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An Efficient Signature Matching Scheme for Mobile Security

Ruhui ZHANG†a), Student Member and Makoto IWATA†b), Member

SUMMARY The development of network technology reveals the clear
trend that mobile devices will soon be equipped with more and more
network-based functions and services. This increase also results in more
intrusions and attacks on mobile devices; therefore, mobile security mech-
anisms are becoming indispensable. In this paper, we propose a novel sig-
nature matching scheme for mobile security. This scheme not only em-
phasizes a small resource requirement and an optimal scan speed, which
are both important for resource-limited mobile devices, but also focuses
on practical features such as stable performance, fast signature set updates
and hardware implementation. This scheme is based on the finite state ma-
chine (FSM) approach widely used for string matching. An SRAM-based
two-level finite state machine (TFSM) solution is introduced to utilize the
unbalanced transition distribution in the original FSM to decrease the mem-
ory requirement, and to shorten the critical path of the single-FSM solution.
By adjusting the boundary of the two FSMs, optimum memory usage and
throughput are obtainable. The hardware circuit of our scheme is designed
and evaluated by both FPGA and ASIC technology. The result of FPGA
evaluation shows that 2,168 unique patterns with a total of 32,776 char-
acters are stored in 177.75 KB SelectRAM blocks of Xilinx XC4VLX40
FPGA and a 3.0 Gbps throughput is achieved. The result of ASIC evalua-
tion with 180 nm-CMOS library shows a throughput of over 4.5 Gbps with
132 KB of SRAM. Because of the small amount of memory and logic cell
requirements, as well as the scalability of our scheme, higher performance
is achieved by instantiating several signature matching engines when more
resources are provided.
key words: signature matching, finite state machine, Aho-Corasick algo-
rithm, mobile security

1. Introduction

With the advent of ubiquitous computing [1], more and more
network-based functions and services are being introduced
to mobile devices. This development also poses threats to
mobile devices, such as Denial of Service (DoS), malware,
network viruses, and worm storming. With the increase in
threats, mobile security mechanisms are urgently needed.

Signature matching is one way to detect a variety of at-
tacks through discovering the corresponding predefined pat-
terns in the payload of network packets. It has been exten-
sively studied and utilized with network security in personal
computers (PCs) and high-end network devices domains.
Because of its generality and effectivity, signature matching
can also be effectively transplanted into mobile security.

As a content-aware scheme, signature matching scans
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the entire payload data of every network packet for numer-
ous predefined patterns. As a result, it is computation-
intensive and resource-exploitive. The statistic data [2]
shows that in Snort [3], a popular open-source network-
based intrusion prevention system (NIPS) for PC, up to 70%
of the total execution time and 85% of instructions can be
dominated by the signature matching routines. Although
the present signature set for mobile devices is not as large
as the set for high-end network devices, the number of pat-
terns keep expanding rapidly. In addition, it includes some
complex pattern types, such as case sensitive/insensitive pat-
terns, very long/short patterns, and enumerative patterns
which can only be countered by regular expression match-
ing rather than exact signature matching. Many signature
matching schemes have been hitherto proposed, but few of
them can be applied to mobile devices mainly because their
target platform is assumed to be high-end products with
abundant resources.

Our key contribution in this paper is a novel light-
weight signature matching scheme which can be embedded
as a deep packet filtering in mobile devices with limited re-
sources. Our scheme is an adjustable finite state machine
(FSM) scheme which we call two-level finite state machine
(TFSM). By dividing the original single FSM into two levels
of FSMs, our scheme compacts the required memory space
and shortens the critical path of the single-FSM solution.
Additionally, it satisfies several essential features for prac-
tical mobile security, such as stable performance, fast up-
dates, and scalability. To the best of our knowledge, there is
no existing scheme that focuses on hardware-oriented sig-
nature matching for mobile security.

The remainder of this paper is organized as follows.
Firstly, our motivations and the related works are discussed
in Sect. 2. Secondly, the theory of our TFSM scheme and
its hardware circuit design are described in Sect. 3. After
that, the evaluation results by both Xilinx [4] FPGA and
ASIC technology, as well as the comparisons with other al-
gorithms are shown in Sect. 4. Finally, the conclusion and
future work are addressed in Sect. 5.

2. Motivations and Related Works

Compared with PCs or high-end network devices that pro-
vide fully equipped resources to achieve high throughput,
mobile devices are required to obtain an optimal through-
put with the lowest cost due to their severe resource con-
straints. Therefore, signature matching for mobile devices
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should be more light-weight with optimal performance-cost
ratio. Additionally, there are some requirements confronted
by signature matching for mobile security. They are listed
as follows:

1. Stable performance: Since signature matching is a crit-
ical security function, it should be robust and safe itself.
This means a stable performance should be maintained
in not only average case but also the worst case to
avoid intended algorithmic attacks manipulating some
craftily-designed payload.

2. Hardware accelerator: Signature matching algorithms
based on software solutions have been widely studied,
and it is generally accepted that they are not powerful
enough to support multi-Gbps throughput. In order to
achieve a higher throughput, a dedicated hardware ac-
celerator is required for signature matching. Actually,
for the devices with a good yield, the ASIC implemen-
tation has higher performance-cost ratio per device.

3. Scalability: Since the signature set expands rapidly,
more patterns will be expressed in the signature match-
ing hardware. This requires the scheme extendable to
process more patterns with acceptable additional cost
and to maintain its throughput.

4. Small number of groups: Signature set grouping is a
kind of divide-and-conquer solution. It is denoted as
dividing a big signature set into several small groups,
and then processing them in parallel. Because the
scale of each group becomes smaller, the critical path
becomes shorter and the throughput becomes faster.
However, the matching results of the independent
groups are meaningless, and they should be collected
and analyzed to obtain the final matching information.
Normally, this further action requires complex logic
and has an impact on the total performance. There-
fore, the trade off between the number of groups and
the total performance should be thoroughly noted.

5. Fast updates: In order to detect numerous attacks that
emerge continuously and spread fleetly, the signature
set needs to be updated frequently and quickly. Since
the signature matching function will be interrupted dur-
ing the updates, a fast update function is required to
avoid a long-time inactivation.

As an extensive research topic of computer science, sev-
eral signature matching algorithms have been proposed and
some of them are being used for network security. They are
classified as follows:

a) Software-based [5]–[8]: This solution is easy to realize,
but it is very slow and resource-exploitive due to the
lack of dedicated hardware support.

b) Logic-cell-based [9]–[13]: This solution instantiates
numerous parallel processing units, such as nondeter-
ministic finite automaton (NFA), deterministic finite
automaton (DFA), or pattern tree, by the logic cells,
and each unit processes one or several patterns. There-
fore, it is restricted to the reconfigurable platforms such

as FPGA and suffers from time-consumption, which
normally needs tens or hundreds of microseconds, for
the reconfiguration of the total system when updating
any number of patterns.

c) B/TCAM-based [14], [15]: This solution takes advan-
tage of the special storage architecture of content ad-
dressable lookup. However, there are some inherent
disadvantages of B/TCAM, such as low access speed,
inflexible width customizing, high power consumption,
high price, and this solution normally aims to high-end
network device.

d) SRAM-based: Several SRAM blocks and a simple
combinational logic are utilized in this solution. It can
be realized by FPGA or ASIC chip. Compared with
other solutions, SRAM-based solution is platform-
flexible, economical, and can easily support fast up-
dates of memory content without reconfiguration of
the total system. There are two representative cate-
gories within the SRAM-based solution. One is based
on hashing and the other uses the Aho-Corasick (AC)
algorithm [16]. The hashing-based solution [17], [18]
can obtain faster average performance, but it is vul-
nerable to algorithmic attacks invoking many false-
positive events. AC algorithm is a classic FSM-based
multi-pattern string matching algorithm (see Sect. 3.1).
Because of its stable performance, many researchers
choose the AC algorithm as a basic algorithm and
use some schemes to improve the throughput and de-
crease the memory requirement. There are multi-
character-input AC (M-AC) algorithms [19], [20] and
one-character-input AC (O-AC) algorithms [21]–[23].
M-AC algorithm achieves higher throughput at the cost
of larger resources. A moderate scalability of resources
can not be guaranteed with the increase of the number
of patterns and input characters. When resources are
limited, the number of patterns will be compromised to
obtain a high throughput or vice versa. On the contrary,
O-AC algorithm has the advantage of small resource-
consumption suitable for mobile security. It is com-
petitive with the M-AC algorithm if running several
instances in parallel. However, none of the existing
O-AC algorithms meets all of the requirements listed
above.

In the case of mobile security, we first select the SRAM-
based hardware implementation, and then propose our
TFSM scheme to continue improving O-AC algorithm and
satisfy the listed requirements.

3. Two-Level Finite State Machine Scheme

In this section, we first give the basics of the AC algo-
rithm and its problem, and then introduce our TFSM scheme
through explaining its theory and implementation with an
example.
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Fig. 1 Trie structure of AC-FAIL and DFA of AC-OPT.

3.1 Knowledge of AC Algorithm

The basic theory of the AC algorithm is to process string
matching with an FSM to execute a series of state transi-
tions, each of which is determined by the previous state and
an input character.

There are two concrete implementations of the AC al-
gorithm, which are the AC-FAIL and the OPT for short [24].
To show the relationship with the AC algorithm, the OPT is
called AC-OPT in this paper. The AC-FAIL uses a trie struc-
ture and a failure table, while the AC-OPT further prepro-
cesses them into a DFA. For each state in the DFA, the next
state by any input character in the alphabet is preprocessed
and stored. As a result, the lookup of FSM is required only
once to make a state transition. For the AC-FAIL, when the
state transition by an input character is failed, the failure ta-
ble will be referred to, and trace to a new state which denotes
the longest prefix by the inputs up to now, and then an ad-
ditional state transition from this state by this character will
be carried out once again. With the depth of the trie struc-
ture becomes deeper, the references to the failure table and
the additional state transitions may be executed more than
once.

The examples of AC-FAIL and AC-OPT are shown in
Fig. 1 based on the signature set {he, herh, hisi, sheis}. The
reduced alphabet is {e, h, i, r, s}. In Fig. 1(b), all state tran-
sitions from a certain state to state 0 are not marked. For

example, it is given that the current state is state 9, and char-
acter “i” is input. In the trie structure of the AC-FAIL, there
is no state transition from state 9 by “i,” so the failure ta-
ble is referred to and state 1 is obtained. After that, the
state transition from state 1 by “i” is taken and the state 5
is achieved. On the contrary, in the DFA of the AC-OPT,
there is a state transition pointing from state 9 to state 5 by
“i” already. All the states are grouped by their depths. If the
depth of a state is i, the state belongs to the set depthi. For
instance, state 1 and 8 belong to the set depth1 in Fig. 1(a).
There are two kinds of state transitions in the DFA. One kind
of state transition points from a state in depthi to a state in
depth j (i < j), and it is called a goto transition. The other
kind of state transition points from a state in depthi to a state
in depth j (i ≥ j), and it is called a trace transition. Actually,
trace transitions are the results of the further preprocess-
ing by the AC-OPT and they help to achieve a deterministic
matching speed.

Because the AC-OPT obtains a thorough stable perfor-
mance, it is widely adopted. The total DFA of the AC-OPT
should be stored in memory to construct a signature match-
ing engine. In the original implementation, it is stored in
a two-dimension table for the purpose of random access.
However, due to the irregular distribution of characters in
a signature set adopting ASCII code, the table will be very
sparse. Moreover, as the scale of table grows rapidly with
the extension of signature set, it is becoming unacceptable
even for high-end network devices. From Fig. 1 we can see
that, the goto transitions set up the framework of the DFA,
and they can not be removed because this operation will dis-
connect the DFA and make it can not be traveled through.
On the other hand, as the results of the further preprocess-
ing by AC-OPT, some trace transitions can be eliminated by
some schemes [15], [19] without influencing the traveling of
the DFA. In addition, more trace transition eliminations will
save more memory. Based on this observation, we propose
an SRAM-based scheme which eliminates the trace transi-
tions with a compact storage method. Furthermore, we well
design it to better support mobile security.

3.2 Theory of TFSM Scheme

In this paper, it is supposed that an input text T = t1t2...tl and
a finite set of patterns P = {p1,p2, · · · , pm} over an alphabet
Σ (Σ � φ) are given. The length of a pattern pm is written as
|pm|. A state transition is denoted as sk ← S(sk−1, tk), where
sk is a certain state in the DFA and S can be replaced by a
goto or trace transition. The concatenation of a string u and
v is uv. If there is a pm = uv (|u| � 0, |v| � 0), then u is the
prefix and v is the suffix of pm. How to make the division is
described below. All the prefixes/suffixes of P construct the
prefix/suffix set which we call Pprefix/Psuffix.

In our SRAM-based two-level finite state machine
(TFSM) scheme, an additional FSM for independent Pprefix

matching is separated from the FSM of the AC-OPT. Its re-
sult (state) can be used to substitute the result of some trace
transitions in Psuffix matching, which is taken when a prefix
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Fig. 2 Structure of AC-OPT and TFSM.

appears somewhere in the left FSM of Psuffix. In the TFSM
scheme, the length of each prefix in the Pprefix can be the
same or irregular.

As shown in Fig. 2, the unique FSM of the AC-OPT
is divided into two levels of FSMs. The FSM separated
for Pprefix matching is called Prefix-FSM (PFSM), and the
FSM left for S suffix matching is called Suffix-FSM (SFSM).
In the matching process, these two FSMs will process the in-
put character respectively and concurrently. Because some
trace transitions in the SFSM have been eliminated by the
transition information kept in the PFSM, the next state of
the SFSM is determined by the results of both the SFSM
and the PFSM. In this case, a priority selector is required for
the SFSM to choose the next state with the highest priority.
How to set the priority is shown by Table 1. The next state
generated by the SFSM, which points to depth > boundary
(It is a certain depth to separate a pattern into a prefix and a
suffix. It can be neatly set to be a fixed value for the whole
P, or different values for different patterns.), has the high-
est priority. The next state generated by the PFSM, which
points to 1 < depth ≤ boundary or depth 1, is given mid-
dle priority or low priority respectively. Actually, next state
to the boundary depth is the association between the PFSM
and the SFSM, whereas next state to 1 < depth < boundary
is useless for the SFSM. However, we give both of them
middle priority in order to simplify the circuit design. For
the same purpose, a null state is used to substitute the next
state to depth 1 generated from the default table [19] (It is
introduced in Sect. 3.4.3.) in the PFSM.

The elimination of some trace transitions in the SFSM
is explained by an example. In Fig. 1(b), state 9 can be
reached by the unique goto transition from state 8 or two
trace transitions from state 6 and 12 respectively. The lat-

Table 1 Priority setting of the priority selector.

Input Property of Priority
state transitions

Next state To depth> boundary High
by SFSM

To depth=boundary
To 1<depth< boundary Middle

Next state (useless in the SFSM)
by PFSM To depth=1

(useless in the SFSM, Low
substituted by a null state)

ter two trace transitions show that the prefix “sh” of pattern
“sheis” appears from state 6 or 12 to state 9 by character
“h.” Since they finally point to the same destination state,
the results of these two trace transitions can be substituted
by the result of the goto transition through matching the pre-
fix “sh” independently and adopting the priority selector.

In [19], trace transitions to the states in depth1 were
eliminated by a default table scheme. It made a partial com-
pression but not a sufficient one. In our TFSM scheme, the
default table scheme is adopted in the PFSM level. The ad-
vantage of our scheme is that the prefixes matching in the
PFSM removes the trace transitions pointing to not only
depth 1 but also higher depths. In [15], the elimination
of trace transitions to higher depths was firstly proposed
and realized by a solution adopting the content addressable
lookup of TCAM. This solution dealt with a single FSM. In
order to hold the information to eliminate the trace transi-
tions pointing within depth d, d − 1 characters, which cause
goto transitions to a node (state), are appended to the iden-
tifier of that node in the FSM, and this coding method for
the total FSM results in a larger TCAM storage. In our
SRAM-based TFSM scheme, the information to eliminate
some trace transitions is held by extracting the PFSM from
the one FSM. As a result, no appended characters are re-
quired in the state identifier if the TFSM scheme is realized
by B/TCAM, thus the memory requirement is reduced. In
addition, the single large FSM is divided into two smaller
FSMs working in parallel to shorten the critical path. More-
over, the separation boundary can be not only neatly set
along a certain depth d but also irregularly set according to
the concrete requirements, e.g. fewer trace transitions or the
load balance among the memory blocks.

3.3 Algorithm Description of TFSM

The algorithm description of the TFSM scheme is intro-
duced from two aspects: DFA construction and matching
process. Because the two FSMs work independently, al-
gorithm descriptions of each are shown respectively if re-
quired.

1. DFA construction algorithm: We can use the algorithm
described in [16] to construct the DFA of the PFSM.
The difference is that the signature set of the PFSM is
not P but the extracted Pprefix. The same algorithm is
also adopted in the DFA construction of the SFSM in
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Fig. 3 DFA of TFSM based on set {he, herh, hisi, sheis}.

the first step. After that, the states already included in
the PFSM and the removable trace transitions pointing
to the states in the PFSM are deleted. This additional
algorithm in the second step is described in Algorithm
1 (see Appendix).

2. Matching algorithm: The matching algorithm descrip-
tions of the PFSM and SFSM are summarized in Al-
gorithm 2 and 3 (see Appendix). “Succeed” denotes
that the information of a state transition, which is being
processed, can be found in its corresponding lookup ta-
ble. Although we describe the processing by sequential
sentences here, there is some parallelism which will be
fully utilized by hardware implementation.

3.4 Implementation of TFSM

The detailed implementation of our TFSM scheme is intro-
duced in this section. It includes the utilized data structure,
skills for optimization, as well as the hardware circuit de-
sign. Examples are adopted to make the explanation clear in
some parts.

3.4.1 DFA Construction

At first, the Pprefix is exacted. In the example of Fig. 1(b), the
boundary is set to be depth 3 first, and then, it is found that
along the separation boundary, only state 3 is pointed by a
trace transition while state 6 and state 10 have trace transi-
tions pointing out but not pointed by any trace transitions.
In this case, these two states can be further moved to Psuffix

to eliminate more trace transition. Then, the Pprefix becomes
{her, sh, hi}, and the DFAs of the PFSM and the SFSM are
constructed as the above algorithm descriptions. Compared
with Fig. 1(b), we can see that there is no trace transition
pointing from the SFSM to the PFSM in Fig. 3, and the trace
transitions to the states in depth1 are not shown in the PFSM
because they are also eliminated by the default table scheme
[19]. Although the number of eliminated trace transitions
in this example is not so large, it will be considerable for the
practical signature set such as the one of Snort or CLAMAV
[25]. On the contrary, several new trace transitions will be

added because the DFA of the PFSM is a closed automa-
ton. For example, the trace transition from state 5 to state
6 by character “e” is a new trace transition compared with
Fig. 1(b). Therefore, when these two FSMs are constructed,
we should adjust the boundary values to obtain an optimal
result, which means to eliminate more trace transitions in
the SFSM, and to add fewer trace transitions in the PFSM.

3.4.2 Coding of States

A lookup table is used to store the state transitions in an
FSM and each state transition is assigned an entry. Since
each FSM only processes its own states, the states of the
other FSM can be neglected. However, as the lookup table
is a continuous structure, the neglectable entries can not be
deleted if they are located among useful entries. Therefore,
the state identifiers in the two FSMs should be well coded
so as to keep the two lookup tables as compact as possible.

The last state of each pattern is denoted to be a matched
state, and other states are denoted to be normal states. In our
solution, the normal states in the PFSM are coded continu-
ously at first. Then the matched states in both FSMs are
coded orderly. Finally, the normal states in the SFSM are
coded. As a result, only a small number of empty entries are
kept in the lookup table of the SFSM, and there is no empty
entry in the lookup table of the PFSM. In addition, matched
information is attached as [19].

3.4.3 Storage of the Lookup Tables

The lookup tables of the PFSM and the SFSM are shown in
Figs. 4(a) and (c). They are constructed in terms of the state
transitions in Fig. 3. The values in the default entry (table)
in Fig. 4(a) are the states which appear mostly in the col-
umn of input characters [19]. Normally they are state 0 or
belong to depth1. The default entry (table) is saved inde-
pendently and the corresponding items in the lookup table
can be treated as state 0. The useless outputs in Fig. 4(c) de-
note the eliminated state transitions in the SFSM, and they
are set to be state 0.

The data structure, called three-array in this paper, was
utilized to compress the sparse lookup table of one FSM
in [19]. An improvement, which replaces the ADD opera-
tion by an XOR operation to shorten the critical path, was
proposed in [20]. The compression of one lookup table is
shown in Fig. 4(b). The input characters are recoded from
1 to 5. At first, the entries, which hold items unequal to
state 0, are extracted. They are the entries of state 1, 2, 5
and 6. And then, they are interleaved and located to the
Next and Check arrays without overlapping by adjusting the
Base value. The initial value of Base is set to be 0 and can
be simply adjusted by an increment 1 until no collision hap-
pens. For example, when the entry of state 6 is located, the
Base[6] = 0 and the “r” = 4 are adopted by the formula
“location = Base XOR input” to calculate the inserting po-
sition, and the location = 4 is obtained. However, the space
has been occupied by an item of state 5, then the Base[6]
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Fig. 4 Lookup tables and corresponding data structures of two FSMs.

adds 1 and the location is recalculated to be 5 which is also
occupied by the item of state 1. Then the Base[6] is in-
creased to 2, and the location = 6 is achieved without any
collision. Then Next[6] = 3, which denotes the destination
of the state transition, and Check[6] = 6, which shows the
origin of the state transition, are set.

Here, we extend the XOR-based three-array data struc-
ture for the two FSMs. As we know, these two FSMs are
not completely independent, and they are associated by the
boundary states {3, 4, 5}, which are the end states of the
PFSM and the root states of the SFSM. This means that the
information of the boundary states kept by both FSMs re-
spectively should be consistent for the purpose of associa-
tion. In Fig. 4, the boundary states {3, 4, 5} are emphasized
in boldface. As we can see, the Base values of the boundary
states of the two FSMs are identical. Additionally, in order
to obtain a high compression ratio by three-array, we recode
the characters in the signature set by genetic algorithm, and
the method in [26], which locates the states in degressive
order of their fan-outs, is adopted.

3.4.4 Matching Process

In the matching process of the TFSM scheme, the XOR-
based three-array is searched in each FSM respectively. It is
supposed that the current states of the PFSM and the SFSM

Fig. 5 Matching process of TFSM.

are the boundary state 5, and the input character is “e,”
which is recoded to 1. In the PFSM, the “location = Base[5]
XOR 1” is calculated and obtains 0. Since Check[0] equals
to 5, this means a state transition from state 5 by character
“e” exists, and the next state is Next[5] = 6. Or else, the next
state equals to default[“e”] which is 0. The same process is
carried out in the SFSM, and the next state is 11. Besides
the example in each FSM, an input sequence of characters
“herhahisi” is supposed as T to simulate the matching pro-
cess of both FSMs together. The result combination func-
tion is included. Figure 5 gives an intuitional illumination
that the PFSM only processes the Pprefix matching while the
SFSM processes the PS u f f ix matching, and they are associ-
ated by the boundary states and the priority selector. The re-
sult combination function is also a priority selector. It aims
to treat the two FSMs as one FSM, and obtain the next state
of the total FSM for further analysis. The priority setting in
it is almost the same as Table 1. Only one difference is that
the state transitions to the depth = 1 will not be substituted
by a null state. In Fig. 5, the boldface denotes the matched
state.

3.5 Hardware Design of TFSM

The hardware circuit of (XOR-based) three-array data struc-
ture for one FSM has been introduced in [19], [20]. The
matching process mentioned in Sect. 3.4.4 is finished in one
clock cycle by setting the Base value of the next state in
advance as shown in Fig. 6.

Here, we extend the circuit for two FSMs in our TFSM
scheme. As shown in Fig. 7, both the PFSM and the SFSM
are realized by the circuit in Fig. 6, and they are correlated
by multiplexers as a priority selector. The next state of each
FSM is generated in one clock cycle respectively, and the
critical path is the longest path of these two parts. Because
of the parallelism, our scheme does not lengthen the criti-
cal path of the single FSM circuit. Actually, the delay time
of the critical path is shortened as the size of SRAM is de-
creased. The circuit of the result combination function is
similar to the priority selector, and it is not included in the
critical path.

An SRAM update function is integrated into this circuit
in order to realize the fast update of the signature set with-
out reconfiguration of the whole circuit. When one or more
signatures are deleted from or inserted to a signature group,
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Fig. 6 Circuit of XOR-based three-array data structure based on [19],
[20].

Fig. 7 Abstract circuit diagram of TFSM.

we can compile them and update a part of memory contents
rather than the whole contents of memory at the speed of
the signature matching. Additionally, this update function
is also used in reset function to reset the circuit. No matter
what content each SRAM block has, if we activate the up-
date and reset signals, and assign the address lines to be “0”
without activating any of the write enable (WE) signals, as
well as set the pipeline registers (PRs) to be “0,” both the
two FSMs will generate null state.

In our evaluation, the circuit in Fig. 7 is realized by
dual-port SRAM blocks with duplicated sequential logics to
double the throughput, because two input payload streams
can be processed concurrently.

4. Performance Evaluation

The prototype of our signature matching engine is evalu-
ated by both Xilinx FPGA and ASIC technology. The de-
sign environment of FPGA is Xilinx ISE 9.1i equipped with

both the synthesis tool XST, and the place&route tool. The
XC4 VLX40 with speed grade −12 is selected as the target
device. The design environment of the ASIC implementa-
tion includes a 180 nm-CMOS 6-layered-metal gate library
of TSMC and the Cadence EDA tools. The whole rule set
of Snort 2.3.3 is used in our evaluation for the purpose of
comparison. A total of 2,168 unique patterns are extracted
from the rule set. All of these patterns are classified into
two groups depending on the case condition. There are
1,328 patterns with 23,804 characters in the case-insensitive
group, and the average length is around 18. There are 840
patterns with 8,972 characters in the case-sensitive group,
and the average length is around 10.

4.1 Adjustment of Boundary

A novel metric of memory efficiency (ME) is introduced
first. ME is defined as the ratio between the number of uti-
lized entries and the total memory size. On the one hand,
the ME of ASIC chip is high because the memory can be
fully customized in terms of the concrete memory usage.
On the other hand, a large memory is implemented by cas-
cading some 18k bit memory blocks, each of which is called
“block SelectRAM” in the Xilinx FPGA chip. Because one
block is the smallest memory unit, it will be occupied even
if only one entry is used. In this case, the ME is lower.

Based on the patterns in both case-insensitive and case-
sensitive groups, we calculated the number of state transi-
tions in the two FSMs. Here, the boundary is neatly set
from depth 1 to depth 4 without further adjustment. As can
be seen from Fig. 8, with the increase of the depth, the num-
ber of state transitions descends drastically to a minimum
value from depth 1, and then it begins to ascend gradually.
This trend is shown in both groups. The difference is that
the minimum value appears at a different depth.

From the results of case sensitive group, we can see that
the total numbers of state transitions are very close at depth
2 and 3. However, if we transform the state transitions into
an XOR-based three-array data structure and calculate the
ME of FPGA implementation, we can see that the ME at
depth 2 and 3 are 85% and 75% respectively. In this case,
the ME becomes a factor to select boundary = 2. That is to
say, boundary in our scheme is adjusted to not only obtain
a small number of state transitions but also a high ME in
accordance with the concrete signature set.

4.2 Resource Requirement and Throughput

As shown in Fig. 7, an access to SRAM is included in the
critical path, and it dominates the critical path delay. In or-
der to shorten the delay time, one solution is to decrease
the size of SRAM, since smaller memory has higher access
speed. Therefore, we divide the large signature set into sev-
eral groups as mentioned in Sect. 2 and each group will be
processed by a smaller signature matching engine. The fun-
damental of our division is to consider the trade off between
the size of the largest SRAM in the critical path and the
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number of groups, as well as the load-balance among the
signature matching engines.

Table 2 shows the result by FPGA evaluation. The re-
sult is based on the post-place&route timing analyzer. Ex-
cluding the first case which has no division, three cases are
evaluated. In each case, the signature set is divided into a
number of groups, and the memory size in the critical path
of each group is guaranteed to be equal by adjusting the
boundary depth. We can see that the memory size in the
critical path becomes smaller when the signature set is di-
vided into more groups. As a result, the delay of access
time will descend. However, the clock cycle does not de-
cline continuously in case 4 due to the increased routing de-
lay. Moreover, many inefficiently-utilized memory blocks
in the FPGA implementation increase the memory require-
ment and decrease the ME in case 4. However, this case
does not happen in the ASIC implementation. Another re-
source requirement of FPGA implementation is the number
of logic cells. It is normally approximately calculated by
doubling the number of utilized slices in the report of Xil-
inx ISE tool because two logic cells form one slice. We can
see that the value is proportional to the number of groups.

Fig. 8 The number of state transitions with the adjustment of boundary.

Table 2 Resource requirement and throughput by different divisions
(FPGA).

Size of memory Adjustment Groups Total Logic Clock Throughput
in critical path (KB) of boundary case (insensi. + sensi.) memory (KB) cells cycle (ns) (Gbps)
Case1 29.25 2, 3 2(1 + 1) 222.75 —† —† —†
Case2 6.75 1–3 7(4 + 3) 182.25 2242 6.191 2.6
Case3 4.5 1–5 12(7 + 5) 177.75 3294 5.321 3.0
Case4 2.25 1–8 21(12 + 9) 202.5 5346 5.848 2.7

†This case is not supported by XC4 VLX40 which has 96 SelectRAM blocks totally.

Because of the better performance-cost ratio, case 3
is selected to be evaluated by ASIC implementation. We
achieve a 5.0 Gbps throughput with 11 KB of SRAM for
one group without any time-oriented optimization. As for
the total groups, if the place&route is processed under the
support of the comprehensive time-oriented optimization,
because each group works completely independently, over
4.5 Gbps throughput is estimated even considering an over-
head of wire delay. The maximum memory requirement is
132 KB SRAM.

4.3 Scalability of Memory Requirement

The concrete memory requirement of the TFSM scheme can
not be formulized due to the randomicity of patterns. Here
we analyze its scalability of memory requirement with the
increase of signature set. The memory is used to store the
state transitions in the TFSM scheme. Based on the sig-
nature set grouping method and our efforts mentioned in
Sect. 3.4.3, there are few empty entries left in the memory
by the storage method, which is the XOR-based three-array
data structure. Therefore, we can study the scalability of the
number of state transitions in the TFSM scheme with the
increase of signature set instead.

It is supposed that a random signature set of m patterns
with a total of r characters are given. The average length
of the pattern is r/m. The numbers of goto transitions and
trace transitions are analyzed respectively. A worst-case as-
sumption is given that there is no common prefix among
the m patterns, and then a trie structure with r states is con-
structed. Therefore, the number of goto transitions grows in
terms of O(r). The trace transitions pointing to state 0 are
excluded at first, because they are eliminated by the three-
array data structure. A trace transition, which does not point
to state 0, shows that a prefix appears somewhere in (but not
at the beginning of) a certain pattern. It is related with one
and only one prefix. Because of this exclusivity, we group
the prefixes by length 1, 2, 3, ... r/m, and calculate the pos-
sibility of trace transitions. For the prefixes with length l,
the possibility to cause some trace transitions proportion-
ally increases with the scale of signature set r and inversely
decreases with the length l. When all prefixes are consid-
ered, the possibility of trace transitions grows in terms of

O[r + r/2 + r/3 + ... + r/(r/m)]

= O[(1 + 1/2 + 1/3 + ... + m/r)r]

≈ O{[ln(r/m) + c]r} (1)
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Table 3 Memory-time efficiency comparison.

O-AC Implementation technology Char.(B) Char./Group Memory Throughput PE
algorithms (KB) (Gbps) (Gbps*char./KB)

Classic AC [21] ASIC (130 nm) 19124 — 53100 5.9 2.1

Bitmapped-AC [21] ASIC (130 nm) 19124 — 2800 7.8 53.3

Pathcomp.-AC [21] ASIC (130 nm) 19124 — 1100 7.8 135.6

Split-AC [22]/[27] ASIC (130 nm)/ (12–19 K)†/ < 304†/ 400/ 10/ (300–475)†/
FPGA (Xilinx XC4 VFX100) 16715 356 769 1.6 37.8

BFPM [23] ASIC/ 31.6 K 988 128–191 4/ 987.5/
FPGA (Xilinx Virtex-IV) 2 493.8

TFSM ASIC (180 nm)/ 32776†† 2731 132/ 4.5/ 1117.4/
FPGA (Xilinx XC4 VLX40) 178 3.0 553.2

† These numbers were deduced from the paper but not cited. †† More patterns can be expressed, because there is one group partially occupied.

The c in Eq. (1) approximately equals to 0.577216, and it
is called Euler’s constant. In our TFSM scheme, most of
the trace transitions to depth ≤3 or higher depth have been
eliminated; therefore, the high-weigh items, such as 1, 1/2,
1/3 or more, can be almost substracted from the coefficient
ratio of Eq. (1) as

O{[ln(r/m) + 0.577216 − 1 − 1/2 − 1/3 − ...]r} (2)

For the practical signature sets normally with average pat-
tern length 20, we calculate the value of the coefficient of r
in Eq. (2) to be around 2. These results show the high scal-
ability with the increase of signature set and the resource-
saving feature of our TFSM scheme. Acctually, the practi-
cal performance will be better, because the above analysis is
based on the worst case.

4.4 Memory-Time Efficiency Comparison

Recently, many algorithms and solutions are proposed in
signature matching domain. Each of them has inherent fea-
tures and particular application environments. Based on
our motivations in Sect. 2, we provide a memory-time effi-
ciency comparison of the TFSM scheme with the hardware-
implemented AC algorithm and its derived O-AC algorithms
[21]–[23]. In [21], Tuck et al. compressed the memory re-
quirement of AC-FAIL by using both bitmap and path com-
pression methods which are widely employed in IP lookup
domain. In [22], Tan et al. split the whole DFA of AC-
OPT into several DFAs and each one was in charge of cer-
tain bits of an input character. Since the fan-out was re-
duced from 256 to 2 or 4, the memory requirement was de-
creased. In [23], a kind of hashing-based transition-rule se-
lection scheme was used to compress the memory require-
ment of AC-OPT, and it was named balanced-routing-table-
based FSM pattern matching (BFPM).

Besides the number of characters, characters per group,
memory requirement and throughput, another popular met-
ric of performance efficiency (PE), which was defined as
Throughput*char/Memory, is adopted to give a general
comparison. As shown in Table 3, our TFSM scheme has
a remarkable PE compared with the AC, the bitmapped-
AC, the path-compressed-AC, and the split-AC algorithms.
Supposing that the same resources are provided, through
implementing multiple instances of signature matching en-

gine, the performance of our scheme by FPGA implementa-
tion has already surpassed the above algorithms even though
they are implemented on ASIC chips. Compared with the
BFPM scheme, the PEs of the our scheme are 13.2% higher
in ASIC evaluation and 12% higher in FPGA evaluation. In
addition, the BFPM scheme obtained its best performance
by dividing the signature set of Snort into 32 (or more)
groups, which is 20 groups more than our scheme. Actu-
ally more groups require more workload on matching result
analysis (Sect. 2).

5. Conclusion and Future Work

In this paper, we fully customize a novel multi-pattern signa-
ture matching scheme called TFSM for mobile security. Our
scheme not only shows a high performance-cost ratio but
also provides other effective features, such as stable perfor-
mance, fast updates, hardware implementation, and scala-
bility. The evaluation results by both FPGA and ASIC tech-
nology show that our scheme is more memory-time efficient
than other existing O-AC algorithms and suitable for mobile
security.

Our ongoing work focuses on improve the TFSM
scheme by introducing the skills such as signature set up-
dates through minimum operations on the SRAM blocks,
optimal boundary setting, as well as a more compact stor-
age style. In the future, we aim to set up a comprehensive
mobile NIPS which adopts our TFSM scheme as its core
component. Other countermeasures against NIPS-evasion
tricks such as segment reassembly, protocol analysis will be
considered systematically.
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Appendix: Algorithm Description of TFSM

Algorithm 1 Additional algorithm of DFA construction of
SFSM.
Input: DFA PFSM: the DFA of the PFSM based on Pprefix, ini DFA

SFSM: the initial DFA of the SFSM based on P.
Output: DFA SFSM: the final DFA of the SFSM.
{ a: a ∈ Σ, s: state number. S : state transition in the DFA based on P.}

1: DFA SFSM← ini DFA SFSM.
2: for each s ∈ DFA SFSM do
3: if s ∈ DFA PFSM then
4: DFA SFSM← DFA SFSM - {s}.
5: else
6: for each a ∈ Σ do
7: if S (s, a) ∈ DFA PFSM then
8: S (s, a)← useless state.
9: end if

10: end for
11: end if
12: end for

Algorithm 2 Matching algorithm of PFSM.
Input: ti: the i-th character of T, Lsi−1: previous state.
Output: PS 0: the LSB of priority selector, Lsi: next state.
{ S PFSM: state transition in the PFSM. LMs: state number. Reset
function is omitted.}

1: LMs← S PFSM(Lsi−1, ti).
2: if S PFSM succeed then
3: PS 0 ← 1.
4: Lsi ← LMs.
5: else
6: PS 0 ← 0.
7: Lsi ← default table(ti).
8: end if
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Algorithm 3 Matching algorithm of SFSM.
Input: ti: the i-th character of the T, Hsi−1: previous state. PS 0: the LSB

of priority selector.
Output: Hsi: next state.
{ PS 1: the MSB of priority selector, S SFSM: state transition in the
SFSM. HMs: state number.}

1: HMs← S SFSM(Hsi−1, ti).
2: if S PFSM succeed then
3: PS 1 ← 1.
4: else
5: PS 1 ← 0.
6: end if
7: if PS[1:0]=“1*” then
8: Hsi ← HMs.
9: else

10: if PS[1:0]=“01” then
11: Hsi ← Lsi.
12: else
13: Hsi ← null state.
14: end if
15: end if
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