
1642
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.7 JULY 2009

PAPER

Interacting Self-Timed Pipelines and Elementary Coupling Control
Modules

Kazuhiro KOMATSU†a), Student Member, Shuji SANNOMIYA†b), Makoto IWATA†,††, Members,
Hiroaki TERADA†††, Fellow, Honorary Member, Suguru KAMEDA††, and Kazuo TSUBOUCHI††, Members

SUMMARY The self-timed pipeline (STP) is one of the most promis-
ing VLSI/SoC architectures. It achieves efficient utilization of tens of bil-
lions of transistors, consumes ultra low power, and is easy-to-design be-
cause of its signal integrity and low electro-magnetic interference. These
basic features of the STP have been proven by the development of self-
timed data-driven multimedia processors, DDMP’s. This paper proposes a
novel scheme of interacting self-timed (clockless) pipelines by which the
various distributed and interconnected pipelines can achieve highly func-
tional stream processing in future giga-transistor chips. The paper also
proposes a set of elementary coupling control modules that facilitate vari-
ous combinations of flow-thru processing between pipelines, and then dis-
cusses the practicality of the proposed scheme through the LSI design of
application modules such as a priority-based queue, a mutual interconnec-
tion network, and a pipelined sorter.
key words: self-timed pipeline, flow-thru processing, interacting pipelines,
VLSI/SoC architecture

1. Introduction

With the continuous advancement of semiconductor tech-
nology, tens of billions of transistors are available on a sin-
gle die at present. Pipeline structure is considered to be
the best solution to overcome ULSI design limitation con-
straints through a ‘divide and conquer’ design. In addi-
tion, the pipeline structure also helps localize wiring over
a die and thus minimizes extrinsic degradations. However,
with an increase in the clocking rate, the structure suffers
from the excessive power consumption and signal integrity
problems associated with synchronous clock distribution. In
order to solve these problems simultaneously, a basic self-
timed pipeline (STP) structure has been utilized to develop a
commercial data-driven multimedia processor (DDMP) [1]
and a unique self-timed functional module [2].

This paper proposes an advanced scheme of interact-
ing self-timed pipelines to fully utilize giga-transistors on
a die area. The key to the proposed scheme is to allow
every stage of the ordinary linear-pipeline structure to in-
teract among several pipelines. Based on this idea, several

Manuscript received October 6, 2008.
Manuscript revised February 15, 2009.
†The authors are with the Graduate School of Engineering,

Kochi University of Technology, Kami-shi, 782-8502 Japan.
††The authors are with Research Institute of Electrical Commu-

nication, Tohoku University, Sendai-shi, 980-8577 Japan.
†††The author is with SOFTBANK TELECOM Corp., Yokohama-

shi, 221-0055 Japan.
a) E-mail: 105407v@gs.kochi-tech.ac.jp
b) E-mail: sannomiya.shuji@kochi-tech.ac.jp

DOI: 10.1587/transfun.E92.A.1642

streams of data and their pipelined processing can be flex-
ibly deployed on the 2D plane of the vast die by virtue of
the autonomous and distributive behavior of the STP. In this
paper, a set of elementary coupling control modules for the
interacting self-timed pipelines is proposed in order to facili-
tate all possible interactions between two STP stages. Then,
the practicality of the proposed scheme is shown through
LSI design of some example modules for dedicated func-
tions; priority queue, mutual interconnection network, and
pipelined sorter.

2. Interacting Self-Timed Pipelines

Pipeline processing can be categorized into two groups, de-
terministic and non-deterministic, by focusing on the deter-
minacy of the operands in the streams of data. The operands
of the former are predetermined before the run of the pro-
cessing, and those of the latter are not predetemined but de-
termined at run-time. To realize the operation on the value
and the order of both deterministic and non-deterministic
operands, not only data processing such as calculation and
comparison but also flow control such as timing adjustment
among pipeline stages are necessary. The data processing
and flow control among pipeline stages are referred to col-
lectively as interaction, and the pipeline processing based on
the interactions is called flow-thru processing in this paper.

In this section, the basic features of a self-timed
pipeline which is preferable to realize the flow-thru process-
ing are briefly introduced, and then possible interactions be-
tween two pipelines are discussed and classified on the basis
of the interacting self-timed pipelines.

2.1 Self-Timed Pipeline

The basic structure of a self-timed pipeline (STP) is illus-
trated in Fig. 1. In the STP, each stage consists of a data latch

Fig. 1 Basic structure of self-timed pipeline.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



KOMATSU et al.: INTERACTING SELF-TIMED PIPELINES
1643

(DL), a function logic (Logic), and a C element (C) which
provides the coincidence function of Muller’s C-element [3]
to control data transfer. A piece of data, which is termed
packet in the STP, is transferred locally between adjacent
pipeline stages. This local data transfer is controlled based
on a bundled data transfer scheme using transfer request
(send) and acknowledge (ack) signals [1]. The C element
is designed to assert its send signal to the next stage and its
gate open signal only when the input send and ack signals
are coincident. The delay element (Delay) delays the arrival
of the send signal to ensure completion of the Logic.

This local transfer control of an STP makes the wiring
localized and also makes data transfer on each stage au-
tonomous. The localized wiring results in not only a lower
skew, making it easier to assure timing constraints and sig-
nal integrity, but also the natural concentration of power
consumption in the processing stage. Therefore, it is easy
to achieve high throughput by deep pipelining.

The autonomous data transfer results in the elimination
of centralized control and scheduling on the processed and
transferred data, and even if the arrival time of transferred
data at a stage is non-deterministic, each stage can definitely
process the data according to the timing and its neighbor-
ing stages’ situations. In contrast, in clock-synchronized
pipelines, the non-deterministic arrival time makes it diffi-
cult to assure data transfer because it is necessary to observe
all local events at each stage and their influences.

2.2 Interaction between STP’s

From the concept of dataflow computation, input streams of
data are operated using a pipeline processing scheme and
the output streams are produced as a result of the interac-
tions among input streams. Generally, the interactions in-
volve not only simple dividing and merging of the streams
but also other complex flows with processing, such as data
exchange based on comparison, calculation of data values,
and integration of a set of data. Thus, the direct pipelining
of flow-thru processing is effective in achieving thorough
exploitation of the parallelism inherent in the target algo-
rithms or applications.

A previous study revealed the ability of flow-thru pro-
cessing to realize flexible pipeline structures with high func-
tionality, such as priority-based queuing module [2]. How-
ever, as far as the authors know, all possible interactions
even between two pipelines have never been clarified.

(a) Static Path of Dataflow
To realize arbitrary interaction in self-timed pipelines, the
dataflow between pipelines should be arbitrarily controlled
while the data are processed. Topologically, an arbitrary
dataflow path can be provided by one of the combinations
of outflows from one pipeline to the other. Figure 2 illus-
trates the variation of outflows between pipelines, named A
and B. In the figure, Ab and Bb denote branch point, while
Am and Bm denote merge point. In addition to the forward
paths (straight or cross), a sideward path (Ab to Bb) is useful

Fig. 2 Possible dataflow paths.

Table 1 Useful dataflow combination (from pipeline A to B).

Interaction name Active paths
(based on static data path) to Am to Bm to Bb

Divide Ab © © —
Bb — — —

Merge Ab — © —
Bb — © —

One-way Ab © © —
Bb — © —

Bi-directional Ab © © —
Bb © © —

Sideward one-way Ab © — ©
Bb © © —

©: existent, —: nonexistent

to achieve the interaction with one pipeline whose dataflow
is temporally dammed. All the possible combinations of
dataflow paths are listed in Table 1, in which functionally
identical paths are omitted to simplify the table. For in-
stance, the Merge from Ab and Bb to Am is symmetrically
equivalent to that to Bm.

(b) Dynamic Control of Dataflow
On the static paths, operands of operation should be detected
during an interaction. In the interactions in the deterministic
processing, it is necessary to detect proper operands exactly
among data streams. In contrast, it is important to change
the number of operands according to the number of arrived
data in the interactions in the non-deterministic processing,
in order to avoid the throughput degradation of the flow-thru
processing. To realize such interactions for both determin-
istic and non-deterministic processing, two kinds of inter-
action modes are introduced here, and they are called de-
terministic mode and non-deterministic mode in this paper.
In the case of deterministic mode, datum of an input stream
flowing in one pipeline is forced to wait for the datum on the
other pipeline and then the coupled data interact with each
other. In the case of non-deterministic mode, two data flow-
ing in two pipelines interact only when they arrive at Ab and
Bb within a predesignated time.

The interaction can be realized by combining the static
data flow path and the dynamic mode. During an interac-
tion, two input data coupled according to the mode may be
operated, and then the destination and output priority of re-
sultant data are decided based on some of the following in-
formation.

• Operation result of two data
• Arrival order of two data, e.g., a first-come-first-served



1644
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.7 JULY 2009

Table 2 Possible transfer control (from pipeline A to B).

Transfer control
Divide Ab → Am

Ab → Bm

Merge Ab → Bm

Bb → Bm

One-way Ab → Am, Bb → Bm

Ab → Bm

Bb → Bm

Bi-directional Ab → Am, Bb → Bm

Bb → Am

Ab → Am

Ab → Bm

Bb → Bm

Ab → Bm, Bb → Am

Sideward one-way Ab → Am, Bb → Bm

Bb → Am

Ab → Am

Ab → Bb, Bb → Bm

Ab → Bb
Bb → Am

• Dataflow rate of two pipelines
• Specific attribute of the pipeline stage, e.g., stage num-

ber

Finally, the resultant data are routed along with the topologi-
cal dataflow path described in Fig. 2. The possible combina-
tions of the dataflow paths are listed in Table 2. In an interac-
tion, if the routes of data transfer have the same destination,
conflict occurs. In the case of conflict, the data transfers are
ranked based on the above information, and then each data
transfer is selected and controlled exclusively.

In the interaction, a dataflow in one pipeline should be
temporally dammed when the pipeline accepts inflow from
the other pipeline. Even with the STP, if such transfer con-
trol is spread over multiple pipeline stages, it results in the
waste of circuit area and also complex control becoming a
bottleneck. That is, interaction control should be localized
between corresponding stages of two pipelines. Although,
fork and join controls [5] have been used to connect and
control the pipelines, they are not assumed to be used within
the same stage and thus the transfer control may spread over
several stages. For instance, a bi-directional control should
be realized by two join stages followed by two fork stages in
order to realize the simultaneous transfer controls Ab→ Am

and Bb → Bm. In contrast, existing pipeline controls, such
as a control in counterflow pipeline [6], can be used as an
interaction control, however their transfer paths are limited
and there are no controls providing all of paths between two
pipelines. Therefore, an interaction control circuit should
be newly designed, so that the flow-thru processing can be
easily realized by interacting self-timed pipelines.

3. Interaction Circuit

By imposing operational conditions, such as arrival timing
and specific values of data sets, in flow-thru processing, in-
teresting interactions between STP’s can be realized. How-
ever the manual design of circuits to control the coupling of

Fig. 3 Interaction stage.

Fig. 4 Interaction control circuit.

the STP’s may take a long period of time and will be impos-
sible for future large scaled systems because assuring the
timing of handshakes requires comprehensive understand-
ing of all signals changing asynchronously during interac-
tions. In this section, coupling control modules to control
flow-thru processing are proposed, in addition, design con-
straints are revealed to modularize them.

3.1 Elementary Coupling Control Modules

To facilitate hazard-free handshake, the coupling stages of
STP’s are structured as illustrated in Fig. 3, and their inter-
action control circuit consists of four modules, as illustrated
in Fig. 4. Each data latch is controlled by the C element
(C). Since the send-out and ack-in signals should be ap-
propriately selected along with the forward paths (straight
or cross) of routed data, 5 multiplexers (MUX’s) are intro-



KOMATSU et al.: INTERACTING SELF-TIMED PIPELINES
1645

Table 3 Arbitration for interaction (from pipeline A to B).

Route Selected Arbitration
AtoB BtoA transfer control cam cbm inflow sideward

Divide 0 * Ab→ Am 00 *1 0 0
1 * Ab→ Bm *1 10 1 0

Merge * * Ab→ Bm *1 10 0 0
Bb→ Bm *1 00 1 0

One-way 0 * Ab→ Am, Bb→ Bm 00 00 0 0
1 * Ab→ Bm *1 10 1 0

Bb→ Bm *1 00 0 0
Bi-directional 0 0 Ab→ Am, Bb→ Bm 00 00 0 0

0 1 Bb→ Am 10 *1 0 0
Ab→ Am 00 *1 0 0

1 0 Ab→ Bm *1 10 1 0
Bb→ Bm *1 00 0 0

1 1 Ab→ Bm, Bb→ Am 10 10 1 0
Sideward one-way 0 0 Ab→ Am, Bb→ Bm 00 00 0 0

0 1 Bb→ Am 10 *1 1 1
Ab→ Am 00 *1 0 0

1 0 Ab→ Bb, Bb→ Bm *1 00 0 1
1 1 Ab→ Bb *1 *1 0 1

Bb→ Am 10 *1 1 1

duced between C elements or among C elements. Further-
more, one more MUX is inserted on the send-in B signal
line to realize the handshake of the sideward path between
two pipelines. Because every MUX should be controlled by
its select signal, an arbiter (A) generates select signals to
arbitrate two pipelines. The arbiter observes all input sig-
nal changes of two C elements and adjusts the timing of
the change of data transfer route. That is, the arbiter can
detect the order of the arrival timing of two input data and
then arbitrate them along with the order, e.g., in a first-come-
first-served manner. A router (R) operates the information
depending on the requirement specification of the target ap-
plication. The router decides the destination and output pri-
ority of the forwarded data based on the data (or a part of
the data) of two input packets before arbitration, and out-
puts them to the arbiter. The outputs of the router and ar-
biter modules are drawn by a dashed line to make it easy
to recognize the wiring. The values of the output signals of
the arbiter and router modules are listed comprehensively in
Table 3. With this module division, the C element can be de-
signed independently from other modules, and a hazard free
handshake can be realized by using an asynchronous circuit
design method. The MUX, arbiter, and router modules can
be shrunk according to the combination of data flow paths,
interaction mode, and operational conditions.

(a) C element: C
Several design methods have been already studied for asyn-
chronous circuits including self-timed circuits, and they are
categorized into two types, Huffman circuit and Muller cir-
cuit [3]. The Muller circuit assumes a circuit element, called
a generalized C-element. Unfortunately the generalized C-
element is not supported in a usual standard cell library of
LSI manufacturers and it is difficult to guarantee its stability
under the deep-sub-micron process, and thus it is not widely
accepted. In contrast, the Huffman circuit can be designed
using standard logic gates and therefore it is adopted in our

circuit.
The Huffman circuit was proposed with a procedure to

derive circuit from its specification described by burst-mode
machine, which is a kind of state machine. In the procedure
of circuit derivation, the number of signals changing simul-
taneously is constrained to assure the derivation of hazard-
free circuits. In the case of multiple input changes, an ex-
tended burst-mode (XBM) machine [7] is often utilized to
specify the asynchronous circuit.

To satisfy the constraints of the XBM machine, a 4-
phase handshake protocol between two C elements is intro-
duced to limit the number of signals changing simultane-
ously. To transfer a packet from the i-th to the (i+1)-th stage
in Fig. 1, the 4-phase handshake is performed as below.

1. C at the i-th stage (Ci) asserts its send-out signal to Ci+1

(send-outi+1), and it also asserts its gate open signal to
DLi.

2. In response to the assertion of the send-outi+1, the Ci+1

asserts ack-outi+1 to the Ci.
3. The Ci receiving the ack-outi+1 negates the send-outi+1

and the gate open signal.
4. After the negation of the send-outi+1, the Ci+1 negates

the ack-outi+1. The Ci+1 also asserts the send-outi+2

only when the send-outi+1 and ack-outi+2 are negated
i.e. they are coincident. After the negation of the
ack-outi+1, the Ci becomes ready to receive the
send-outi.

The same procedure is repeated between adjacent stages.
The handshake based on the introduced protocol is a nega-
tive logic, i.e., the assertion and negation correspond to low
and high level signals respectively. The timing chart illus-
trated in Fig. 5 shows that the assertion of ack signal is post-
poned until the next stage becomes empty, i.e., the ack-outi
is asserted after the send-outi is asserted and the ack-outi+1

is negated. This 4-phase handshake protocol experiences
pipeline throughput degradation only when an overload situ-



1646
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.7 JULY 2009

Fig. 5 Timing chart of handshake.

Fig. 6 XBM for C element.

Fig. 7 Huffman circuit of C element (C).

ation occurs in the pipeline. This is because the ack signals’
delays, which are usually concealed by delays in the send
signals, influence the effective data transfer time in an over-
load situation. However, this drawback can be overcome in
sophisticated systems because the overload situation can be
avoided by a load balancing scheme.

The XBM machine specification for the C element
is synthesized based on the introduced protocol, and its
correctness is checked by evaluating all events among the
XBM’s. Figure 6 shows the synthesized specification. In
this figure, state S0 denotes the initial state when the circuit
is reset. After that, states S1, S2, S3 will be taken along
with the handshake signal changes. The rising edge (+) and
the falling edge (−) of the send-in, send-out, ack-in and ack-
out signals are denoted by send-in+, send-in−, send-out+,
send-out−, ack-in+, ack-in−, ack-out+, and ack-out−. The
directed don’t-care (send-in∗) indicates that the send-in sig-
nal might either keep its level or change exactly once.

The Huffman circuit for the illustrated XBM machine
can be algorithmically derived. This requires little time if

the algorithm is supported by CAD. The derived circuit is
illustrated in Fig. 7, and consists of a combinational circuit
to determine the next state, a feedback loop for state tran-
sition, and delay cells (df ) to hold the current state. The
required delay time of each delay cell will be discussed in
the next sub-section.

(b) Arbiter module: A
As described above, arbiter (A) decides a flow path based
on not only the output of the router module but also all of
the input signals of the two C elements. The AtoB signal
represents that data in pipeline A is transferred to pipeline
B when it is ‘1’ and it represents that data in pipeline A is
transferred to pipeline A when it is ‘0’. Similarly, the BtoA
represents the transfer direction of the data in pipeline B.

When the AtoB and BtoA signals indicate the same
destination and imply conflict, the arbiter select one of the
transfer control based on the arrival times of the input send-
in signals. To facilitate the selected transfer control, the ar-
biter controls the MUXs by its output signals described in
Table 3.

In the case of non-deterministic interaction, the arbiter
initiates the selection of the transfer controls once one of
its send-in signals falls, and it outputs control signals to the
MUXs. Then, the arbiter retains its output signals until one
data transfer is completed, i.e., until the corresponding ack-
in rises. Finally the arbiter releases the flow path immedi-
ately. If a packet arrives on a different pipeline during the
transfer of the packet arriving first, the packet on the differ-
ent pipeline is treated as late one.

In the case of deterministic interaction, if either of two
send-in signals falls, the arbiter instructs the MUXs to stop
propagating its send-out signals to the anterior C element.
The arbiter selects the transfer control after the other send-
in falls, and assures the selected transfer control by keeping
its output signals until ack-out A and B rise. Finally the
arbiter releases the flow paths immediately.

(c) Router module: R
The router (R) is a combinational circuit that decides the
destination according to the data values, and thus its imple-
mentation depends on the operational conditions specified in
target applications. For instance, the router may be a com-
parator that compares the priority field of data.

3.2 Timing Constraints

To assure the C element remains hazard-free, the timing
constraints on the proposed coupling control modules are
discussed according to the fundamental constraints of Huff-
man circuit.

Huffman circuit is an asynchronous state machine, and
provides a delay in its state feedback loop to hold the state.
To assure the state transitions of Huffman circuit, the min-
imum interval time between input changes must be larger
than 2dmax + df where dmax and df denote the maximum de-
lay amount from the input to the output of the combinational



KOMATSU et al.: INTERACTING SELF-TIMED PIPELINES
1647

circuit, and the delay amount of the feedback loop separately
[3].

During a handshake with the proposed protocol, the
ack-in+ and send-in− may occur simultaneously, but this
simultaneous changing is not sensed as input changes be-
cause the send-in− is defined as a directed don’t-care [3].
Except for this simultaneous change, the minimum interval
time, which is denoted di, is determined by one of three in-
put changes; from send-in− to send-in+, from send-in+ to
ack-in−, and ack-in+ to ack-in−. To make the explanation
simple, the structures and delays of the adjacent stages i.e.
the anterior (stagei+1) and posterior (stagei−1) interaction
stages are assumed to be the same as those of the focus-
ing stage (stagei). By tracing the input change along with
the wiring between logic gates, it is revealed that the mini-
mum interval times of those input changes are the same and
defined as 2dmin + ds + da + 3dmux. The dmin is the minimum
delay from the input to the output of the combinational logic
in Huffman circuit, and the dmux is the delay of MUX. The
delay time, which is denoted ds, is for delaying the arrival
of the send-out signal to guarantee the completion of logic
operation, while the delay time, which is denoted da, is for
delaying the arrival of the ack-out signal to guarantee the
setup-hold time of a data latch. Consequently, the constraint
of the C element is defined as:

2dmin + ds + da + 3dmux > 2dmax + df . (1)

As for the cases where different interactions are placed at
stagei−1 or stagei+1, some delay times are replaced based on
the actual circuit structure. In addition to the constraint of
the C element, the timing constraint for the router (R) and
arbiter (A) are also revealed. The router can be considered
as a part of logic function of a stage, and thus the completion
of its logic is assured by adjusting the ds, as similar to the
other pipelined logic functions. In contrast, the arbiter de-
tects the arrival order by observing the assertion of the send-
in (send-in−), and it decides the arbitration signals with the
output of the router. The output of the arbiter and MUXs
must be decided before the assertion of the send-out signal
(send-out−) arrives. That is, the delay amount of the arbiter,
denoted as darb, must be within the time from send-in− to
send-out+. The input change from send-in− to send-out−
experiences ack-out−, send-in+, and send-out−. According
to the handshake protocol illustrated in Fig. 5, first the send-
in− turns out the ack-out− at a focusing C element. Next the
ack-out−, which is the ack-in− to the C element of stagei−1,
turns out send-out+, which is send-in+ for stagei. After that,
the send-in+ turns out send-out− at stagei. That is, the sig-
nal passes through the C element three times, and the mini-
mum amount of the time is defined as 3dmin+2ds+da+3dmux.
Within this time, the delay from the input of the arbiter to
the output of the MUXs, denoted as darb + dmux, must be
adjusted. Consequently, the constraint of the arbiter module
and MUX is defined as:

3dmin + 2ds + da + 3dmux > darb + dmux. (2)

To satisfy the timing constraints against the timing vari-

ation which is often caused by PVT variation, the minimum
amount are assumed for the delays in the left hand side of
the expressions, while the maximum amount assumed in the
right hand side.

The derived constraints show a time margin to reduce
metastability. Because the arbiter module is designed us-
ing an asynchronous sequential circuit, the probability of
metastability occurence has to be reduced for practicality.
One of the solutions to the metastability is to cascade the
RS flip-flops in the sequential circuit to reduce the proba-
bility of the metastability occurrence as low as practically
acceptable [3]. In our circuit, two flip-flops are cascaded
redundantly to reduce the probability.

The flow-thru processing can be guaranteed by adjust-
ing the delay amounts to satisfy the constraints (1) and (2).
The constraints lead to the elimination of manual timing ad-
justment for all combinations of delays on every circuit ele-
ment, and thus makes it dramatically easy to design interact-
ing self-timed pipeline systems. The advantage of the pro-
posed modules is the modularity by which the C elements
can be independent from each other while the constraints
are satisfied.

4. Evaluation

The feasibility and validity of self-timed pipelines that are
structured using the proposed interaction circuits is evalu-
ated based on an LSI design of an application LSI core. The
throughput and design term are measured based on their de-
signs. In the self-timed pipeline, the handshake time among
adjacent stages determines the throughput [packet/sec.], and
it is measured based on RTL simulations with extracted de-
lays on circuit cells and wiring. In addition, the design term
is determined by the time spent by a master course student
with two years experience on the CAD tools to complete the
layouts of the circuits from HDL description.

Dedicated applications are chosen to examine one-way,
bi-direction, and sideward one-way paths with either a deter-
ministic or a non-deterministic interaction mode. The eval-
uated LSI cores are designed using a standard cell library of
TSMC 180 nm CMOS 6 M, 1.8 V.

Each interaction stage and control circuit are derived
by shrinking the generic circuit in Figs. 3 and 4. Based on
the input and output specification listed in Table 3, the func-
tion of each module is verified against all of combinations
of inputs. In addition, by using RTL circuit simulation with
delays extracted from the placed and routed circuit cells and
wires, the timing of each module is checked to satisfy the
constraints revealed in Sect. 3.2.

4.1 Self-Timed Pipeline Queue

Self-timed pipeline queue (SPQ), proposed in our previ-
ous study [2], is composed of a folded pipeline where each
pipeline stage interacts with its corresponding stage via its
bypass route. The folded pipeline includes two opposite
pipelines whose interactions are performed between oppo-



1648
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.7 JULY 2009

Fig. 8 Block diagram of SPQ.

Fig. 9 One-way transfer control circuit.

site data flows differently from Fig. 2 where the flows are
parallel in one direction. Figure 8 shows a block diagram
of the SPQ with the bypass routes. The unique functionality
of the SPQ is its prioritized variable length queuing, which
enables prioritized packets to use the bypasses, even though
they have no explicit scheduling functions. The SPQ is suit-
able for the differentiated services of QoS control [8].

The one-way dataflow path with a non-deterministic in-
teraction mode is used to achieve a bypass route between
two pipeline stages. Figure 9 shows the circuit, which is de-
rived by shrinking the proposed circuit for SPQ. The router
(R) preliminarily determines the path along with the prior-
ity bits of input data. The arbiter (A) detects whether con-
flict occurs or not, and the detection is realized by using
data latches as shown in Fig. 10 in our circuit design. In the
case of conflicts, higher priority data flowing in pipeline A
is transferred to pipeline B via the bypass route. If lower
priority data flows through the pipeline A, it will be trans-
ferred to the succeeding stage of A at the same time. The
MUX’s realize an exclusive handshake with one of the suc-
ceeding stages by stopping the propagation of the send and
ack signals, and this is facilitated by pulling up the signals
to Vdd which indicates the negated level of the send and ack
signals.

The SPQ, newly designed in this paper, is composed
of 128 one-way dataflow paths, i.e., it can queue up to 256
packets. The designed circuit is compared with the previous
circuit [2], which was designed manually, and the results are
shown in Table 4. The comparison shows that the proposed
circuit can achieve 100 M packet/sec., which is equivalent
to the performance of the manually designed SPQ, while
the time it takes to design the SPQ is reduced to one sixth of
the level for the manually designed SPQ.

Fig. 10 Arbiter module of SPQ.

Table 4 Comparison with a manually designed circuit.

Logic area Throughput Design term
[mm2] [packet/sec.] [man-month]

Proposed 1.25 100 M 0.25
Manual design 2.01 106 M 3

Fig. 11 Block diagram of self-timed omega network.

4.2 Omega Network

Self-timed mutual interconnection networks with a self-
routing function show promise in realizing network-on-chip
(NoC). In this evaluation, an omega network is chosen. The
designed circuit module provides 8 ports which are derived
from the typical number of processing cores. Figure 11
shows the block diagram of the designed 8 × 8 omega net-
work with 3-bit destination address (for 8 outputs).

The 2 × 2 switching cell can be implemented by a bi-
directional dataflow path with a non-deterministic interac-
tion mode. The block diagram of the designed transfer con-
trol circuit is shown in Fig. 12. The router (R) preliminar-
ily determines the path along with the destination address
included in the input data. In the case of a conflict, i.e.,
if the destinations of an input data set are the same, then
the first-come-first-served policy is applied. The MUXs are
controlled by the arb signals to allow exclusive handshake



KOMATSU et al.: INTERACTING SELF-TIMED PIPELINES
1649

Fig. 12 Bi-directional transfer control circuit.

Fig. 13 Arbiter module of SPR.

Fig. 14 Block diagram of self-timed pipeline sorter.

to the destination stage by stopping the handshake of data
which arrives a little late. Otherwise, in the case of non-
conflict, the MUXs are controlled to allow simultaneous
handshakes to the different succeeding stages. The arbiter
module, which is illustrated in Fig. 13, detects the arrival or-
der of a data set by using flip-flops and it determines whether
simultaneous handshakes are allowed or not according to the
destination (A to B and B to A signals).

The measurement shows that the designed cir-
cuit achieves 160 M packet/sec., which is enough for
routing among present DDMP cores working around
140 M packet/sec. The LSI core design requires only 1/3
man-month.

4.3 Pipelined Sorter

The third application for the interacting self-timed pipelines
is a pipelined sorter which provides highly parallel sorting
useful for various applications, such as TCP/IP packet pro-

Fig. 15 Sideward one-way transfer control circuit.

Fig. 16 Arbiter module of SPS.

cessing. As shown in Fig. 14, the designed sorter consists
of two opposite pipelines, the input data flows in pipeline A
and the ordered data is held by pipeline B. The pipeline B
holds the ordered data until the sorting finishes, and thus it
acts as a memory. In the corresponding stages between the
two pipelines, each data in pipeline A (EA) is compared with
each data in pipeline B (EB). If the EB is out of order, the
EB is removed to pipeline A, and the EA is inserted to the
stage which was formerly occupied by EB. Otherwise, the
EA steps to the next stage and is compared with the next data
in pipeline B. Finally, all input data are sorted in pipeline B.

The flow-thru processing providing this comparison
and swapping can be realized by a sideward one-way
dataflow path with a deterministic interaction mode. The
block diagram of the designed circuit is illustrated in Fig. 15.
By shrinking the proposed coupling control modules, the
router (R) is designed to compare the values of an input and
ordered data, and the arbiter (A), which is shown in Fig. 16,
is designed to detect a couple of data and to control their
transfer timing by using flip-flops.

The designed pipelined sorter provides a pipeline ca-
pacity for 256 packets, which is enough for sorting in the
TCP packet reassembling. The designed sorter module
achieves 100 M packet/sec. This result indicates that the
proposed sorter could operate at 3.2 G b/s line speed in the
case of 32 bit/packet. It took only 1/6 man-month to get its
layout data from the specification.

The three LSI designs of the interacting self-timed
pipelines prove that highly functional circuits can be imple-
mented easily with sufficient performance for current appli-
cations and furthermore the design period can be shortened.
Although only part of the overall functionality of the inter-
action between pipelines is revealed, the potential of the in-



1650
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.7 JULY 2009

teracting self-timed pipelines should be investigated further.

5. Conclusion

In this paper, the novel concept of interacting self-timed
pipelines is proposed to distribute and interconnect various
pipelines realizing highly functional stream processing on
future giga-transistor chips. Moreover, the circuits of four
elementary coupling control modules realizing possible in-
teractions between STP’s are proposed. The fundamental
feasibility and validity of the proposed circuit for current
LSI design technology are proven through the implementa-
tion of the dedicated modules.

Although only three dedicated applications with unique
functionality are explored as simple examples organized by
the interacting self-timed pipelines, the applicability and po-
tentiality for general algorithms and applications should be
further studied. Meanwhile, we hope to design a many-core
chip as an application of the interacting self-timed pipelines.

Acknowledgement

This work was supported in part by the Dependable VLSI
Research Area, Core Research for Evolutional Science
and Technology (CREST), Japan Science and Technology
Agency (JST). The VLSI design work was supported by
VLSI Design and Education Center (VDEC) of the Univer-
sity of Tokyo in collaboration with Cadence Design Sys-
tems, Inc.

References

[1] H. Terada, S. Miyata, and M. Iwata, “DDMP’s: Self-timed super-
pipelined data-driven multimedia processors,” Proc. IEEE, vol.87,
no.2, pp.282–296, Feb. 1999.

[2] M. Iwata, M. Ogura, Y. Ohishi, H. Hayashi, and H. Terada,
“100 MPacket/s fully self-timed priority queue: FQ,” ISSCC 2004,
Session 8, no.1, pp.150–151, Feb. 2004.

[3] C.J. Myers, Asynchronous Circuit Design, Wiley & Sons, 2001.
[4] J. Spars and S.B. Furber, Principles of Asynchronous Circuit Design:

A Systems Perspective, Kluwer Academic Publishers, 2002.
[5] S. Furber, “Computing without clocks: Micropipelining the ARM

processor,” Proc. Asynchronous Digital Circuit Design, Workshops
Comput., pp.211–262, 1995.

[6] R.F. Sproull, I.E. Sutherland, and C.E. Molnar, “The counterflow
pipeline processor architecture,” IEEE Des. Test Comput., vol.11,
no.3, pp.48–59, July 1994.

[7] M.B. Josephs, S.M. Nowick, and C.H. Van Berkel, “Modeling and
design of asynchronous circuits,” Proc. IEEE, vol.87, no.2, pp.234–
242, Feb. 1999.

[8] H. Hayashi, M. Iwata, H. Terada, and K. Shimamura, “A priority-
based queueing scheme using self-timed pipeline,” IEICE Trans.
Commun. (Japanese Edition), vol.J87-B, no.8, pp.1063–1075, Aug.
2004.

Kazuhiro Komatsu received a B.E. degree
in Department of Information Systems Engi-
neering, Kochi University of Technology, Japan,
in 2006. He is currently a master course stu-
dent of the same university. His research inter-
ests are low-power pipeline architecture and its
VLSI design.

Shuji Sannomiya received the B.E. and
M.E. degrees in Information Systems Engi-
neering from Kochi University of Technology,
Kochi, Japan, 2002 and 2004, respectively. Now
he is a research associate of Department of In-
formation Systems Engineering, Kochi Univer-
sity of Technology. Currently he has interests
in embedded processor architecture and LSI de-
sign.

Makoto Iwata received B.E. and M.E.
degrees in Electronic Engineering from Osaka
University, Osaka, Japan, in 1986 and 1988,
respectively. He received a Dr.Eng. degree in
Information Systems Engineering from Osaka
University in 1997. Now he is a professor of
Department of Information Systems Engineer-
ing, Kochi University of Technology, and a vis-
iting professor of Research Institute of Electri-
cal Communication, Tohoku University. His re-
search interests are the software, architectures,

and applications of novel massively parallel processing systems.



KOMATSU et al.: INTERACTING SELF-TIMED PIPELINES
1651

Hiroaki Terada was born in Hiroshima,
Japan, on July 23, 1933. He received the B.E.
degree in electrical engineering from Ehime
University, Ehime, Japan, in 1956 and the M.E.
and Ph.D. degrees in electrical communications
from Osaka University, Osaka, Japan, in 1958
and 1964, respectively. He joined the Depart-
ment of Electronic Engineering, Faculty of En-
gineering, Osaka University, in 1961, as a Re-
search Associate (Assistant) and became an As-
sistant Professor in 1965. Specializing in control

and storage technologies in electronic switching systems, he was promoted
to Associate Professor of the same department in 1966. From 1976 to 1997,
he served as Professor at Osaka University and was responsible for research
in digital systems and education in digital systems and circuits. He also
served as the Director of the Computation Center, Osaka University, from
April 1993 to March 1995. Since 1997, he has been a Professor from 1997
to 2005 and the Vice-President from 2001 to 2005 at Kochi University of
Technology, Kochi, Japan. He was a Visiting Professor at the University
of Essex, U.K., in 1977, and a Visiting Scholar at the Centre National d
’Etudes des Telecommunications, Lannion, France, from Autumn 1977 to
Spring 1978. He has also been the President of Information and Commu-
nication Laboratories of Japan Telecom Corporation since December 1997
to March 2006. Dr. Terada served as the Vice-President of the Institute of
Electronics, Information and Communication Engineers of Japan (IEICE)
from 1994 to 1996 and as the Kansai Regional Chairman of the Informa-
tion Processing Society of Japan (IPSJ) from 1995 to 1997. He received the
IEICE Achievement Award, the IEICE Kobayashi Memorial Achievement
Award in 1989, the Ericsson Telecommunication Award in 2001 and the
IEICE Distinguished Achievement and Contributions Award in 2003. He
holds Professor Emeritus chair of Osaka University and Kochi University
of Technology and currently serving as an Advisor to the Research Div.
(Laboratory), SOFTBANK TELECOM Corp. His current research areas
include diagrammatic data-driven language, data-driven architecture, and
the VLSI-oriented implementation of data-driven architecture.

Suguru Kameda was born in Fukushima,
Japan, on October 25, 1974. He received
the B.S., M.S. and Ph.D. degrees in Electron-
ics Engineering from Tohoku University, Sen-
dai, Japan in 1997, 1999 and 2001, respec-
tively. He is currently the Assistant Professor of
the Research Institute of Electrical Communi-
cation, Tohoku University. His current interests
are in heterogeneous wireless network, CDMA
and OFDMA technology for mobile broadband
communication systems, and RF signal process-

ing integration circuits. He received the TELECOM System Technology
Award for Student in 2001. He is a member of the IEEE.

Kazuo Tsubouchi was born in Kyoto,
Japan, on February 6, 1947. He received the
B.S., M.S. and Ph.D. degrees in Electronics
Engineering from Nagoya University, Nagoya,
Japan, in 1969, 1971 and 1974, respectively.
Since 1974, he has been with the Research Insti-
tute of Electrical Communication, Tohoku Uni-
versity, Sendai, Japan. In 1982, he spent at Pur-
due University as a Visiting Associate Profes-
sor. He is currently the Professor of Wireless
Info Tech Division and the director of Research

Center for 21st-Century Information Technology (IT-21 Center). His cur-
rent interests are highly reliable GHz-band wireless communication sys-
tem, GHz-band surface and bulk acoustic wave devices and materials,
low-power RF signal processing integration circuits, high speed Si CMOS
circuit/device/process technology, and system in package (SiP) technol-
ogy. Prof. Tsubouchi received the Hattori-Hoko Award in 1983, the 26th
Ichimura Award in 1994, the TELECOM System Technology Award in
1996, the 22nd Inoue Harushige Award in 1997, the 2005 Achievement
Award from IEICE, and “Minister of Education, Culture, Sports, Science
and Technology Award” in the Award for Persons of Merit in Industry-
Academia-Government Collaboration in FY2007. He is a member of the
IEEE, the Physical Society of Japan, the Japan Society of Applied Physics,
and the Institute of Electrical Engineers of Japan.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


