oppenauer 
oxidation. 



 41

very shorter reaction time (10 min) at a lower temperature 400 °C as compared to 

those in chapter 2 (Entry 6). Judging from these results, it is now very clear that 

non-catalytic Oppenauer oxidation of alcohols in SCW is a good method for 

oxidation of alcohols and water is essential for highly selective Oppenauer 

oxidation of alcohols. 
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3-2-2 Non-catalytic Oppenauer oxidation of benzyl alcohol (3) 
under solvent-free conditions and in supercritical water 
 

A primary alcohol, benzyl alcohol (3), was treated with and without 4 under 

solvent-free conditions (0 g mL-1 water density) and in SCW (0.35 g mL-1 water 

density) in the SUS 316 batch type tubular reactor at 400 °C for 10 min without any 

 

Table 3-2. Oxidation of benzyl alcohol (3) with and without formaldehyde (4) 

under solvent-free conditions and in supercritical watera) 

OH
H H

O
O

400 oC, 10 min

3 4

CH3

8 16

H

 

Yield (%) 
Entry 

Mole Ratio of 

3:4 

Water Density 

(g mL-1)b) 

Conversion of 3 

(%) 8 16 

1 ―c) 0 32 13 9 

2 ―c) 0.35 <1 <1 0 

3 1:1d) 0 57 41 7 

4 1:1 0.35 35 37 <1 

5 1:5d) 0 94 95 2 

6 1:5 0.35 66 66 <1 

a) Reaction conditions: 0.926 mmol of 3 and different mole equivalent of 4 were 

treated in SCW (0.35 g mL-1 water density) and under solvent-free conditions 

under N2 at 400 °C for 10 min in SUS 316 batch type tubular reactor. 

b) Value of water density: water (g)/volume of the reactor. 

c) No compound 4 was added in the reaction. 

d) 1,3,5-Trioxane (7), which affords 4 under the reaction conditions, was used 

instead of 4. The mole ratio of 3:4 was calculated using the mole ratio of 3:7. 
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catalyst to know the possibility of non-catalytic Oppenauer oxidation method for 

oxidation of primary alcohol (Table 3-2). Under solvent-free conditions, reaction of 

3 afforded similar amounts of oxidation product 8 (13%) and reduction product 16 

(9%, Entry 1). Water suppressed the consumption of 3 (<1%) and almost no product 

was observed except for a trace amount of oxidation product 8 (<1%) (Entry 2). The 

yield of oxidation product 8 (41%) was improved more than 3 times by using an 

equivalent amount of 4 as an oxidant under the solvent-free conditions (Entry 3) as 

compared to that in the absence of 4 (Entry 1), while a small amount of reduction 

product 16 (7%) was also observed under solvent-free conditions (Entry 3). On the 

other hand, oxidation of alcohol 3 was suppressed slightly, but almost no reduction 

product 16 was observed in SCW (Entry 4) as compared to that under the 

solvent-free conditions (Entry 3). More oxidant 4 (5 equivalent to 3) caused not 

only a higher conversion of 3 but also a higher yield of oxidation product 8 (95%) 

under the solvent-free conditions, while a small amount of reduction product 8 (2%) 

was still observed (Entry 5). When water (0.35 g mL-1 water density) was 

introduced in this reaction, oxidation of alcohol 3 was also suppressed slightly to 

afford 8 in a good yield of 66% in SCW. However, it is quite notable that the side 

reaction leading to reduction product 16 was almost completely suppressed (<1%) 

to show quite high oxidation selectivity (Entry 6).  
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3-2-3 Non-catalytic Oppenauer oxidation of 1-butanol (18a) and 
2-butanol (18b) in supercritical water 
 

A simple primary alcohol 1-butanol (18a) and a simple secondary alcohol 

2-butanol (18b) were also treated with and without 4 in SCW under the conditions 

of 400 °C, 10 min, and 0.35 g mL-1 water density (Table 3-3). In the absence of 4, 

 

Table 3-3. Oxidation of 1-butanol (18a) and 2-butanol (18b) with and without 4 in 
supercritical watera) 

H H
O

18a, b 4 19a, b
R4 400 oC, 10 minR3

OH
R4R3

O

a: R3 = CH3CH2CH2, R4 = H
b: R3 = CH3CH2, R4 = CH3

d = 0.35 g mL-1

SCW

 

Entry Alcohol
Mole Ratio of 

18:4 
Conversion of 18 (%) Yield of 19 (%) 

1 18a ―b) 17 ―c) 

2 18a 1:5 65 30 

3 18b ―b) 27 ―c) 

4 18b 1:5 83 26 

a) Reaction conditions: 1.35 mmol of 18a or 18b with and without 6.75 mmol of 4 

was treated in SCW (0.35 g mL-1 water density) or under solvent-free conditions 

under N2 at 400 °C for 10 min in the SUS 316 batch type tubular reactor. Value 

of water density: water (g)/volume of the reactor. 

b) No compound 4 was applied in the reaction. 

c) No compound 19 was observed. 
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alcohol 18a was consumed in 17% conversion, but no oxidation product 19a was 

observed (Entry 1). However, in the presence of an excess amount of 4 (5 

equivalent to 18a), the conversion of 18a (65%) and yield of 19a (30%) were 

greatly improved (Entry 2). Similar results to the reaction of 18a were obtained in 

the oxidation of alcohol 18b (Entries 3 and 4). No oxidation product 19b was 

observed in the absence of 4, though 27% alcohol 18b was consumed (Entry 3). In 

the presence of an excess amount of 4 (5 equivalent to 18b), conversion of 18b 

(83%) as well as yield of 19b (26%) increased (Entry 4).  
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3-2-4 Plausible reaction pathway 
 

Combining the results of the reactions of alcohols, 1 and 3, with and without 4 

as an oxidant under solvent-free conditions and in SCW, the author proposed two 

plausible reaction pathways. One is the Oppenauer oxidation pathway consisting of 

a six-membered ring transition state8 and the other is the disproportionation 
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Scheme 3-3. Plausible reaction pathways of the oxidation of alcohols under 
solvent-free conditions (upper) and in supercritical water (lower).  
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pathway which was mentioned in chapter 2 (Scheme 3-3).  

Under solvent-free conditions, Oppenauer reaction, which proceeds via the 

reaction pathway consisting of a six-membered ring transition state, should be an 

equilibrium reaction and more oxidant shifts the equilibrium to the direction of 

formations of A2 and B2. Disproprtionation of the ether intermediate also gives the 

same amounts of oxidation product A2 and reduction product A3 as mentioned in 

chapter 2, simultaneously. However, the ether would not be stable in SCW, since the 

ether will be hydrolyzed easily to reproduce two molecules of A1 under such drastic 

reaction conditions of SCW, which leads to high selectivity of A2. In addition, SCW 

also prevents A1 and B1 from constructing the six-membered ring Oppenauer 

oxidation transition state and thus the reaction leading to A2 is slightly suppressed.  
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3-3 Conclusions 
 

A new oxidation method of alcohols, non-catalytic Oppenauer oxidation 

utilizing a carbonyl compound, formaldehyde (4), as an oxidant, was successfully 

applied in the oxidation of alcohols, such as benzhydrol (1) and benzyl alcohol (3), 

and simple aliphatic alcohols, such as 1-butanol (18a) and 2-butanol (18b), in SCW 

and the results were compared to those under the solvent-free conditions. Water was 

essential for the highly selective non-catalytic Oppenauer oxidations of alcohols, 1 

and 3, which produced almost pure oxidation products, benzophenone (11) and 

benzaldehyde (8), respectively. Under the solvent-free conditions, Oppenauer 

oxidation and disproportionation of 1 and 3 took place simultaneously to afford 

oxidation products 11 and 8 in good yields (64% and 95%, respectively) 

concomitant with small amounts of reduction products 12 (13%) and 16 (2%), 

respectively, at 400 °C for 10 min. Although yields of oxidation products 11 (30%) 

and 8 (66%) were lowered as compared to the results under solvent-free conditions, 

the formations of reduction products 12 (<1%) and 16 (<1%) were almost 

completely suppressed in SCW under the conditions of 400 °C for 10 min in 0.35g 

mL-1 water density. 
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3-4 Experimental Section 
 

Benzhydrol, benzyl alcohol, formaldehyde solution, and 1,3,5-trioxane were 

purchased from Nacalai Tesque Inc., and 1-butanol and 2-butanol were purchased 

from Wako Pure Chemical Industries Ltd.  

Similar procedures were applied as mentioned in chapter 2.  
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Chapter 4.  

A Simple Permethylation Method of 

Catechol Derivatives in Subcritical and 

Supercritical Water 

 
4-1 Introduction 
 

Alkylation of catechol derivatives is an important process in organic synthesis, 

since many alkyl catechol derivatives are important industrial intermediates.1 A 

typical alkylation method of catechol derivatives is the Friedel-Crafts process using 

strong acid catalysts, such as protic acids (HF and H3PO4), Lewis acids (AlCl3 and 

BF3), and solid acids (metal oxides and zeolites).2 Among them, methylation is one 

of the most important processes, because methyl catechol derivatives, such as 

3-methylcatechol, 4-methylcatechol, and 2,3,5-trimethylhydroquinone, are widely 

applied in the syntheses of agricultural chemicals and pharmaceuticals as 

intermediates.1 In the methylation of catechol derivatives, permethylation is a 

relatively difficult process. In order to produce the permethylated catechol, several 

steps are required generally even in the presence of catalyst.3 Little has been 

reported on non-catalytic permethylation of catechol derivatives. Recently, 

non-catalytic methylation of hydroquinone in supercritical methanol, has been 

reported, while only a mono-methylation product, 2-methylhydroquinone (15%), 

was obtained even in the presence of an excess amount of methanol at 350 °C in 2 h 

(Scheme 4-1).4 In addition, non-catalytic methylation of phenol derivatives in 
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supercritical methanol (Scheme 4-2)5 and non-catalytic alkylation of phenol using 

propionaldehyde in SCW have been reported (Scheme 4-3).6 In these two reactions, 

the alkylation of phenol using aldehyde in SCW takes a shorter reaction time (10 

min) and affords a higher total yield of alkylation products (21%) than the 

methylation of phenol in supercritical methanol (11% in 30 min),4 suggesting 

mathylation using formaldehyde in SCW is more effective than that using 

 

OHHO
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350 oC, 2 h
OHHO

15%  
Scheme 4-1. Non-catalytic methylation of hydroquinone in supercritical methanol. 

 

OH supercritical
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OH OH other
methylation

products

Total yield: 11%  

Scheme 4-2. Non-catalytic methylation of phenol in supercritical methanol. 

 

OH OH

O
SCW

400 oC, 10 min

OH other
alkylation
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Total yield: 21%  

Scheme 4-3. Non-catalytic alkylation of phenol with propoinaldehyde in 
supercritical water. 
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supercritical methanol. In this chapter, the author investigates non-catalytic 

permethylation of catechol derivatives with 1,3,5-trioxane (7)7 in sub-CW and 

SCW.  
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4-2 Results and Discussions 
4-2-1 Non-catalytic permethylation of catechol (5) and 
4-methylcatechol (6) in subcritical and supercritical water 
 

As a preliminary experiment, catechol (5) was treated with an excess amount 

of 1,3,5-trioxane (7) (3.3 equivalent to 5) in sub-CW and SCW without any catalyst 

in the SUS 316 batch type tubular reactor (Scheme 4-4). Compound 5 was 

consumed completely and permethylation product 3,4,5,6-tetramethylcatechol (23, 

5%) was obtained as an almost sole product with a trace amount of 

3,4,6-trimethylcatechol (22, <1%) at a lower temperature of 350 °C for 10 min in 

3.5 mL water. At a higher temperature of 400 °C, a slightly smaller amount of 

permethylation product 23 (3%) concomitant with 3,6-dimethylcatechol (21, <1%) 

and 22 (3%) was also obtained under the conditions of 10 min and 0.35 g mL-1 

water density. In the absence of water, 23 was not obtained at all but 20 (3%), 21 

(3%), and 22 (2%) were obtained under the conditions of 400 °C and 10 min.8 Thus, 

permethylation of catechol (5) was performed in sub-CW and SCW without any 
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Scheme 4-4. Reaction of catechol (5) and 1,3,5-trioxane (7) in subcritical and 
supercritical water. 
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catalyst, while the yield of permethylation product was not satisfactory. The low 

yield of the permethylation product 23 in this reaction could be ascribed to the low 

stability of 5, which hinders the author from knowing the potential of the 

non-catalytic permethylation of catechol derivatives in sub-CW and SCW. Other 

substrates with higher stability should be considered. 

A catechol derivative, 4-methylcatechol (6), which has higher stability than 5, 

was selected as another candidate to investigate the non-catalytic permethylation of 

catechols. When 6 was treated with an excess amount of 7 (3.3 equivalent to 6) in 

sub-CW and SCW, dimethylation products 22 and 4,5,6-trimethylcatechol (24) and 

permethylation product 23 were obtained, as expected (Table 4-1).9 Temperature 

dependence was examined under the conditions of fixed reaction time (10 min) and 

fixed water density (0.35 g mL-1). At a lower temperature (300 °C), only 

permethylation product 23 was obtained in a very low yield (3%) with complete 

consumption of 6 (Entry 1). With an increase of the reaction temperature, the yield 

of permethylation product 23 as well as 22 and 24 increased (Entries 2–4) and the 

highest yield of 23 (13%) was achieved at 400 °C (Entry 4). Concerning the 

reaction time, longer reaction time improved the yield of 23 as well as the yields of 

22 and 24 and the yields of products saturated in 10 min under the conditions of 380 

°C and 0.35 g mL-1 water density (Entries 5, 3, and 6). Permethylation product 23 

was obtained under all the conditions in sub-CW and SCW (Entries 1–6). 

Water effect in the permethylation of 6 was investigated by varying the water 

density at 400 °C for 10 min. In the absence of water, reaction afforded 22 mainly 

with very small amounts of 24 and permethylation product 23 (Entry 7). With an 
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increase of water density, however, the yield of permethylation product 23 increased 

(Entries 7, 8, and 3), and then the yield of 23 saturated at 0.35 g mL-1 water density 

(Entries 3 and 9). In addition, water densities did not influence the yield of 22. Thus, 

water accelerated methylation of 6 to produce permethylation product 23.  

 

Table 4-1. Reaction of 4-methylcatechol (6) and 1,3,5-trioxane (7) in subcritical and 
supercritical water.a) 

OH

6

OH
O

O
O

7

OH
OH

OH
OH

22 24

OH
OH

23

sub-CW
and SCW

 
Yield (%) 

Entry 
Temperature 

(°C) 
 Time (min)

Water Density 
(g mL-1)b) 

Conversion 
of 6 (%) 22 24 23 

1 300 10 0.35c) 100 0 0 3 
2 350 10 0.35c) 100 <1  0 9 

3d) 380 10 0.35 100 5  1  11 
4d) 400 10 0.35 100 10  2  13 
5d) 380 1 0.35 100 2  0 3 
6d) 380 30 0.35 100 6  2  12 
7d) 400 10 0 100 9  2  2 
8d) 400 10 0.2 100 10  2  7 
9d) 400 10 0.4 100 9  2  12 

a) Reaction conditions: 0.81 mmol of 6, 2.45 mmol of 7, and water, under N2 in 
SUS 316 tubular reactor. 

b) Value of water density: water (g)/volume of the reactor 
c) The value of water density of subcritical water is an average, because the reaction 

medium was not homogeneous under subcritical conditions. 
d) Quite small amounts of 3,5-dimethylcatechol, 3,4-dimethylcatechol, and 

4,5-dimethylcatechol were also observed in this reaction under the reaction
conditions. 
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In order to compare the methylation ability using 7 to that using methanol in 

SCW, compound 6 was treated with an excess amount of methanol (10 equivalent to 

6) instead of 7 in sub-CW (3.5 mL of water at 350 °C for 10 min) and in SCW (0.35 

g mL-1 water density at 400 °C for 10 min). As results, conversions of 6 were less 

than 1% and no product was obtained in both reactions. It is clear that 

permethylation of catechol derivatives by 7 is better than that by methanol both in 

sub-CW and SCW. As a conclusion, the yield of permethylation product 23 was not 

excellent, while the utilization of a formaldehyde equivalent as a source of methyl 

groups in sub-CW and SCW is quite a simple and easy method for permethylation 

of catechol derivatives. 
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4-2-2 Reaction pathway investigation  
4-2-2-1 Ortho-methylation of 2,4-xylenol (25) and para-methylation of 
2,6-xylenol (26) in subcritical and supercritical water 
 

Methylation reaction pathways of catechol derivatives were investigated by 

treating phenol derivatives, 2,4-xylenol (25) and 2,6-xylenol (26), with an excess 

amount of 7 (3.3 equivalent to 25 or 26) in sub-CW and SCW, since they have only 

 

Table 4-2. Reaction of 2,4-xylenol (25) and 1,3,5-trioxane (7) in subcritical and 
supercritical water.a) 

OH OH OH OH

25 7 27 28

O
O

O sub-CW and SCW

 
Yield (%) 

Entry 
Temperature 

(°C) 
Time 
(min) 

Water Density 
(g mL-1)b) 

Conversion 
of 25 (%) 27 28 

1 300 10 0.35c) >99 5 20 
2 400 10 0.35 88 31 1 
3 420 10 0.35 86 30 0 
4 400 0d) 0.35 58 2 31 
5 400 1 0.35 86 10 26 
6 400 20 0.35 91 30 0 
7 400 10 0 57 17 2 
8 400 10 0.45 93 32 0 

a) Reaction conditions: 0.82 mmol of 25, 2.48 mmol of 7, and water, under N2

in SUS 316 tubular reactor. 
b) Value of water density: water (g)/volume of the reactor. 
c) The value of water density of subcritical water is an average, because the 

reaction medium was not homogeneous under subcritical conditions. 
d) As soon as the temperature reached 400 °C, the reaction was quenched by rapid 

cooling of the reactor in ice-water. 
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one ortho- or para-position of hydroxyl group to be substituted on benzene ring. 

In the reaction of 25 (Table 4-2), almost complete consumption of 25 was 

observed, while a small amount of methylation product, 2,4,6-trimethylphenol (27) 

and a considerable amount of bisphenol derivative, 6,6’-methylenebis(2,4-dimethyl 

-phenol) (28), were obtained at a lower temperature 300 ˚C (Entry 1). With an 

increase of temperature, conversion of 25 and yield of 28 became lower, while the 

yield of methylation product 27 increased and then saturated at a higher temperature 

400 °C (Entries 2 and 3). Concerning the reaction time, prolonged reaction time 

improved the conversion of 25 as well as yield of methylation product 27 and 

suppressed the formation of side reaction product 28 (Entries 4, 5, 2, and 6). These 

results indicate that decomposition of 28 affords 27 and 25 at high temperatures in 

longer reaction times. In addition, a new product 2-(hydroxymethyl)- 

4,6-dimethylphenol (29) was obtained at very beginning of the reaction (Entry 4), 

which should be a precursor of 27. Actually, when salicylalchol (30), a homologue 

of 29, was treated in SCW instead of 29 under the conditions of 400 ˚C, 10 min, and 

0.35 g mL-1 water density, reduction of 30 took place to produce 

ortho-methylphenol and phenol in 4 and 14% yields, respectively, as expected, 

 

OH

29

HO
OH

30

HO
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indicating that compound 29 is a precursor of 27 in SCW. On the other hand, water 

effect was examined by changing the water density at 400 °C for 10 min. In the 

absence of water, ortho-methylation of 25 occurred and a small amount of 27 with a 

very small amount of 28 was obtained (Entry 7). With an increase of water density, 

the yield of methylation product 27 increased and saturated in 0.35 g mL-1 water 

density (Entries 7, 2, and 8). The ortho-methylation proceeded even without water, 

though water promoted the ortho-methylation. 

Next, in the reaction of 26, para-methylation proceeded and methylation 

product 27 and a bisphenol derivative, 4,4’-dihydroxy-3,3’,5,5’- 

tetramethyldiphenylmethane (31), were obtained (Table 4-3). Higher temperatures 

(Entries 1 and 2) and longer reaction times (Entries 3, 2, 4, and 5) improved the 

yield of 27 and suppressed the consumption of 26 as well as the formation of 30. 

These results indicate that 30 decomposes to same amounts of 26 and 27 under the 

reaction conditions. Actually, when compound 31 was treated in SCW under the 

conditions of 420 °C, 30 min, and 0.35 g mL-1 water density, 31 was not recovered 

and similar amounts of 26 (yield: 37%) and 27 (yield: 26%) were obtained, which 

indicates that compound 31 is a precursor of the methylation product 27 at a high 

temperature such as 420 °C. Water effect was also examined in this reaction. Water 

played a key role for the formation of para-methylation product 27 (Entries 6, 7, 2, 

and 8). In the absence of water, almost no para-methylation product 27 was 

obtained. Water promoted the para-methylation of 26 to afford para-methylation 

product 27 (Entries 6, 7, 2, and 8). 
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Table 4-3. Reaction of 2,6-xylenol (26) and 1,3,5-trioxane (7) in subcritical and 
supercritical water.a) 

OH OH

26 7 27 31

O
O

O sub-CW and SCW

OHHO

Yield (%) 
Entry 

Temperature 
(°C) 

Time 
(min) 

Water Density
(g mL-1)b) 

Conversion of 
26 (%) 27 31 

1 350 10 0.35c) 69 7 18 
2 420 10 0.35 52 12 4 
3 420 1 0.35 44 4 12 
4 420 30 0.35 43 10 0 
5 420 60 0.35 45 13 0 
6 420 10 0 28 <1 0 
7 420 10 0.1 27 2 0 
8 420 10 0.4 47 11 1 

a) Reaction conditions: 0.82 mmol of 26, 2.48 mmol of 7, and water, under N2 in 
SUS 316 tubular reactor. 

b) Value of water density: water (g)/volume of the reactor. 
c) The value of water density of subcritical water is an average, because the 

reaction medium was not homogeneous under subcritical conditions. 
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4-2-2-2 Plausible reaction pathways of methylation of phenol derivatives 
 

The fact that ortho-methylation of phenol derivatives is more favorable than 

para-methylation in the absence of water indicates that ortho-methylation of phenol 

derivatives proceeds via the proposed six-members ring transition state (Scheme 

4-5). 10  In this reaction pathway, an ene reaction of phenol derivative and 

formaldehyde, which is generated from 7,7 followed by keto-enol tautomerism leads 

to ortho-hydromethylation of phenol derivertives. Reduction of the 

ortho-hydromethylphenol would afford ortho-methylation products. 

On the other hand, the facts that water promotes ortho-methylation and is a 

trigger for the para-methylation of phenol derivatives indicate that another water 

supported H+ catalyzed methylation occurs in sub-CW and SCW (Scheme 4-6). In 

this reaction pathway, formaldehyde and H+ produce a hydroxymethyl cation. Both 

ortho- and para-electrofilic substitutions by the cation would be plausible. Ortho- 

and para-methylphenol derivatives are afforded via pathway (a). At the same time, 

the hydroxymethylphenol with H+ also forms the ortho- or 

para-hydroxymethylphenol cations via pathway (b). After the dehydration, the 

 

OH
O

HH

O
H
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O
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Scheme 4-5. Six-membered ring transition state ortho-methylation pathway. 
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resulting methylphenol cations attack on the ortho- or para-position of hydroxyl 

group of another phenol derivative to afford bisphenol derivatives in sub-CW or 

SCW. At high temperature, the bisphenol derivatives decompose to same amounts 

of methylation product and starting material.  
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Scheme 4-6. Plausible reaction pathway of methylation of phenol derivatives in 
subcritical and supercritical water. 
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4-3 Conclusions 
 

Non-catalytic permethylation of catechol (5) and 4-methylcatechol (6) was 

successfully performed by use of 1,3,5-trioxane (7) in sub-CW and SCW. The 

formation of permethylation product, 3,4,5,6-tetramethylcatechol (23), was 

observed in both reactions of 5 and 6 and almost only permethylation product 23 

was obtained in these two reactions at 350 °C for 10 min in 3.5 mL water in the 

SUS 316 batch type tubular reactor. Reaction temperature-dependence and 

time-dependence were observed in the reaction of 6. Higher temperature and longer 

reaction time caused higher yield of permethylation product 

3,4,5,6-tetramethylcatechol (23) as well as higher yields of other methylation 

products, 3,4,6-trimethylcatechol (24) and 3,4,5-trimethylcatechol (22). Water 

density dependence of the permethylation of 6 was observed. In the absence of 

water, only a small amount of permethylation product 23 (4%) was obtained at 

380 °C for 10 min. However, water improved the formation of permethylation 

product 23 in 11% and 13% yields at 380 and 400 °C, respectively, under the 

conditions of 10 min, and 0.35 g mL-1 water density. Reaction pathways of 

methyaltion of catechol derivatives were investigated by using methylation of 

phenol derivatives, 2,4-xylenol (25) and 2,6-xylenol (26), which made the 

methylation simple. Two proposed reaction pathways, six-membered ring transition 

state ortho-methylation and H+ catalyzed ortho- and para-methylation of phenol 

derivatives, would be favorable for the permethylation of catechol derivatives.
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4-4 Experimental Section 
4-4-1 General 
 

Catechol, 4-methylcatechol, and 1,3,5-trioxane were purchased from Nacalai 

Tesque Inc., and 2,4-xylenol, 2,6-xylenol, and salicylalchol were purchased from 

Wako Pure Chemical Industries Ltd. 

Similar general experimental methods were applied as mentioned in chapter 2.  
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4-4-2 NMR and GCMS analysis 
 

3,4,6-Trimethylcatehcol (22): 1H NMR (400 MHz, CDCl3): δ 6.50 (s, 1H), 

5.10 (s, 1H), 4.75 (s, 1H), 2.18 (s, 3H), 2.15 (s, 3H), 2.12 (s, 3H). 13C NMR (100 

MHz, CDCl3): δ 141.82, 139.43, 128.81, 122.86, 120.40, 120.09, 19.36, 15.21, 

11.65. MS (EI) m/z 152 (M+). 

3,4,5,6-Tetramethylcatechol (23): 1H NMR (400 MHz, CDCl3): δ 4.94 (s, 

2H), 2.16 (s, 6H), 2.13 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 139.57, 127.09, 

119.82, 15.78, 12.26. MS (EI) m/z 166 (M+). 

3,4,5-trimethylcatehcol (24): 1H NMR (400 MHz, CDCl3): δ 6.53 (s, 1H), 

5.00 (s, 1H), 4.88 (s, 1H), 2.17 (s, 3H), 2.16 (s, 3H), 2.08 (s, 3H). 13C NMR (100 

MHz, CDCl3): δ 140.27, 139.94, 127.95, 123.17, 121.78, 113.95, 20.10, 15.19, 

12.19. MS (EI) m/z 152 (M+). 

6,6’-Methylenebis(2,4-dimethyl-phenol) (28): 1H NMR (400 MHz, CDCl3): 

δ 6.93 (s, 2H), 6.79 (s, 2H), 6.05 (s, 2H), 3.84 (s, 2H), 2.22 (s, 6H), 2.20 (s, 6H). 13C 

NMR (100 MHz, CDCl3): δ 149.04, 130.28, 130.19, 129.03, 126.40, 124.06, 31.39, 

20.71, 16.25. MS (EI) m/z 256 (M+). 

2-(Hydroxymethyl)-4,6-dimethylphenol (29): 1H NMR (400 MHz, CDCl3): 

δ 7.17 (s, 1H), 6.90 (s, 1H), 6.67 (s, 1H), 4.80 (d, J = 5.2, 2H), 2.22 (s, 6H), 2.17 (t, 

J = 5.6, 1H). 13C NMR (100 MHz, CDCl3): δ 151.94, 131.37, 128.68, 125.81, 

125.10, 123.73, 64.84, 20.31, 15.54. MS (EI) m/z 152 (M+). 

4,4’-Dihydroxy-3,3’,5,5’-tetramethyldiphenylmethane (31): 1H NMR (400 

MHz, CDCl3): δ 6.77 (s, 4H), 4.45 (s, 2H), 3.68 (s, 2H), 2.18 (s, 12H). 13C NMR 

(100 MHz, CDCl3): δ 150.32, 133.39, 128.84, 122.84, 40.26, 15.92. MS (EI) m/z 
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256 (M+). 
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Chapter 5.  

Subcritical Water Assisted Clean Cross- 

Aldol Reactions 
 

5-1 Introduction 
 

Recently, much attention has been paid to organic reactions under the 

solvent-free conditions in organic synthesis, because solvent-free system is one of 

the most sustainable reaction systems.1 Several methods, such as mechanical 

mixing, grinding, milling, sonication, and super-vibration, have been applied to 

accelerate the reactions under solvent-free conditions.2 Heating is also suitable to 

accelerate the reactions, though the considerable decomposition of not only starting 

materials but also reaction products sometimes occurs due to its high temperature.3 

On the other hand, water is one of the quite limited media, which can be utilized 

under the extreme conditions, such as high-temperature (for example: >250 °C), 

high-pressure, and oxidative atmosphere, without decomposition. Recently, SCW 

(>374 °C, >22.1 MPa) has been applied for a green reaction system as a reaction 

medium. Several quite unique reactions have been performed in SCW, which have 

been mentioned in chapter 1. However, considerable decomposition of substrates 

and products also occurred in SCW, due to the high temperature. Meanwhile, 

sub-CW has a lower temperature (200–374 °C) than SCW. If sub-CW is adopted in 

the organic reactions as a solvent instead of SCW, it is easily anticipated to suppress 

the decomposition of organic compounds, because of its lower temperature than that 
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of SCW. In this chapter, the author investigates the sub-CW assisted clean 

cross-aldol reactions of benzaldehyde (8) with acetone (9) and acetophenone (10) 

with 1,3,5-trioxane (7)4 in the presence of an inorganic additive, ZnCl2.5 

 

8

O
H

10

O

H3C CH3

O

9

CH3

7

O
O

O

 

 

 



 73

5-2 Results and Discussion 
5-2-1 Clean cross-aldol reaction of benzaldehyde (8) and acetone (9) 
 

A mixture of benzaldehyde (8) and an excess amount of acetone (9) (4 

equivalent to 8) was treated with and without ZnCl2 under the conditions of various 

reaction temperatures for 20 min in the SUS 316 batch type tubular reactor (Table 

1). When compound 8 and 9 were heated at a low temperature of 100 °C in the 

absence of ZnCl2 under the solvent-free conditions, a small amount of 8 was 

consumed, while no desired cross-aldol reaction product benzalacetone (32) was 

obtained at all (Entry 1). However, a small amount of 32 (6%) was obtained in the 

presence of ZnCl2 even under the solvent-free conditions (Entry 2). Conversion of 8 

(18%) as well as yield of 32 (0%) was suppressed slightly in 3.5 mL of water on the 

contrary (Entry 3). With an increase of reaction temperature, more consumption of 

compound 8 concomitant with very small amounts of 32 were observed under the 

solvent-free conditions in the absence of ZnCl2 (Entries 4 and 7), suggesting the 

activation energy of the reaction without ZnCl2 is quite high. Complete 

consumption of 8 without any product was observed in the presence of an equal 

amount of ZnCl2 to 8 under the solvent-free conditions (Entries 5 and 8).6 In the 

presence of water, compound 8 was consumed (27%) even without ZnCl2, while the 

yield of 32 was very low (<1%) (Entry 9). However, the presence of water changed 

the nature of reaction to a greater extent in the presence of ZnCl2. Water retarded 

the loss of 8 and accelerated the formation of 32 in the presence of ZnCl2 at higher 

temperatures (Entries 5 and 6; 8 and 12). Additionally, yield of 32 was improved in 

accordance with the increase of reaction temperature until 250 °C (23%, Entry 12),  
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Table 5-1. Reaction of 8 and 9 in subcritical water under various conditionsa) 

O
sub-CW and SCW

ZnCl2
CH3

8 9 32

H3C CH3

O O
H

 

Entry 
Temperature 

(°C) 

Time  

(min) 

Water

(mL)

Mole Ratio of 

ZnCl2/8 

Conversion of 

8 (%) 

Yield of 

32 (%) 

1 100 20 0 0 9 0 

2 100 20 0 1 25 6 

3 100 20 3.5 1 18 0 

4 200 20 0 0 18 4 

5 200 20 0 1 96 0 

6 200 20 3.5 1 32 7 

7 250 20 0 0 31 5 

8 250 20 0 1 99 0 

9 250 20 3.5 0 27 <1 

10 250 20 0.5 1 52 11 

11 250 20 1.5 1 47 21 

12 250 20 3.5 1 42 23 

13 250 5 3.5 1 27 9 

14 250 10 3.5 1 31 12 

15 250 15 3.5 1 37 17 

16 250 30 3.5 1 44 24 

17 300 20 3.5 1 45 15 

18 350 20 3.5 1 52 5 

19 380 20 3.5 1 61 3 

a) Reaction conditions: 0.94 mmol of 8, 3.76 mmol of 9, under N2 in the SUS 316 

batch type tubular reactor. 
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and then it became lower (Entries 17–19). These results indicate that sub-CW 

prevents 8 from decomposing and assists the reaction providing 32 at higher 

temperatures of 200 and 250 °C. Higher conversions of 8 (45, 52, and 61%) and 

lower yields of 32 (15, 5, and 3%) were achieved at much elevated temperatures 

(300, 350, and 380 °C), respectively (Entries 17, 18, and 19, respectively). These 

observations can be explained by supposing the decomposition of 8 and/or 32 and 

the retro-aldol reaction of 32 reproducing 8 under such high temperature of SCW. 

Actually, when compound 8 was treated in 3.5 mL water at 250 °C for 20 min in the 

presence of an equal amount of ZnCl2 to 8, 14% of 8 was consumed. Under 

solvent-free conditions, however, compound 8 was relatively unstable and 61% of 8 

was consumed at 250 °C for 20 min in the presence of ZnCl2. In the case of 32, 

complete consumption of 32 was observed at 250 °C for 20 min in the presence of 

ZnCl2 under solvent-free conditions, while no formation of retro-aldol product 8 

was observed. Under similar conditions in sub-CW, only 29% of 32 reacted to 

afford 21% yield of 8.7 Again, these results indicate that water play a very 

important role in protecting both 8 and 32 from the decomposition. Decreasing 

conversion of 8 and increasing yield of 32 were observed with an increase in water 

amount at a fixed temperature (250 °C) in a fixed reaction time (20 min) (Entries 8, 

10, 11, and 12), indicating that water played a crucial role in suppressing 

decomposition of 8 and/or 32 and assisting the cross-aldol reaction of 8 and 9 to a 

larger extent at this temperature. 

Next, reaction time dependence was investigated under the conditions of a fixed 

temperature (250 °C) and a fixed amount of water (3.5 mL) in the presence of an 
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equal amount of ZnCl2 to 8 (Entries 13–15, 12, and 16). With an increase of 

reaction time, both conversion of 8 and yield of 32 increased, though the reaction 

was almost saturated at around 20 min (Entries 12 and 16) to reach 24% of 32. In a 

related study, Savage et al reported a similar non-catalytic reaction in sub-CW, but 

it needed much longer reaction time of 5 h to reach similar 24% yield of 32.8 Our 

reaction time, 20 min, is sufficiently shorter than that of the reported non-catalytic 

reaction in simple sub-CW to reach almost same yield (23%). Additionally, Nolen 

et al investigated a similar non-catalytic Claisen–Schmidt condensation of 

benzaldehyde with 2-butanone in sub-CW, and the required reaction time was as 

much as 30 h.9 Thus, we successfully showed a utilization of sub-CW in a reaction 

containing both organic and inorganic reagents at once by use of a quite common 

cross-aldol reaction.  

Considering all experimental data, a plausible reaction scheme (Scheme 5-1) is 

proposed: The possibility of meeting three components of liquid 8 (bp: 179 °C), 

vapor 9 (bp: 56.5 °C), and solid ZnCl2 (bp: 732 °C) at once should be very lower 

under solvent-free conditions at a low temperature such as 100 °C because of the 

heterogeneous reaction system. Increasing reaction temperature such as over 250 °C 

can slightly improve situation, while the inorganic compound ZnCl2 is still solid, 

which would lead to decomposition of 8 due to the high-temperature involved 

affording benzene and CO, and to produce the tarry products with Lewis acid, 

ZnCl2. Sub-CW shows moderate polarity at such temperature (εr = 27.1 at 250 °C, 5 

MPa), which is similar to that of ambient methanol (εr = 32.7 at 20 °C, 0.1 MPa).10 

Then, sub-CW would dissolve these components including organic compounds 8 
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and 9 and inorganic ZnCl2 to serve a more “homogeneous-like” reaction field. Of 

course, water should not be the only reaction medium, which has the ability of 

serving the reaction field to dissolve inorganic and organic substances at once. 

However, water can be one of the most stable materials to tolerate such vigorous 

conditions of high-temperature and high-pressure. Furthermore, water has the 

advantage that can be also used as a reaction medium even in the quite oxidative 

atmosphere, where usual organic solvents are easily oxidized.11 
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Scheme 5-1. Plausible reaction scheme of the reaction of 8 and 9 with ZnCl2 under 
solvent-free conditions and in subcritical water. 
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5-2-2 Clean cross-aldol reaction of acetophenone (10) and 
1,3,5-trioxane (7) 
 

In order to clarify the possibility of the sub-CW assisted clean cross-aldol 

reactions, other substrates, which provide more stable products than 32, are 

investigated. Another cross-aldol reaction of acetophenone (10) with 1,3,4-trioxane 

(7) was selected, which afforded 1-phenylprop-2-en-1-one (33), 

3-hydroxy-1-phenylpropan-1-one (34), and 2-hydroxymethyl-1-phenylprop-2- 

en-1-one (35) to evaluate whether sub-CW suppresses the decomposition of 

substrates and accelerates the formations of the products or not.12 A quite similar 

tendency to the reaction between 8 and 9 was observed in the reaction between 10 

and 7 (Table 2). In the absence of water and ZnCl2, small consumption of 10 with 

no product was observed at 100, 200, and 250 °C (Entries 1, 4, and 9). Conversion 

of 10 was greatly improved in the presence of ZnCl2 at 100 °C under the 

solvent-free conditions, while no product was obtained (Entry 2). At higher 

temperatures 200 and 250 °C, compound 10 was completely consumed in the 

presence of an equal amount of ZnCl2 to 10 under the solvent-free conditions 

without any product (Entries 5 and 10). Again, 3.5 mL water decelerated the 

consumption of 10 dramatically (Entries 3, 6, and 8) as compared to those of the 

solvent-free reactions (Entries 2, 5, and 10). Additionally, sub-CW assisted the 

cross-aldol reaction of 10 and 7 at 250 °C in the presence of an equal amount of 

ZnCl2 to 10. Water amount effect was also observed in the cross-aldol reaction of 

10 and 7. In the absence of water, almost complete consumption of 10 was observed, 

however, no product was obtained except for a trace amount of 33 at 250 °C for 5 
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min in the presence of an equal amount of ZnCl2 to 10 (Entry 10). With increasing 

water amounts, conversion of 10 decreased and total yields of 33, 34, and 35 

increased (Entries 10, 11, 8, and 12), which also indicates that water promotes the 

 

Table 5-2. Reaction of 10 and 7 in subcritical water under various conditionsa) 

CH3

O
O

O
O sub-CW

ZnCl2

O
OH

O O
OH

10 7 33 34 35  
Yields (%) 

Entry 
Temperature 

(°C) 

Time 

(min) 

Water 

(mL)

Mole 

Ratio of 

ZnCl2/10

Conversion 

of 10 (%) 33 34 35 Totalb)

1 100 5 0 0 7 0 0 0 0 

2 100 5 0 1 50 0 0 0 0 

3 100 5 3.5 1 6 0 0 0 0 

4 200 5 0 0 9 0 0 0 0 

5 200 5 0 1 99 0 0 0 0 

6 200 5 3.5 1 31 9 14 <1 24 

7 250 1 3.5 1 51 25 16 2 43 

8 250 5 3.5 1 81 27 13 19 59 

9 250 5 0 0 11 0 0 0 0 

10 250 5 0 1 99 <1 0 0 <1 

11 250 5 1.5 1 90 19 7 25 51 

12 250 5 4.5 1 79 29 17 17 63 

a) Reaction conditions: 0.8 mmol of 10, 1.1 mmol of 7, under N2 in an SUS 316 

batch type tubular reactor. 

b) Total yield of 33, 34, and 35. 
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cross-aldol reaction under the reaction conditions. Prolonged reaction time caused a 

higher total yield of cross-aldol reaction products (Entries 7 and 8). A very short 

reaction time (1 min) is enough to produce 33–35 in a satisfactory total yield (43%, 

Entry 7) in the presence of ZnCl2. A good total yield was obtained in 5 min (59%, 

Entry 8). 
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5-3 Conclusions 
 

Sub-CW assisted clean cross-aldol reactions of benzaldehyde (8) with acetone 

(9) and acetophenone (10) with 1,3,5-trioxane (7) in the presence of ZnCl2 were 

successfully performed in sub-CW. Under solvent-free conditions, substrates 8 and 

10 were completely consumed with (almost) no product in the presence of ZnCl2, 

while sub-CW suppressed the decomposition of substrates 8 and 10 and assisted the 

cross-aldol reactions efficiently to afford satisfactory yield of 32 (23%) and total 

yield of 33, 34, and 35 (63%) in fairly short reaction times 20 min and 1–5 min in 

the presence of an equivalent of ZnCl2, respectively. Sub-CW assisted quite a 

common cross-aldol reaction to suppress loss of organic materials under such 

high-temperature conditions. Thus, sub-CW can be used as a reaction medium 

containing both organic and inorganic materials under drastic conditions such as 

high-temperature and high-pressure. A new aspect of sub-CW application was 

shown by use of cross-aldol reactions containing both organic and inorganic 

materials as an example. 
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5-4 Experimental Section 
5-4-1 General 
 

Benzaldehyde, acetone, acetophenone, and 1,3,5-trixoane were purchased from 

Nacalai Tesque Inc., and ZnCl2, ZnSO4, CuSO4, AlCl3, and LiCl were purchased 

from Wako Pure Chemical Industries Ltd. 

Similar procedure was applied as mentioned in chapter 2.  
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5-4-2 NMR and GCMS analysis 
 

1-Phenylprop-2-en-1-one (33): 1H NMR (400 MHz, CDCl3): δ 7.94-7.96 (m, 

2H), 7.58 (tt, J = 7.6, 1.2 Hz, 1H), 7.46-7.50 (m, 2H), 7.16 (dd, J = 17.2, 10.4 Hz, 

1H), 6.44 (dd, J = 17.2, 2 Hz, 1H), 5.93 (dd, J = 10.4, 1.6 Hz, 1H). 13C NMR (100 

MHz, CDCl3): δ 137.50, 133.23, 132.62, 130.44, 128.93, 128.86, 191.32. MS: m/z 

132 (M+). 

3-Hydroxy-1-phenylpropan-1-one (34): 1H NMR (400 MHz, CDCl3): δ 

7.94-7.97 (m, 2H), 7.58 (tt, J = 7.6, 1.2 Hz, 1H), 7.44-7.49 (m, 2H), 4.03 (t, J = 5.2 

Hz, 2H), 3.22 (t, J = 4.8 Hz, 2H), 2.79 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 

200.73, 136.87, 133.76, 128.92, 128.29, 58.29, 40.63. MS: m/z 150 (M+). 

2-Hydroxymethyl-1-phenylprop-2- en-1-one (35): 1H NMR (400 MHz, 

CDCl3): δ 7.75 (dd, J = 8.0, 0.8 Hz, 2H), 7.55 (tt, J = 7.2, 1.6 Hz, 1H), 7.43 (t, J = 

7.2 Hz, 2 H), 6.14 (s, 1H), 5.80 (s, 1H), 4.49 (d, J = 4.8 Hz, 2H), 2.52 (t, J = 6 Hz, 

1H). 13C NMR (100 MHz, CDCl3): δ 198.28, 146.43, 137.56, 132.79, 129.67, 

128.57, 127.72, 63.46. MS: m/z 162 (M+). 
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Chapter 6.  

Conclusions 
 

This thesis deals with studies on organic transformations in sub-CW and SCW. 

Quite unique four organic transformations, such as non-catalytic oxidation of 

secondary alcohols in SCW, non-catalytic Oppenauer oxidation of alcohols in SCW, 

non-catalytic permethylation of catechol derivatives in sub-CW and SCW, and 

sub-CW assisted clean cross-aldol reactions, were investigated. The results obtained 

through the researches are summarized and concluded as follows: 

First, the author focused on the investigations of the reaction behavior of two 

secondary alcohols, benzhydrol (1) and its higher homologue benzoin (2), in 

sub-CW and SCW in the absence of any oxidant or catalyst, since both of alcohol 1 

and 2 have two benzene subunits, a secondary hydroxyl group, and no hydrogen 

atom on the β-position of the hydroxyl group, to avoid dehydration in sub-CW and 

SCW. In the reaction of 1, oxidation product, benzophenone (11), as well as 

reduction product, diphenylmethane (12), was produced. Higher reaction 

temperature and longer reaction time caused higher yields of oxidation product 11 

and reduction product 12. Water played a key role for the product distributions in 

this reaction. In the absence of water, almost same amounts of 11 and 12 were 

obtained, suggesting that disproportionation between two molecules of alcohol 1 

occurred thermally. However, in the presence of water, the higher yields of 

oxidation product 11 than those of reduction product 12 were always achieved 

under all conditions examined. The most efficient oxidation of 1 was obtained at 
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460 °C for 180 min in 0.35 g mL-1 water density in an SUS 316 reactor to give 

oxidation product 11 in 63% yield. The ratio of 11:12 always exceeded unity and 

rapidly increased with an increase in the water density and temperature. Evolution 

of hydrogen gas was confirmed in the reaction of 1 in a quartz tubular reactor. In the 

reaction of 2, the total yield of oxidation product 14 and its secondary reaction 

products 1, 11, and 12 was also always higher than that of reduction product 15 in 

the presence of water. Water also played a crucial role in the reaction of 2. The facts 

of hydrogen gas evolution, water density dependence of alcohol reaction, and more 

oxidation products than reduction products in SCW indicate that the 

water-catalyzed hydrogen generation mechanism is favorable to explain the 

oxidation behavior of alcohols in SCW. 

Second, the author concentrated on the investigation of the non-catalytic 

Oppenauer oxidation of alcohols, such as benzhydrol (1) and benzyl alcohol (3), 

utilizing formaldehyde (4) as an oxidant in SCW and the results were compared to 

the oxidation under solvent-free conditions. Water was found to be very important 

to the clean Oppenauer oxidation of alcohols affording almost only oxidation 

product in both these two reactions. Under the solvent-free conditions, Oppenauer 

oxidation as well as disproportionation took place simultaneously in both reactions 

of 1 and 3 to produce oxidation products, benzophenone (11, 64%) and 

benzaldehyde (8, 95%) in very good yields, along with small amounts of reduction 

products, diphenylmethane (12, 13%) and toluene (16, 2%), respectively, at 400 °C 

within a very short reaction time (10 min) in the SUS 316 batch type tubular reactor. 

Although lower yields of oxidation products 11 (30%) and 8 (66%) were obtained, 
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the formations of reduction products, 12 (<1%) and 16 (<1%), were almost 

completely suppressed in SCW under the conditions of 400 °C, 10 min, and 0.35 g 

mL-1 water density. A plausible reaction pathway (six-membered ring transition 

state of non-catalytic Oppenauer oxidation) for the non-catalytic Oppenauer 

oxidation of alcohols was discussed. 

Third, non-catalytic permethylation of catechol (5) and 4-methylcatechol (6) 

was performed with 1,3,5-trioxane (7) in sub-CW and SCW without any catalyst. 

The formation of permethylation product, 3,4,5,6-tetramethylcatechol (23), was 

obtained in both reactions of 5 and 6, and almost only permethylation product 23 

was obtained in these two reactions at 350 °C for 10 min in 3.5 mL water in the 

SUS 316 batch type tubular reactor. Reaction temperature-dependence and 

time-dependence were observed in the reaction of 6. Higher temperature and longer 

reaction time caused higher yield of permethylation product 

3,4,5,6-tetramethylcatechol (23) as well as higher yields of other methylation 

products, 3,4,6-trimethylcatechol (24) and 3,4,5-trimethylcatechol (22). Water 

accelerated permethylation of 6. In the absence of water, only a small amount of 

permethylation product 23 (4%) was obtained at 380 °C for 10 min. However, water 

improved the formation of permethylation product 23 in 11% and 13% yields at 380 

and 400 °C, respectively, under the conditions of 10 min and 0.35 g mL-1 water 

density. Reaction pathways of methyaltion of catechol derivatives were investigated 

by using methylation of phenol derivatives, 2,4-xylenol (25) and 2,6-xylenol (26), 

which made the methylation simple. Two proposed reaction pathways, 

six-membered ring transition state ortho-methylation and H+ catalyzed ortho- and 
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para-methylation of phenol derivatives, would be favorable for the permethylation 

of catechol derivatives. 

Finally, the author investigated sub-CW assisted clean cross-aldol reaction 

using the reactions of benzaldehyde (8) with acetone (9) and acetophenone (10) 

with 1,3,5-trioxane (7) in the presence of an inorganic additive, ZnCl2. Clean 

cross-aldol reactions of 8/9 and 10/7 with ZnCl2 were performed in sub-CW in the 

SUS 316 batch type tubular reactor with less waste of reagents and/or products as 

compared to the cases under solvent-free conditions. In the absence of water, almost 

complete consumption of 8 (conversion: >99%) and 10 (conversion: >99%) was 

obtained, while no product was observed at 250 °C for 20 and 5 min respectively. In 

the presence of water, however, water successfully suppressed the consumption of 8 

(conversion: 42%) and 10 (conversion: 81%) and assisted the cross-aldol reactions 

to afford a satisfactory yield of cross-aldol reaction product benzalacetone (32, 

23%) in the reaction of 7 and a satisfactory total yield (63%) of 

1-phenylprop-2-en-1-one (33), 3-hydroxy-1-phenylpropan-1-one (34), and 

2-hydroxymethyl-1-phenylprop-2-en-1-one (35), in the reaction of 10 with ZnCl2 

under the conditions of 250 °C and 3.5 mL water within short reaction times (1–20 

min). Sub-CW assisted quite a common cross-aldol reaction to suppress loss of 

organic materials under such high-temperature conditions. Thus, sub-CW can be 

used as a reaction medium containing both organic and inorganic materials under 

drastic conditions, such as high-temperature and high-pressure.  

The advantages of sub-CW and SCW in organic transformations as reaction 

media were proved through several organic reactions, such as non-catalytic 
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oxidation behavior of secondary alcohols, benzhydrol (1) and benzoin (2), in SCW, 

non-catalytic Oppenauer oxidation of alcohols, 1 and benzyl alcohol (3), in SCW, 

non-catalytic permethylation of catechol derivatives, catechol (5) and 

4-methylcatechol (6), in sub-CW and SCW, and sub-CW assisted clean cross-aldol 

reactions of benzaldehyde (8) with acetone (9) and acetophenone (10) with 

1,3,5-trioxane (7) in the presence of an inorganic additive, ZnCl2.  

The organic transformations utilizing sub-CW and SCW demonstrate that 

sub-CW and SCW are very good alternative reaction systems as green and 

sustainable media.  
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