Doctorate thesis

Verification Model and
Approximation-Based
Implementation of

Information-Based Access Control

1156010 Pablo LAMILLA ALVAREZ

Advisor Yoshiaki TAKATA

March 12, 2014

Course of Information Systems Engineering

Graduate School of Engineering, Kochi University of Technology

Abstract

Verification Model and Approximation-Based

Implementation of Information-Based Access Control

Pablo LAMILLA ALVAREZ

Information-Based Access Control (IBAC) has been proposed as an improvement
to History-Based Access Control (HBAC) model. In modern component-based systems,
these access control models verify that all the code responsible for a security-sensitive op-
eration is sufficiently authorized to execute that operation. The HBAC model, although
safe, may incorrectly prevent the execution of operations that should be executed. The
IBAC has been shown to be more precise than HBAC maintaining its safety level while
allowing sufficiently authorized operations to be executed. However the verification
problem of IBAC program has not been discussed and also the semantics of the IBAC
model are relatively recent and complicated to be easily implemented in a real environ-
ment. Related to the first matter, this thesis presents a formal model for IBAC programs
based on extended weighted pushdown systems (EWPDS). The mapping process be-
tween the IBAC original semantics and the EWPDS structure is described. Moreover,
the verification problem for IBAC programs is discussed and several typical IBAC pro-
gram examples using our model are implemented. Related to the second matter, in this
thesis we also propose an algorithm to approximate a subset of IBAC programs to a
program that uses HBAC semantics. Accomplishing this, an IBAC program from the

subset we defined could be implemented in an environment that is supported by HBAC.

key words Access Control Models, Model-Checking, Pushdown Systems

Contents

Chapter 1 Introduction
1.1 Research background oL Lo
1.2 Objectives of the thesis

1.3 Related Work s

Chapter 2 Preliminaries
2.1 Access Control Modelso
2.1.1 Stack-Based Access Control
2.1.2 History-Based Access Control
2.1.3 Information-Based Access Control

2.2 Model-Checking

Chapter 3 EWPDS-based IBAC model
3.1 Objective and motivation
3.2 Original syntax and semantics of IBAC
3.3 Extended Weighted Pushdown System definitions
3.4 Model Semantics Lo
3.41 Model Example o
3.5 Formal Verification problem 0L

3.6 Implementation

Chapter 4 HBAC-IBAC approximation
4.1 Objective
4.2 HBAC-IBAC comparison

4.3 Approximation Algorithm oL 0oL

—ii —

12

14

16

16

18

23

26

29

31

33

40

Contents

4.3.1
4.3.2
4.3.3

4.3.4

Mirror algorithm Lo o
Formal representation
Example of the algorithm

Performance considerations

Chapter 5 Conclusions and Future Work

Acknowledgement

References

Appendix A Proof of Theorem 1

Appendix B Code of our EWPDS Implementation in WALi

— iii —

58

60

63

65

68

List of Figures

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Program example using SBAC. L.
Program example of a security fail in SBAC.
Example of HBAC program that solves the SBAC security problem.

Example of the high restrictiveness of the HBAC.

Example of how the IBAC model solves the excessive restrictiveness of

Program Example that Models the Resurrecting Duckling Policy.
IBAC language syntax of commands.
A basic IBAC program. Lo
Transitions of Wo1. e

Program test of conditional clause with 3 permissions.

Program test of grant and dynamic permission check with 2 permissions.

Program test of loops using recursion with 2 permissions.

Performance evaluation of a query in our WPDS model.

IBAC subset syntax.

Main differences addressed by our algorithm between the HBAC and the

Steps of the HBAC approximation algorithm
Mirror algorithm diagram
HBAC-based approximation algorithm
Mirror algorithmo oL

Input IBAC program L

—iv —

10

11

12

17

19

21

30

35

35

36

38

41

List of Figures

4.8 Intermediate output program after applying the first step of the algorithm 53

4.9 Intermediate output program after applying the second step of the algo-
rithm . . . oL 54

4.10 Intermediate output program after applying the third step of the algorithm 55

4.11 HBAC approximation program 51§)

Chapter 1

Introduction

1.1 Research background

Security has been always an important matter in computer environments. Different
ways and methods to protect important resources from non-authorized subjects have
been developed and investigated during the last decades. For example, all the operating
systems permits the user to statically assign different levels of permissions to any file
in order to allow just a group of authorized users to write, read or execute the file.
However, allowing or not the operation to be executed is decided always statically,
i.e. for a given program that tries to access a file, the decision of allowing or not the
program to access that file does not depend on the execution path of that program. The
OS always allows or always forbids the operation to be executed, if the permissions are
not modified. But, what happens if we want a program to access or not a file depending
on the execution path of that program? For example, a given program that statically
has access to a given file but the program calls some external libraries that may be
dangerous for the file. In that case we should not allow the program to access the file,
because the external libraries may damage the file. However, if the program does not
access any dangerous external libraries, we should allow the program to access the file.
This way of protecting a file is performed by what is called Access Control Model.

Access control models are adopted in modern component-based systems, specifically

the Stack-Based Access Control (SBAC) supported in environments such as Java virtual

1.1 Research background

machines [3] and Microsoft .NET Common Language Runtime (CLR). This model uses
stack-inspection to verify that all the code responsible for a security-sensitive operation
has enough permissions to execute that operation. Following the example of the last
paragraph, a program calls an external library that we do not trust and that library
tries to execute a protected operation. Then the SBAC checks that the block code of
the library does not have enough permissions to execute that operation and aborts it.
However, what happens if, after the dangerous library is called, the main program tries
to execute the operation? In this case the SBAC allows the program to execute the
operation, which would be correct if the external library does not have any influence
on that operation. However, the library could have decided the name of the file that is
going to be written. In that case the SBAC allows a non-trusted subject to influence
in a protected operation. To solve this problem, Abadi et al. [1] introduced a novel
approach called History-Based Access Control (HBAC) which registers the history of
all previously executed methods. HBAC systems ensure that all the code previously
executed is sufficiently authorized to access a protected resource. If we use the HBAC
on our previous example, the protected operation will be always aborted if the external
library is called before the operation. Note that HBAC protects the operation no matter
if the library has influence or not on that operation. Because of this, the HBAC is
excessively restrictive in some cases. Pistoia et al. formally presented in [2] a novel
security model called Information-Based Access Control (IBAC) which has proven to
be less restrictive than HBAC while maintaining the level of security assurance of HBAC.
The IBAC model keeps track dynamically of the permissions of each single variable of
the program, not just the permissions of blocks of code. Therefore, using the permissions
of each variable, the IBAC verifies that only the code responsible for a security-sensitive

operation is sufficiently authorized.

1.2 Objectives of the thesis

1.2 Objectives of the thesis

This thesis focuses on the IBAC model and treats two different issues regarding the
IBAC model.

The first one refers to a formal verification, also called model checking, of the
IBAC model. Model checking is explained in Chapter 2, but basically is a method to
automatically and exhaustively verify that a program is free of bugs and meets the
requirements we defined. In order to perform model checking of a program, we need
a mathematical model to represent that program, in our case a program that uses the
IBAC model. In this thesis we propose a formal model for IBAC programs suitable for
formal verification. We model the behavior of an IBAC program as extended weighted-
pushdown systems (EWPDS) [7]. This is an extension of the mathematical model called
pushdown systems (PDS). Proposing a model for model-checking of IBAC programs is
the first contribution of this thesis.

The second contribution of this thesis is related to the implementation of the IBAC
in a real programming environment. At now, only the SBAC model is implemented
on real environments, even though the HBAC and especially the IBAC models are
theoretically safer. In this thesis we propose a method to approximate a subset of
IBAC programs to the HBAC model. If a program can be transformed to an HBAC
program, the original IBAC program can be implemented in a real system that supports
the HBAC. An approximation to the SBAC model, which is the one that is implemented
in a real system, would be ideal but the SBAC model semantics are much different from
the IBAC ones and difficult to simulate the IBAC model. For this reason, we consider
an approximation of IBAC to the HBAC model. For performing this approximation, we
propose and define an algorithm that has an IBAC program as an input and produces

a HBAC program with the same behavior as the input IBAC program.

1.3 Related Work

This thesis is organized as follows: Chapter 1 presents a short introduction of the
thesis as well as describes the objectives and the related research. Chapter 2 explains
the three access control models mentioned before and presents a summary of what is
model checking and the pushdown systems. Chapter 3 describes in detail the method
and the modeling used for the formal verification problem of IBAC. In Chapter 4 we
formally present the algorithm desgined to approximate an IBAC program to an HBAC
program as well as some examples. Finally Chapter 5 concludes the thesis and proposes

the future work.

1.3 Related Work

The first objective of this thesis extends across two different fields, i.e. formal
verification and computer security. Specifically, researches that make use of the math-
ematical model pushdown systems in order to resolve security related problems are
very similar to ours. In [18], WPDS model-checking is used to develop a distributed
certificate-chain-discovery algorithm for a trust management system called SPKI/SDSI.
In [17] a PDS-based approach is utilized to develop a Symbolic PDS from core-language
program in order to express noninterference with LTL formula. While they used PDS
for analyzing information flow of usual procedural programs, we aim to analyze the exe-
cution paths of the IBAC programs. In IBAC, permissions are dynamically maintained
at each procedure call and there exists a dynamic permission test statement; we aim to
model such behavior using EWPDS. On the other hand, since our purpose is to verify
the execution paths of an IBAC program, we have not considered the self-composition
technique taken in [17] as a key technique for precise non-interference analysis.

Moreover, the verification problem for other access control models, HBAC in these

cases, has been discussed in works such as [5] and [4]. In these works they also solve the

1.3 Related Work

formal verification problem by using the PDS structure. However, no formal verification
has been proposed for IBAC, and therefore our work is the first to discuss and implement
the model-checking problem for IBAC programs.

Regarding the second objective of this thesis, there are no works that achieve the
implementation of the IBAC model. However, a few researches implement the HBAC
model in real environments. In [15] Edjlali et al. describe the design and implemen-
tation of an HBAC mechanism for Java called Deeds. In [16] Krukow et al. present
an implementation of a framework that provides both HBAC and reputation systems
for Java programs. Finally in [14] Martinelli et al. propose solutions for improving the
Java native security support by applying the HBAC on the Java environment. Our

approximation method could be integrated with these HBAC implementations.

Chapter 2

Preliminaries

In this chapter the preliminary knowledge necessary for understanding this thesis
is explained. As mentioned in the last chapter, this thesis extends across two different
fields: computer security, specifically access control models in programming environ-
ments, and formal verification or model checking. This chapter explains the details
of the three access control models mentioned in the introduction and also presents an

overview of the specific part of the model checking field used in this thesis.

2.1 Access Control Models

2.1.1 Stack-Based Access Control

The Stack-Based Access Control model or SBAC is chronologically the first access
control model among the three models considered in this thesis. It is implemented in
programming environments such as Java or .NET. The objective of this and all the access
control models is to protect security-sensitive operations in the program, like reading or
writing a file, from dangerous or non-authorized functions. In order to achieve this, the
SBAC allows the user to assign a set of permissions to each procedure. From now on,
we assume that the permissions elements are atomic and without any hierarchy. This
set is called static permissions and represents the grade of authorization of each proce-
dure, i.e. which operations that procedure can perform or not. The static permissions

do not change during the execution of the program. On the other hand the runtime

2.1 Access Control Models

Static Permissions

Main = {Read,Write}
FunctionA = {Read}
FunctionB = {Read,Write}

Dynamic permissions

int main(){

FunctionA();

return;} {Read,Write}
R —

void FunctionA(){
FunctionB; {Read}

return;} {Read,Write}
R —

void F1|,'1ncti0nB() {) | » {Read}
x = passwori;EEE,L,/”” {Read}
Test(write); {Read,Write}
return;}

Fig. 2.1 Program example using SBAC.

system dynamically mantains the current permissions, called dynamic permissions, of
the execution process. This set of permissions is dynamically updated during the ex-
ecution of the program based on the static permissions of each called procedure. The
dynamic permissions try to keep track of the execution path of the program and the
communication between different procedures. This set of permissions is maintained in a
stack-based style. When a procedure is called, the current dynamic permissions of the
process are intersected with the static permissions of the called procedure. The result
of this operation is pushed on the stack and becomes the current dynamic permissions.
When the procedure finishes the current dynamic permissions are popped from the stack
and the current dynamic permissions become the previous element on the stack.
Figure 2.1 shows an example how the SBAC model prevents a non-authorized ac-

cess. In this example, both main function and FunctionB are trusted procedures whereas

2.1 Access Control Models

Static Permissions
Main = {Read,Write}
FunctionA = {Read}

Dynamic permissions

int main(){
string x;
FunctionA(x); | » {Read,Write}
Test (write);

write(x);
return;}

string FunctionA(){
string x; {Read}
x = "password.txt"; {Read,Write}
return x;}

Fig. 2.2 Program example of a security fail in SBAC.

FunctionA is a non-trusted procedure. The user assigns the static permissions to each
procedure depending if they are trusted or not. In this case, because the user does not
trust FunctionA, just reading permissions are assigned to it. Then, during the execu-
tion, the dynamic permissions are maintained as the stack representation shows. First,
the current permissions are the same as the static permissions of the main function.
Then, when FunctionA is called, the current set of dynamic permissions {Read,Write}
is intersected with the static permissions of FunctionA {Read}, producing the new cur-
rent permissions {Read} and placing them into the stack. When FunctionB is called
the same process is repeated producing the new current set of permissions {Read} and
placing it into the top of the stack. Finally, when FunctionB wants to perform the write
operation, the SBAC performs a test operation, previously placed by the user, in order
to protect the write operation. This test checks if permission for writing is included
in the current dynamic permissions which are placed at the top of the stack. In this
example, the test operation fails because FunctionB has been called by FunctionA which

does not have writting permissions. Therefore, the SBAC aborts the execution and the

2.1 Access Control Models

write operation is not performed.

However, as mentioned before, SBAC does not keep track of information about pre-
viously executed methods. When a procedure finishes the current dynamic permissions
are popped from the stack. As a result, the information of the level of authorization of
previously executed methods is lost. This could cause a security fail in a SBAC pro-
gram because a previously executed non-authorized function could influence a security-
sensitive operation performed by a authorized function. This problem is shown in the
example of Figure 2.2. In this example, a non-trusted procedure FunctionA decides the
file that is going to be written by the write operation in the main function. Therefore,
from a security view the operation should not be allowed. However, at the moment of
the test operation, FunctionA finished its execution so the stack structure already lost
the information of the level of authorization of FunctionA. Therefore, the test operation
succeeds because the current dynamic permissions at that point are {Read,Write}, and
then the write operation is performed, causing a security fail.

A solution for this problem is proposed by the authors of the next access control

model explained in the following subsection.

2.1.2 History-Based Access Control

The History-Based Access Control model (HBAC) was informally introduced by
Abadi et al. in [1] in order to solve the problem in the SBAC model explained in
the previous subsection. The HBAC model works in a very similar way than the SBAC
model but basically, the main difference lies in the treatment of the dynamic permissions.
In contrast to the SBAC model, the HBAC does not keep the dynamic permissions in
a stack, so in consequence the HBAC does not restore the current dynamic permissions
to its previous state when a procedure finishes. The main implication of this change

is that the HBAC keeps the history of previously executed methods and therefore, all

2.1 Access Control Models

Static Permissions
Main = {Read,Write}
FunctionA = {Read}

Dynamic permissions
int main(){

1 string X; 1 | {Read,Write} |
FunctionA(x);

3 Test(write);
write(x);
return;}

string FunctionA(){
string x;

2 x = "password.txt";
return x;}

Fig. 2.3 Example of HBAC program that solves the SBAC security problem.

the code executed before a security-sensitive operation must have enough permissions
to execute that operation. This behavior is shown in Figure 2.3. This example is the
same as in Figure 2.2 but using the HBAC model. As we see in this figure, the current
dynamic permissions are maintained after the FunctionA finishes. Then, when the test
operation is performed (program point 3), because the current dynamic permissions do
not include permission for writing, the test fails and the write operation is not allowed.
Therefore, this is an example of how the HBAC model improves the security level of
the SBAC model by keeping the history of previously executed procedures.

The HBAC also introduces two new operations related to the behavior of the dy-
namic permissions: grant and accept.

Grant(P,B) calls the function B with adding the set of permissions P, which must
be a subset of the static permissions of the current function, to the dynamic permissions.
This means that during the execution of the function B, the dynamic permissions are

upgraded so that the set P is included in them. When the function B finishes, the

— 10 —

2.1 Access Control Models

Static Permissions
Main = {Read,Write}
FunctionA = {Read}

Dynamic permissions
int main(){

1 string X; 1 | {Read,Write} |
FunctionA(x);

x="password.txt"; v
3 Test(write);

write(x);
return;}

void FunctionA(){
2printf("Do Nothing");
return x;}

Fig. 2.4 Example of the high restrictiveness of the HBAC.

granted permissions are erased. Therefore, grant does not leave any extra permissions
after the function B and preserves the loss of any permission during the function B.

Accept(P,B) preserves the set of permissions P in the dynamic permissions after
the execution of function B. This means that, no matter which permissions are lost
during the execution of B, the permissions in the set P will be included in the dynamic
permissions after the execution of B. This command can be used to basically recover
the SBAC behavior regarding the dynamic permissions.

As we have seen in this subsection, the HBAC protects security-sensitive operations
in the cases SBAC fails. However, HBAC in some cases aborts operations that should
have enough authorization level to be executed. The example in Figure 2.4 illustrates
this problem. This program is similar to the example a of Figure 2.3 but in this case
the FunctionA does not have any influence on the variable x and the write operation.
However, because this function is called before the write operation, HBAC keeps the

history of that call. Therefore, the dynamic permissions reflect that history the moment

—11 -

2.1 Access Control Models

Static Permissions
Main = {Read,Write}
FunctionA = {Read}

Dynamic int main(){ Dynamic permissions
permissions string x;
of variable x lrunctionA();

3x = "password.txt"; :
. Read,Write
3 | {Read,Write} I‘ Test (write) ;/’g

Test {write} for x;
write(x); @ @
return;}

void FunctionA(){ {Read}
printf("Do nothing");| {Read,Write}

—
2return;}

Fig. 2.5 Example of how the IBAC model solves the excessive restrictiveness of HBAC.

the test is executed (program point 3), preventing the write operation to be performed,
even though FunctionA does not manipulate the variable x. The last model explained

in this chapter, the IBAC, addresses this problem as we will see in the next subsection.

2.1.3 Information-Based Access Control

The Information-Based Access Control model (IBAC) was formally presented in
2007 by Pistoia et al. in [2] in order to solve the excessively restrictiveness of HBAC
while keeping the same level of safety. The model follows the same characteristics of
the previous models and also copies the SBAC treatment of the dynamic permissions.
However it introduces a new element: a set of dynamic permissions for each variable in
the program. This set changes every time the variable is updated. When this happens,
the permissions of the variable are updated to the static permissions of the function
that updates the variable. Therefore, IBAC model tracks during the whole execution

the information about which function had influence in which variable. In consonance

- 12 —

2.1 Access Control Models

with this change, the IBAC also introduces a new test statement to check if a set
of permissions is included inside the dynamic permissions of a given variable. This
test statement would be placed just before a security-sensitive operation that uses the
given variable. We can see an example of the new elements introduced in the IBAC in
Figure 2.5. In this figure the IBAC model is used in the program in Figure 2.4. The
IBAC model recovers the stack structure to treat the current dynamic permissions and
introduces a new dynamic permissions for the variable x, which are updated at every
assignment of this variable. As we see in Figure 2.5 the behavior of the current dynamic
permissions is exactly the same as in the SBAC model, then we can say that the IBAC
model does not retain information about previously executed methods. However, what
the IBAC models maintains is the information about which variables were updated by
previously executed methods. This is kept in a dynamic set of permissions for each
variable, in this example, just for variable x, which is updated at the assignment in
the main function (program point 3). Then, before the write operation, two tests
are performed. First the IBAC model tests if the permission for writing is included
in the current dynamic permissions, which succeeds. Then, the second test checks if
the permission for writing is included in the set of dynamic permissions of variable x,
because is the variable that is going to be written. This second test also succeeds and
the write operation is allowed to be performed. With this small example, we see how
the IBAC model reduces the restrictiveness of the HBAC model while keeping the same
level of security.

In this subsection we informally presented an overview of the three access control
models related to this thesis. A deeper and more formal description of the IBAC model,
including its original syntax and semantics, is presented in Chapter 3. Next subsection
provides a shallow summary of the concept of model checking and the mathematical

model used in Chapter 3 for formal verification of IBAC.

- 13 —

2.2 Model-Checking

2.2 Model-Checking

Model checking is a verification technique that automatically and exhaustively ex-
plores all the states in a given system. This technique is normally used to verify some
requirements or proterties that a system must meet. Generally, in order to use model
checking we need first to model the system we want to verify using a mathematical
model, for example finite state machines. Then we have to define some requirements
that the system should meet and formalize them to produce a formal property specifi-
cation. Examples of requirements could be that the system does not reach a deadlock,
or the system is always running, etc. Finally, a model checking algorithm would take
the system and the requirements as inputs and produce an output that will tell us if
the property is satisfied for all the states in the systems or, on the contrary, exists some
path in the system that violates the property.

Focusing in our specific case, the mathematical model chosen for representing an
IBAC program is called Extended Weighted Pushdown Systems (EWPDS) which is an
extension of the Pushdown System (PDS). The formal definitions and characteristics of
this model are presented in Chapter 3, but basically a PDS is a stack-based transition
system whose stack’s length is not bounded. They are more expressive than finite state
systems and because we can use the stack to keep track of active procedure calls, they
become a natural model for recursion and procedure calls.

Finally, the property we aim to verify in an IBAC program is a security related
requirement. In the formal verification field, a security property means that an specific
dangerous or invalid state in a given system is never reached. Applying this to a given
IBAC program, we could check if a given state that causes a security fail in the program
is reached, due to a bug or a bad design, or on the contrary, the state is never reached

and thus the program is safe.

— 14 —

2.2 Model-Checking

The description of the method used in this thesis to combine the mathematical
model EWPDS and the IBAC model in order to use model checking on IBAC programs

is presented in the next chapter.

— 15 —

Chapter 3

EWPDS-based IBAC model

In this chapter we describe the process followed to model the IBAC by using the
extended-weighted pushdown systems. This chapter is structured as follows: first we
present the objective and motivations for this research. Second, the original syntax and
semantics of the IBAC are described. Third, the formal definitions of the EWPDS are
presented. Then, we show the design of our model, some examples of its usage and also
we discuss the model-checking problem of our EWPDS model. Finally, we describe an

implementation of our model using existing tools for EWPDS model-checking.

3.1 Objective and motivation

As mentioned in previous chapters, the main objective of this research is to use
model-checking on programs modelled with the IBAC in order to find bugs or errors
in the design that may cause a security fail. In order to achieve this, we design a
EWPDS of the IBAC model, which is a suitable model for model-checking. The IBAC
model is chosen for this research because is the most complete and the newest access
control model, which means that exist some security policies that can be easily modeled
using the IBAC model and cannot be modeled using earliers access control models. An
example of this is the Resurrecting Duckling policy explained as follows.

Resurrecting Duckling policy[9] is a policy such that a device is first “free” (not

bound with any user) and then gets bound to the first user who tries to use the device.

— 16 —

3.1 Objective and motivation

int x; //global variable

main () { imprintA () {
imprintA() ; test{Pa,Pb} for x;
imprintB () ; x:=1;
killB{(); return; }
killA () ;) NtB
imprintB () ; imprintB () {
. test{Pa,Pb} for x;
return;}
x:=1;
killA () { return; }
test{Pa} for x;)
e=1: killB () {
return; } test{Pb} for x;
x:=1;
return; }
Static permissions
main = {Pa, Pb}
killA and killB = {Pa,Pb}
imprintA = {Pa}
imprintB = {Pb}

Fig. 3.1 Program Example that Models the Resurrecting Duckling Policy.

After this, the device is only allowed to be used by this first user until the device is
“restored” to its unbound state, where any user can become the master of the device.
Figure 3.1 shows an IBAC program that represents this policy. In this example, a
global variable z represents a device, the functions imprintA and imprintB represent
the action of binding the device to user A and B respectively, and the functions killA
and killB represent the action of unbinding the device from user A and B respectively.
The permissions Pa and Pb are used to determine the owner of the device represented
by the variable z. If the variable x has both permissions the device is “free”, i.e. it can
be bound to any user. On the other hand, if x has only the permission Pa or only the
permission Pb, the device is bound to user A or user B respectively. In order to bind
the device to a user, the assignment command of both imprint functions intersects the
set of permissions of z with the static permissions of the imprint function, and thus

the variable z gets bound to user A in case of calling imprintA or to user B in case of

— 17 —

3.2 Original syntax and semantics of IBAC

calling imprintB. Test statements are placed at the beginning of both imprint functions
in order to check if the device is not bound to any user. When a user wants to unbind
the device, the function kill is called. This function first checks if the device is bound to
the user A in case of killA or to the user B in case of killB. Then, if the test statement
succeeds, the assignment command restores the permissions of z to {Pa, Pb}, which
means that the device is again unbound and can be bound to any user.

In the example of Figure 3.1, the main function first calls the function imprintA in
order to bind the device to the user A. Then, user B tries to use the device by calling the
functions imprintB and killB, but these actions are prevented by the test statements of
those functions because the device is bound to user A. However, after user A unbinds
the device by calling the function killA, the function imprintB succeeds because the
device is in its unbound state.

The behavior of the Resurrecting Duckling policy can be modeled by the IBAC
model as we have shown here. However it would not be possible for this policy to be
represented by any HBAC model, because the set of dynamic permissions in HBAC must
necessarily become smaller, and as a result the behavior of “restoring” to a previous
state in which the permissions of an element are greater than before cannot be modeled

using HBAC.

3.2 Original syntax and semantics of IBAC

We review the syntax and the semantics of an IBAC program defined in [2]. Fig-
ure 3.2 shows the syntax of a subset (fields and records are not taken in consideration)
of commands from the cited paper. S, C, E, R, p, and x represent a sequence of com-
mands, a command, an expression, a subset of permissions, a procedure, and a variable,

respectively.

— 18 —

3.2 Original syntax and semantics of IBAC

Su=e€|C;S command sequence
Cu=z:=F|p()| assignment; procedure call
grant R in p() | assert dynamic permissions

if Ethen Selse S| conditional
test R then S else S| check & branch on permissions

test R for x check value’s permissions

Fig. 3.2 IBAC language syntax of commands.

For the convenience of the definition, we modify the syntax of a command sequence
S in Figure 3.2 as S ::=n | n: C; S where n is a program point. We also call a program
point a node, because it corresponds to a node in a control flow graph.

Formally, an IBAC program is a 7-tuple 7 = (PR, NO, IS, py, PRM , SP, VR) where
PR is a finite set of procedures, NO is a finite set of nodes (i.e. program points),
IS : PR — S is a function for defining the body of each procedure, py € PR is the main

2PRM is the static assignment

procedure, PRM is a finite set of permissions, SP : PR —
of permissions to procedures, and VR is a finite set of global variables. We sometimes
write PR,, NO,, and so on to indicate that those are components of a program .

Intuitive meanings of commands are as follows.

e v := F where z € VR is the assignment command. The intersection of the permis-
sions of all the variables included in F and also the program counter variable pc is
assigned to x.

e p() and grant R in p() where p € PR and R C PRM are the procedure call
commands. The former is a special case of the latter in which R = (). The parameter
R is called grant permissions.

o if F then Sy else S5 is the conditional clause.

— 19 —

3.2 Original syntax and semantics of IBAC

e test R then Sy else Sy is the test command for current permissions, which tests
whether or not the subset R of permissions is included in the current dynamic
permissions. If R C D where D is the set of current dynamic permissions, then the
execution advances to S;. On the contrary case, the program advances to Ss.

o test R for x where x € VR and R C PRM is the test command for a value’s
permissions. If the permissions assigned to the variable z include R as a subset,

then the execution continues. Otherwise, it is aborted.

For each procedure p, a subset SP(p) of permissions is assigned statically before execu-
tion. SP(p) is called the static permissions of p. We extend the domain of SP to NO;
i.e., SP(n) = SP(p) if n belongs to IS(p).

We write the initial program point of a command sequence S as head(S); i.e.,
head(n) = n and head(n:C;S) = n. Similarly, the last program point of S is denoted
as last(9); i.e., last(n) = n and last(n:C;S) = last(S). We also define head(p) =
head(IS(p)) and last(p) = last(1S(p)) for p € PR. head(pg) is the starting program
point of the program.

The control flow graph of a sample IBAC program is shown in Figure 3.3. Each
procedure is represented by the set of nodes surrounded by a rectangle. The static
permissions of a procedure are attached to its rectangle. The intra-procedure control
flows are denoted as dotted arrows, which we call transfer edges. The inter-procedure
control flows are denoted as solid arrows, which we call call edges.

In [2], the semantics of a command sequence is represented by a relation (S,) B
where s and s’ are stores and P and D are subsets of permissions. A store maps each
variable to a framed value R[v] that is a pair of a subset R of permissions and a value
v. The expression (S, s) |55’ means that the execution of S transforms s into s if the

static permissions of S is P and the current permissions of the process is D. Similarly,

— 20 —

3.2 Original syntax and semantics of IBAC

Global variables x,y

nai:ve() |

unknown main naive
x:=1 xe=1 y:=2
(1) © (20
1 1
1
1
1
1

NS

é test{w}for y
1
1
return test{w}for x i

return

2

-~
H
~

return {r,w}

{r,w}

Fig. 3.3 A basic IBAC program.

(E, s) |5 R[v] means that the expression F is evaluated to R[v] if the current store is s,
the static permissions of the current procedure is P, and the current permissions of the
process is D. For a store s, s[z +— FE] denote the same store except that the value of x
is E. For a procedure p, p() = R[S] means that the static permissions of p is R and the
body of p is S.

Variable pc (the program counter) is used for keeping track of implicit influence
between variables caused by conditional clauses. write_oracle(S, s) represents the set
of variables updated in S. If (S, s){5s" and write_oracle(S,s) =V, then V is the set of
variables that are potentially updated from s to s’. taint(R,V,s) is a store s’ such that
s'(x) = s(x) for ¢ V and s'(z) = s(z) N R for x € V. taint represents an operation

that reduces the current permission of variables in V. The semantics of IBAC programs

— 21 —

3.2 Original syntax and semantics of IBAC

is as follows:

p() =R[S], (S, s)Pnrs

3.1
(p();)45’ &
(51, S)Ugsl;g (S2. 51458 (3.2)
(Sla S2; S)UDS/
D, (uolhy 3)
(test R then Si else Sy, s)|ps’
RZ D, (S 54ps _ (3.4
(test R then Sy else Sa, s)|ps’
P py /
(E7 s)‘U’DP [U], Rpg P (35)
(test R for E,s)|ps
(S, S)Ugu(RmP)Sl _ (3.6)
(grant Rin S,s){ps
(E,s)Up R[]
5 (3.7)
(x:= E,s)|ps[x — s(pc) N PN R[v]]
(B, S)UDR[false] so = s[pc — s(pc) N R
(Sa, 5001550, V= write_oracle(Sy, s) (3.8)
s' = taint(so(pc), V, s2)
(if E then Sy else Sy, s)|J5s'[pc — s(pc)]
(E,s) B R[true], s = s[pc — s(pc) N R]
(51,500 5s1, V= write_oracle(Ss, s) (3.9)

s' = taint(so(pc), V, s1)
(if E then Sy else Sy, s)||5s'[pc — s(pc)]

Rules 3.1 and 3.2 define the behavior for the procedure call command and for
a command sequence respectively. Rules 3.3 and 3.4 are the rules for the dynamic
permission test statement, when it succeeds and when it fails respectively. Rule 3.5

defines the test for the permissions of a variable. In this case there is no ”else” branch.

— 22 —

3.3 Extended Weighted Pushdown System definitions

Rule 3.6 defines the semantics for the grant operation and rule 3.7 is the rule for the
assignment statement. Finally rules 3.8 and 3.9 are stand for the conditional clause. In
these last two rules, the IBAC introduces two operations called write_oracle and taint.
Basically, write_oracle is the set of the variables that are updated in a given command
sequence, and taint imposes a set of permissions on a set of variables. In the conditional
clause, the potentially-updated variables of the not taken branch are influenced by the
variable of the branch condition. Therefore, by using the two operations mentioned
above, we ensure the permissions of the branch condition variable intersect with the

variables that may be updated in the not taken branch.

3.3 Extended Weighted Pushdown System defini-

tions

For a given program 7, we model the transition system that represents the behavior
of m as a extended weighted pushdown system (EWPDS)[13].

DEFINITION 1. A pushdown system is a triple P = (P, I', A) where P is
the set of states or control locations, I' is the set of stack symbols and A C P x I
X P x I'* is a finite set of transition rules. A configuration of P is a pair (p, w)
where p € P and w € T'*. A transition rule r € A is written as (p,7y) — (p’, w) where
p,p’e P,y €T and w e T'* A transition rule (p,v) — (p’,w) is called a push rule
if the length of w is more than one. The transition relation = on configurations of P
is defined as follows: If r=(p,~v) — (p,w), then (p,yw'y = (p',ww’) for all w’e T'*

The reflexive and transitive closure of = is denoted by =*.

For the modeling of an IBAC program, we need just one control location and thus
we write v < w instead of (p,7) — (p, w).

DEFINITION 2. A bounded idempotent semiring is a quintuple (D, ®, ®, 0 ,1)

— 23 —

3.3 Extended Weighted Pushdown System definitions

where 0, 1 € D, and

1. (D, ®) is a commutative monoid with 0 as its unit element, and @ is idempotent
(i.e., foralla € D, a & a = a).

2. (D, ®) is a monoid with the neutral element 1.

3. ® distributes over @.

4. 0 s annihilator with respect to ®, i.e., foralla € D, a ® 0 =0 ® a = 0.

5. There are no infinite descending chains for the partial order T defined as follows:

Va, b€ D, a Cbiffa® b= a.

DEFINITION 3. A weighted pushdown system is a triple W = (P, S, w),
where P = (P, T, A) is a pushdown system, S = (D, ®, ®, 0, 1) is a bounded idempotent
semiring, and w : A — D is a function that assigns a value from D to each rule of P.

The extend operation ® is used for computing a weight of a single path, while
the combine operation & is used for combining the weights of joining paths. To a rule
sequence o=r1rs...TE, a weight v (o) =w (r1) ® w(ry) ® --- & w(ry) is associated by
the WPDS. For configurations s and t, let path(s, t) be the set of all rule sequences
that transform s into t. The meet-over-all-valid-paths value MOVP(s, t) is defined
as @ {v(o)|o € path (s,t)}.

In the WPDS W that models an IBAC program 7, the stack alphabet I' is the set
NO of nodes and the configuration of the PDS part of W is a finite sequence of nodes
that represents the call stack. The dynamic assignment of permissions to variables is
codified on the weights of the WPDS as explained as follows.

DEFINITION 4. If G is a finite set, then the relational weight domain on
G is defined as a the bounded idempotent semiring (26X, U,;, 0, id) where weights

are binary relations on G, combine is union, extend is relational composition, 0 is the

empty relation, and 1 is the identity relation id on G.

— 24 —

3.3 Extended Weighted Pushdown System definitions

We define VR’ = VR U {pc,dp} where pc and dp are newly introduced variables
for representing the set of current dynamic permissions of the program counter and
the execution process, respectively. An environment is an assignment of permissions to
variables in VR’ and is a function from VR’ to 2F%M The set of all environments is

denoted as Env. In our model, we use the relational weight domain on Env. Therefore,

a weight of a WPDS W, is of the form:

w={(e,e) | e e € Env,...}.

A weight is a set of pairs and the first component of each pair represents the
pre-state of the variables before applying the transition rule. The second component
represents the post-state of the variables after applying the transition rule.

For an environment e, e [x — R] denote the same environment except that the value
of z is R.

When a conditional clause finishes, the variable pc needs to be restored to its value
before the conditional clause. The same issue occurs with the variable dp in case of
a procedure call. In order to implement this behavior, we use the Extended-WPDS
(EWPDS)[7], which allows local variables to be stored at call sites and then, when a
procedure finishes, combine the returned value with the stored value by using a merging
function. For a semiring S on domain D, a merging function is defined as follows:

DEFINITION 5. A function g : D x D — D 14s a merging function with
respect to a bounded idempotent semiring S = (D, ®, ®, 0, 1) if it satisfies the following

properties.

1. Strictness. For all a € D, ¢g(0,a) = g (a,0) =0.
2. Distributivity. The function distributes over @.

3. Path Extension. For all a,b,c€ D, g(a®b,c) =a® g(b,c).

DEFINITION 6. An extended weighted pushdown system is a quadruple

— 25 —

3.4 Model Semantics

We = (P, S, w, g) where (P, S, w) is a weighted pushdown system and g : Ay — G
assigns a merging function to each rule in Ao , where G is the set of all merging
functions on the semiring S and Ay is the set of push rules of P.

Using the merging functions of the EWPDS at the end of a conditional clause
and at the end of a procedure call, the values of pc and dp are restored respectively.
Regarding the rest of the variables in the weight, they remain unaffected by the merging
function. Assuming w; to be the weight just before a conditional clause or a procedure
call and ws, to be the weight after a conditional clause or a procedure call, the merging

functions are defined as follows:
e For a conditional clause:
91 (w1, w2) = {(e, €2 [pc — e1 (pc)])]
e,e1,e3 € Env, (e,e1) € wy, (e1,e2) € wa}
e For a procedure call:
92 (w1, w2) = {(e, e2 [dp — e1 (dp)])]
e,e1,e3 € Env, (e,e1) € wy, (e1,e2) € wa}
In case of conditional clause, the variable pc is restored to its value in the weight w1,
the one before the conditional clause. The rest of variables are set to their value in
weight wo. In case of procedure call, the same process is performed but restoring

the variable dp instead. For other push rules we assign the third merging function

go (w1, w2) = w1 ® wy, which is the same as the combining operation.

3.4 Model Semantics

The set A(w) of transition rules of W is defined as A(w) = ¢ pr._ A(ISx(p)), and

A(S) for a command sequence S is defined as the least set that satisfies the following

— 26 —

3.4 Model Semantics

inference rules. Moreover, the weight specified in each inference rule is assigned to the

transition rule defined in that rule.

n' = head(S)

(3.10)
A(n:C;S) = A(n:C;n’) U A(S)

t=n<—n"€A(n:z:=E;n)
w(t) = {(e,elxr — P]) | e € Env (3.11)
P=(Nyevm e) NSP(n) Ne(pe)}

m = head(p)

t=n<=mn’ € A(n:grant Rin p();n’)
w(t) = {(e,e[dp — D]) | e € Env
D = (e(dp) UR) N SP(p)} g(t) = g2

(3.12)

p € PR, m = last(p)

(3.13)
t=m—ee€ A(m) w(t) = id

t=n<—n' € A(n:test R for x;n’)

(3.14)
w(t) ={(e,e) | e € Env, RCe(x)}

i,j€{1,2}, i#j, m= head(S;)
m’ = last(S;), W = write_oracle(S;)
t1=n<—=mn’ € A(n:if E then S; else Sy;n’)

w(ty) = {(e,e[pc — P]) | e € Env,

P = e(pe) 0 SP(n) 0 (e <)
g(t1) = g1

to =m' —ee A(m')

w(te) = {(e, e[z — e(z)Ne(pe) | € W)
| e € Env}
A(n:if E then Sy else So;n’) 2O A(S7) U A(Ss)

(3.15)

— 27 —

3.4 Model Semantics

m = head(Sy), m = last(Sy)
t1 =n<—mn’ € A(n:test R then S; else Sy;n’)
witr) = {(e,¢) | e € Bno, RC e(dp)}

(3.16)
9(t1) = g0
to =m' — e A(m/) w(ts) = id
A(n:test R then Si else Sa;n’) O A(S7) U A(Ss)
m = head(S2), m' = last(Ss2)
t1 =n<—mn’ € A(n:test R then S; else Sy;n’)
w(ts) = {(e.e) | e € v, RE e(dp)) .

g(t1) = go
to =m' — ee A(m/) w(te) = id
A(n:test R then S; else Sa;n’) O A(S7) U A(Ss)

Rule (3.10) defines the set of transition rules for a command sequence.

Rule (3.11) is the rule for the assignment command. If the control reaches an
assignment node n, then the next current node can be the node n’ next to n. The
weight of the rule states that the permissions of the variable x is intersected with three
sets of permissions: the permissions of all the variables in the expression F, the static
permissions of the current node, and the permissions of the program counter.

Rule (3.12) states that if the control is at a node n that is a call to a procedure p,
then the initial node m of p can be pushed onto the stack. In the weight of the rule, the
dynamic permissions are updated to D = (D’ U R) N SP(n) where D’ is the old value
of dp.

Rule (3.13) describes the return from a procedure. If the current node m is the last
node of a procedure p, then m is simply removed from the stack and the next current
node is the node n’ next to the caller node, which is placed int he stack by Rule (3.12).
Regarding to the weight, the value of the dynamic permissions is restored to the one
before the procedure call by the merging function gs.

Rule (3.15) describes the behavior when the control reaches a conditional clause.

— 28 —

3.4 Model Semantics

If the current node n is a conditional clause, then the next current node can be the
initial node of either the then clause Sy or the else clause Sy. The WPDS takes non-
deterministically one of the two branches. If the control reaches the last node m’ of
S1 or Ss, then m’ is simply removed from the stack and the next current node is the
node n’ next to n. There are two changes regarding the weight of these rules. First,
the permissions of the program counter pc are intersected with the permissions of all
the variables included in the expression E. Second, at the end of the conditional clause,
the permissions of pc is imposed to the variable x that are updated in the not taken
branch. A push rule is needed for the conditional clause because, in case of nested if
commands, the pc variable has to be tracked accordingly.

Rules (3.16) and (3.17) model the behavior of SBAC checkPermission statement.
In these rules, when the control reaches a test node n, the next current node can be the
initial node of either the then clause S; or the else clause S;. Regarding to the weight
of these rules, advancing to S; is valid only when R C D and advancing to Ss is valid
only when R € D where D is the current dynamic permissions.

Finally, rule (3.14) says that if control reaches a test node n for a variable z, and
the current dynamic permissions of z include R, then the next current node can be the
node n’ next to n. In this case, the weight keeps the environment as the same. If the
permissions of x does not include R, then the weight does not map the environment to

any environment.

3.4.1 Model Example

Let us return to the IBAC program m; in Figure 3.3. When the unknown procedure
is called by ng, the current dynamic permissions i.e., the variable dp in the weight of
the WPDS, become e(dp) N SP(n1) = e(dp) N {r} where e is an initial environment.

In node nq, because the variable x is updated, the permissions associated to variable x

— 29 —

3.4 Model Semantics

Transitions Weight of the path from nO
ng = ning {(e;eldp— {r}ne(dp)])}
=N2Nn3 {(e,e[dp — {r} Ne(dp),
z—{r}Ne(pc));
=13 {(e;elz = A{r}ne(pc)])}
=ng N7 {(e,e[dp — {r,w} Nne(dp),
z—=A{r}ne(pc)])}
=ns Ny {(e, e[dp — {r,w} Ne(dp),
x> {r}Ne(pe),y — {r,w} Ne(pc))}
=T6 N7 {(e, eldp = {r,w} Ne(dp),
x> {r}Nelpe),y = {r,w}Nelpo)])}
=n7 {(e;efz = {r}ne(pe),
y = {rnwine(pd])}
=ng {1}
=€ {}

Fig. 3.4 Transitions of W;.

become e(pc) N SP(ny) = e(pc) N {r}. Therefore, the test at node n; fails regardless
of the initial environment because the permissions of z do not include {w}. However,
the test at node ns5 succeeds if w € e(pc) because the variable y is just modified at the
naive procedure, which has the permissions e(pc) N {r, w}. This test at node n; would
have failed in an HBAC program because the first call to the unknown method would
have cut the permission {w} for the rest of the execution, even if y is not modified in
the unknown method. The transitions of the WPDS W, and the weight after each
transition following the semantics explained before are shown in Figure 3.4.

In order to restore the dp variable at the finalization of a procedure, the merging

function g¢; is applied at the rules for the end of a procedure, in this case the third and

— 30 —

3.5 Formal Verification problem

the seventh transitions. In the last transition of this example, the weight becomes the

empty relation because the test statement at node ny fails.

3.5 Formal Verification problem

Let us discuss in this section the model-checking problem of our WPDS model. Let
m be an IBAC program and W, be the WPDS that models that program. The initial
environment is an environment eq such that eg(pc) = PRM and ey(dp) = SP(po). We
consider the reachability problem on m, i.e., check whether or not a given node n is
reachable from the initial configuration ng = head(pg) with the initial environment eg.
The property that an invalid node n is not reachable from the initial program node can

be represented as the following expression on W :

(eo,€) € MOV P (ng,n) for any e and .

This expression means that when the WPDS reaches some configuration whose
stack top is n, the weight in that configuration must not map the initial environment
to any environment. Otherwise the expression does not hold and the IBAC program is
invalid because it successfully reaches an invalid configuration. As an example, let us
take the program 7 in Figure 3.3. Following the original semantics of the IBAC model,
in program m; the node ng is not reachable because the test command at n; should
abort the execution. To verify that this behavior occurs in W1, the above expression
for ng is examined. That expression holds because the weight at node ng does not map
eop to any environment regardless the path chosen at the conditional clause. Therefore,
the safety property of the original program ; is maintained in the WPDS W ;.

Let us consider more complex verification problem. For a program like the Res-
urrecting Duckling policy in Example 2, one may want to verify whether a given bad

path does not exist in that program. Let ny = last(imprintA), ne = last(killA), and

— 31 —

3.5 Formal Verification problem

n3 = last(imprintB). Then one of the bad paths is ng =* n1& =* n3z¢’ for some &, ¢’
such that its second half n1£ =* n3&’ does not contain no&” for any ¢”. Using a tech-
nique for model-checking PDS [8], we can obtain a WPDS W’ from W, such that
the transition relation = for W’ is a subset of that of W, and, in W’, the stack top
must transit according to a regular expression ng NO* ny (NO — {ny})* n3. Conducting
the unreachability test for W', we can verify whether the bad path does not exist in
program 7.

A practical example of the usefulness of this method would be the detection of
bugs in a given IBAC program. Following the Example 2, imagine there is a bug in
the test command of the killB() function so instead of testPb for x the programmer
wrote testPa for xz. In this case, when the killB() function is called it succeeds and the
user B would be able to operate the device even though the device belongs to user A.
This error could be detected by using the MOVP from the starting point of function
imprintA until the return of function killB. In this example, the MOVP is not empty
because there is a path that reaches the end of killB from imprintA, which is a security
violation. Therefore, by checking the value of the MOVP we can detect these type of
bugs in an IBAC program.

The soundness of our WPDS model with respect to the original semantics of IBAC
programs given in [2] is represented by the following Theorem 1. Note that the original
semantics is defined with respect to stores, which map each variable z € VR U {pc}
to a framed value R[v], i.e. a pair of permissions R and a value v. The environments
we used abstract the values and consider only the permissions. We define a projection
function proj over framed values as proj(R[v]) = R. Moreover, for a store s and a subset
D of permissions, we define proj(s, D) as the environment e such that e(dp) = D and
e(x) = proj(s(x)) for x € VR U {pc}. We define SP(S) = SP(head(S)) for a command

sequence S.

— 32 —

3.6 Implementation

Theorem 1 (Soundness). Given an IBAC program , if (S, s) %P(S) s’ for a command

sequence S in w and stores s and s’ and dynamic permissions D C PRM, then the
WPDS W, satisfies ng =* ny and (e,e’) € MOV P(ng,n1) where ng = head(S), n1 =

last(S), e = proj(s, D), and ' = proj(s’, D).

Proof. This theorem can be proved by induction on the number [of steps to derive

(S,s) %P(S) s" (Shown in Appendix A). O

The above theorem says that the non-reachable states of a transition system W
are neither reachable in the IBAC program w. However, due to the non-deterministic
behavior of the WPDS, if W includes conditional clauses, its reachable set of states is

greater than the program .

3.6 Implementation

The model presented in this thesis is implemented using the model-checker for
WPDS called WALI[10]. This tool provides a C++ interface for easily creating and
verifying WPDS and also provides an add-on that implements a binary relation domain
using the Binary Decision Diagram (BDD) library Buddy[11]. The implementation of
a binary relation includes the basic semiring methods that WALi needs in any weight

domain. These methods are the followings:

e One(). Returns the neutral element 1 of the semi-ring. In our model, the rules
whose weight is id will return this element.

e Zero(). Returns the empty element 0 of the semi-ring. This method will not be
used explicitly in our model, though a weight at some configuration will become
equal to this element.

e Combine(). Returns the semi-ring that result of the union of two semi-rings. This

- 33 —

3.6 Implementation

operation is used in our model at the end of a conditional clause, where two different
paths converge.

e Extend(). The extend operation returns the composition of two semi-rings. This
operation is used along all the elements of one single path in order to calculate the

final weight of that path.

Besides the previous top-level methods of the relational weight domain, additional
low-level methods are implemented in order to create and return a semi-ring element
according to the changes denoted in the semantics of our model. For example, for the
assignment command, a method returns an environment that reflects the update of the
set of permissions of the updated variable, and then this returned semi-ring element is
passed to WAL as the weight of the corresponding WPDS rule. The weights returned by
these methods are used in the model checking computation by the Combine and Extend
operations explained before. Moreover, we also implemented the two merge functions
defined in section 3.3. The code of all these methods is shown in the Appendix B.

In our model, a relational weight domain is composed by a binary relation R over
D where D is a set of Boolean vectors. These vectors store the permissions associated to
each global variable plus the dynamic permissions D P and the program counter variable
PC. Therefore the length of each vector is | VR'| x [PRM | where | VR'| is the number of
variables including the two special variables PC' and DP, and |PRM]| is the number of
different permissions. For example, a vector in a program with one global variable x and
two different permissions P, and P, would be of the form (zp,, zpy, pcp,, Pcpy, dpp,,
dpp,) where all the components are Boolean. The relational weight of our problem
would be composed by a set of pairs of these Boolean vectors, where the two vectors
of a pair would be the pre state and the post state of a weight. The ordering of the

Boolean variables in BDDs chosen for these two vectors is (Zpre, Tpost, - Zpres Zpost)

— 34 —

3.6 Implementation

Starting permissions of x = {B,C}
Starting permissions of y = {A,B,C}
SP of main = {B,C}, SP funcB= {C}
SP of funcC = {}

void main () { int funcB () {

1f(x){ x=1;:
y=1; return;}
funcB () ;
1f(x){ int funcC () {
y=1; x=1;
funcC() ; return; }
lelse{}
Test {B} for y;
lelse{}
Test {A} for y;
return;}

Fig. 3.5 Program test of conditional clause with 3 permissions.

Starting permissions of x = {A,B}
SP of main = {A,B}
SP of GrtA= {B}, SP of GrtB = {A}
void main () {
grant ({A},GrtA())
or
grant ({B},GrtB());
test {A,B} for x;

return; }
int GrtA () { int GrtB () {
test{A} test{B}
then x=1; then x=1;
else return;} else return;}

Fig. 3.6 Program test of grant and dynamic permission check with 2 permissions.

instead of (Zpre, .., Zpre, Tposts -+, Zpost). Lhe reason of this choice is that in the former
ordering, the number of nodes of the BDD that represents our ¢d weight grows linearly.
On the other hand, using the latter ordering, the number of nodes grows exponentially.

Using all the elements described above, we implemented a WPDS of four IBAC

programs, each one representing a group of IBAC programs. These four programs try

— 35 —

3.6 Implementation

Starting permissions of x = {A,B}
SP of main = {A,B}
SP of FuncA= {A}, SP of FuncB = {B}

void main () { int FuncA() {
FuncA () x=1;
or return; }
FuncB () ;
test {A} for x
or int FuncB() {
test {B} for x; x=1;
main() or return; return; }
return;}

Fig. 3.7 Program test of loops using recursion with 2 permissions.

to include all the IBAC operations that can be used in any IBAC. This way, if our model
is suitable for all these programs separately, it would be also suitable for verifying the
majority of IBAC programs. The scalability of all the programs depends on the number
of permissions which is augmented from 2 to 20.

The first program used in this experiment is the one shown in Figure 3.1. This
is chosen because it is a typical example of a security policy that cannot be modeled
using previous access control models but can be modeled using IBAC. In terms of the
program, increasing the number of permissions means an increment of the number of
procedures, especifically 2 procedures (imprintX and killX) are added for each permis-
sion incremented. In terms of the security policy, an increment of one permission means,
for example, allowing one more user the possibility to inprint a device. Therefore incre-
menting the number of permissions increments also the number of users that can get a
device. The code of this example is shown in the Appendix B.

The rest three programs are artifitially created in order to test the rest of operations
an IBAC program can use, without any intention of representing a real life situation.

The first one shown in Figure 3.5 tests the conditinal clause behavior in an IBAC

— 36 —

3.6 Implementation

program. The objective in this program is to check if the variable y, which every time
that enters a conditional clause loses one permission, has the same set of permissions
at the end of the conditional clause no matter the path taken. For example, if we take
the first conditional clause, the variable y loses the permission A explicitally in the then
path due to the assignment operation because variable y gets the permissions of variable
x. If the else path is taken, the variable y also will lose the permission A at the end of
the conditional clause due to the write_oracle and taint of the IBAC semantics. This
fact is tested using test A for y operation which no matter the path taken should fail.
This behaviour is tested in all the nested conditional clauses. The depth of the nesting
increases with the number of permissions.

The second artifitial program shown in Figure 3.6 is created to test the grant
operation and the dynamic permission check operation. At first, the main function
calls either GrtA or GrtB granting a permission that is not including in the static
permissions of these functions, A in case of GrtA and B in case of GrtB. Then we check
if that permission has been granted into the dynamic permissions using the test R
then else command, where R is either permission A or permission B depending on the
function. These test operations should always succeed in this example. After this, the
permissions of variable z are updated to the static permissions of the function called
and then checked in the main function using the test A,B for r command. This test
is placed to check that the then path has been taken in the dynamic permission test
command and thus, the permissions of the variable z were correctly updated. In this
program, by augmenting the permissions the number of Grt() functions increases.

Finally the third artifitial program shown in Figure 3.7 tests the behavior of recur-
sive loops. This simple program nondeterministically calls either FuncA() or FuncB()
to eliminate a permission from the set of permissions of variable x. Then it tests also

nondeterministically if x has the permission A or B.