
-1-

論 文 内 容 の 要 旨

1. Introduction
Access control models are adopted in modern component-based systems, specifically the
Stack-Based Access Control (SBAC) supported in environments such as Java virtual
machines and Microsoft .NET Common Language Runtime (CLR). However SBAC may
allow non-trusted code to influence a security-sensitive operation performed by trusted
code because SBAC does not retain the security information of previously executed
methods. To solve this problem, Abadi et al.[1] introduced a novel approach called History-
Based Access Control (HBAC) which registers the history of all previously executed
methods. HBAC systems ensure that all the code previously executed is sufficiently
authorized to access a protected resource. However, since not all the code previously
executed may have influence on the protected resource, the HBAC is excessively restrictive
in some cases. Pistoia et al. formally presented in [2] a novel security model called
Information-Based Access Control (IBAC) which has proven to be less restrictive than
HBAC while maintaining the level of security assurance of HBAC. The IBAC model tracks
not only the permissions of blocks of code but also the dynamic permissions of each
variable. Therefore, the IBAC verifies that only the code responsible for a security-
sensitive operation is sufficiently authorized. Since the model proposed in [2] is not aimed
at formal verification, the model is not applicable to model checking problems. This thesis
proposes a formal model for IBAC programs suitable for formal verification. We model the
behavior of an IBAC program as a weighted-pushdown system (WPDS) [4]. This extension
of the transition system called Push-down System (PDS) naturally models the behavior of
an IBAC program in which subsets of permissions are maintained and altered at every
procedure call and return. Moreover, WPDS improves the efficiency of model-checking
compared with a modeling by PDS where the subsets of permissions are encoded into stack
symbols. In this thesis we also address the problem of implementing the IBAC model in a
real environment. Even though the HBAC and the IBAC models are theoretically safer
than SBAC, only the latest is really implemented in a programming environment. This
thesis propose a method to approximate a subset of IBAC programs to the HBAC model. If
a program can be transformed to an HBAC program, the original IBAC program can be
implemented in a real system that supports the HBAC. Note that a few works exist

-2-

regarding HBAC implementations in real environments [6] [7]. Our approximation method
could be integrated with these HBAC implementations that already exists, and therefore
achieve a runtime for IBAC programs without directly implementing the IBAC model.
In this research we present a WPDS-based formal model for dynamic access control based
on information flow (IBAC). A subset of the original IBAC semantics is represented by a
WPDS. The verification problem of our model and an implementation in an existing WPDS
tool are also discussed. The verification problem for HBAC has been discussed in works
such as [3] but no formal verification has been proposed for IBAC. Therefore, our work is
the first one that discusses and implements the model-checking problem for IBAC
programs. As well, we propose an algorithm to approximate an IBAC program to an HBAC
program in order to be able to execute an IBAC program into an environment that
supports the HBAC model. This way, we could achieve a runtime for IBAC programs
taking advantage of the already implemented HBAC runtimes without explicitly
implementing a runtime for IBAC programs.
Summarizing, the results and contributions of this thesis are mainly two:

 A verification model and its implementation in an existing model-checking tool for
a subset of IBAC programs.

 An algorithm to approximate a subset of IBAC programs to HBAC programs. With
this we implicitly achieve a runtime for that subset of IBAC programs because they
could be executed as HBAC programs in an already implemented runtime for the
HBAC model.

2. IBAC Program
The syntax and the semantics of an IBAC program are formally defined in [2]. Like
previous access control models (SBAC, HBAC), a set of permissions is statically assigned
to each procedure and the runtime system dynamically maintains the current permissions
of the execution process based on the static permissions of each procedure called. When a
procedure is called, the current permissions of the process are intersected with the static
permissions of the procedure. In SBAC the process recovers the previous current
permissions when the called procedure finishes. On the other hand, in HBAC the current
permissions are maintained when the called procedure finishes. In both SBAC and HBAC,
a permission-check command test R then S1 else S2 is statically placed by the programmer
just before each security-sensitive operation. At the permission-check command it is tested

-3-

whether the current permissions includes as a subset the set of permissions specified in
the check command. The negative case of this check is treated as a security violation. In
the IBAC model case, the current set of permissions is dynamically maintained not only
for the process but also for variables. Another kind of permission-check command test R
for x is used for testing the current permissions of variable x.

Example 1. Figure 1 shows a small program that illustrates the advantage of IBAC over
HBAC. In this program, the trusted function main calls the non-trusted function
BadFunction, and then the function main tries to modify the file password.txt. In the
version a of this program, the password.txt file is requested and returned by BadFunction,
which does not possess any permission over the file and thus the main function would not
be able to modify the file. In this example, HBAC would detect this security violation by
checking the dynamic permissions at the sensitive operation write(x). Since these dynamic
permissions are at most the static permissions of BadFunction, the operation is not
executed because BadFunction does not have sufficient permission. IBAC also detects this
violation by checking the permissions associated with variable x. Since this variable was
modified at BadFunction, the operation is not executed because the permissions associated
to variable x are the same as the static permissions of BadFunction. On the other hand, in
the version b of this program, the BadFunction does not have any influence on the
password.txt file. Therefore the operation write(x) should be allowed to be executed.
However, HBAC also negates the execution of the sensitive operation because, since
BadFunction is called, the dynamic permissions are still intersected with the dynamic

-4-

permissions of BadFunction. As a result, the behavior of HBAC is exactly the same in this
example as in example a. IBAC on the contrary allows the sensitive operation to be
executed in example b because the variable x is modified in the function main, not in
BadFunction. As a result, the permissions associated to x are the static permissions of
main which are enough to execute the sensitive operation write(x). This example
illustrates how HBAC is more restrictive than IBAC. After explaining the IBAC model and
its characteristics, we present our research objective in the next section.

3. A Formal Verification Model
Our objective in this part of the research is to define a model suitable for model-checking
for IBAC programs. In this section model-checking technique and the model chosen for
representing IBAC programs are presented.

3.1. Model Checking
Model-checking is a technique used both in software and hardware systems that verifies
some property of a given system. For example, one could verify the absence of deadlocks
and other critical states that causes the given system to crash. The main advantage of this
technique is that it automatically explores all the states of the system, therefore testing all
the possible execution paths. This way, we can completely ensure that the property we
wanted to verify, i.e. deadlock, never occurs.
Applying model-checking technique in IBAC programs, we could verify that no security
violation happens in a given IBAC program. For example, a bug in a test command when
coding an IBAC program could cause an unauthorized user to access some files or
operations beyond his permissions. This wrong behavior can be detected by analyzing the
program with a model-checking tool. However, before applying model-checking, we need to
model the system we want to verify using a mathematical model suitable for model-
checking techniques. The model chosen for our case is called Pushdown System.

3.2. Pushdown Systems
Pushdown Systems (PDS) [5] are a stack-based transition systems that provide a natural
execution model in the analysis of sequential programs. A PDS is composed by a finite set
of control locations and a stack. This stack is unbounded, i.e. does not have a limit, and
works the same way a normal stack structure works: elements can be pushed or popped
from the stack in a Last-In-First-Out (LIFO) order. The stack structure provides a natural
representation of procedure calls, which are the most important part in IBAC programs,

-5-

and recursion because the order of which the functions are called is always kept by the
stack. This way the PDS can correctly return to the position of the callee function after the
called function finished. The stack of a PDS would be enough to represent the information
we need from an IBAC program. This is, the flow (execution path) of the program and the
set of permissions of each variable. However, we use an extension of PDS called Weighted
PDS (WPDS) [4]. This extension adds to the PDS a weight that can represent finite and
infinite data domains. Even though our data domain (permissions of each variable) is
finite, WPDS model-checking is more optimized for finite data domains than normal PDS
model-checking. Therefore using WPDS we can achieve better performance in the model-
checking process. The weight in our WPDS model for IBAC programs is codified as in the
following example: a program with 1 variable x and two different permissions read and
write r, w, would be represented as (xr, xw) where these two elements are boolean
variables. If both elements are 1, it would mean that both permissions read and write are
assigned to variable x.
The next step after codifying an IBAC program as a WPDS model is to decide the property
we want to verify using model-checking. This is explained in the next section.

3.3. Formal Verification Problem
Let us discuss the model-checking problem of our WPDS model. Given two points of a
program n0 and n the model-checking technique calculates a weight for each execution
path that can be taken between these two points. The final weight from n0 to n would be
the combination each weight calculated for each path that can be taken from n0 to n. The
process of calculating this weight is called Meet-Over-All-Paths (MOVP). Let us imagine
the following example: if a user A performs a login in a system, and at some point after the
login this user A can access files or operations that belongs to another user B, then the
system violates a security property. In our model, if the MOVP between two points is
empty, it means that it is impossible to reach the final node n from the initial node n0
because at least one permission test statements fails for all the possible paths. However, if
the weight is not empty it means that it is possible to reach the final node from the initial
node through some paths. In our example, this would mean that the security property we
wanted to check is violated so user A can access unauthorized operations. Therefore, by
checking the emptiness of the final weight of the MOVP operation, we can test any safety
property in an IBAC program.

4. Approximation-Based Implementation

-6-

Our objective in this part of the research is related with the implementation of the IBAC
model. As mentioned before, there are no implementations of the IBAC model in real
runtimes whereas there exist for the HBAC model. Therefore, if we manage to
approximate a given IBAC program to a program with HBAC semantics, that IBAC
program could be implemented in a runtime that supports HBAC.

4.1. Approximation Algorithm
The objective of this algorithm is to produce a HBAC program that has the same behavior
of a given input IBAC program. Having the same behavior means that the permission
check statements produce the same output in both programs, i.e. the same sensible
operations are allowed or not allowed to be executed in both programs.
In order to achieve this, the algorithm basically consists of three steps; each of these
address one of the three main differences between the HBAC and the IBAC models. These
differences are:

 Different number of dynamic permission sets. IBAC keeps track of a set of
permissions for each variable in the program whereas HBAC does not.

 When a function finalizes in IBAC, the current dynamic permissions are
restored to its previous value whereas in HBAC not.

 HBAC does not modify the current permissions when an assignment is
executed whereas IBAC does modify the current permissions of the
assigned variable. In this step we differentiate two cases: the variable
permissions are downgraded (after the assignment the variable has the
same or less permissions) or the variable permissions are upgraded (the
variable has more permissions after the assignment). The algorithm first
classifies all the assignments in one of these two cases and then treats them
in a different way.

References
1. M. Abadi, C. Fournet. Access Control Based on Execution History. In Proceedings of

the 11th Network and Distributed System Security Symposium (NDSS 2003),
Feb.2003.

2. M. Pistoia, A. Banerjee, and D.A. Naumann. Beyond Stack Inspection: A Unified
Access-Control and Information-Flow Security Model, In Security and Privacy, 2007.
SP ’07. IEEE Symposium on, pp.149--163, May 2007.

-7-

3. J. Wang, Y. Takata, and H. Seki. HBAC: A Model for History-Based Access Control
and Its Model Checking. In 11th ESORICS, LNCS, vol.41--89, pp.263278, 2006.

4. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted Pushdown Systems and Their
Application to Interprocedural Dataflow Analysis. Sci. Comput. Program, 58(1-2):206--
263, 2005.

5. S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical University of
Munich, 2002.

6. G. Edjlali, A. Acharya, V. Chaudhary. History-based Access Control for Mobile Code.
In Computer and Communications Security, ACM, New York, USA, pp 38--48, 1998.

7. K. Krukow, M. Nielsen, V. Sassone. A Logical Framework for History-based Access
Control and Reputation Systems. In Journal of Computer Security, 16(1):63--101,
January 2008.

