
Doctorate thesis

Verification Model and

Approximation-Based

Implementation of

Information-Based Access Control

1156010 Pablo LAMILLA ALVAREZ

Advisor Yoshiaki TAKATA

March 12, 2014

Course of Information Systems Engineering

Graduate School of Engineering, Kochi University of Technology

Abstract

Verification Model and Approximation-Based

Implementation of Information-Based Access Control

Pablo LAMILLA ALVAREZ

Information-Based Access Control (IBAC) has been proposed as an improvement

to History-Based Access Control (HBAC) model. In modern component-based systems,

these access control models verify that all the code responsible for a security-sensitive op-

eration is sufficiently authorized to execute that operation. The HBAC model, although

safe, may incorrectly prevent the execution of operations that should be executed. The

IBAC has been shown to be more precise than HBAC maintaining its safety level while

allowing sufficiently authorized operations to be executed. However the verification

problem of IBAC program has not been discussed and also the semantics of the IBAC

model are relatively recent and complicated to be easily implemented in a real environ-

ment. Related to the first matter, this thesis presents a formal model for IBAC programs

based on extended weighted pushdown systems (EWPDS). The mapping process be-

tween the IBAC original semantics and the EWPDS structure is described. Moreover,

the verification problem for IBAC programs is discussed and several typical IBAC pro-

gram examples using our model are implemented. Related to the second matter, in this

thesis we also propose an algorithm to approximate a subset of IBAC programs to a

program that uses HBAC semantics. Accomplishing this, an IBAC program from the

subset we defined could be implemented in an environment that is supported by HBAC.

key words Access Control Models, Model-Checking, Pushdown Systems

– i –

Contents

Chapter 1 Introduction 1

1.1 Research background . 1

1.2 Objectives of the thesis . 3

1.3 Related Work . 4

Chapter 2 Preliminaries 6

2.1 Access Control Models . 6

2.1.1 Stack-Based Access Control . 6

2.1.2 History-Based Access Control . 9

2.1.3 Information-Based Access Control 12

2.2 Model-Checking . 14

Chapter 3 EWPDS-based IBAC model 16

3.1 Objective and motivation . 16

3.2 Original syntax and semantics of IBAC 18

3.3 Extended Weighted Pushdown System definitions 23

3.4 Model Semantics . 26

3.4.1 Model Example . 29

3.5 Formal Verification problem . 31

3.6 Implementation . 33

Chapter 4 HBAC-IBAC approximation 40

4.1 Objective . 40

4.2 HBAC-IBAC comparison . 42

4.3 Approximation Algorithm . 45

– ii –

Contents

4.3.1 Mirror algorithm . 47

4.3.2 Formal representation . 48

4.3.3 Example of the algorithm . 52

4.3.4 Performance considerations . 56

Chapter 5 Conclusions and Future Work 58

Acknowledgement 60

References 63

Appendix A Proof of Theorem 1 65

Appendix B Code of our EWPDS Implementation in WALi 68

– iii –

List of Figures

2.1 Program example using SBAC. 7

2.2 Program example of a security fail in SBAC. 8

2.3 Example of HBAC program that solves the SBAC security problem. . . 10

2.4 Example of the high restrictiveness of the HBAC. 11

2.5 Example of how the IBAC model solves the excessive restrictiveness of

HBAC. 12

3.1 Program Example that Models the Resurrecting Duckling Policy. 17

3.2 IBAC language syntax of commands. 19

3.3 A basic IBAC program. 21

3.4 Transitions of Wπ1. 30

3.5 Program test of conditional clause with 3 permissions. 35

3.6 Program test of grant and dynamic permission check with 2 permissions. 35

3.7 Program test of loops using recursion with 2 permissions. 36

3.8 Performance evaluation of a query in our WPDS model. 38

4.1 IBAC subset syntax. 41

4.2 Main differences addressed by our algorithm between the HBAC and the

IBAC. 43

4.3 Steps of the HBAC approximation algorithm 44

4.4 Mirror algorithm diagram . 47

4.5 HBAC-based approximation algorithm 49

4.6 Mirror algorithm . 51

4.7 Input IBAC program . 52

– iv –

List of Figures

4.8 Intermediate output program after applying the first step of the algorithm 53

4.9 Intermediate output program after applying the second step of the algo-

rithm . 54

4.10 Intermediate output program after applying the third step of the algorithm 55

4.11 HBAC approximation program . 56

– v –

Chapter 1

Introduction

1.1 Research background

Security has been always an important matter in computer environments. Different

ways and methods to protect important resources from non-authorized subjects have

been developed and investigated during the last decades. For example, all the operating

systems permits the user to statically assign different levels of permissions to any file

in order to allow just a group of authorized users to write, read or execute the file.

However, allowing or not the operation to be executed is decided always statically,

i.e. for a given program that tries to access a file, the decision of allowing or not the

program to access that file does not depend on the execution path of that program. The

OS always allows or always forbids the operation to be executed, if the permissions are

not modified. But, what happens if we want a program to access or not a file depending

on the execution path of that program? For example, a given program that statically

has access to a given file but the program calls some external libraries that may be

dangerous for the file. In that case we should not allow the program to access the file,

because the external libraries may damage the file. However, if the program does not

access any dangerous external libraries, we should allow the program to access the file.

This way of protecting a file is performed by what is called Access Control Model.

Access control models are adopted in modern component-based systems, specifically

the Stack-Based Access Control (SBAC) supported in environments such as Java virtual

– 1 –

1.1 Research background

machines [3] and Microsoft .NET Common Language Runtime (CLR). This model uses

stack-inspection to verify that all the code responsible for a security-sensitive operation

has enough permissions to execute that operation. Following the example of the last

paragraph, a program calls an external library that we do not trust and that library

tries to execute a protected operation. Then the SBAC checks that the block code of

the library does not have enough permissions to execute that operation and aborts it.

However, what happens if, after the dangerous library is called, the main program tries

to execute the operation? In this case the SBAC allows the program to execute the

operation, which would be correct if the external library does not have any influence

on that operation. However, the library could have decided the name of the file that is

going to be written. In that case the SBAC allows a non-trusted subject to influence

in a protected operation. To solve this problem, Abadi et al. [1] introduced a novel

approach called History-Based Access Control (HBAC) which registers the history of

all previously executed methods. HBAC systems ensure that all the code previously

executed is sufficiently authorized to access a protected resource. If we use the HBAC

on our previous example, the protected operation will be always aborted if the external

library is called before the operation. Note that HBAC protects the operation no matter

if the library has influence or not on that operation. Because of this, the HBAC is

excessively restrictive in some cases. Pistoia et al. formally presented in [2] a novel

security model called Information-Based Access Control (IBAC) which has proven to

be less restrictive than HBAC while maintaining the level of security assurance of HBAC.

The IBAC model keeps track dynamically of the permissions of each single variable of

the program, not just the permissions of blocks of code. Therefore, using the permissions

of each variable, the IBAC verifies that only the code responsible for a security-sensitive

operation is sufficiently authorized.

– 2 –

1.2 Objectives of the thesis

1.2 Objectives of the thesis

This thesis focuses on the IBAC model and treats two different issues regarding the

IBAC model.

The first one refers to a formal verification, also called model checking, of the

IBAC model. Model checking is explained in Chapter 2, but basically is a method to

automatically and exhaustively verify that a program is free of bugs and meets the

requirements we defined. In order to perform model checking of a program, we need

a mathematical model to represent that program, in our case a program that uses the

IBAC model. In this thesis we propose a formal model for IBAC programs suitable for

formal verification. We model the behavior of an IBAC program as extended weighted-

pushdown systems (EWPDS) [7]. This is an extension of the mathematical model called

pushdown systems (PDS). Proposing a model for model-checking of IBAC programs is

the first contribution of this thesis.

The second contribution of this thesis is related to the implementation of the IBAC

in a real programming environment. At now, only the SBAC model is implemented

on real environments, even though the HBAC and especially the IBAC models are

theoretically safer. In this thesis we propose a method to approximate a subset of

IBAC programs to the HBAC model. If a program can be transformed to an HBAC

program, the original IBAC program can be implemented in a real system that supports

the HBAC. An approximation to the SBAC model, which is the one that is implemented

in a real system, would be ideal but the SBAC model semantics are much different from

the IBAC ones and difficult to simulate the IBAC model. For this reason, we consider

an approximation of IBAC to the HBAC model. For performing this approximation, we

propose and define an algorithm that has an IBAC program as an input and produces

a HBAC program with the same behavior as the input IBAC program.

– 3 –

1.3 Related Work

This thesis is organized as follows: Chapter 1 presents a short introduction of the

thesis as well as describes the objectives and the related research. Chapter 2 explains

the three access control models mentioned before and presents a summary of what is

model checking and the pushdown systems. Chapter 3 describes in detail the method

and the modeling used for the formal verification problem of IBAC. In Chapter 4 we

formally present the algorithm desgined to approximate an IBAC program to an HBAC

program as well as some examples. Finally Chapter 5 concludes the thesis and proposes

the future work.

1.3 Related Work

The first objective of this thesis extends across two different fields, i.e. formal

verification and computer security. Specifically, researches that make use of the math-

ematical model pushdown systems in order to resolve security related problems are

very similar to ours. In [18], WPDS model-checking is used to develop a distributed

certificate-chain-discovery algorithm for a trust management system called SPKI/SDSI.

In [17] a PDS-based approach is utilized to develop a Symbolic PDS from core-language

program in order to express noninterference with LTL formula. While they used PDS

for analyzing information flow of usual procedural programs, we aim to analyze the exe-

cution paths of the IBAC programs. In IBAC, permissions are dynamically maintained

at each procedure call and there exists a dynamic permission test statement; we aim to

model such behavior using EWPDS. On the other hand, since our purpose is to verify

the execution paths of an IBAC program, we have not considered the self-composition

technique taken in [17] as a key technique for precise non-interference analysis.

Moreover, the verification problem for other access control models, HBAC in these

cases, has been discussed in works such as [5] and [4]. In these works they also solve the

– 4 –

1.3 Related Work

formal verification problem by using the PDS structure. However, no formal verification

has been proposed for IBAC, and therefore our work is the first to discuss and implement

the model-checking problem for IBAC programs.

Regarding the second objective of this thesis, there are no works that achieve the

implementation of the IBAC model. However, a few researches implement the HBAC

model in real environments. In [15] Edjlali et al. describe the design and implemen-

tation of an HBAC mechanism for Java called Deeds. In [16] Krukow et al. present

an implementation of a framework that provides both HBAC and reputation systems

for Java programs. Finally in [14] Martinelli et al. propose solutions for improving the

Java native security support by applying the HBAC on the Java environment. Our

approximation method could be integrated with these HBAC implementations.

– 5 –

Chapter 2

Preliminaries

In this chapter the preliminary knowledge necessary for understanding this thesis

is explained. As mentioned in the last chapter, this thesis extends across two different

fields: computer security, specifically access control models in programming environ-

ments, and formal verification or model checking. This chapter explains the details

of the three access control models mentioned in the introduction and also presents an

overview of the specific part of the model checking field used in this thesis.

2.1 Access Control Models

2.1.1 Stack-Based Access Control

The Stack-Based Access Control model or SBAC is chronologically the first access

control model among the three models considered in this thesis. It is implemented in

programming environments such as Java or .NET. The objective of this and all the access

control models is to protect security-sensitive operations in the program, like reading or

writing a file, from dangerous or non-authorized functions. In order to achieve this, the

SBAC allows the user to assign a set of permissions to each procedure. From now on,

we assume that the permissions elements are atomic and without any hierarchy. This

set is called static permissions and represents the grade of authorization of each proce-

dure, i.e. which operations that procedure can perform or not. The static permissions

do not change during the execution of the program. On the other hand the runtime

– 6 –

2.1 Access Control Models

Static Permissions

Main = {Read,Write}

FunctionA = {Read}

FunctionB = {Read,Write}

int main(){

 FunctionA();

 return;}

void FunctionA(){

 FunctionB;

 return;}

void FunctionB(){

 x = "password.txt";

 Test(write);

 write(x);

 return;}

Dynamic permissions

{Read,Write}

{Read,Write}

{Read,Write}

{Read}

{Read}

{Read}

Fig. 2.1 Program example using SBAC.

system dynamically mantains the current permissions, called dynamic permissions, of

the execution process. This set of permissions is dynamically updated during the ex-

ecution of the program based on the static permissions of each called procedure. The

dynamic permissions try to keep track of the execution path of the program and the

communication between different procedures. This set of permissions is maintained in a

stack-based style. When a procedure is called, the current dynamic permissions of the

process are intersected with the static permissions of the called procedure. The result

of this operation is pushed on the stack and becomes the current dynamic permissions.

When the procedure finishes the current dynamic permissions are popped from the stack

and the current dynamic permissions become the previous element on the stack.

Figure 2.1 shows an example how the SBAC model prevents a non-authorized ac-

cess. In this example, both main function and FunctionB are trusted procedures whereas

– 7 –

2.1 Access Control Models

Static Permissions

Main = {Read,Write}

FunctionA = {Read}

int main(){

 string x;

 FunctionA(x);

 Test(write);

 write(x);

 return;}

string FunctionA(){

 string x;

 x = "password.txt";

 return x;}

Dynamic permissions

{Read,Write}

{Read,Write}

{Read}

1

2

Fig. 2.2 Program example of a security fail in SBAC.

FunctionA is a non-trusted procedure. The user assigns the static permissions to each

procedure depending if they are trusted or not. In this case, because the user does not

trust FunctionA, just reading permissions are assigned to it. Then, during the execu-

tion, the dynamic permissions are maintained as the stack representation shows. First,

the current permissions are the same as the static permissions of the main function.

Then, when FunctionA is called, the current set of dynamic permissions {Read,Write}

is intersected with the static permissions of FunctionA {Read}, producing the new cur-

rent permissions {Read} and placing them into the stack. When FunctionB is called

the same process is repeated producing the new current set of permissions {Read} and

placing it into the top of the stack. Finally, when FunctionB wants to perform the write

operation, the SBAC performs a test operation, previously placed by the user, in order

to protect the write operation. This test checks if permission for writing is included

in the current dynamic permissions which are placed at the top of the stack. In this

example, the test operation fails because FunctionB has been called by FunctionA which

does not have writting permissions. Therefore, the SBAC aborts the execution and the

– 8 –

2.1 Access Control Models

write operation is not performed.

However, as mentioned before, SBAC does not keep track of information about pre-

viously executed methods. When a procedure finishes the current dynamic permissions

are popped from the stack. As a result, the information of the level of authorization of

previously executed methods is lost. This could cause a security fail in a SBAC pro-

gram because a previously executed non-authorized function could influence a security-

sensitive operation performed by a authorized function. This problem is shown in the

example of Figure 2.2. In this example, a non-trusted procedure FunctionA decides the

file that is going to be written by the write operation in the main function. Therefore,

from a security view the operation should not be allowed. However, at the moment of

the test operation, FunctionA finished its execution so the stack structure already lost

the information of the level of authorization of FunctionA. Therefore, the test operation

succeeds because the current dynamic permissions at that point are {Read,Write}, and

then the write operation is performed, causing a security fail.

A solution for this problem is proposed by the authors of the next access control

model explained in the following subsection.

2.1.2 History-Based Access Control

The History-Based Access Control model (HBAC) was informally introduced by

Abadi et al. in [1] in order to solve the problem in the SBAC model explained in

the previous subsection. The HBAC model works in a very similar way than the SBAC

model but basically, the main difference lies in the treatment of the dynamic permissions.

In contrast to the SBAC model, the HBAC does not keep the dynamic permissions in

a stack, so in consequence the HBAC does not restore the current dynamic permissions

to its previous state when a procedure finishes. The main implication of this change

is that the HBAC keeps the history of previously executed methods and therefore, all

– 9 –

2.1 Access Control Models

Static Permissions

Main = {Read,Write}

FunctionA = {Read}

int main(){

 string x;

 FunctionA(x);

 Test(write);

 write(x);

 return;}

string FunctionA(){

 string x;

 x = "password.txt";

 return x;}

Dynamic permissions

{Read,Write}

{Read}

11

2

{Read}3

2

3

Fig. 2.3 Example of HBAC program that solves the SBAC security problem.

the code executed before a security-sensitive operation must have enough permissions

to execute that operation. This behavior is shown in Figure 2.3. This example is the

same as in Figure 2.2 but using the HBAC model. As we see in this figure, the current

dynamic permissions are maintained after the FunctionA finishes. Then, when the test

operation is performed (program point 3), because the current dynamic permissions do

not include permission for writing, the test fails and the write operation is not allowed.

Therefore, this is an example of how the HBAC model improves the security level of

the SBAC model by keeping the history of previously executed procedures.

The HBAC also introduces two new operations related to the behavior of the dy-

namic permissions: grant and accept.

Grant(P,B) calls the function B with adding the set of permissions P, which must

be a subset of the static permissions of the current function, to the dynamic permissions.

This means that during the execution of the function B, the dynamic permissions are

upgraded so that the set P is included in them. When the function B finishes, the

– 10 –

2.1 Access Control Models

Static Permissions

Main = {Read,Write}

FunctionA = {Read}

int main(){

 string x;

 FunctionA(x);

 x="password.txt";

 Test(write);

 write(x);

 return;}

void FunctionA(){

 printf("Do Nothing");

 return x;}

Dynamic permissions

{Read,Write}

{Read}

11

2

{Read}3

2

3

Fig. 2.4 Example of the high restrictiveness of the HBAC.

granted permissions are erased. Therefore, grant does not leave any extra permissions

after the function B and preserves the loss of any permission during the function B.

Accept(P,B) preserves the set of permissions P in the dynamic permissions after

the execution of function B. This means that, no matter which permissions are lost

during the execution of B, the permissions in the set P will be included in the dynamic

permissions after the execution of B. This command can be used to basically recover

the SBAC behavior regarding the dynamic permissions.

As we have seen in this subsection, the HBAC protects security-sensitive operations

in the cases SBAC fails. However, HBAC in some cases aborts operations that should

have enough authorization level to be executed. The example in Figure 2.4 illustrates

this problem. This program is similar to the example a of Figure 2.3 but in this case

the FunctionA does not have any influence on the variable x and the write operation.

However, because this function is called before the write operation, HBAC keeps the

history of that call. Therefore, the dynamic permissions reflect that history the moment

– 11 –

2.1 Access Control Models

Static Permissions

Main = {Read,Write}

FunctionA = {Read}

int main(){

 string x;

 FunctionA();

 x = "password.txt";

 Test(write);

 Test {write} for x;

 write(x);

 return;}

void FunctionA(){

 printf("Do nothing");

 return;}

Dynamic permissions

{Read,Write}

{Read,Write}

{Read}

1

2

1

2

Dynamic

permissions

of variable x

{Read,Write}3
3

Fig. 2.5 Example of how the IBAC model solves the excessive restrictiveness of HBAC.

the test is executed (program point 3), preventing the write operation to be performed,

even though FunctionA does not manipulate the variable x. The last model explained

in this chapter, the IBAC, addresses this problem as we will see in the next subsection.

2.1.3 Information-Based Access Control

The Information-Based Access Control model (IBAC) was formally presented in

2007 by Pistoia et al. in [2] in order to solve the excessively restrictiveness of HBAC

while keeping the same level of safety. The model follows the same characteristics of

the previous models and also copies the SBAC treatment of the dynamic permissions.

However it introduces a new element: a set of dynamic permissions for each variable in

the program. This set changes every time the variable is updated. When this happens,

the permissions of the variable are updated to the static permissions of the function

that updates the variable. Therefore, IBAC model tracks during the whole execution

the information about which function had influence in which variable. In consonance

– 12 –

2.1 Access Control Models

with this change, the IBAC also introduces a new test statement to check if a set

of permissions is included inside the dynamic permissions of a given variable. This

test statement would be placed just before a security-sensitive operation that uses the

given variable. We can see an example of the new elements introduced in the IBAC in

Figure 2.5. In this figure the IBAC model is used in the program in Figure 2.4. The

IBAC model recovers the stack structure to treat the current dynamic permissions and

introduces a new dynamic permissions for the variable x, which are updated at every

assignment of this variable. As we see in Figure 2.5 the behavior of the current dynamic

permissions is exactly the same as in the SBAC model, then we can say that the IBAC

model does not retain information about previously executed methods. However, what

the IBAC models maintains is the information about which variables were updated by

previously executed methods. This is kept in a dynamic set of permissions for each

variable, in this example, just for variable x, which is updated at the assignment in

the main function (program point 3). Then, before the write operation, two tests

are performed. First the IBAC model tests if the permission for writing is included

in the current dynamic permissions, which succeeds. Then, the second test checks if

the permission for writing is included in the set of dynamic permissions of variable x,

because is the variable that is going to be written. This second test also succeeds and

the write operation is allowed to be performed. With this small example, we see how

the IBAC model reduces the restrictiveness of the HBAC model while keeping the same

level of security.

In this subsection we informally presented an overview of the three access control

models related to this thesis. A deeper and more formal description of the IBAC model,

including its original syntax and semantics, is presented in Chapter 3. Next subsection

provides a shallow summary of the concept of model checking and the mathematical

model used in Chapter 3 for formal verification of IBAC.

– 13 –

2.2 Model-Checking

2.2 Model-Checking

Model checking is a verification technique that automatically and exhaustively ex-

plores all the states in a given system. This technique is normally used to verify some

requirements or proterties that a system must meet. Generally, in order to use model

checking we need first to model the system we want to verify using a mathematical

model, for example finite state machines. Then we have to define some requirements

that the system should meet and formalize them to produce a formal property specifi-

cation. Examples of requirements could be that the system does not reach a deadlock,

or the system is always running, etc. Finally, a model checking algorithm would take

the system and the requirements as inputs and produce an output that will tell us if

the property is satisfied for all the states in the systems or, on the contrary, exists some

path in the system that violates the property.

Focusing in our specific case, the mathematical model chosen for representing an

IBAC program is called Extended Weighted Pushdown Systems (EWPDS) which is an

extension of the Pushdown System (PDS). The formal definitions and characteristics of

this model are presented in Chapter 3, but basically a PDS is a stack-based transition

system whose stack’s length is not bounded. They are more expressive than finite state

systems and because we can use the stack to keep track of active procedure calls, they

become a natural model for recursion and procedure calls.

Finally, the property we aim to verify in an IBAC program is a security related

requirement. In the formal verification field, a security property means that an specific

dangerous or invalid state in a given system is never reached. Applying this to a given

IBAC program, we could check if a given state that causes a security fail in the program

is reached, due to a bug or a bad design, or on the contrary, the state is never reached

and thus the program is safe.

– 14 –

2.2 Model-Checking

The description of the method used in this thesis to combine the mathematical

model EWPDS and the IBAC model in order to use model checking on IBAC programs

is presented in the next chapter.

– 15 –

Chapter 3

EWPDS-based IBAC model

In this chapter we describe the process followed to model the IBAC by using the

extended-weighted pushdown systems. This chapter is structured as follows: first we

present the objective and motivations for this research. Second, the original syntax and

semantics of the IBAC are described. Third, the formal definitions of the EWPDS are

presented. Then, we show the design of our model, some examples of its usage and also

we discuss the model-checking problem of our EWPDS model. Finally, we describe an

implementation of our model using existing tools for EWPDS model-checking.

3.1 Objective and motivation

As mentioned in previous chapters, the main objective of this research is to use

model-checking on programs modelled with the IBAC in order to find bugs or errors

in the design that may cause a security fail. In order to achieve this, we design a

EWPDS of the IBAC model, which is a suitable model for model-checking. The IBAC

model is chosen for this research because is the most complete and the newest access

control model, which means that exist some security policies that can be easily modeled

using the IBAC model and cannot be modeled using earliers access control models. An

example of this is the Resurrecting Duckling policy explained as follows.

Resurrecting Duckling policy[9] is a policy such that a device is first “free” (not

bound with any user) and then gets bound to the first user who tries to use the device.

– 16 –

3.1 Objective and motivation

int x; //global variable

main(){

 imprintA();

 imprintB();

 killB();

 killA();

 imprintB();

 return;}

imprintA(){

 test{Pa,Pb} for x;

 x:=1;

 return;}

imprintB(){

 test{Pa,Pb} for x;

 x:=1;

 return;}

killB(){

 test{Pb} for x;

 x:=1;

 return;}

killA(){

 test{Pa} for x;

 x:=1;

 return;}

Static permissions

main = {Pa,Pb}

killA and killB = {Pa,Pb}

imprintA = {Pa}

imprintB = {Pb}

Fig. 3.1 Program Example that Models the Resurrecting Duckling Policy.

After this, the device is only allowed to be used by this first user until the device is

“restored” to its unbound state, where any user can become the master of the device.

Figure 3.1 shows an IBAC program that represents this policy. In this example, a

global variable x represents a device, the functions imprintA and imprintB represent

the action of binding the device to user A and B respectively, and the functions killA

and killB represent the action of unbinding the device from user A and B respectively.

The permissions Pa and Pb are used to determine the owner of the device represented

by the variable x. If the variable x has both permissions the device is “free”, i.e. it can

be bound to any user. On the other hand, if x has only the permission Pa or only the

permission Pb, the device is bound to user A or user B respectively. In order to bind

the device to a user, the assignment command of both imprint functions intersects the

set of permissions of x with the static permissions of the imprint function, and thus

the variable x gets bound to user A in case of calling imprintA or to user B in case of

– 17 –

3.2 Original syntax and semantics of IBAC

calling imprintB. Test statements are placed at the beginning of both imprint functions

in order to check if the device is not bound to any user. When a user wants to unbind

the device, the function kill is called. This function first checks if the device is bound to

the user A in case of killA or to the user B in case of killB. Then, if the test statement

succeeds, the assignment command restores the permissions of x to {Pa, Pb}, which

means that the device is again unbound and can be bound to any user.

In the example of Figure 3.1, the main function first calls the function imprintA in

order to bind the device to the user A. Then, user B tries to use the device by calling the

functions imprintB and killB, but these actions are prevented by the test statements of

those functions because the device is bound to user A. However, after user A unbinds

the device by calling the function killA, the function imprintB succeeds because the

device is in its unbound state.

The behavior of the Resurrecting Duckling policy can be modeled by the IBAC

model as we have shown here. However it would not be possible for this policy to be

represented by any HBAC model, because the set of dynamic permissions in HBAC must

necessarily become smaller, and as a result the behavior of “restoring” to a previous

state in which the permissions of an element are greater than before cannot be modeled

using HBAC.

3.2 Original syntax and semantics of IBAC

We review the syntax and the semantics of an IBAC program defined in [2]. Fig-

ure 3.2 shows the syntax of a subset (fields and records are not taken in consideration)

of commands from the cited paper. S, C, E, R, p, and x represent a sequence of com-

mands, a command, an expression, a subset of permissions, a procedure, and a variable,

respectively.

– 18 –

3.2 Original syntax and semantics of IBAC

S ::= ε | C; S command sequence

C ::= x := E | p() | assignment; procedure call

grant R in p() | assert dynamic permissions

if E then S else S | conditional

test R then S else S | check & branch on permissions

test R for x check value’s permissions

Fig. 3.2 IBAC language syntax of commands.

For the convenience of the definition, we modify the syntax of a command sequence

S in Figure 3.2 as S ::= n | n:C;S where n is a program point. We also call a program

point a node, because it corresponds to a node in a control flow graph.

Formally, an IBAC program is a 7-tuple π = (PR,NO , IS , p0,PRM ,SP ,VR) where

PR is a finite set of procedures, NO is a finite set of nodes (i.e. program points),

IS : PR → S is a function for defining the body of each procedure, p0 ∈ PR is the main

procedure, PRM is a finite set of permissions, SP : PR → 2PRM is the static assignment

of permissions to procedures, and VR is a finite set of global variables. We sometimes

write PRπ, NOπ, and so on to indicate that those are components of a program π.

Intuitive meanings of commands are as follows.

• x := E where x ∈ VR is the assignment command. The intersection of the permis-

sions of all the variables included in E and also the program counter variable pc is

assigned to x.

• p() and grant R in p() where p ∈ PR and R ⊆ PRM are the procedure call

commands. The former is a special case of the latter in which R = ∅. The parameter

R is called grant permissions.

• if E then S1 else S2 is the conditional clause.

– 19 –

3.2 Original syntax and semantics of IBAC

• test R then S1 else S2 is the test command for current permissions, which tests

whether or not the subset R of permissions is included in the current dynamic

permissions. If R ⊆ D where D is the set of current dynamic permissions, then the

execution advances to S1. On the contrary case, the program advances to S2.

• test R for x where x ∈ VR and R ⊆ PRM is the test command for a value’s

permissions. If the permissions assigned to the variable x include R as a subset,

then the execution continues. Otherwise, it is aborted.

For each procedure p, a subset SP(p) of permissions is assigned statically before execu-

tion. SP(p) is called the static permissions of p. We extend the domain of SP to NO ;

i.e., SP(n) = SP(p) if n belongs to IS (p).

We write the initial program point of a command sequence S as head(S); i.e.,

head(n) = n and head(n: C; S) = n. Similarly, the last program point of S is denoted

as last(S); i.e., last(n) = n and last(n: C; S) = last(S). We also define head(p) =

head(IS (p)) and last(p) = last(IS (p)) for p ∈ PR. head(p0) is the starting program

point of the program.

The control flow graph of a sample IBAC program is shown in Figure 3.3. Each

procedure is represented by the set of nodes surrounded by a rectangle. The static

permissions of a procedure are attached to its rectangle. The intra-procedure control

flows are denoted as dotted arrows, which we call transfer edges. The inter-procedure

control flows are denoted as solid arrows, which we call call edges.

In [2], the semantics of a command sequence is represented by a relation (S, s)⇓P
Ds′

where s and s′ are stores and P and D are subsets of permissions. A store maps each

variable to a framed value R[v] that is a pair of a subset R of permissions and a value

v. The expression (S, s)⇓P
Ds′ means that the execution of S transforms s into s′ if the

static permissions of S is P and the current permissions of the process is D. Similarly,

– 20 –

3.2 Original syntax and semantics of IBAC

n1

n2

n0

n3

n7

n8

n4

n5

n6

unknown main naive

return

return

return

x:=1 x:=1 y:=2

naive()

test{w}for x

test{w}for y

Global variables x,y

{r}

{r,w}

{r,w}

Fig. 3.3 A basic IBAC program.

(E, s)⇓P
DR[v] means that the expression E is evaluated to R[v] if the current store is s,

the static permissions of the current procedure is P , and the current permissions of the

process is D. For a store s, s[x 7→ E] denote the same store except that the value of x

is E. For a procedure p, p() = R[S] means that the static permissions of p is R and the

body of p is S.

Variable pc (the program counter) is used for keeping track of implicit influence

between variables caused by conditional clauses. write oracle(S, s) represents the set

of variables updated in S. If (S, s)⇓P
Ds′ and write oracle(S, s) = V , then V is the set of

variables that are potentially updated from s to s′. taint(R, V, s) is a store s′ such that

s′(x) = s(x) for x /∈ V and s′(x) = s(x) ∩ R for x ∈ V . taint represents an operation

that reduces the current permission of variables in V . The semantics of IBAC programs

– 21 –

3.2 Original syntax and semantics of IBAC

is as follows:

p() = R[S], (S, s)⇓R
D∩Rs′

(p(), s)⇓P
Ds′

(3.1)

(S1, s)⇓P
Ds1, (S2, s1)⇓P

Ds′

(S1;S2, s)⇓P
Ds′

(3.2)

R ⊆ D, (S1, s)⇓P
Ds′

(test R then S1 else S2, s)⇓P
Ds′

(3.3)

R 6⊆ D, (S2, s)⇓P
Ds′

(test R then S1 else S2, s)⇓P
Ds′

(3.4)

(E, s)⇓P
DP ′[v], R ⊆ P ′

(test R for E, s)⇓P
Ds

(3.5)

(S, s)⇓P
D∪(R∩P)s

′

(grant R in S, s)⇓P
Ds′

(3.6)

(E, s)⇓P
DR[v]

(x := E, s)⇓P
Ds[x 7→ s(pc) ∩ P ∩ R[v]]

(3.7)

(E, s)⇓P
DR[false], s0 = s[pc 7→ s(pc) ∩ R]

(S2, s0)⇓P
Ds2, V = write oracle(S1 , s)

s′ = taint(s0(pc), V, s2)

(if E then S1 else S2, s)⇓P
Ds′[pc 7→ s(pc)]

(3.8)

(E, s)⇓P
DR[true], s0 = s[pc 7→ s(pc) ∩ R]

(S1, s0)⇓P
Ds1, V = write oracle(S2 , s)

s′ = taint(s0(pc), V, s1)

(if E then S1 else S2, s)⇓P
Ds′[pc 7→ s(pc)]

(3.9)

Rules 3.1 and 3.2 define the behavior for the procedure call command and for

a command sequence respectively. Rules 3.3 and 3.4 are the rules for the dynamic

permission test statement, when it succeeds and when it fails respectively. Rule 3.5

defines the test for the permissions of a variable. In this case there is no ”else” branch.

– 22 –

3.3 Extended Weighted Pushdown System definitions

Rule 3.6 defines the semantics for the grant operation and rule 3.7 is the rule for the

assignment statement. Finally rules 3.8 and 3.9 are stand for the conditional clause. In

these last two rules, the IBAC introduces two operations called write oracle and taint.

Basically, write oracle is the set of the variables that are updated in a given command

sequence, and taint imposes a set of permissions on a set of variables. In the conditional

clause, the potentially-updated variables of the not taken branch are influenced by the

variable of the branch condition. Therefore, by using the two operations mentioned

above, we ensure the permissions of the branch condition variable intersect with the

variables that may be updated in the not taken branch.

3.3 Extended Weighted Pushdown System defini-

tions

For a given program π, we model the transition system that represents the behavior

of π as a extended weighted pushdown system (EWPDS)[13].

DEFINITION 1. A pushdown system is a triple P = (P, Γ, ∆) where P is

the set of states or control locations, Γ is the set of stack symbols and ∆ ⊆ P × Γ

× P × Γ* is a finite set of transition rules. A configuration of P is a pair 〈p, w〉

where p ∈ P and w ∈ Γ*. A transition rule r ∈ ∆ is written as 〈p, γ〉 ↪→ 〈p′, w〉 where

p, p’∈ P, γ ∈ Γ and w ∈ Γ*. A transition rule 〈p, γ〉 ↪→ 〈p′, w〉 is called a push rule

if the length of w is more than one. The transition relation ⇒ on configurations of P

is defined as follows: If r=〈p, γ〉 ↪→ 〈p′, w〉, then 〈p, γw′〉⇒ 〈p′, ww′〉 for all w’∈ Γ*

The reflexive and transitive closure of ⇒ is denoted by ⇒∗.

For the modeling of an IBAC program, we need just one control location and thus

we write γ ↪→ w instead of 〈p, γ〉 ↪→ 〈p, w〉.

DEFINITION 2. A bounded idempotent semiring is a quintuple (D, ⊕, ⊗, 0 ,1)

– 23 –

3.3 Extended Weighted Pushdown System definitions

where 0, 1 ∈ D, and

1. (D, ⊕) is a commutative monoid with 0 as its unit element, and ⊕ is idempotent

(i.e., for all a ∈ D, a ⊕ a = a).

2. (D, ⊗) is a monoid with the neutral element 1.

3. ⊗ distributes over ⊕.

4. 0 is annihilator with respect to ⊗, i.e., for all a ∈ D, a ⊗ 0 = 0 ⊗ a = 0.

5. There are no infinite descending chains for the partial order v defined as follows:

∀a, b ∈ D, a v b iff a ⊕ b = a.

DEFINITION 3. A weighted pushdown system is a triple W = (P, S, w),

where P = (P, Γ, ∆) is a pushdown system, S = (D, ⊕, ⊗, 0, 1) is a bounded idempotent

semiring, and w : ∆ → D is a function that assigns a value from D to each rule of P.

The extend operation ⊗ is used for computing a weight of a single path, while

the combine operation ⊕ is used for combining the weights of joining paths. To a rule

sequence σ=r1r2 . . . rk, a weight v (σ)=w (r1) ⊗ w(r2) ⊗ · · · ⊗ w(rk) is associated by

the WPDS. For configurations s and t, let path(s, t) be the set of all rule sequences

that transform s into t. The meet-over-all-valid-paths value MOVP(s, t) is defined

as ⊕ {v(σ)|σ ∈ path (s, t)}.

In the WPDS Wπ that models an IBAC program π, the stack alphabet Γ is the set

NO of nodes and the configuration of the PDS part of Wπ is a finite sequence of nodes

that represents the call stack. The dynamic assignment of permissions to variables is

codified on the weights of the WPDS as explained as follows.

DEFINITION 4. If G is a finite set, then the relational weight domain on

G is defined as a the bounded idempotent semiring (2G×G, ∪, ; , ∅, id) where weights

are binary relations on G, combine is union, extend is relational composition, 0 is the

empty relation, and 1 is the identity relation id on G.

– 24 –

3.3 Extended Weighted Pushdown System definitions

We define V R′ = V R ∪ {pc, dp} where pc and dp are newly introduced variables

for representing the set of current dynamic permissions of the program counter and

the execution process, respectively. An environment is an assignment of permissions to

variables in V R′ and is a function from V R′ to 2PRM . The set of all environments is

denoted as Env. In our model, we use the relational weight domain on Env. Therefore,

a weight of a WPDS Wπ is of the form:

w = {(e, e′) | e, e′ ∈ Env , . . .}.

A weight is a set of pairs and the first component of each pair represents the

pre-state of the variables before applying the transition rule. The second component

represents the post-state of the variables after applying the transition rule.

For an environment e, e [x 7→ R] denote the same environment except that the value

of x is R.

When a conditional clause finishes, the variable pc needs to be restored to its value

before the conditional clause. The same issue occurs with the variable dp in case of

a procedure call. In order to implement this behavior, we use the Extended-WPDS

(EWPDS)[7], which allows local variables to be stored at call sites and then, when a

procedure finishes, combine the returned value with the stored value by using a merging

function. For a semiring S on domain D, a merging function is defined as follows:

DEFINITION 5. A function g : D × D → D is a merging function with

respect to a bounded idempotent semiring S = (D, ⊕, ⊗, 0, 1) if it satisfies the following

properties.

1. Strictness. For all a ∈ D, g (0, a) = g (a, 0) = 0.

2. Distributivity. The function distributes over ⊕.

3. Path Extension. For all a, b, c ∈ D, g (a ⊗ b, c) = a ⊗ g (b, c) .

DEFINITION 6. An extended weighted pushdown system is a quadruple

– 25 –

3.4 Model Semantics

We = (P, S, w, g) where (P, S, w) is a weighted pushdown system and g : ∆2 → G

assigns a merging function to each rule in ∆2 , where G is the set of all merging

functions on the semiring S and ∆2 is the set of push rules of P.

Using the merging functions of the EWPDS at the end of a conditional clause

and at the end of a procedure call, the values of pc and dp are restored respectively.

Regarding the rest of the variables in the weight, they remain unaffected by the merging

function. Assuming w1 to be the weight just before a conditional clause or a procedure

call and w2 to be the weight after a conditional clause or a procedure call, the merging

functions are defined as follows:

• For a conditional clause:

g1 (w1, w2) = {(e, e2 [pc 7→ e1 (pc)])|

e, e1, e2 ∈ Env, (e, e1) ∈ w1, (e1, e2) ∈ w2}

• For a procedure call:

g2 (w1, w2) = {(e, e2 [dp 7→ e1 (dp)])|

e, e1, e2 ∈ Env, (e, e1) ∈ w1, (e1, e2) ∈ w2}

In case of conditional clause, the variable pc is restored to its value in the weight w1,

the one before the conditional clause. The rest of variables are set to their value in

weight w2. In case of procedure call, the same process is performed but restoring

the variable dp instead. For other push rules we assign the third merging function

g0 (w1, w2) = w1 ⊗ w2, which is the same as the combining operation.

3.4 Model Semantics

The set ∆(π) of transition rules of Wπ is defined as ∆(π) =
∪

p∈PRπ
∆(ISπ(p)), and

∆(S) for a command sequence S is defined as the least set that satisfies the following

– 26 –

3.4 Model Semantics

inference rules. Moreover, the weight specified in each inference rule is assigned to the

transition rule defined in that rule.

n′ = head(S)

∆(n: C; S) = ∆(n: C; n′) ∪ ∆(S)
(3.10)

t = n ↪→ n′ ∈ ∆(n: x := E; n′)

w(t) = {(e, e[x 7→ P]) | e ∈ Env

P = (
∩

y∈V (E) e(y)) ∩ SP(n) ∩ e(pc)}
(3.11)

m = head(p)

t = n ↪→ mn′ ∈ ∆(n: grant R in p();n′)

w(t) = {(e, e[dp 7→ D]) | e ∈ Env

D = (e(dp) ∪ R) ∩ SP(p)} g(t) = g2

(3.12)

p ∈ PR, m = last(p)

t = m ↪→ ε ∈ ∆(m) w(t) = id
(3.13)

t = n ↪→ n′ ∈ ∆(n: test R for x; n′)

w(t) = {(e, e) | e ∈ Env , R ⊆ e(x)}
(3.14)

i, j ∈ {1, 2}, i 6= j, m = head(Si)

m′ = last(Si), W = write oracle(Sj)

t1 = n ↪→ mn′ ∈ ∆(n: if E then S1 else S2; n′)

w(t1) = {(e, e[pc 7→ P]) | e ∈ Env ,

P = e(pc) ∩ SP(n) ∩ (
∩

y∈V (E) e(y))}
g(t1) = g1

t2 = m′ ↪→ ε ∈ ∆(m′)

w(t2) = {(e, e[x 7→ e(x) ∩ e(pc) | x ∈ W])

| e ∈ Env}
∆(n: if E then S1 else S2;n′) ⊇ ∆(S1) ∪ ∆(S2)

(3.15)

– 27 –

3.4 Model Semantics

m = head(S1), m′ = last(S1)

t1 = n ↪→ mn′ ∈ ∆(n: test R then S1 else S2; n′)

w(t1) = {(e, e) | e ∈ Env , R ⊆ e(dp)}
g(t1) = g0

t2 = m′ ↪→ ε ∈ ∆(m′) w(t2) = id

∆(n: test R then S1 else S2; n′) ⊇ ∆(S1) ∪ ∆(S2)

(3.16)

m = head(S2), m′ = last(S2)

t1 = n ↪→ mn′ ∈ ∆(n: test R then S1 else S2; n′)

w(t1) = {(e, e) | e ∈ Env , R 6⊆ e(dp)}
g(t1) = g0

t2 = m′ ↪→ ε ∈ ∆(m′) w(t2) = id

∆(n: test R then S1 else S2; n′) ⊇ ∆(S1) ∪ ∆(S2)

(3.17)

Rule (3.10) defines the set of transition rules for a command sequence.

Rule (3.11) is the rule for the assignment command. If the control reaches an

assignment node n, then the next current node can be the node n′ next to n. The

weight of the rule states that the permissions of the variable x is intersected with three

sets of permissions: the permissions of all the variables in the expression E, the static

permissions of the current node, and the permissions of the program counter.

Rule (3.12) states that if the control is at a node n that is a call to a procedure p,

then the initial node m of p can be pushed onto the stack. In the weight of the rule, the

dynamic permissions are updated to D = (D′ ∪ R) ∩ SP(n) where D′ is the old value

of dp.

Rule (3.13) describes the return from a procedure. If the current node m is the last

node of a procedure p, then m is simply removed from the stack and the next current

node is the node n′ next to the caller node, which is placed int he stack by Rule (3.12).

Regarding to the weight, the value of the dynamic permissions is restored to the one

before the procedure call by the merging function g2.

Rule (3.15) describes the behavior when the control reaches a conditional clause.

– 28 –

3.4 Model Semantics

If the current node n is a conditional clause, then the next current node can be the

initial node of either the then clause S1 or the else clause S2. The WPDS takes non-

deterministically one of the two branches. If the control reaches the last node m′ of

S1 or S2, then m′ is simply removed from the stack and the next current node is the

node n′ next to n. There are two changes regarding the weight of these rules. First,

the permissions of the program counter pc are intersected with the permissions of all

the variables included in the expression E. Second, at the end of the conditional clause,

the permissions of pc is imposed to the variable x that are updated in the not taken

branch. A push rule is needed for the conditional clause because, in case of nested if

commands, the pc variable has to be tracked accordingly.

Rules (3.16) and (3.17) model the behavior of SBAC checkPermission statement.

In these rules, when the control reaches a test node n, the next current node can be the

initial node of either the then clause S1 or the else clause S2. Regarding to the weight

of these rules, advancing to S1 is valid only when R ⊆ D and advancing to S2 is valid

only when R 6⊆ D where D is the current dynamic permissions.

Finally, rule (3.14) says that if control reaches a test node n for a variable x, and

the current dynamic permissions of x include R, then the next current node can be the

node n′ next to n. In this case, the weight keeps the environment as the same. If the

permissions of x does not include R, then the weight does not map the environment to

any environment.

3.4.1 Model Example

Let us return to the IBAC program π1 in Figure 3.3. When the unknown procedure

is called by n0, the current dynamic permissions i.e., the variable dp in the weight of

the WPDS, become e(dp) ∩ SP(n1) = e(dp) ∩ {r} where e is an initial environment.

In node n1, because the variable x is updated, the permissions associated to variable x

– 29 –

3.4 Model Semantics

1 n0 ⇒ n1n3

2 ⇒n2n3

3 ⇒n3

4 ⇒n4 n7

5 ⇒n5 n7

6 ⇒n6 n7

7 ⇒n7

8 ⇒n8

9 ⇒ε w

3 {(e, e [dp !→ {r} ∩ e (dp)])}

{(e, e[dp !→ {r} ∩ e (dp) ,

x !→ {r} ∩ e (pc)])}

{(e, e [x !→ {r} ∩ e (pc)])}

{(e, e[dp !→ {r, w} ∩ e (dp) ,

x !→ {r} ∩ e (pc)])}

{(e, e[dp !→ {r, w} ∩ e(dp),

x !→ {r} ∩ e(pc), y !→ {r, w} ∩ e(pc)])}

{(e, e[dp !→ {r, w} ∩ e(dp),

x !→ {r} ∩ e(pc), y !→ {r, w} ∩ e(pc)])}

{(e, e[x !→ {r} ∩ e (pc) ,

y !→ {r, w} ∩ e (pc)])}

{ }

{ }

Transitions Weight of the path from n0

Fig. 3.4 Transitions of Wπ1.

become e(pc) ∩ SP(n1) = e(pc) ∩ {r}. Therefore, the test at node n7 fails regardless

of the initial environment because the permissions of x do not include {w}. However,

the test at node n5 succeeds if w ∈ e(pc) because the variable y is just modified at the

naive procedure, which has the permissions e(pc) ∩ {r, w}. This test at node n5 would

have failed in an HBAC program because the first call to the unknown method would

have cut the permission {w} for the rest of the execution, even if y is not modified in

the unknown method. The transitions of the WPDS Wπ1 and the weight after each

transition following the semantics explained before are shown in Figure 3.4.

In order to restore the dp variable at the finalization of a procedure, the merging

function g1 is applied at the rules for the end of a procedure, in this case the third and

– 30 –

3.5 Formal Verification problem

the seventh transitions. In the last transition of this example, the weight becomes the

empty relation because the test statement at node n7 fails.

3.5 Formal Verification problem

Let us discuss in this section the model-checking problem of our WPDS model. Let

π be an IBAC program and Wπ be the WPDS that models that program. The initial

environment is an environment e0 such that e0(pc) = PRM and e0(dp) = SP(p0). We

consider the reachability problem on π, i.e., check whether or not a given node n is

reachable from the initial configuration n0 = head(p0) with the initial environment e0.

The property that an invalid node n is not reachable from the initial program node can

be represented as the following expression on Wπ:

(e0, e) /∈ MOV P (n0, nξ) for any e and ξ.

This expression means that when the WPDS reaches some configuration whose

stack top is n, the weight in that configuration must not map the initial environment

to any environment. Otherwise the expression does not hold and the IBAC program is

invalid because it successfully reaches an invalid configuration. As an example, let us

take the program π1 in Figure 3.3. Following the original semantics of the IBAC model,

in program π1 the node n8 is not reachable because the test command at n7 should

abort the execution. To verify that this behavior occurs in Wπ1, the above expression

for n8 is examined. That expression holds because the weight at node n8 does not map

e0 to any environment regardless the path chosen at the conditional clause. Therefore,

the safety property of the original program π1 is maintained in the WPDS Wπ1.

Let us consider more complex verification problem. For a program like the Res-

urrecting Duckling policy in Example 2, one may want to verify whether a given bad

path does not exist in that program. Let n1 = last(imprintA), n2 = last(killA), and

– 31 –

3.5 Formal Verification problem

n3 = last(imprintB). Then one of the bad paths is n0 ⇒∗ n1ξ ⇒∗ n3ξ
′ for some ξ, ξ′

such that its second half n1ξ ⇒∗ n3ξ
′ does not contain n2ξ

′′ for any ξ′′. Using a tech-

nique for model-checking PDS [8], we can obtain a WPDS W ′ from Wπ such that

the transition relation ⇒ for W ′ is a subset of that of Wπ and, in W ′, the stack top

must transit according to a regular expression n0 NO∗ n1 (NO −{n2})∗ n3. Conducting

the unreachability test for W ′, we can verify whether the bad path does not exist in

program π.

A practical example of the usefulness of this method would be the detection of

bugs in a given IBAC program. Following the Example 2, imagine there is a bug in

the test command of the killB() function so instead of testPb for x the programmer

wrote testPa for x. In this case, when the killB() function is called it succeeds and the

user B would be able to operate the device even though the device belongs to user A.

This error could be detected by using the MOVP from the starting point of function

imprintA until the return of function killB. In this example, the MOVP is not empty

because there is a path that reaches the end of killB from imprintA, which is a security

violation. Therefore, by checking the value of the MOVP we can detect these type of

bugs in an IBAC program.

The soundness of our WPDS model with respect to the original semantics of IBAC

programs given in [2] is represented by the following Theorem 1. Note that the original

semantics is defined with respect to stores, which map each variable x ∈ VR ∪ {pc}

to a framed value R[v], i.e. a pair of permissions R and a value v. The environments

we used abstract the values and consider only the permissions. We define a projection

function proj over framed values as proj (R[v]) = R. Moreover, for a store s and a subset

D of permissions, we define proj (s,D) as the environment e such that e(dp) = D and

e(x) = proj (s(x)) for x ∈ VR ∪ {pc}. We define SP(S) = SP(head(S)) for a command

sequence S.

– 32 –

3.6 Implementation

Theorem 1 (Soundness). Given an IBAC program π, if (S, s)⇓SP(S)
D s′ for a command

sequence S in π and stores s and s′ and dynamic permissions D ⊆ PRM, then the

WPDS Wπ satisfies n0 ⇒∗ n1 and (e, e′) ∈ MOV P (n0, n1) where n0 = head(S), n1 =

last(S), e = proj (s,D), and e′ = proj (s′, D).

Proof. This theorem can be proved by induction on the number l of steps to derive

(S, s) ⇓SP(S)
D s′ (Shown in Appendix A).

The above theorem says that the non-reachable states of a transition system Wπ

are neither reachable in the IBAC program π. However, due to the non-deterministic

behavior of the WPDS, if Wπ includes conditional clauses, its reachable set of states is

greater than the program π.

3.6 Implementation

The model presented in this thesis is implemented using the model-checker for

WPDS called WALi[10]. This tool provides a C++ interface for easily creating and

verifying WPDS and also provides an add-on that implements a binary relation domain

using the Binary Decision Diagram (BDD) library Buddy[11]. The implementation of

a binary relation includes the basic semiring methods that WALi needs in any weight

domain. These methods are the followings:

• One(). Returns the neutral element 1 of the semi-ring. In our model, the rules

whose weight is id will return this element.

• Zero(). Returns the empty element 0 of the semi-ring. This method will not be

used explicitly in our model, though a weight at some configuration will become

equal to this element.

• Combine(). Returns the semi-ring that result of the union of two semi-rings. This

– 33 –

3.6 Implementation

operation is used in our model at the end of a conditional clause, where two different

paths converge.

• Extend(). The extend operation returns the composition of two semi-rings. This

operation is used along all the elements of one single path in order to calculate the

final weight of that path.

Besides the previous top-level methods of the relational weight domain, additional

low-level methods are implemented in order to create and return a semi-ring element

according to the changes denoted in the semantics of our model. For example, for the

assignment command, a method returns an environment that reflects the update of the

set of permissions of the updated variable, and then this returned semi-ring element is

passed to WALi as the weight of the corresponding WPDS rule. The weights returned by

these methods are used in the model checking computation by the Combine and Extend

operations explained before. Moreover, we also implemented the two merge functions

defined in section 3.3. The code of all these methods is shown in the Appendix B.

In our model, a relational weight domain is composed by a binary relation R over

D where D is a set of Boolean vectors. These vectors store the permissions associated to

each global variable plus the dynamic permissions DP and the program counter variable

PC. Therefore the length of each vector is
∣∣VR′∣∣×|PRM | where |VR′| is the number of

variables including the two special variables PC and DP , and |PRM | is the number of

different permissions. For example, a vector in a program with one global variable x and

two different permissions Pa and Pb would be of the form (xP a, xP b, pcP a, pcP b, dpP a,

dpP b) where all the components are Boolean. The relational weight of our problem

would be composed by a set of pairs of these Boolean vectors, where the two vectors

of a pair would be the pre state and the post state of a weight. The ordering of the

Boolean variables in BDDs chosen for these two vectors is (xpre, xpost, ..., zpre, zpost),

– 34 –

3.6 Implementation

Starting permissions of x = {B,C}

Starting permissions of y = {A,B,C}

SP of main = {B,C}, SP funcB= {C}

SP of funcC = {}

void main(){

 if(x){

 y=1;

 funcB();

 if(x){

 y=1;

 funcC();

 }else{}

 Test {B} for y;

 }else{}

 Test {A} for y;

 return;}

int funcB(){

 x=1;

 return;}

int funcC(){

 x=1;

 return;}

Fig. 3.5 Program test of conditional clause with 3 permissions.

Starting permissions of x = {A,B}

SP of main = {A,B}

SP of GrtA= {B}, SP of GrtB = {A}

void main(){

 grant({A},GrtA())

or

 grant({B},GrtB());

 test {A,B} for x;

 return;}

int GrtB(){

 test{B}

 then x=1;

 else return;}

int GrtA(){

 test{A}

 then x=1;

 else return;}

Fig. 3.6 Program test of grant and dynamic permission check with 2 permissions.

instead of (xpre, ..., zpre, xpost, ..., zpost). The reason of this choice is that in the former

ordering, the number of nodes of the BDD that represents our id weight grows linearly.

On the other hand, using the latter ordering, the number of nodes grows exponentially.

Using all the elements described above, we implemented a WPDS of four IBAC

programs, each one representing a group of IBAC programs. These four programs try

– 35 –

3.6 Implementation

Starting permissions of x = {A,B}

SP of main = {A,B}

SP of FuncA= {A}, SP of FuncB = {B}

void main(){

 FuncA()

 or

 FuncB();

 test {A} for x

 or

 test {B} for x;

 main() or return;

 return;}

int FuncA(){

 x=1;

 return;}

int FuncB(){

 x=1;

 return;}

Fig. 3.7 Program test of loops using recursion with 2 permissions.

to include all the IBAC operations that can be used in any IBAC. This way, if our model

is suitable for all these programs separately, it would be also suitable for verifying the

majority of IBAC programs. The scalability of all the programs depends on the number

of permissions which is augmented from 2 to 20.

The first program used in this experiment is the one shown in Figure 3.1. This

is chosen because it is a typical example of a security policy that cannot be modeled

using previous access control models but can be modeled using IBAC. In terms of the

program, increasing the number of permissions means an increment of the number of

procedures, especifically 2 procedures (imprintX and killX) are added for each permis-

sion incremented. In terms of the security policy, an increment of one permission means,

for example, allowing one more user the possibility to inprint a device. Therefore incre-

menting the number of permissions increments also the number of users that can get a

device. The code of this example is shown in the Appendix B.

The rest three programs are artifitially created in order to test the rest of operations

an IBAC program can use, without any intention of representing a real life situation.

The first one shown in Figure 3.5 tests the conditinal clause behavior in an IBAC

– 36 –

3.6 Implementation

program. The objective in this program is to check if the variable y, which every time

that enters a conditional clause loses one permission, has the same set of permissions

at the end of the conditional clause no matter the path taken. For example, if we take

the first conditional clause, the variable y loses the permission A explicitally in the then

path due to the assignment operation because variable y gets the permissions of variable

x. If the else path is taken, the variable y also will lose the permission A at the end of

the conditional clause due to the write oracle and taint of the IBAC semantics. This

fact is tested using test A for y operation which no matter the path taken should fail.

This behaviour is tested in all the nested conditional clauses. The depth of the nesting

increases with the number of permissions.

The second artifitial program shown in Figure 3.6 is created to test the grant

operation and the dynamic permission check operation. At first, the main function

calls either GrtA or GrtB granting a permission that is not including in the static

permissions of these functions, A in case of GrtA and B in case of GrtB. Then we check

if that permission has been granted into the dynamic permissions using the test R

then else command, where R is either permission A or permission B depending on the

function. These test operations should always succeed in this example. After this, the

permissions of variable x are updated to the static permissions of the function called

and then checked in the main function using the test A,B for x command. This test

is placed to check that the then path has been taken in the dynamic permission test

command and thus, the permissions of the variable x were correctly updated. In this

program, by augmenting the permissions the number of Grt() functions increases.

Finally the third artifitial program shown in Figure 3.7 tests the behavior of recur-

sive loops. This simple program nondeterministically calls either FuncA() or FuncB()

to eliminate a permission from the set of permissions of variable x. Then it tests also

nondeterministically if x has the permission A or B. Finally the program can recursively

– 37 –

3.6 Implementation

Execution

time (ms)

Number of permissions

Fig. 3.8 Performance evaluation of a query in our WPDS model.

call the main function again or finish. Note that because our model cannot explicitaly

control a conditional statement, the decision of finishing or continuing the loop is taken

nondeterministically by the model checker. As the number the permissions is increased,

the number of functions and the number of test statements that can be executed in-

creases.

In order to measure the performance of the implemented WPDS, a poststar

query[13] is calculated for every example. Given a set of configurations C, a poststar

query calculates the set of configurations post∗(C) := {c′ | ∃c ∈ C : c ⇒∗ c′}, i.e, the

set of configurations that are reachable from elements of C via the transition relation.

We performed the poststar query with the beginning of the program as the starting

configuration.

– 38 –

3.6 Implementation

The performance results are shown in Figure 3.8. The x and y axes represent the

number of permissions and the execution time respectively. The environment used is a

Intel(R) Core(TM) i7-3770 CPU 3.40Ghz with 8 GB of RAM. As we see in this figure,

all the examples except the conditional clause one the time complexity of the query is

efficient until 20 permissions but from 21 permissions the time grows exponentially and

becomes unreasonable for more than 20 permissions. In a real life example using the

example in Figure 3.1 where the number of permissions represents the number of users

that can use a device, 20 permissions could be sufficient for example for a remote control

in a family house, where 20 users at the same time at max seems reasonable. However,

systems that require a large number of users operate simultaneously, 20 permissions

would not be sufficient.

The reason for this limitation is related to the bdd library cache space. Because the

number of nodes of the bdd’s becomes too high, the library does not operate efficiently

for more than 20 permissions. This is because the cache used by the bdd library becomes

full after 20 permissions and therefore the execution time increases. In the conditional

clause example, we use 2 variables instead of 1 as in the other examples. Therefore, the

bdds grow faster and the cache of the library becomes full at 10 permissions. Possible

optimization paths may include the redefinition of the weight codification in order to

use fewer BDD nodes, and the parallelization of the BDD library[12].

– 39 –

Chapter 4

HBAC-IBAC approximation

In this chapter we present the second research of this thesis which is an algorithm

to approximate a program modeled by the IBAC to a program modeled by the HBAC.

This chapter is structured as follows: first we present the objective and motivations for

this research. Second, a detailed comparison between the HBAC and the IBAC models

is described. Third, the approximation algorithm is formally presented and its steps

described. Finally we explain a practical example using the algorithm and propose some

improvements for decreasing the costing time of the algorithm.

4.1 Objective

The objective of this research is related to the IBAC implementation in a real

programming environment. As mentioned in Chapter 1, just the SBAC model is imple-

mented on real environments, even though the HBAC and especially the IBAC models

are theoretically safer. In this chapter we propose an algorithm to transform as much as

possible a subset of IBAC programs to the HBAC model. If exists an environment that

supports the HBAC, an IBAC program that can be approximated to an HBAC program,

could be used also in that HBAC-supported environment. Therefore, this way we could

achieve an IBAC-supported environment. The HBAC model is chosen as the output of

our algorithm because, even thought the SBAC is the only one that is implemented in

a real system, the HBAC semantics are richer and closer to the IBAC model. Moreover

– 40 –

4.1 Objective

variable = constant; assignment

f(); return; procedure call; return statement

f() or g(); nondeterministic choice procedure call

Fig. 4.1 IBAC subset syntax.

as shown in section 1.3, it exists a few works that try to create an implementation of

the HBAC in a real environment, where our algorithm could be integrated in order to

provide IBAC support to those environments.

Regarding to the input IBAC programs of the algorithm presented in this chapter,

we limit the original syntax of the IBAC model to a narrower subset of programs. The

syntax of our subset of IBAC programs is shown in Figure 4.1. We impose the following

restrictions:

• No conditional clauses ”if else”. The indeterminism in the program is introduced by

nondeterministic choice of procedure calls. This restriction is due to the difficulty

of implementing with just HBAC semantics the complex operations that IBAC uses

against implicit information flow[2].

• No loops statements such as ”for” and ”while”. Iterations should be represented

by recursive calls. This restriction is due to the absence of loop commands in the

original IBAC syntax.

• The right-hand part of a variable assignment is always a constant value. This

restriction simplifies the assignment operation problem in an IBAC program because

the set of permission of the updated variable always gets the static permissions of

the function where the assignment is executed. This way our algorithm is simplified

also.

On the other hand, the objective of our approximation is to simulate an IBAC

– 41 –

4.2 HBAC-IBAC comparison

program using the HBAC semantics while preserving the safety property from the orig-

inal IBAC program. This means that any path that is aborted in the original IBAC

program is aborted in its HBAC approximation program. This way, the HBAC approx-

imation program does not introduce any new security violation that does not occur in

the original IBAC program.

4.2 HBAC-IBAC comparison

Both HBAC and IBAC semantics and behaviors have been explained in previous

chapters, but in this section we would like to highlight the main differences between the

IBAC and the HBAC models regarding their semantics.

The first important difference is related to the amount of dynamic set of permis-

sions controlled by both access control models. In the HBAC, only one set of dynamic

permissions, the current permissions of the program, are kept during the execution of

the code. However, the IBAC model introduces another set of dynamic permissions per

variable in the program, as well as the current permissions of the program. Therefore,

the IBAC model tracks more information during the execution of the program than the

HBAC model. In order to keep the same behavior in our HBAC approximation than

the IBAC model, our algorithm must increase in some way the amount of information

the HBAC model is able to maintain.

The second difference between the HBAC and the IBAC is the behavior of the

current dynamic permissions after a return statement. In the IBAC, when a function

finishes the current dynamic permissions are restored to its previous value in the stack,

like in the SBAC model. However, in the HBAC the set of permissions maintains

its value after a return statement. Therefore, our algorithm has to produce the output

HBAC modified in a way that it emulates the same behavior of the dynamic permissions

– 42 –

4.2 HBAC-IBAC comparison

Sets of dynamic

permissions

IBACHBAC

1 set of current

permissions
1 set of current permissions

1 set for each variable

Behavior of the

current

permissions at

return statements

Function calls

Points of the

program where

the dynamic

permissions are

updated

Function calls

Return statements

Variable assignments

Keep the current

permissions

Restore the current

permissions to its previous

value in the stack

Fig. 4.2 Main differences addressed by our algorithm between the HBAC and the IBAC.

after a return statement than in the IBAC model.

The last significance difference is the moment during the execution of the program

when the dynamic permissions are updated. In the HBAC model, an update of the

dynamic permissions just occurs when a procedure is called. However, in the IBAC

model the dynamic permissions of each variable are also updated when the execution

reaches an assignment of a variable. Because the HBAC model does not perform any

action on the dynamic permissions at an assignment statement, the output program of

our algorithm should force an update in the dynamic permissions when the execution

reaches an assignment. In the next section is explained the method followed to achieve

this objective.

A summary of the differences between the HBAC and the IBAC models is shown in

Figure 4.2. The design process of the algorithm explained in the next section is focused

– 43 –

4.3 Approximation Algorithm

1st Step

Explode

permissions

IBAC HBAC approx

{A,B}

Variable x,y {A,B,xA,xB,yA,yB}

2nd Step

Replace

function

calls

func();

SP of func = {A}

accept({A},func())

3rd Step

Downgrade

type

assignments
func(){

x = 1;}

Prm of x = {A,B}

SP of func = {B}

SP of fx={B,xB}

SP of func={B,xA,xB}

DP = {B,xA,xB}

func(){

x = 1;

fx();}

fx(){}

4rd Step

Upgrade

type

assignments
func(){

x = 1;}

Prm of x = {}

SP of func = {A}

SP of fx={xA}

SP of func={A,xA}

DP = {A}

func(){

x = 1;

grant({xA},fx();}

fx(){}

PLUS mirror

algorithm explained

in section 4.3.1

Fig. 4.3 Steps of the HBAC approximation algorithm

in solving these differences between the models. Each step of the algorithm will address

one of these differences so that the output program has the same behavior than the

original program modeled by the IBAC but using the HBAC semantics.

– 44 –

4.3 Approximation Algorithm

4.3 Approximation Algorithm

This algorithm consists basically of four steps which are shown in the scheme of

Figure 4.3. As mentioned before, each of these steps address one of the main differences

between IBAC and HBAC explained in the previous section. After each step, the

difference addressed is eliminated so that the output program modeled by the HBAC

has the same behavior than the original program modeled by the IBAC. In our case, two

programs have the same behavior if they allow and prevent the same security sensitive

operations. This also means that the result of each check permission statements in both

programs is also the same. As follows we informally explain each step of the algorithm.

The first step is to explode the permissions in the HBAC program in order to track

the permissions of each variable. Specifically, we create new permissions xP for each

variable x and permission P in the original IBAC program. For example, if the original

IBAC program has two variables x and y and two permissions A and B, the permissions

in our HBAC approximation would be exploded to A,B, xA, xB, yA, yB. The algorithm

is designed so that the dynamic permissions in the resultant HBAC program contain

xP for a variable x and a permission P if and only if in the input IBAC program, the

dynamic permissions of x contain P at the corresponding program point.

In the second step we replace all the function call func() in the original IBAC

program with the HBAC operation accept(SP , func()), where SP is the set of static

permissions of the function in the IBAC program where the function call statement

exists. This step is done in order to simulate the behavior of the dynamic permissions

in IBAC which is the same as in SBAC.

The third and the fourth steps are related to the same problem which is to create

methods in the HBAC program for simulating the update of the permissions of each

variable in the IBAC program. In IBAC the permissions of variables are updated at

– 45 –

4.3 Approximation Algorithm

assignment statements. However in HBAC, the dynamic permissions are only updated

at function call statements (or return statements). Therefore we insert a function call

statement in HBAC at each assignment statement so that the dynamic permissions of

HBAC simulate the permissions of the updated variable of IBAC. According to the

HBAC semantics, removing some permissions from the dynamic permissions (we call

this case a ”downgrade”) is easy, while adding permissions to the dynamic permissions

(we call this case an ”upgrade”) is much harder. Note that the behavior of an IBAC

program can be modeled by a pushdown system (PDS)[8], and by analyzing the PDS,

at each assignment statement we can know whether or not an upgrade possibly occurs.

For a downgrade (3rd step), we create a new function whose static permissions

do not include the permissions to be removed, and we insert a call to that function

to the HBAC program just after the assignment statement. This function call simply

removes the specified permissions from the set of dynamic permissions. In Figure 4.3 for

example, we want to remove the permission xA from the dynamic permissions, because

in the original IBAC program the permission A is removed from the set of permissions

of x. Therefore, we create and call a new function that does not include xA in its set

of permissions. For an upgrade (4th step), only using the grant command we can add

permissions to the dynamic permissions. Therefore, simillary as the previous step, we

create and call a new function that using the grant operator to add the new permission

we want. In Figure 4.3 this permission would be xA. However, the added permissions

are erased when the function called by the grant command finishes. To solve this

problem, we modify the structure of the program using the algorithm explained in the

next subsection.

– 46 –

4.3 Approximation Algorithm

Call

Call

Grant

{xB}

Return

Return

Call

Call

Code moved to the

right-hand side

Code "mirrored"

Mirror

In this side, {xB}

is not included in

DP

In this side, {xB}

is included in DP

At first,

DP = {A,B,xA}

Fig. 4.4 Mirror algorithm diagram

4.3.1 Mirror algorithm

The purpose of this algorithm is to create a new program where the dynamic

permissions are upgraded from a point in the program until the end of it. Because the

permissions added with a grant operation are lost after the granted function finishes, we

need to execute the rest of the code without returning from the granted function. The

main idea of this algorithm is to move the rest of the code from the point where the grant

operation is executed to the granted function. However, because we cannot return to

the callee, we need to move the code in a ”mirror” way, changing the return statements

to call statements that call a ”mirrored” function. Figure 4.4 shows a diagram of this

method. Assume we want to add the permission B to a given variable x, which in

– 47 –

4.3 Approximation Algorithm

our approximation means adding the permission xB to the dynamic permissions. After

the artificial grant(xB) we placed is called, it passes a barrier that cannot cross back,

because as explained before, the permission xB would be eliminated from the dynamic

permissions; we call this barrier the mirror. Then, the rest of the code from that point is

placed at the right-hand side of the mirror, where the dynamic permissions are granted.

Because we cannot cross back the mirror, the return statements of the callee functions

on the left-hand side are replaced with call statements that call a mirror version of the

original function. The code of these mirrored versions consists of the code that has

not been executed before the artificial grant we placed. This way, we execute the same

instructions of the moved code but in a context where the permission xB is included in

the dynamic permissions, i.e. variable x has the permission B.

4.3.2 Formal representation

In the last section we informally explained the steps of our algorithm in order to be

more understandable. In this section we try to formalize the steps of the algorithm using

a pseudocode language. Figure 4.5 represents the approximation algorithm explained

in the previous section.

The algorithm in Figure 4.5 receives a program modeled by the IBAC as an input

and produces a program that, when modeled by the HBAC, has the same behavior

as the input program. We call this output program HBAC approximation program.

Then the algorithm proceeds we the steps explained in the previous section. First

for each procedure of the program, the algorithm adds to the static permissions of

each procedure the permissions elements for each variable. These new permissions

represents if a variable has or not a given permission. Then the algorithm replaces

all the call statements to procedures in the input program for the accept command

in order to restore the dynamic permissions when a procedure finishes. Next, a small

– 48 –

4.3 Approximation Algorithm

input : IBAC program

output: HBAC approximation program

foreach Function block do
Explode the static permissions to add the elements xnPn where x is a variable and P is a

permission in the original IBAC program;

end

foreach Function call func() do

Replace the the call statement with accept(SP, func()), where SP are the static permissions of

the current function where the call statement is;

end

foreach Test P for x command do
Replace the check statement Test P for x, where P is a set of permissions and x a variable,

for the statement Test xP where xP is a set of permissions that includes the permissions of P

for the variable x;

end

foreach variable x in the program do

while not at end of the program do

Use the UD-chain algorithm for that variable to find the first UD pair (P1,P2);

Let SP be the set of static permissions of the function where P1 is;

Let DP be the dynamic permissions at P1;

if The permissions of the variable are downgraded then

Introduce a call function statement funcXn() after P1;

Create a new function funcxi() with static permissions SP minus the elements of the

variable permissions that are not included in the static permissions of the callee

function;

else

Introduce a command grant(SPx, funcxi) after P1 where SPx is the permissions we

want to add to the variable x;

Create a new function funcxi() with static permissions SP;

If not called befored, call the ”mirror algorithm”;

end

end

end

Fig. 4.5 HBAC-based approximation algorithm

– 49 –

4.3 Approximation Algorithm

step but necessary is to substitute the IBAC check statements TestPforx with HBAC

check statements TestPx, because the output program should be an HBAC modeled

program. The elements of the set Px will be the same permissions of the set P but

related to the variable x. For example, if we are checking the variable x and the set P

includes the permissions A and B, the set Px will consist of the elements xA and xB.

The last steps of the algorithm are related to the treatement of the assignment

statements in the original program. As mentioned in the last section, before applying

the algorithm, we can use model checking on a PDS model of the IBAC program in

order to know which assignments have the possibility to upgrade the permissions of

the variable. Because the program may have more than one different execution path,

and therefore the same assignment may be an upgrade in one path but a downgrade

in another path, we always mark that assignment as an upgrade. This is done because

the upgrade case is more general than the downgrade case and thus the upgrade case

includes the downgrade case. We can mark every case as an upgrade but this will

overuse the mirror algorithm which is the most expensive part of our algorithm, and

therefore the upgrade cases should be as less as possible.

Regarding to this last matter, our algorithm also makes use of the UD-chain (use-

definition) algorithm in order to search the last assignment before a test statement.

In our case, the use of the variable would be a test statement of that variable and the

definitions of the variable would be all the assignment statements of that variable before

that test statement. This process is done because an assignment completely overwrites

the variable permissions and thus deleting the influence of the last assignment. There-

fore, only the last assignment before a test statement is relevant. Note that this only

happens because we limited the original semantics of the IBAC in case of assignments

so that the right-hand part of an assignment is always a constant variable.

Finally, the algorithm treats each assignment depending if they are marked as

– 50 –

4.3 Approximation Algorithm

input : HBAC approximation program

output: HBAC approximation program mirrored

foreach Instruction from the initial point until the end of the program do

if The instruction is not a return statement then

Move the instruction line from the original function to the created function;

else

Insert a call statement ”xMirrored()” in the created function;

Create a new function called ”xMirrored” where x is the name of the function that is

going to be returned by the return statement;

end

end

Fig. 4.6 Mirror algorithm

upgrade or not. If not the algorithm just creates and call a new function in order to

eliminate the selected permission elements. If it is an upgrade, the algorithm creates

and call using the grant command a new function in order to increase the permissions.

Then we call the mirror algorithm in order to modify the structure of the program from

the current point. The structure of the mirror algorithm is shown in Figure 4.6. The

algorithm keeps two points in the program, one at the left side in the mirror which is

the original function, and the other at the right side of the mirror which is the beginning

of the created granted function. From these points, we move each instruction that are

followed in the program from the left side to the right side of the mirror. If we encounter

a return statement at the left side of the mirror, we have to create a new function at the

right side of the mirror that will have the same instructions than the function returned

by the encountered return statement. The function name will be the same name of the

original function plus the word ”Mirrored”. Then, this function is called by the previous

function in the right side of the mirror. These steps are followed until the end of the

program.

The mirror algorithm completely modifies the structure of the program but we

– 51 –

4.3 Approximation Algorithm

main = {A,B} LogoutA = {A,B}

LoginA = {A} LogoutB = {A,B}

LoginB = {B}

LoginA(){

 Test{A,B}for x;

 x = 1;

 return;}

int main(){

 LoginA() or LoginB();

 LogoutA() or LogoutB();

 LoginA() or LoginB();

 return;}

LoginB(){

 Test{A,B}for x;

 x = 1;

 return;}

LogoutA(){

 Test{A}for x;

 x = 1;

 return;}

LogoutB(){

 Test{B}for x;

 x = 1;

 return;}

Static Permissions

Fig. 4.7 Input IBAC program

only need to use it if it is the first upgrade assignment we treat in the algorithm. After

applying it the first time, since the mirror algorithm completely modifies the rest of the

program from the point where the assignment is, from the next upgrade assignment we

find that the rest of the program is already ”mirrored”. Therefore, we do not need to

worry about losing the new permissions added by the grant command from the second

upgrade assignment. We just need to move the rest of the code of the function where

the upgrade assignment is to the new created and called function.

4.3.3 Example of the algorithm

In this section we will follow step by step a full example applying our algorithm to

a IBAC program, shown in Figure 4.7. The program of this example represents a simple

login system with two users A and B. First, user A or user B can log to the system by

– 52 –

4.3 Approximation Algorithm

LoginA(){

 Test{A,B}for x;

 x = 1;

 return;}

int main(){

 LoginA() or LoginB();

 LogoutA() or LogoutB();

 LoginA() or LoginB();

 return;}

LoginB(){

 Test{A,B}for x;

 x = 1;

 return;}

LogoutA(){

 Test{A}for x;

 x = 1;

 return;}

LogoutB(){

 Test{B}for x;

 x = 1;

 return;}

Static Permissions

main = {A,B,xA,xB} LogoutA = {A,B,xA,xB}

LoginA = {A,xA,xB} LogoutB = {A,B,xA,xB}

LoginB = {B,xA,xB}

Fig. 4.8 Intermediate output program after applying the first step of the algorithm

using the functions loginA or loginB respectively. When one of the logs in, the variable

x loses the permission A or B respectively in order to represent which user is logged in.

Then, a logout for user A or user B is called. This function checks that the user that

is currently logged into the system can log out. Therefore, if loginA was called before,

logoutB cannot be called and vice-versa. When a logout function executes correctly,

variable x recovers both permissions A and B so that a login function can be called

afterwards and thus a new user can log in to the system. This is an example of IBAC

program where the permissions of a variable can be upgraded after being downgraded.

Let us start applying our algorithm to the program example. First of all, the static

permissions of each procedure have to be exploded in order to include the variable

permissions. Because in our example there is just one variable x, this first step is solved

by adding the permissions xA and xB to all the set of static permissions. The result is

– 53 –

4.3 Approximation Algorithm

LoginA(){

 Test{A,B}for x;

 x = 1;

 return;}

int main(){

 accept({A,B},LoginA())or accept({A,B},LoginB());

 accept({A,B},LogoutA())or accept({A,B},LogoutB());

 accept({A,B},LoginA())or accept({A,B},LoginB());

 return;}

LoginB(){

 Test{A,B}for x;

 x = 1;

 return;}

LogoutA(){

 Test{A}for x;

 x = 1;

 return;}

LogoutB(){

 Test{B}for x;

 x = 1;

 return;}

Static Permissions

main = {A,B,xA,xB} LogoutA = {A,B,xA,xB}

LoginA = {A,xA,xB} LogoutB = {A,B,xA,xB}

LoginB = {B,xA,xB}

Fig. 4.9 Intermediate output program after applying the second step of the algorithm

shown in Figure 4.8.

The second step of the algorithm is to substitute all the procedure calls with accept

commands in order to restore the current permissions after a procedure finishes. With

this change the HBAC model obtains the same behavior as the IBAC regarding the

return statements. The result of this step is shown in Figure 4.9.

The third step of the algorithm is to treat the assignments that downgrade per-

missions of a variable, i.e, the variable loses permissions after the execution of the

assignment statement. This happens in our program example at the login functions,

where the variable x loses the permission xA or the permission xB. The algorithm forces

the update on the dynamic permissions of the HBAC model by addin new functions

x1 and x2 in order to eliminate the permissions xA and xB respectively. The result is

shown in Figure 4.10.

– 54 –

4.3 Approximation Algorithm

int main(){

 accept({A,B},LoginA())or accept({A,B},LoginB());

 accept({A,B},LogoutA())or accept({A,B},LogoutB());

 accept({A,B},LoginA())or accept({A,B},LoginB());

 return;}

LogoutA(){

 Test{A}for x;

 x = 1;

 return;}

LogoutB(){

 Test{B}for x;

 x = 1;

 return;}

Static Permissions

main = {A,B,xA,xB} LogoutA = {A,B,xA,xB} x1{A,xA}

LoginA = {A,xA,xB} LogoutB = {A,B,xA,xB} x2{B,xB}

LoginB = {B,xA,xB}

LoginB(){

 Test{xA,xB};

 x2();

 return;}

LoginA(){

 Test{xA,xB};

 x1();

 return;}

x1(){

 return;}

x2(){

 return;}

Fig. 4.10 Intermediate output program after applying the third step of the algorithm

The last step in our algorithm treats the assignments that upgrades permissions of

a variable, i.e, the variable gains new permissions after the execution of the assignment

statement. This case happens in both Logout functions after the test statement. In

those cases the variable gets the permission xA or the permission xB. The algorithm

first creates a grant command in order to add the permissions xA and xB. These grant

command call a new function called LogoutAmirr in the user A case and LogoutBmirr

in the user B case. Then, because the granted permissions would be lost if we return

from these functions, we need to create and call a mirror version of the caller function of

the logout functions, in this case the main function. Therefore, we create the mainMirr

function which will continue the rest of the code of the original main function. This way,

before we execute the login functions again, the permissions xA and xB are included in

the dynamic permissions so that another user can log in correctly. The result of this

– 55 –

4.3 Approximation Algorithm

Static Permissions

main = {A,B,xA,xB} LogoutA = {A,B,xA,xB} x1{A,xA}

LoginA = {A,xA,xB} LogoutB = {A,B,xA,xB} x2{B,xB}

LoginB = {B,xA,xB} mainMirr = {A,B,xA,xB}

LogoutAmirr = {A,B,xA,xB} LogoutBmirr = {A,B,xA,xB}

LogoutB(){

 Test{xB};

 grant({xA,xB},

 LogoutBmirr());

 return;}

int main(){

 accept({A,B},LoginA())or accept({A,B},LoginB());

 accept({A,B},LogoutA())or accept({A,B},LogoutB());

 return;}

LoginB(){

 Test{xA,xB};

 x2();

 return;}

LoginA(){

 Test{xA,xB};

 x1();

 return;}

LogoutA(){

 Test{xA};

 grant({xA,xB},

 LogoutAmirr());

 return;}

x1(){

 return;}

x2(){

 return;}

LogoutAmirr(){

 mainMirr();

 return;}

LogoutBmirr(){

 mainMirr();

 return;}

int mainMirr(){

 accept({A,B},LoginA()) or accept({A,B},LoginB());

 return;}

Fig. 4.11 HBAC approximation program

step and the final output of the algorithm is shown in Figure 4.11. The program in

this figure modeled by the HBAC model preserves the same behavior as the original

program modeled by the IBAC because every test statement produces the same result

in both programs, regardless the path taken during the execution.

4.3.4 Performance considerations

The algorithm shown in the previous sections achieves the objective we proposed

for this research: it modifies an IBAC program in the way that, modeled by the HBAC

model, it maintains the same behavior as the original IBAC program. However, the al-

– 56 –

4.3 Approximation Algorithm

gorithm dramatically modifies the original program, especially increasing the number of

procedures due to the mirror algorithm. Because of this, the approximation HBAC pro-

gram will be heavier than the original program if modeled by the HBAC. The execution

time of this approximation HBAC program will depend mostly in the number of times

we create a new function for the treatement of an assignment. However, the question is

if this approximation program is heavier or lighter than the original program modeled by

the IBAC. Because it does not exist a programing environment that supports the IBAC

model, this cannot be proved but we can guess if we compare the performance results of

the chapter 3 of this thesis with the results in the paper [5]. In this paper the authors

design and implement a PDS-based model for the HBAC in order to perform model-

checking. If we compare the results in that paper with the ones of our EWPDS-based

model for the IBAC, we can see that the execution time of model-checking the IBAC

model is much higher than the execution time of model-checking the HBAC model.

Therefore, one can guess that directly implementing the IBAC model in a programming

environment could be much heavier in terms of execution time than implementing the

HBAC model, and thus our approximation HBAC program, even heavier than a normal

HBAC program, could be much lighter than executing the original IBAC program in a

IBAC-supported environment.

– 57 –

Chapter 5

Conclusions and Future Work

In this thesis we present two main researchs. The first one is a EWPDS-based

formal model for dynamic access control based information flow (IBAC). A subset of

the original IBAC semantics is represented by a WPDS. The verification problem of our

model and an implementation in an existing WPDS tool are also discussed. Theorem

1 proves the soundness of our model. However, because the values of the variables

are not stored in our model, the conditional clauses are treated non-deterministically.

Therefore, our model is an over-approximation of the original IBAC model and thus is

only suitable for safety properties. The implementation described in the last section

of Chapter 3 achieves good scalability up to 20 permissions using one variable. Future

work on this research includes the optimization of our implementation and searching

for a data structure more suitable for our WPDS model.

The second research we present in this thesis is an algorithm to approximate a

program modeled with the IBAC model to a program modeled with the HBAC model.

Inside this algorithm we describe a special algorithm for the case when a variable per-

missions are upgraded. As seen in the example in Chapter 4, this algorithms changes

dramatically the structure of the original program in order to keep the same behavior

of the original IBAC program but modeled with the HBAC. As explained in Chapter

4, keeping the same behavior means that both programs allow and forbid the same se-

curity sensitive operations. Because the structure of the output program is drastically

modified, especially in terms of number of procedures, the execution time of the out-

– 58 –

put program could be higher compared to the original program modeled by the HBAC

model. However, the main reason of this algorithm is to achieve an output program that

is lighter in terms of execution time than the original program modeled by the IBAC.

Because a IBAC-supported environment does not exist, this matter cannot be proved,

but looking at the results explained in the discussion in the last section of Chapter

4, it could be guessed that the IBAC model would be very expensive compare to the

HBAC model to directly implement the IBAC in a programming environment. Future

work includes the improvement of the algorithm for applying a larger subset of IBAC

programs.

Moreover, another future work regarding to this second research is related with

another aproach to achieve the same objective. In the paper [6] the authors propose a

method for, given a recursive program and a security specification, automatically put

check statements for the HBAC access control into that program. Using this same

methodology, the idea is first, using a model-checking algorithm, to search in an IBAC

program which check statements succeed and which ones fail. After performing this

we can discover which execution paths in the IBAC program are valid (all the check

statements succeed) or invalid (at least one check statement fails). The second step is,

from the same program modeled this time with the HBAC and without check statements,

to introduce check statements that fails in the same paths that failed in the original

IBAC program. With this, we can prevent the execution of the same security-sensitive

operations that are prevented in the original IBAC program. Therefore the program

maintains its safety by using the HBAC model instead. However, the theoritically

counterpart of this technique is the ”oversafety” that produces. This means that the

introduced check statements may cut a path that in the original program was a valid

path. Therefore, this technique maintains the same safety of the original program but

at the cost of reducing the number of valid execution paths.

– 59 –

Acknowledgement

This thesis dissertation would not have been possible without the support and help

of several persons who contributed in some way in the preparation of this study.

First of all, I wish to express my deepest gratitude to my advisor, Prof. Dr. Yoshi-

aki Takata whose support, guidance and confidence in my abilities were fundamental

throughout these years in the completion of this thesis.

My gratitude are also due to the members of the supervisory comimittee, Prof. Dr.

Akio Sakamoto, Prof. Dr. Makoto Iwata, Prof. Dr. Kazutoshi Yokoyama, Prof. Dr.

Kiminori Matsuzaki.

Thanks also to Prof. Lawrie Hunter, who not only taught me Formal Academic

English but also shared with me long and interesting conversations about any topic.

My gratitude also to Prof. Dr. Shinichi Yamagiwa for all things you taugth me

and did for me. Without you I would not have come to Kochi University of Technology.

Thanks to Mr. Nicholas Kidd for his useful advice and help regarding the usage of

the WALi tool.

I would also like to thank to the members of the International Relationship Division;

former members Kimiko Ban, Motoi Yoshida, Kimi Kiyooka and current members Prof.

Dr. Akimitsu Hatta, Sonoko Fukudome, Kubo sensei, Kimiko Sakamoto, Mari Yamazaki

and Rika Fujii. Thank you all for making this university such a comfortable place for

the foreign students.

Thanks to all the lab members at the Takata Laboratory I have met during these

years for your friendly attitude and for making this laboratory such an enjoyable envi-

ronment.

Special thanks to my friend and my japanese father Shane-san. Thanks for driv-

– 60 –

Acknowledgement

ing me a lot of times to the airport, for making me laugh every morning in Kuzume

dormitory, for helping us to find a house for me and Jingyun. Thanks for being there

everytime we needed.

Thanks to my family for being there every day of these years, for believing in me

and for sending me love and support from the distance.

And last but not least, I want to sincerely show my gratitude to the love of my life

and the woman who has been supporting me and taking care of me every single second

during the whole PhD. Thanks for giving me confidence when I needed and thanks for

making my life more beautiful. Not a single sentence of this dissertation would have

been possible without her.

– 61 –

Acknowledgement

List of Publications

Journal Papers

(1) Pablo Lamilla Alvarez and Yoshiaki Takata, A Formal Verification of a Subset

of Information-Based Access Control Based on Extended Weighted Pushdown System,

IEICE Transactions on Information and Systems. (Accepted, pending publication)

(2) Pablo Lamilla Alvarez, Shinichi Yamagiwa, Masahiro Arai and Koichi Wada,

A uniform Platform to Support Multigenerational GPUs for High Performance Stream-

based Computing, International Journal of Networking and Computing, Vol. 1, July

2011.

Conference Papers

(1) Pablo Lamilla Alvarez and Yoshiaki Takata. An HBAC-based approximation

for IBAC programs. In Proceedings of the 6th International Conference on Security

of Information and Networks (SIN ’13), Aksaray, Turkey, 2013. ACM, New York, NY,

USA, 277-281.

(2) Pablo Lamilla Alvarez, Shinichi Yamagiwa, Masahiro Arai and Koichi Wada,

Elimination Techniques of Redundant Data Transfers among GPUs and CPU on Re-

cursive Stream-based Applications, IPDPS/APDCM11, Anchorage USA, May 2011.

– 62 –

References

[1] M. Abadi, C. Fournet. Access Control Based on Execution History. In 11th Network

and Distributed System Security Symposium, February 2003.

[2] M. Pistoia, A. Banerjee, D.A. Naumann. Beyond Stack Inspection: A Unified

Access-Control and Information-Flow Security Model. In Security and Privacy

IEEE Symposium, pages 149–163, May 2007.

[3] L. Gong, M. Mueller, H. Prafullchandra, R. Schemers. Going Beyond The Sandbox:

An Overview of the New Security Architecture in the JavaTM Development Kit 1.2.

In USENIX Symposium on Internet Technologies and Systems, pages 103–112, 1997

[4] A. Banerjee, D. A. Naumann. History-based Access Control and Secure Informa-

tion Flow. In Construction and Analysis of Safe, Secure, and Interoperable Smart

Devices, pages 27–48, 2004.

[5] J. Wang, Y. Takata, and H. Seki. HBAC: A Model for History-Based Access Control

and Its Model Checking. In 11th ESORICS, LNCS, vol.4189, pp.263–278, 2006.

[6] Y. Takata, and H. Seki. Automatic Generation of History-Based Access Control

from Information Flow Specification. In 10th ATVA, pp.259–275, 2010.

[7] A. Lal, T. Reps, and G. Balakrishnan. Extended Weighted Pushdown Systems.

In CAV05: Proceedings of the 17th International Conference on Computer Aided

Verification, pp.434–448, 2005.

[8] S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical University

of Munich, 2002.

[9] F. Stajano and R. Anderson. The Resurrecting Duckling: Security Issues in Ad-Hoc

Wireless Networks. In Security Protocols, 7th International Workshop Proceedings,

LNCS, vol.1796, 1999. URL http://www.cl.cam.ac.uk/ fms27/duckling/.

– 63 –

References

[10] N. Kidd, T. Reps, and A. Lal. WALi: A C++ library for weighted pushdown

systems. http://www.cs.wisc.edu/wpis/wpds/download.php, 2008.

[11] J.Lind-Nielsen. BuDDy – A Binary Decision Diagram Package.

http://sourceforge.net/projects/buddy, 2004.

[12] Y.He, Multicore-enabling a Binary Decision Diagram algorithm. May 2009.

[13] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted Pushdown Systems and

Their Application to Interprocedural Dataflow Analysis. Sci. Comput. Program.,

58(1-2):206–263, 2005.

[14] F. Martinelli, P. Mori. Enhancing Java Security with History Based Access Control.

In Foundations of Security Analysis and Design, pages 135–159, 2007.

[15] G. Edjlali, A. Acharya, V. Chaudhary. History-based Access Control for Mobile

Code. In Computer and Communicacions Security, ACM, New York, USA, pages

38-48, 1998.

[16] K. Krukow, M. Nielsen, V. Sassone. A Logical Framework for History-based Access

Control and Reputation Systems. In Journal of Computer Security, 16(1):63-101,

January 2008.

[17] C. Sun, L. Tang and Z. Chen, Secure Information Flow by Model Checking Push-

down System, in Proceedings of UIC-ATC09, pp.586–591, 2009.

[18] S. Jha, S. Schwoon, H. Wang and T. Reps, Weighted Pushdown Systems and Trust-

Management Systems, TACAS06, LNCS, vol.3920, pp.1–26, 2006. Springer-Verlag.

– 64 –

Appendix A

Proof of Theorem 1

Proof. This theorem can be proved by induction on the number l of steps to derive

(S, s) ⇓SP(S)
D s′.

(Basis) Assume that l = 0. This implies that s = s′ and S contains no command,

and thus n0 = n1. Since MOV P (n0, n0) equals the identity relation id , (e, e) ∈ MOV P

(n0, n1) for e = proj (s,D) = proj (s′, D).

(Induction step) Assume that l > 0. This implies that S = n0: C; S′. By the defini-

tion of ⇓, (C, s)⇓SP(S)
D s′′ and (S′, s′′)⇓SP(S)

D s′ for some s′′. By the induction hypothesis,

n2 ⇒∗ n1 and (e′′, e′) ∈ MOV P (n2, n1) where n2 = head(S′), n1 = last(S′) = last(S),

e′′ = proj (s′′, D), and e′ = proj (s′, D). On the other hand, for each form of C we

can show that n0 ⇒∗ n2 and (e, e′′) ∈ g1(id ,MOV P (n0, n2)) for the conditional clause,

(e, e′′) ∈ g2(id ,MOV P (n0, n2)) for the procedure call, or (e, e′′) ∈ MOV P (n0, n2) for

the other commands. We conclude that n0 ⇒∗ n1 and (e, e′) ∈ MOV P (n0, n1).

(A) If C = x := E, then by the definition of ⇓, s′′ = s[x 7→ (s(pc)∩SP(n0)∩R)[v]]

for some value v where R = SP(n0) ∩ (
∩

y∈V (E) proj (s(y))). On the other hand, by

the definition of Wπ, n0 ⇒ n2 and (e, e2) ∈ MOV P (n0, n2) for any e ∈ Env and

e2 = e[x 7→ (
∩

y∈V (E) e(y)) ∩ SP(n0) ∩ e(pc)]. Therefore (e, e′′) ∈ MOV P (n0, n2)

when e = proj (s,D) and e′′ = proj (s′′, D). Since MOV P (n0, n1) ⊇ MOV P (n0, n2) ⊗

MOV P (n2, n1), n0 ⇒∗ n1 and (e, e′) ∈ MOV P (n0, n1) where e = proj (s, D) and e′ =

– 65 –

proj (s′, D).

(B) If C = grant R in p(), then by the definition of ⇓, (IS (p), s) ⇓SP(p)
D′ s′′ where

D′ = (D ∪ R) ∩ SP(p). By the induction hypothesis, n3 ⇒∗ n4 and (e3, e4) ∈ MOV P

(n3, n4) where n3 = head(p), n4 = last(p), e3 = proj (s,D′), and e4 = proj (s′′, D′). On

the other hand, by the definition of Wπ, n0 ⇒ n3 n2 and (e, e3) ∈ MOV P (n0, n3n2)

for any e0 ∈ Env and e3 = e[dp 7→ (e(dp) ∪ R) ∩ SP(p)]. Therefore (e, e3) ∈ MOV P

(n0, n3n2) when e = proj (s,D) and e3 = proj (s,D′). Moreover, n3 n2 ⇒∗ n4 n2 ⇒ n2

and MOV P (n3n2, n2) = MOV P (n3n2, n4n2) = MOV P (n3, n4), and thus (e, e4) ∈

MOV P (n0, n2) = MOV P (n0, n3n2) ⊗ MOV P (n3n2, n2) where e = proj (s,D) and

e4 = proj (s′′, D′). By the definition of Wπ, MOV P (n0, n1) = g2(id ,MOV P (n0, n2))⊗

MOV P (n2, n1) and (e, e′′) ∈ g2(id ,MOV P (n0, n2)) where e′′ = proj (s′′, D) since g2

forces e′′(dp) = e(dp). It concludes that n0 ⇒∗ n1 and (e, e′) ∈ MOV P (n0, n1).

(C) Consider the case that C = if E then S1 else S2. Because of the sym-

metricalness of the definition, we assume that the value of E under s is true without

loss of generality. By the definition of ⇓, (S1, s0) ⇓SP(n0)
D s1 and s′′ = s2[pc 7→ s(pc)]

where s0 = s[pc 7→ s(pc) ∩ R], s2 = s1[x 7→ (s(pc) ∩ R ∩ P)[v] | x ∈ W, s1(x) =

P [v]], R = SP(n0) ∩ (
∩

y∈V (E) proj (s(y))), and W = write oracle(S2). By the in-

ductive hypothesis, n3 ⇒∗ n4 and (e3, e4) ∈ MOV P (n3, n4) where n3 = head(S1),

n4 = last(S1), e3 = proj (s0, D), and e4 = proj (s1, D). By the definition of Wπ,

n0 ⇒ n3 n2 and (e, e3) ∈ MOV P (n0, n3n2) for any e ∈ Env and e3 = e[pc 7→ P]

where P = e(pc)∩ SP(n0)∩ (
∩

y∈V (E) e(y)), and thus (e, e3) ∈ MOV P (n0, n3n2) when

e = proj (s, D) and e3 = proj (s0, D). Moreover, n4 ⇒ ε and (e4, e5) ∈ MOV P (n4, ε) for

any e4 ∈ Env and e5 = e4[x 7→ e4(x) ∩ e4(pc) | x ∈ W], and thus (e4, e5) ∈ MOV P

(n4, ε) when e4 = proj (s1, D) and e5 = proj (s2, D). MOV P (n0, n1) ⊇ g1(id ,MOV P

(n0, n2))⊗MOV P (n2, n1) and (e, e′′) ∈ g1(id ,MOV P (n0, n2)) where e′′ = proj (s′′, D)

since g1 forces e′′(pc) = e(pc). It concludes that n0 ⇒∗ n1 and (e, e′) ∈ MOV P (n0, n1).

– 66 –

(D) Consider the case that C = test R then S1 else S2. Because of the symmetri-

calness of the definition, we assume that R ⊆ D without loss of generality. By the defini-

tion of ⇓, (S1, s)⇓SP(S)
D s′′. By the inductive hypothesis, n3⇒∗ n4 and (e, e′′) ∈ MOV P

(n3, n4) where n3 = head(S1), n4 = last(S1), e = proj (s,D), and e′′ = proj (s′′, D). By

the definition of Wπ, n0 ⇒n3 n2 and (e, e) ∈ MOV P (n0, n3n2) for e = proj (s,D) since

R ⊆ D = e(dp). Moreover, n4⇒ε and (e′′, e′′) ∈ MOV P (n4, ε) = id , and thus n0⇒∗n2

and (e, e′′) ∈ MOV P (n0, n2).

(E) If C = test R for x, then by the definition of ⇓, R ⊆ proj (s(x)) and s = s′′.

By the definition of Wπ, n0 ⇒ n2 and (e, e) ∈ MOV P (n0, n2) for e = proj (s,D) =

proj (s′′, D) since R ⊆ e(x) = proj (s(x)).

– 67 –

Appendix B

Code of our EWPDS

Implementation in WALi

Functions we added in the file BitBinRel.cpp made by Nicholas Kidd. These func-

tions manipulate the binary relation we use to represent the weight of the EWPDS.

// { (a, a’[v->1]) | (a, a’) \in this }

binrel_t BinRel::SetVar(int v)

{

check_var(v);

bdd x = bdd_ithvar(POST(v));

return new BinRel(bdd_exist(rel, x) & x);

// x is a predicate that states "POST(v) must equal 1,"

// i.e. x = { (a,a’) | a’(v) = 1 }.

// At the same time, x is the variable set that consists of POST(v).

// bdd_exist(rel, x) = { (a,a’) | (a,a’’) \in this

// and a’(u) = a’’(u) for each u != v }.

// Thus, bdd_exist(...) & x = { (a,a’) | (a,a’’) \in this

// and a’(u) = a’’(u) for each u != v,

// and a’(v) = 1 }.

}

// { (a, a’[v->0]) | (a, a’) \in this }

binrel_t BinRel::ClearVar(int v)

– 68 –

{

check_var(v);

bdd x = bdd_ithvar(POST(v));

return new BinRel(bdd_exist(rel, x) & bdd_not(x));

// bdd_not(x) is a predicate that states "POST(v) must equal 0,"

// i.e. bdd_not(x) = { (a,a’) | a’(v) = 0 }.

}

// { (a, a’[to->a(from)]) | (a, a’) \in this }

binrel_t BinRel::SubstituteVar(int from, int to)

{

check_var(from);

check_var(to);

bdd x = bdd_ithvar(POST(to));

bdd y = bdd_ithvar(PRE(from));

return new BinRel(bdd_exist(rel, x) & bdd_biimp(x, y));

// bdd_biimp(x,y) is a predicate that states "POST(to)=1 iff PRE(from)=1,"

// i.e. bdd_biimp(x,y) = { (a,a’) | a’(to) = a(from) }.

}

// { (a, a’[to->a(to)&a(from)]) | (a, a’) \in this }

binrel_t BinRel::AndVar(int from, int to)

{

check_var(from);

check_var(to);

bdd x = bdd_ithvar(POST(to));

bdd y = bdd_ithvar(PRE(from)) & bdd_ithvar(PRE(to));

return new BinRel(bdd_exist(rel, x) & bdd_biimp(x, y));

}

– 69 –

// { (a, a’[to->a(to)|a(from)]) | (a, a’) \in this }

binrel_t BinRel::OrVar(int from, int to)

{

check_var(from);

check_var(to);

bdd x = bdd_ithvar(POST(to));

bdd y = bdd_ithvar(PRE(from)) | bdd_ithvar(PRE(to));

return new BinRel(bdd_exist(rel, x) & bdd_biimp(x, y));

}

//TestVar is used for the test operation.

binrel_t BinRel::TestVar(int v)

{

check_var(v);

bdd x = bdd_ithvar(PRE(v)) & bdd_ithvar(POST(v));

return new BinRel(bdd_exist(rel, x) & x);

}

//ComposeVar is the operation to compose the weight for the merge function

binrel_t BinRel::ComposeVar(binrel_t w1, int from, int to, int max){

check_var(from);

check_var(to);

check_var(max-1);

bdd x = bdd_ithvar(POST(from));

for(int i = from + 1; i < to; i++){

x = x & bdd_ithvar(POST(i));

}

bdd y = bdd_ithvar(POST(0));

for(int j = 1; j<from; j++){

y = y & bdd_ithvar(POST(j));

}

for(int z = to; z<max; z++){

– 70 –

y = y & bdd_ithvar(POST(z));

}

return new BinRel(bdd_exist(rel, x) & bdd_exist(w1->rel, y));

}

Code of the Resurrecting Duckling example. Because the rest of the examples

follow a very similar structure we selected this program to as representative of all the

examples.

using namespace wali::domains::binrel;

/*

Example program to be analyzed

int x;

void main() {

imprintA() or imprintB(); 0

unprintA() or unprintB(); 1 Permissions A,B

return; 2

}

void imprintA(){

check(x,AB); 3

x= 1; 4 Permission A

return; 5

}

void imprintB(){

check(x,AB); 6

x= 1; 7 Permission B

return; 8

}

– 71 –

void unprintA(){

check(x,A); 9

x= 1; 10 Permissions A,B

return; 11

}

void unprintB(){

check(x,B); 12

x= 1; 13 Permissions A,B

return; 14

}

Permissions availables {xA,xB}

Binary relation {xA,xB,dpA,dpB,pcA,pcB}

*/

int doReach()

{

using wali::Key;

//using wali::wpds::WPDS;

using wali::wpds::ewpds::EWPDS;

using wali::wfa::WFA;

using wali::MyMergeFn;

std::ofstream prf("output.txt");

struct timeval start, end;

long mtime, seconds, useconds;

int nPermissions = 2; //Number of permissions availables

BinRel::initialize(nPermissions*3);

EWPDS myWpds;

– 72 –

Key p = wali::getKey("p");

Key accept = wali::getKey("accept");

Key n[3+nPermissions*6];

int i;

for(i=0 ; i <= (3+nPermissions*6) ; i++) {

std::stringstream ss;

ss << "n" << i;

n[i] = wali::getKey(ss.str());

}

binrel_t ID = BinRel::Id(); //ID weight

binrel_t InprTestW = ID; //Weight of the check operations at the imprint

functions

binrel_t AssigW = ID; //Weight of the assignment operations

for (i = 0; i < nPermissions ; i++){

binrel_t CallWeight = ID->SetVar(nPermissions+i); //Weight for the

CallInprintX. Set 1 the component i of the dynamic permission. In the

first iteration would be the component A because we are calling the

imprintA()

InprTestW = InprTestW->TestVar(i); //We create the weight here

and it will be used later

AssigW = AssigW->SubstituteVar(nPermissions+i,i); //We create the weight here

and it will be used later

for (int j = 0; j < nPermissions; j++){

if(i!=j){

CallWeight = CallWeight->ClearVar(nPermissions+j); //Set to 0 the rest of

the components of the dynamic permission. If we are calling imprintA(),

this will set to 0 the rest of the components (B,C,D...)

}

}

– 73 –

MyMergeFn* mf = new MyMergeFn(CallWeight);

myWpds.add_rule(p, n[0], p, n[3+i*3] ,n[1],CallWeight,mf); //Add the rules

of calling the imprint functions from imprintA to the last

imprintnPermissions

MyMergeFn* mf2 = new MyMergeFn(ID);

myWpds.add_rule(p, n[1], p, n[3+nPermissions*3+i*3] ,n[2],ID,mf2); //Add the

rules of calling the unprint functions from unprintA to the last

unprintnPermissions. Here the dynamic permissions dont change

}

for (i = 0; i < nPermissions; i++){

myWpds.add_rule(p, n[3+i*3], p, n[4+i*3], InprTestW);

//Rules for the Check Operations at the

imprint functions

myWpds.add_rule(p, n[4+i*3], p, n[5+i*3], AssigW);

//Rules for the assignment Operations

at the imprint functions

myWpds.add_rule(p, n[5+i*3], p, ID);

//Rules for the returns

at the imprint functions

myWpds.add_rule(p, n[3+nPermissions*3+i*3], p, n[4+nPermissions*3+i*3],

ID->TestVar(i)); //Rules for the check operations at the unprint

functions

myWpds.add_rule(p, n[4+nPermissions*3+i*3], p, n[5+nPermissions*3+i*3],

AssigW); //Rules for the assignment Operations at the unprint

functions

myWpds.add_rule(p, n[5+nPermissions*3+i*3], p, ID);

//Rules for the returns at the unprint

functions

printf("Iteration2for %d done\n",i);

}

– 74 –

myWpds.add_rule(p, n[2], p, ID);

//Rule for return at

the main function

// Perform poststar query

WFA query;

/*std::cerr*/ prf << "\t> Adding p,n0,acc to query...";

std::cerr<< "\t> Adding p,n0,acc to query...";

query.addTrans(p, n[0], accept, BinRel::Id());

/*std::cerr*/ prf << "> done\n";

std::cerr<< "> done\n";

query.set_initial_state(p);

query.add_final_state(accept);

WFA answer;

gettimeofday(&start,NULL);

myWpds.prestar(query,answer);

gettimeofday(&end,NULL);

seconds = end.tv_sec - start.tv_sec;

useconds = end.tv_usec - start.tv_usec;

printf("PostStar execution time: %ld, %ld, %ld, %ld microseconds\n",

end.tv_sec, start.tv_sec, end.tv_usec, start.tv_usec);

printf("PostStar execution time: %.2f

milliseconds\n",(float)((float)(end.tv_sec - start.tv_sec)*1000 +

(float)(end.tv_usec-start.tv_usec)/1000));

return 0;

} /** end of main **/

– 75 –

int main()

{

doReach();

//while(1);

std::cerr << "# Trans : " << wali::wfa::Trans::numTrans << std::endl;

std::cerr << "# States : " << wali::wfa::State::numStates << std::endl;

std::cerr << "# Rules : " << wali::wpds::Rule::numRules << std::endl;

std::cerr << "# Configs : " << wali::wpds::Config::numConfigs << std::endl;

std::cerr << "# Variables : " << BinRel::getNumVars() << std::endl;

//while(1);

return 0;

}

– 76 –

