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論 文 内 容 の 要 旨 

 

1. Introduction 
Access control models are adopted in modern component-based systems, specifically the 
Stack-Based Access Control (SBAC) supported in environments such as Java virtual 
machines and Microsoft .NET Common Language Runtime (CLR). However SBAC may 
allow non-trusted code to influence a security-sensitive operation performed by trusted 
code because SBAC does not retain the security information of previously executed 
methods. To solve this problem, Abadi et al.[1] introduced a novel approach called History-
Based Access Control (HBAC) which registers the history of all previously executed 
methods. HBAC systems ensure that all the code previously executed is sufficiently 
authorized to access a protected resource. However, since not all the code previously 
executed may have influence on the protected resource, the HBAC is excessively restrictive 
in some cases. Pistoia et al. formally presented in [2] a novel security model called 
Information-Based Access Control (IBAC) which has proven to be less restrictive than 
HBAC while maintaining the level of security assurance of HBAC. The IBAC model tracks 
not only the permissions of blocks of code but also the dynamic permissions of each 
variable. Therefore, the IBAC verifies that only the code responsible for a security-
sensitive operation is sufficiently authorized. Since the model proposed in [2] is not aimed 
at formal verification, the model is not applicable to model checking problems. This thesis 
proposes a formal model for IBAC programs suitable for formal verification. We model the 
behavior of an IBAC program as a weighted-pushdown system (WPDS) [4]. This extension 
of the transition system called Push-down System (PDS) naturally models the behavior of 
an IBAC program in which subsets of permissions are maintained and altered at every 
procedure call and return. Moreover, WPDS improves the efficiency of model-checking 
compared with a modeling by PDS where the subsets of permissions are encoded into stack 
symbols. In this thesis we also address the problem of implementing the IBAC model in a 
real environment. Even though the HBAC and the IBAC models are theoretically safer 
than SBAC, only the latest is really implemented in a programming environment. This 
thesis propose a method to approximate a subset of IBAC programs to the HBAC model. If 
a program can be transformed to an HBAC program, the original IBAC program can be 
implemented in a real system that supports the HBAC. Note that a few works exist 
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regarding HBAC implementations in real environments [6] [7]. Our approximation method 
could be integrated with these HBAC implementations that already exists, and therefore 
achieve a runtime for IBAC programs without directly implementing the IBAC model. 
In this research we present a WPDS-based formal model for dynamic access control based 
on information flow (IBAC). A subset of the original IBAC semantics is represented by a 
WPDS. The verification problem of our model and an implementation in an existing WPDS 
tool are also discussed. The verification problem for HBAC has been discussed in works 
such as [3] but no formal verification has been proposed for IBAC. Therefore, our work is 
the first one that discusses and implements the model-checking problem for IBAC 
programs. As well, we propose an algorithm to approximate an IBAC program to an HBAC 
program in order to be able to execute an IBAC program into an environment that 
supports the HBAC model. This way, we could achieve a runtime for IBAC programs 
taking advantage of the already implemented HBAC runtimes without explicitly 
implementing a runtime for IBAC programs. 
Summarizing, the results and contributions of this thesis are mainly two: 

 A verification model and its implementation in an existing model-checking tool for 
a subset of IBAC programs. 

 An algorithm to approximate a subset of IBAC programs to HBAC programs. With 
this we implicitly achieve a runtime for that subset of IBAC programs because they 
could be executed as HBAC programs in an already implemented runtime for the 
HBAC model. 
 

 
2. IBAC Program 
The syntax and the semantics of an IBAC program are formally defined in [2]. Like 
previous access control models (SBAC, HBAC), a set of permissions is statically assigned 
to each procedure and the runtime system dynamically maintains the current permissions 
of the execution process based on the static permissions of each procedure called. When a 
procedure is called, the current permissions of the process are intersected with the static 
permissions of the procedure. In SBAC the process recovers the previous current 
permissions when the called procedure finishes. On the other hand, in HBAC the current 
permissions are maintained when the called procedure finishes. In both SBAC and HBAC, 
a permission-check command test R then S1 else S2 is statically placed by the programmer 
just before each security-sensitive operation. At the permission-check command it is tested 
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whether the current permissions includes as a subset the set of permissions specified in 
the check command. The negative case of this check is treated as a security violation. In 
the IBAC model case, the current set of permissions is dynamically maintained not only 
for the process but also for variables. Another kind of permission-check command test R 
for x is used for testing the current permissions of variable x.  

Example 1. Figure 1 shows a small program that illustrates the advantage of IBAC over 
HBAC. In this program, the trusted function main calls the non-trusted function 
BadFunction, and then the function main tries to modify the file password.txt. In the 
version a of this program, the password.txt file is requested and returned by BadFunction, 
which does not possess any permission over the file and thus the main function would not 
be able to modify the file. In this example, HBAC would detect this security violation by 
checking the dynamic permissions at the sensitive operation write(x). Since these dynamic 
permissions are at most the static permissions of BadFunction, the operation is not 
executed because BadFunction does not have sufficient permission. IBAC also detects this 
violation by checking the permissions associated with variable x. Since this variable was 
modified at BadFunction, the operation is not executed because the permissions associated 
to variable x are the same as the static permissions of BadFunction. On the other hand, in 
the version b of this program, the BadFunction does not have any influence on the 
password.txt file. Therefore the operation write(x) should be allowed to be executed. 
However, HBAC also negates the execution of the sensitive operation because, since 
BadFunction is called, the dynamic permissions are still intersected with the dynamic 
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permissions of BadFunction. As a result, the behavior of HBAC is exactly the same in this 
example as in example a. IBAC on the contrary allows the sensitive operation to be 
executed in example b because the variable x is modified in the function main, not in 
BadFunction. As a result, the permissions associated to x are the static permissions of 
main which are enough to execute the sensitive operation write(x). This example 
illustrates how HBAC is more restrictive than IBAC. After explaining the IBAC model and 
its characteristics, we present our research objective in the next section. 
 
 
3. A Formal Verification Model 
Our objective in this part of the research is to define a model suitable for model-checking 
for IBAC programs. In this section model-checking technique and the model chosen for 
representing IBAC programs are presented. 

3.1. Model Checking 
Model-checking is a technique used both in software and hardware systems that verifies 
some property of a given system. For example, one could verify the absence of deadlocks 
and other critical states that causes the given system to crash. The main advantage of this 
technique is that it automatically explores all the states of the system, therefore testing all 
the possible execution paths. This way, we can completely ensure that the property we 
wanted to verify, i.e. deadlock, never occurs. 
Applying model-checking technique in IBAC programs, we could verify that no security 
violation happens in a given IBAC program. For example, a bug in a test command when 
coding an IBAC program could cause an unauthorized user to access some files or 
operations beyond his permissions. This wrong behavior can be detected by analyzing the 
program with a model-checking tool. However, before applying model-checking, we need to 
model the system we want to verify using a mathematical model suitable for model-
checking techniques. The model chosen for our case is called Pushdown System. 

3.2. Pushdown Systems 
Pushdown Systems (PDS) [5] are a stack-based transition systems that provide a natural 
execution model in the analysis of sequential programs. A PDS is composed by a finite set 
of control locations and a stack. This stack is unbounded, i.e. does not have a limit, and 
works the same way a normal stack structure works: elements can be pushed or popped 
from the stack in a Last-In-First-Out (LIFO) order. The stack structure provides a natural 
representation of procedure calls, which are the most important part in IBAC programs, 
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and recursion because the order of which the functions are called is always kept by the 
stack. This way the PDS can correctly return to the position of the callee function after the 
called function finished. The stack of a PDS would be enough to represent the information 
we need from an IBAC program. This is, the flow (execution path) of the program and the 
set of permissions of each variable. However, we use an extension of PDS called Weighted 
PDS (WPDS) [4]. This extension adds to the PDS a weight that can represent finite and 
infinite data domains. Even though our data domain (permissions of each variable) is 
finite, WPDS model-checking is more optimized for finite data domains than normal PDS 
model-checking. Therefore using WPDS we can achieve better performance in the model-
checking process. The weight in our WPDS model for IBAC programs is codified as in the 
following example: a program with 1 variable x and two different permissions read and 
write r, w, would be represented as (xr, xw) where these two elements are boolean 
variables. If both elements are 1, it would mean that both permissions read and write are 
assigned to variable x.  
The next step after codifying an IBAC program as a WPDS model is to decide the property 
we want to verify using model-checking. This is explained in the next section.  

3.3. Formal Verification Problem 
Let us discuss the model-checking problem of our WPDS model. Given two points of a 
program n0 and n the model-checking technique calculates a weight for each execution 
path that can be taken between these two points. The final weight from n0 to n would be 
the combination each weight calculated for each path that can be taken from n0 to n. The 
process of calculating this weight is called Meet-Over-All-Paths (MOVP). Let us imagine 
the following example: if a user A performs a login in a system, and at some point after the 
login this user A can access files or operations that belongs to another user B, then the 
system violates a security property. In our model, if the MOVP between two points is 
empty, it means that it is impossible to reach the final node n from the initial node n0 
because at least one permission test statements fails for all the possible paths. However, if 
the weight is not empty it means that it is possible to reach the final node from the initial 
node through some paths. In our example, this would mean that the security property we 
wanted to check is violated so user A can access unauthorized operations. Therefore, by 
checking the emptiness of the final weight of the MOVP operation, we can test any safety 
property in an IBAC program. 
 
4. Approximation-Based Implementation 
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Our objective in this part of the research is related with the implementation of the IBAC 
model. As mentioned before, there are no implementations of the IBAC model in real 
runtimes whereas there exist for the HBAC model. Therefore, if we manage to 
approximate a given IBAC program to a program with HBAC semantics, that IBAC 
program could be implemented in a runtime that supports HBAC. 

4.1. Approximation Algorithm 
The objective of this algorithm is to produce a HBAC program that has the same behavior 
of a given input IBAC program. Having the same behavior means that the permission 
check statements produce the same output in both programs, i.e. the same sensible 
operations are allowed or not allowed to be executed in both programs. 
In order to achieve this, the algorithm basically consists of three steps; each of these 
address one of the three main differences between the HBAC and the IBAC models. These 
differences are: 

 Different number of dynamic permission sets. IBAC keeps track of a set of 
permissions for each variable in the program whereas HBAC does not. 

 When a function finalizes in IBAC, the current dynamic permissions are 
restored to its previous value whereas in HBAC not. 

 HBAC does not modify the current permissions when an assignment is 
executed whereas IBAC does modify the current permissions of the 
assigned variable. In this step we differentiate two cases: the variable 
permissions are downgraded (after the assignment the variable has the 
same or less permissions) or the variable permissions are upgraded (the 
variable has more permissions after the assignment). The algorithm first 
classifies all the assignments in one of these two cases and then treats them 
in a different way.  
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