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Abstract

Developments of Adaptive Filter Algorithms for

Sparse Channel Estimation

Yingsong Li

Broadband signal transmission becomes a commonly used high-

data-rate technique for next-generation wireless communication sys-

tems, and the coherent detection for such broadband communication

systems strongly depends on the quality of the channel estimation

which can be well estimated by using adaptive filters. Furthermore,

channel measurements have shown that the broadband wireless mul-

tipath channels can often be described as sparse channels. Thus,

developing sparse adaptive filter algorithms for broadband multipath

estimation is becoming an increasing important research topic. In

this dissertation, we aim to develop efficient sparse adaptive filter al-

gorithms for sparse channel estimation applications in terms of the

convergence speed and steady-state performance.

Firstly, we studies the two classes of important adaptive filter al-

gorithms: classical adaptive filter algorithms including least-mean-

square (LMS) and affine projection algorithm (APA), and sparsity-

aware adaptive filter algorithms which include the zero attracting

(ZA) algorithms and the proportionate-type adaptive filter algo-

rithms. We found that the classical adaptive filters have good per-

formance for non-sparse signal estimation while these algorithms per-

form poorly for the sparse channel estimation. Furthermore, ZA and



proportionate-type algorithms have been proposed for sparse system

identifications and echo cancellation applications. However, most of

the ZA algorithms were proposed based on the l1-norm penalty and

LMS algorithms while most of the improved proportionate-type al-

gorithms were concentrated on variable step size technique and gain

matrix modification.

Secondly, we proposed an adaptive reweighted zero-attracting sig-

moid functioned variable step size LMS (ARZA-SVSS-LMS) algo-

rithm based on variable step size technique and adaptive parameter

adjustment method. In order to implement the ARZA-SVSS-LMS al-

gorithm, it was described step-by-step. To begin with, a sigmoid func-

tioned variable step size LMS (SVSS-LMS) algorithm was proposed,

which was an improved variable step size (VSS) LMS algorithm.

Next, the ZA techniques used in zero-attracting LMS (ZA-LMS)

and reweighted ZA-LMS (RZA-LMS) algorithms were incorporated

into the proposed SVSS-LMS algorithm in order to form the zero-

attracting SVSS-LMS (ZA-SVSS-LMS) and reweighted ZA-SVSS-

LMS (RZA-SVSS-LMS) algorithms, respectively. At last, an adaptive

parameter adjustment method was adopted to form the ARZA-SVSS-

LMS algorithm by adjusting the zero-attracting strength in the RZA-

SVSS-LMS algorithm dynamically. The simulation results demon-

strated that the proposed ARZA-SVSS-LMS algorithm can achieve

faster convergence speed and smaller steady-state error in compari-

son with these of the standard LMS and previously proposed sparsity-

aware LMS algorithms.

Thirdly, we proposed a smooth approximation l0-norm-constrained

affine projection algorithm (SL0-APA) to obtain the benefits of both

the APA and ZA algorithms. The proposed SL0-APA algorithm was

realized via incorporating a smooth approximation l0-norm (SL0) into

the cost function of the standard APA in order to construct a zero

attractor, by which the convergence speed and the steady-state per-

formance of the standard APA were significantly improved. Moreover,

the theoretical analysis of the convergence speed and mean square er-



ror (MSE) were given to further understand the proposed SL0-APA.

The simulation results showed that the proposed SL0-APA can achieve

faster convergence speed and better steady-state performance than

the standard APA, zero-attracting affine projection algorithm (ZA-

APA) and reweighted ZA-APA (RZA-APA). In addition, we also pro-

posed a discrete weighted zero-attracting affine projection algorithm

(DWZA-APA) in order to reduce the computation complexity of the

RZA-APA by the introduction of a piece-wise linear function instead

of the sum-logarithm function in the RZA-APA. The simulation re-

sults demonstrated that the DWZA-APA reduced the multiplication

complexity of the RZA-APA and had no channel estimation perfor-

mance reduction in comparison with the RZA-APA in terms of the

convergence speed and steady-state performance.

Finally, we proposed an lp-norm-constrained PNLMS (LP-PNLMS)

algorithm on the basis of the proportionate normalized least-mean-

square (PNLMS) algorithm to avail both the benefits of the PNLMS

algorithm and ZA techniques. The proposed LP-PNLMS algorithm

was realized by incorporating a gain-matrix-weighted lp-norm penalty

into the cost function of the PNLMS algorithm in order to design

a zero attractor. The simulation results showed that the proposed

LP-PNLMS algorithm can achieve the same convergence speed as

that of the PNLMS algorithm at the early iterations, and converged

faster than that of the PNLMS algorithm after the convergence of

the active taps. Furthermore, the LP-PNLMS algorithm has smaller

steady-state error than the PNLMS and its related commonly used

algorithms, namely improved PNLMS (IPNLMS) and µ-law PNLMS

(MPNLMS) algorithms.

Keywords: Least-mean-square, adaptive filter, variable step

size, affine projection algorithm, l1-norm, smooth approximation

l0-norm, lp-norm, proportionate normalized least-mean-square, sparse

channel estimation, compressed sensing, zero-attracting
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Chapter 1

Introduction

With the rapid development of wireless communication, there has been increas-

ing demand for high-data transmission rates and a wide bandwidth in modern

communication systems, which has led to the development of new standards for

various wireless devices such as smartphones, laptops and iPads [1]. Given these

requirements, broadband signal transmission is a strong candidate and an essen-

tial technique for next-generation wireless communication systems. The coherent

detection of such broadband communication systems relies heavily on the qual-

ity of channel estimation. Fortunately, channel measurement results for these

broadband communication systems show that such broadband channels can be

regarded as sparse. On the other hand, sparse signal estimation has become

an increasingly important research area in signal processing owing to its wide

range of applications such as sparse channel estimation, echo cancellation and

image processing. Consequently, corresponding algorithms have been proposed

for these applications based on sparse signal estimation. In particular, with the

development of compressed sensing (CS), many sparse algorithms have been de-

veloped and investigated for sparse signal reconstruction applications. Inspired

by CS theory, the combination of CS theory and adaptive filters has attracted

considerable attention for sparse signal recovery, particularly for sparse system

identification. Thus, the development of adaptive filter algorithms for applica-

1



1. INTRODUCTION

tions based on broadband sparse multipath channel estimation has been a hot

topic in recent years.

1.1 Background overview

1.1.1 Sparse signal definition

A sparse signal is defined as a signal with most of its elements equal to zero or

close to zero and only a few active components whose magnitudes are nonzero

[2–4]. In fact, many practical real-world channels exhibit sparse characteristics

[3, 4] such as multipath wireless channels dominated by a relatively small number

of significant paths [5–9], frequency-selective channels with a large delay spread

and most of the energy localized in small regions with a delay [6, 8, 10, 11], and

multicarrier underwater acoustic channels with significant Doppler effects [12].

1.1.2 Broadband multipath channel

Broadband signal transmission is a commonly used high-data-rate technique for

modern wireless communication systems [2, 5, 6] such as 3GPP long-term evolu-

tion (LTE) and worldwide interoperability for microwave access (WiMAX). Fur-

thermore, the coherent detection for broadband communication systems strongly

depends on quality of the channel estimation [8, 13, 14]. On the other hand,

channel measurements have shown that broadband wireless multipath channels

can often be described by only a small number of propagation paths with long

delays [2, 8, 15, 16]. A case of the such broadband wireless communication which

is used in hilly terrain environments, is shown in Fig. 1.1. Thus, a broadband

multipath channel can be regarded as a sparse channel, having only a few active

impulse responses that are dominant while the other inactive taps are zero or

close to zero. Such channels, an example of which is given in Fig. 1.2, are de-

scribed as sparse channels with a few large impulse responses and are encountered

in a number of different applications. For instance, in high-definition television

2
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1. INTRODUCTION

(HDTV), there are few echoes but the channel response spans many hundreds

of data symbols [8]. For broadband wireless communications, a “hilly terrain”

(HT) delay profile consists of a sparsely distributed multipath, which is shown

in Figs. 1.1 and 1.2. In addition, underwater acoustic channels also exhibit a

similar response in shallow-sea communication systems [12].

1.2 Sparse signal measurement

Recently, a large number of methods have been proposed and used for sparse

signal measurement [17, 18]. One class of effective sparse signal measurement

methods involves utilizing vector norms, which are defined as follows. We consider

the sparse channel vector

h = [ h0 h1 · · · hN−1 ]T ̸= 0, (1.1)

where N > 1 is the length of the channel memory and (·)T denotes the trans-

position operation. The following function is adopted to discuss these norms:

f(hi) =

{
1, hi ̸= 0

0, hi = 0
, (1.2)

The number of active taps whose magnitudes are nonzero in h can be obtained

using the l0-norm and is given by

∥h∥0 =
N−1∑
i=0

f(hi). (1.3)

For h ̸= 0, we have

1 ≤ ∥h∥0 ≤ N. (1.4)

When ∥h∥0 = N , channel h is a nonsparse channel. Furthermore, the function

f(hi) is not a continuous function and solving the l0-norm is a non-polynomial

4



1.3 Sparse channel estimation techniques

(NP)-hard problem [19]. In addition, as a sparse channel, many samples of h can

be very small but not exactly zero because of the additive noise in the channel

such as additive white Gaussian noise. This makes it difficult to use the l0-norm

defined in (1.3) to accurately measure the sparsity of the channel in practical

engineering applications.

The l1, l2 and lp norms of channel h are adopted to measure the channel and

are respectively defined as

∥h∥1 =
N−1∑
i=0

|hi|, (1.5)

∥h∥2 =

√√√√N−1∑
i=0

h2
i =

√
hTh, (1.6)

∥h∥p = (
N−1∑
i=0

hp
i )

1/p. (1.7)

Consequently, these norms have been widely used in compressed sensing for

sparse signal recovery applications [19–22]. In this dissertation, we use these

norms to develop sparse adaptive channel estimation algorithms.

1.3 Sparse channel estimation techniques

To improve the performance of broadband communication systems, channel es-

timation schemes have been adopted to reduce the effects of propagation errors

and noise in the channel [13, 23–26]. For instance, pilot schemes have been pro-

posed and used in orthogonal frequency-division multiplexing (OFDM) channel

estimation [13, 23, 24] to improve the performance of OFDM systems. However,

most of the existing pilot-assisted channel estimation schemes rely on the use of

a large number of pilots to improve the accuracy of the estimation, which reduces

the spectral efficiency. In addition, it is difficult to design pilots and efficient es-

timation algorithms. In this section, we introduce two classes of popular channel

estimation algorithms, namely, compressed sensing and adaptive filter algorithms,

described in sections 1.3.1 and 1.3.2, respectively.

5



1. INTRODUCTION

1.3.1 Compressed sensing

Recently, compressed sensing (CS), which is also known as compressive sensing

or compressed sampling, has emerged as an important topic in signal processing

when the signal is highly sparse [3, 4, 19–22, 27–30]. CS is a novel technique

that combines signal compression and sparse signal recovery, and deals with the

acquisition of sparse signals. The basic mathematical model can be expressed as

u = Φs+ n, (1.8)

where u is the measurement vector, s is an N × 1 sparse signal with K nonzero

elements and K ≪ N , Φ is a measurement matrix with size M × N , n is an

M × 1 noise vectors, and M ≪ N . Then, the sparse signal can be estimated by

using the CS reconstruction algorithms through incomplete measurement u if the

measurement matrix satisfies the restricted isometry property (RIP) [31]. The

reconstructed ŝ can be uniquely obtained by solving the following minimization

problem:

ŝ = argmin
s

{
1

2
∥u−Φs∥22 + λ0∥s∥0

}
, (1.9)

where λ0 is the regularized parameter, which is used for balancing the mean

square error (MSE) and sparsity of s. However, the l0-norm is an NP-hard prob-

lem, making it difficult to use in practical applications. Consequently, the l1-norm

is adopted as a good approximation for measuring a sparse signal and has been

widely investigated [19, 32]. A number of CS reconstruction algorithms have

already been proposed for sparse signal estimation [22, 28, 33–37] such as or-

thogonal matching pursuit (OMP) [28, 33, 34], the least absolute shrinkage and

selection operator (LASSO) [35] and iterative support detection (ISD) [36]. Re-

cently, the CS technique has been widely used in image processing and wireless

communication [38, 39], where highly sparse signals contain sufficient information

to achieve an approximate or exact recovery. In wireless communication, an im-

portant application of CS is to estimate the sparse multipath channel h [39–42].

However, we found that these CS channel estimation algorithms were sensitive

6



1.3 Sparse channel estimation techniques

to the channel inferences. In addition, the measurement matrices are difficult

to design because of the RIP condition and the CS-based channel estimation

algorithms have high computational complexity.

1.3.2 Adaptive filters

Adaptive filters, such as least mean squares (LMS), recursive least squares (RLS)

and Kalman filter algorithms, have been widely studied owing to their effective-

ness for signal estimation and have been applied in channel estimation in wireless

communication systems [43–61]. The ability of adaptive filters to satisfactorily

operate in an unknown channel and track the time variation of channel statis-

tics makes their elployment a powerful and useful method for channel estimation.

The purpose of adaptive channel estimation is to compensate for signal distor-

tion in a wireless multipath propagation channel. In wireless communication

systems, a modulated signal is transmitted from one point to another across a

communication channel such as a fiber-optic cable or a wireless radio link. Dur-

ing the transmission process, the transmitted signal, which contains important

information, may become distorted because of the interference of noise in the com-

munication channel, particularly in a wireless multipath communication channel.

Adaptive channel estimation applies an adaptive filter algorithm to the multipath

communication channel to compensate for this distortion. Adaptive filters acts

as adaptive channel equalizers and have been investigated in code division mul-

tiple access (CDMA), orthogonal frequency-division multiplexing (OFDM) and

multiple-input and multiple-output (MIMO) communication systems [59, 62–65].

Moreover, these adaptive filters are easy to implement in practical engineering

applications. However, classical adaptive filters cannot utilize the sparsity of

the broadband multipath communication channel and hence they perform poorly

when dealing with sparse signals. Thus, it is necessary to develop effective sparse

adaptive filter algorithms for sparse channel estimation to exploit the sparsity of

wireless multipath channels.

7
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1.4 Challenges for sparse channel estimation

With the increasing transmission rate and bandwidth in wireless communication,

the wireless channel length has increased from tens to hundreds or even thousands,

and thus conventional adaptive filters are facing new challenges. On the other

hand, the wireless multipath channel is a sparse channel in broadband wireless

communication systems for hilly and indoor environments. For these reasons,

sparse channel estimation is facing the following challenges:

1. The channel estimation performance of conventional adaptive filter algo-

rithms is reduced for these sparse channel applications in terms of the convergence

speed and steady-state performance. Therefore, the development of adaptive fil-

ter algorithms for sparse channel estimation, which can utilize the sparsity of

the channel and improve the channel estimation performance, is necessary and

desirable.

2. The convergence speed of classical adaptive filter algorithms decreases

with increasing filter length because of their inversely proportional relationship.

The convergence speed can be predicted from the experimental formula R =

10µ(2−µ)/N ln 10 [66], where µ is the step size of the adaptive filter. In particular,

for the sparse channel estimation, there are many inactive taps that are zero or

close to zero, which reduces the convergence speed of classical adaptive filters.

3. The estimation accuracy of conventional adaptive channel estimation algo-

rithms deteriorates in the presence of noise. Furthermore, most of the previously

proposed sparse channel estimation algorithms have a constant step size that

cannot be adjusted to improve the estimation accuracy.

4. The computational complexity of conventional adaptive channel estimation

algorithms increases with the channel length. This increases the cost of consumer

devices such as personal wireless communication applications.

Recently, a number of adaptive filter algorithms and their variants have been

proposed and investigated to overcome one or more of the above drawbacks. In

particular, a class of new adaptive filter algorithms, zero-attracting (ZA) algo-

rithms [67], have been proposed for sparse system identification applications and

applied to sparse channel estimation [2]. However, ZA algorithms were mainly

8
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realized by the incorporation of the l1-norm given by (1.5) into the cost function

of the standard affine projection algorithm (APA) and LMS algorithms. In addi-

tion, they have a fixed step size, which limits the estimation accuracy for sparse

channel estimation applications.

1.5 Motivation

In the hilly and indoor wireless communication environments, the wireless multi-

path channel can be assumed to be sparse, containing only a few active impulse

responses with large coefficients interspersed among many inactive ones. On the

basis of this prior knowledge, channel estimation can be improved by exploiting

the sparsity of the channel. In the past few decades, a number of sparse chan-

nel estimation algorithms have been proposed that use a subset selection scheme

during the filtering process [68–71], which is implemented via sequential partial

updating. Another type of sparse adaptive channel estimation algorithm involves

assigning independent step sizes to different taps according to their magnitudes

such as the proportionate-type algorithms [66].

Driven by the recently developed CS algorithms [19, 30], some efforts has

been made to incorporate CS techniques into adaptive filtering methods to de-

sign more accurate or less complex channel estimation algorithms. For instance,

by combining a CS technique and the Kalman filter algorithm, a new algorithm

named Kalman filtered compressed sensing (KF-CS) has been proposed and ap-

plied to magnetic resonance imaging (MRI) [72]. In this method, a Kalman filter

estimates the support set, which has an important effect on the estimation error.

Moreover, another algorithm combining the CS and least-squares techniques has

been developed to improve the performance of the CS and least-square algorithms

[73]. Recently, other effective sparse signal estimation algorithms, referred as as

ZA algorithms, were proposed by incorporating the l1-norm into the cost function

of the standard LMS algorithm [67].

On the basis of the concept of ZA algorithms and the recent development of CS

theory, we have developed several improved ZA algorithms based on the variable-

step-size technique, affine projection algorithm (APA) [44] and proportionate

9
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normalized least-mean-square (PNLMS) algorithm [66, 74] to further exploit the

sparsity of broadband multipath channels and to improve the channel estimation

performance of classical adaptive filter algorithms.

1.6 Contributions of this thesis

In this dissertation, we mainly propose several sparse adaptive filters based on

the variable-step-size technique, APA and PNLMS algorithm for broadband mul-

tipath channel estimation applications that enhance the convergence speed and

steady-state performance. The main contributions of this dissertation are sum-

marized as follows:

I. An improved variable-step-size LMS algorithm is proposed that is based

on the modification of a sigmoid function used for step size adjustment. This

algorithm is referred as the sigmoid functioned variable step size LMS (SVSS-

LMS) algorithm.

II. A ZA sigmoid functioned variable step size LMS (ZA-SVSS-LMS) algo-

rithm is proposed by incorporating the ZA technique into the proposed SVSS-

LMS algorithm to improve its convergence speed for sparse channel estimation.

Similarly to the reweighted ZA-LMS (RZA-LMS) algorithm, we also propose a

reweighted ZA-SVSS-LMS (RZA-SVSS-LMS) algorithm, which further acceler-

ates the convergence speed of the ZA-SVSS-LMS algorithm.

III. To enhance the robustness of the RZA-SVSS-LMS algorithm, an adaptive

parameter adjustment method is adopted to provide an adaptive ZA strength,

by which both the convergence speed and steady-state performance of the RZA-

SVSS-LMS algorithm are significantly improved.

IV. A smooth approximation l0-norm-constrained APA (SL0-APA) is pro-

posed by the integration of a smooth approximation l0-norm (SL0) into the cost

function of the standard APA, which is equivalent to adding a zero attractor in

its iterations.

V. We propose a low-complexity discrete weighted ZA affine projection al-

gorithm (DWZA-APA), which is realized by using a piece wise linear function

approximation instead of the sum-logarithm function used in the reweighted ZA-

10
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APA (RZA-APA) [75].

VI. We propose an lp-norm-constrained PNLMS (LP-PNLMS) algorithm,

which is realized by the integration of the gain-matrix-weighted lp-norm into the

cost function of the PNLMS algorithm, to improve the convergence speed of the

inactive taps in the PNLMS algorithm and hence reduce the steady-state error.

1.7 Outline

This dissertation is organized as follows:

Chapter 2 briefly reviews the conventional channel estimation algorithms,

including the standard LMS algorithm and its variants, standard APA and its

related ZA-APAs and the previously proposed PNLMS and improved PNLMS al-

gorithms. After reviewing these channel estimation algorithms, we discuss their

advantages and disadvantages. Although some of these algorithms have been

developed for system identification and echo cancellation applications, their dis-

advantages can be mitigated by using the proposed techniques to exploit their

advantages.

Chapter 3 describes our proposed ARZA-SVSS-LMS algorithm, which fur-

ther enhances the robustness of the RZA-LMS algorithm in terms of the con-

vergence speed and steady-state performance. The proposed algorithm is based

on the VSS technique and the adaptive parameter adjustment method. The

ARZA-SVSS-LMS algorithm is described in detail. To begin with, an SVSS-LMS

algorithm is proposed, which is an improved VSS-LMS algorithm. Next, the zero-

attracting (ZA) techniques used in the ZA-LMS and RZA-LMS algorithms are in-

corporated into the proposed SVSS-LMS algorithm to obtain ZA-SVSS-LMS and

RZA-SVSS-LMS algorithms. Finally, an adaptive parameter adjustment method

is adopted to form the ARZA-SVSS-LMS algorithm by providing an adaptive

ZA strength in the RZA-SVSS-LMS algorithm. The proposed ARZA-SVSS-LMS

algorithm and its related channel estimation algorithms are verified via a sparse

channel to evaluate their channel estimation performance.

Chapter 4 introduces a novel algorithm referred as SL0-APA, which is real-

ized via incorporating the SL0 into the cost function of the standard APA to form

11
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a zero attractor. The SL0-APA is mathematically derived and experimentally in-

vestigated on the basis of a multipath communication channel. Furthermore,

its estimation performance is verified over a sparse channel and compared with

the standard APA as well as the previously proposed ZA-APA and reweighted

ZA-APA (RZA-APA). In addition, a convergence analysis of the SL0-APA is

performed to predict the mean square error.

Chapter 5 presents a low-complexity DWZA-APA, which aims to reduce

the computational complexity of the RZA-APA by utilizing a piece wise linear

function approximation instead of the sum-logarithm. The DWZA-APA is inves-

tigated over a sparse channel and a sparse-cluster channel to evaluate its channel

estimation performance in comparison with those of other popular sparse channel

estimation algorithms.

Chapter 6 proposes an LP-PNLMS algorithm to improve the convergence

speed of the inactive taps in the basic PNLMS algorithm. The LP-PNLMS al-

gorithm is realized by incorporating the gain-matrix-weighted lp-norm into the

cost function of the PNLMS algorithm, which is a type of ZA algorithm. The

proposed LP-PNLMS algorithm can accelerate the convergence of the inactive

taps and hence increase the convergence speed of the PNLMS algorithm. The

simulation results obtained from a sparse channel estimation demonstrated that

the LP-PNLMS algorithm can achieve a higher convergence speed and a smaller

steady-state error than the PNLMS algorithm.

Chapter 7 gives a conclusion of the dissertations and suggests future tasks

in developing sparse adaptive filter algorithms for channel estimation and other

applications.

12



Chapter 2

Adaptive filter algorithms for

sparse channel estimation

In this chapter, we review the previously proposed channel estimation algorithms

such as LMS , variable step size LMS (VSS-LMS), normalized least-mean-square

(NLMS) algorithms, and ZA algorithms including ZA-LMS and RZA-LMS algo-

rithms and the proportionate NLMS (PNLMS) algorithms. These algorithms are

discussed on the basis of a sparse multipath communication system.

2.1 Purpose of adaptive channel estimation

The basic task of adaptive channel estimation is to minimize a meaningful error

function by proper setting the parameters of the adaptive filter algorithms. In

the channel estimation, the error function is the difference between the channel

output and the adaptive filter output signals. Thus, the optimal filter parameters

are found via minimization of the cost function of the error signal. One of the

useful methods is to minimize the mean square error of the error signal, which

has been widely studied and investigated in various adaptive filters. The basic
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setup of an adaptive filter system is illustrated in Fig. 2.1.

∑
Adaptive 

filter

Adaptive 
algorithm

( )y n%

( )e n%

( )d n%

( )u n%

Figure 2.1: General adaptive filter configuration.

Here, ũ(n) is the input signal at instant n, ỹ(n) is the output of the adaptive

filter, and d̃(n) denotes the desired signal. The error signal ẽ(n) is the difference

of the desired signal d̃(n) and the output of the adaptive filter ỹ(n), which is

denoted as ẽ(n) = d̃(n) − ỹ(n). Then the adaptive filters are to minimize the

mean square error of the error signal ẽ(n). These adaptive filters have been

widely studied and applied to channel estimation applications, adaptive control

and echo cancellation. Next, we review several popular adaptive filters based on

a typical sparse multipath communication system.

2.2 LMS algorithm and its variants

Based on the fundament of the principle of adaptive filter and the channel esti-

mation task, a number of LMS and its variants are proposed and widely studied

[43, 44, 76–79] and have been used for channel estimation applications. In this

section, we review three classes LMS algorithms based on a multipath communi-

cation system, namely, standard LMS, VSS-LMS and NLMS algorithms.

2.2.1 LMS algorithm

We consider the sparse multipath communication system shown in Fig. 2.2. The

input signal x(n) = [x(n), x(n− 1), · · · , x(n−N + 1)]T which contains the N

14
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most recent samples is transmitted over a finite impulse response (FIR) channel

with channel impulse response (CIR) h = [h0, h1, · · · , hN−1]
T , where (·)T denotes

transposition operation. Then the output signal of the channel is written as

follows:

y(n) = hTx(n), (2.1)

where h is a sparse channel vector with K dominant active taps and K ≪ N . To

estimate the unknown sparse channel h, an LMS adaptive filter uses the input

signal x(n), the output signal y(n), and the instantaneous estimation error e(n),

which is given by

e(n) = r(n)− ĥT (n)x(n), (2.2)

where ĥ(n) is the LMS adaptive channel estimator, r(n) = y(n)+ v(n), and v(n)

is an additive noise at the receiver. On the basis of the LMS algorithm, the cost

function JLMS(n) is given by

JLMS(n) =
1

2
e2(n). (2.3)

Input signal
( )x n

Unknown 

FIR channel

h

Output signal
( )h x

T
n

∑

∑

Additive noise

( )r  n

Estimated 

FIR channel

ˆ ( )h n

+

−

Adaptive 

algorithms

Adaptive channel estimation

( )e n

( )v n

ˆ ( ) ( )h x
T

n n

( )y n +

+

Figure 2.2: Typical sparse multipath communication system.
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Therefore, the LMS adaptive channel estimation is achieved by minimizing

JLMS(n), and update function of the estimated channel can be written as

ĥ(n+ 1) = ĥ(n)− µLMS
∂JLMS(n)

∂ĥ(n)
= ĥ(n) + µLMSe(n)x(n), (2.4)

where µLMS is the step-size such that 0 < µLMS < 1
λmax

, with λmax being the

maximum eigenvalue of the covariance matrix R = E{x(n)xT (n)} of x(n), where

E {·} is the expectation operand. The gradient descent algorithm is adopted to

guarantee the convergence of the LMS algorithm to converge to the optimum

point under an appropriate value of µLMS. The detailed derivation of µLMS can

be found in [2, 43, 44].

2.2.2 VSS-LMS algorithm

The following is a description of variable step size LMS (VSS-LMS) [76]-based

adaptive channel estimation, and whose update equation is described as follows:

ĥ(n+ 1) = ĥ(n)− µVSS(n)
∂JLMS(n)

∂ĥ(n)
= ĥ(n) + µVSS(n)e(n)x(n), (2.5)

where

µVSS(n) =


µmax, µ′(n) > µmax

µmin, µ′(n) < µmin

µ′(n), otherwise

. (2.6)

µ′(n) = κµVSS(n− 1) + χe2(n− 1), 0 < κ < 1, χ > 0. (2.7)

A constant µmax is normally selected near the point of instability of the standard

LMS algorithm to provide required convergence speed, while the value of µmin is

chosen as a compromise between the desired level of steady-state misadjustment

and the required tracking capability of the VSS-LMS algorithm [76]. The param-

eter χ balances the convergence speed as well as the level of the misadjustment of
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the VSS-LMS algorithm. From the update equations (2.5)-(2.7), we can see that

the step size can be adjusted using the mean square misalignment e(n). At the

early stage of the adaptive algorithm, the instantaneous error is large, causing

the step size to increase, thus leading to rapid convergence. With the decrease in

the instantaneous error, the step size decreases, yielding a smaller misadjustment

that is close to the optimum value.

2.2.3 NLMS algorithm

On the basis of the LMS algorithm in Section 2.2.1, the update function of the

NLMS1 algorithm can be written as [77, 80, 81]

ĥ(n+ 1) = ĥ(n) + µNLMS
e(n)x(n)

xT (n)x(n) + δNLMS

, (2.8)

where µNLMS is the step-size, and δNLMS is a small positive constant for preventing

division by zero.

2.3 Zero-attracting LMS algoritms

2.3.1 ZA-LMS algorithm

The ZA-LMS algorithm is a type of sparsity-aware LMS algorithm with an l1-

penalty in its cost function. In the ZA-LMS algorithm, the cost function is

defined by combining the instantaneous square error e(n) with an l1-penalty of

the adaptive channel estimator and is given by

JZA−LMS(n) =
1

2
e2(n) + γZA−LMS

∥∥∥ĥ(n)∥∥∥
1
, (2.9)

1Here, NLMS algorithm can be regarded as a special case of standard LMS algorithm, and
hence it is discussed as a part of the LMS algorithms.
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where γZA−LMS > 0 is a regularization parameter used to balance the estimation

error and the sparse penalty of ĥ(n). Using the gradient descent algorithm, the

update equation of the ZA-LMS algorithm is obtained as follows:

ĥ(n+ 1) = ĥ(n)− µZA−LMS
∂JZA−LMS(n)

∂ĥ(n)

= ĥ(n) + µZA−LMSe(n)x(n)− ρZA−LMSsgn(ĥ(n)),

(2.10)

where ρZA−LMS = µZA−LMSγZA−LMS, 0 < ρZA−LMS < 1.2×10−3 for achieving good

estimation performance [82], and sgn(·) is a component wise sign function defined

as

sgn[ĥi(n)] =


1, ĥi(n) > 0

−1, ĥi(n) < 0

0, ĥi(n) = 0

, 0 ≤ i ≤ N (2.11)

Comparing the update equation (2.10) with the standard LMS update equa-

tion (2.4), we can see that the ZA-LMS algorithm has the additional term

ρZA−LMSsgn(ĥ(n)), denoted as zero attractor, which attracts the small channel

coefficients to zero with high probability. In other words, the zero attractor

speeds up the convergence speed of the ZA-LMS algorithm when most of the

channel taps are zero. Additionally, the attractor strength is controlled using the

parameter ρZA−LMS.

For the ZA-LMS algorithm, it exploits the sparsity of the wireless multipath

channel and can speed up the convergence speed of standard LMS algorithm.

Furthermore, in the sparse channel, the number of dominant active taps are

important, which has direct effect on the Carmer-Rao lower bound (CRLB) the

computational complexity and has been verified by Theorem 1 and the detailed

proof is given in Appendix A [2, 43].

Theorem 1 Assume a channel vector h with length of N , and the step-size µLMS

satisfies the 0 < µLMS < 1
λmax

, then the mean square error (MSE) lower bound of

the standard LMS channel estimator is B = µLMSPN/(2 − µLMSλmin) ∼ O(N),
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where P denotes the unit power of gradient noise and λmin denotes the minimum

eigenvalue of R. If the channel h is a sparse channel which contains K active

taps and K ≪ N , then the MSE lower bound channel estimator of the sparse

channel can be described as Bs = µLMSPK/(2− µLMSλmin) ∼ O(K).

According to the Theorem 1, it is very important to design adaptive sparse

channel estimation algorithms, which can not only improve the channel estimation

performance but also can reduce the complexity of these algorithms.

2.3.2 RZA-LMS algorithm

Since the ZA-LMS algorithm cannot distinguish the difference between zero taps

and nonzero taps [67], the same penalty is applied to all the taps, which forces all

the taps to become zero uniformly. Therefore, the performance is degraded for

less sparse systems. Motivated by CS theory [19, 30, 35] and the reweighted l1-

norm minimization recovery algorithm [83], a heuristic approach to heighten the

zero attractor was proposed, named the reweighted zero-attracting LMS (RZA-

LMS) algorithm [67]. In the RZA-LMS algorithm, the cost function is defined as

JRZA−LMS(n) =
1

2
e2(n) + γRZA−LMS

N∑
i=1

log(1 + εRZA−LMS

∣∣∣ĥi(n)
∣∣∣), (2.12)

where γRZA−LMS > 0 is the regularization parameter and εRZA−LMS > 0 is the

positive threshold. In the RZA-LMS algorithm, the
N∑
i=1

log(1 + εRZA−LMS

∣∣∣ĥi(n)
∣∣∣)

is adopted instead of
∥∥∥ĥ(n)∥∥∥

1
in the ZA-LMS algorithm, because

N∑
i=1

log(1 + εRZA−LMS

∣∣∣ĥi(n)
∣∣∣) is more similar to the l0-norm [67]. Then the ith
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channel coefficient ĥi(n) can be updated using the following equation:

ĥi(n+ 1) = ĥi(n)− µRZA−LMS
∂JRZA−LMS(n)

∂ĥi(n)

= ĥi(n) + µRZA−LMSe(n)xi(n)− ρRZA−LMS
sgn(ĥi(n))

1 + εRZA−LMS

∣∣∣ĥi(n)
∣∣∣ .

(2.13)

Equation (2.13) can be expressed in vector form as

ĥ(n+ 1) = ĥ(n) + µRZA−LMSe(n)x(n)− ρRZA−LMS
sgn(ĥ(n))

1 + εRZA−LMS

∣∣∣ĥ(n)∣∣∣ , (2.14)

where ρRZA−LMS = µRZA−LMSγRZA−LMSεRZA−LMS. Note that the reweighted zero

attractor only effects on the taps whose magnitudes are comparable to the pa-

rameter 1/εRZA−LMS, while little shrinkage is exerted on taps whose magnitudes

are much greater than 1/εRZA−LMS. In addition, in the RZA-LMS algorithm,

εRZA−LMS is constant.

2.3.3 ZA-NLMS algorithm

From the discussions of the NLMS algorithm in Section 2.2.3 and the zero at-

tractor in the ZA-LMS algorithms (Section 2.3.1), the update function of the

ZA-NLMS algorithm can be written as [2, 84]

ĥ(n+ 1) = ĥ(n) + µZA−NLMS
e(n)x(n)

xT (n)x(n) + δNLMS

− ρZA−NLMSsgn(ĥ(n)), (2.15)

where µZA−NLMS is the step-size of the ZA-NLMS algorithm, and ρZA−NLMS is a

regularization parameter.

20



2.4 APA and its zero-attracting algorithms

2.3.4 RZA-NLMS algorithm

On the basis of the NLMS and the zero-attracting algorithms [67], the concepts

of reweighted zero-attracting is expanded to the NLMS algorithm in order to

form the RZA-NLMS algorithm. Thus, the update function of the RZA-NLMS

is [2, 84]

ĥ(n+1) = ĥ(n)+µRZA−NLMS
e(n)x(n)

xT (n)x(n) + δNLMS

−ρRZA−NLMS
sgn(ĥ(n))

1 + εRZA−NLMS

∣∣∣ĥ(n)∣∣∣ ,
(2.16)

where µRZA−NLMS is the step-size of the RZA-NLMS algorithm, and ρRZA−NLMS

is a regularization parameter.

2.4 APA and its zero-attracting algorithms

The affine projection algorithm (APA) is another popular method in adaptive

filtering applications [44, 61, 77, 85], with its complexity and estimation perfor-

mance intermediary between the LMS and RLS algorithms. The APA reuses

old data resulting in fast convergence, and is also an improved normalized LMS

(NLMS) algorithm that converges faster than the standard LMS algorithm. Sub-

sequently, l1-norm penalized APA has been proposed to render the standard

APA suitable for sparse signal estimation applications [75]. In this section,

we discuss the APA and its zero-attracting algorithms based on a sparse mul-

tipath communication system shown in Fig. 2.3, which has a little difference

from the Fig. 2.2 because of the reusing data scheme in APAs. The input signal

x(n) = [x(n), x(n− 1), · · · , x(n−N + 1)]T containing the N most recent sam-

ples is transmitted over a finite impulse response (FIR) channel with channel

impulse response (CIR) h = [h0, h1, · · · , hN−1]
T , where (·)T denotes the transpo-

sition. The input signal x(n) is also used as an input for an adaptive filter ĥ(n)

with N coefficients to produce an estimation output ŷ(n), and the received signal

r(n) = y(n) + v(n) is obtained at the receiver.
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Figure 2.3: Typical sparse multipath communication system based on APA chan-
nel estimation algorithms.

2.4.1 Affine projection algorithm (APA)

The channel estimation technique called the standard APA estimates the un-

known sparse channel h using the input signal x(n) and the output signal y(n).

In the standard APA, let us assume that we keep the last Q input signal x(n) to

form the matrix U(n) as follows [44]:

U(n) =


xT (n)

xT (n− 1)
...

xT (n−Q+ 1)



=


x(n) x(n− 1) · · · x(n−N + 1)

x(n− 1) x(n− 2) · · · x(n−N)
...

...
. . .

...

x(n−Q+ 1) x(n−Q) · · · x(n−N −Q+ 2)

 ,

(2.17)

where Q denotes the projection order of the APA. Furthermore, we also define

some vectors representing reusing results at a given instant n, such as the output
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y(n) of the channel, the output ŷ(n) of the filter, the received signal r(n) and

the additive white Gaussian noise vector v(n) and these vectors are expressed as

y(n) = U(n)h =


y(n)

y(n− 1)
...

y(n−Q+ 1)

 , (2.18)

ŷ(n) = U(n)ĥ(n) =


ŷ(n)

ŷ(n− 1)
...

ŷ(n−Q+ 1)

 , (2.19)

v(n) =


v(n)

v(n− 1)
...

v(n−Q+ 1)

 , (2.20)

r(n) =


r(n)

r(n− 1)
...

r(n−Q+ 1)

 . (2.21)

From the equations (2.17)-(2.21), the instantaneous error e(n) can be written

as

e(n) =


e(n)

e(n− 1)
...

e(n−Q+ 1)

 =


r(n)− ŷ(n)

r(n− 1)− ŷ(n− 1)
...

r(n−Q+ 1)− ŷ(n−Q+ 1)

 = r(n)− ŷ(n).

(2.22)
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As for the channel estimation, the purpose of the APA is to minimize

∥∥∥ĥ(n+ 1)− ĥ(n)
∥∥∥2

subject to :

r(n)−U(n)ĥ(n+ 1) = 0

. (2.23)

The APA maintains the next coefficient ĥ(n+1) as close as possible to the current

coefficient ĥ(n), and minimizes the posteriori error to zero at the same time. Here,

the Lagrange multiplier method is used to find out the solution that minimizes

the cost function JAPA(n) of the APA

JAPA(n) =
∥∥∥ĥ(n+ 1)− ĥ(n)

∥∥∥2

+ [r(n)−U(n)ĥ(n+ 1)]TλAPA, (2.24)

where λAPA is a Q × 1 vector of Lagrange multiplier and λAPA =

[ λ0 λ1 · · · λQ−1 ]T . The equation (2.24) can be rewritten as

JAPA(n) = [ĥ(n+ 1)− ĥ(n)]T [ĥ(n+1)− ĥ(n)] + [rT (n)− ĥT (n+1)UT (n)]λAPA.

(2.25)

Then, the gradient of JAPA(n) with respect to ĥ(n+ 1) is given by

∂JAPA(n)

∂ĥ(n+ 1)
= 2ĥ(n+ 1)− 2ĥ(n)−UT (n)λAPA. (2.26)

After setting the gradient of JAPA(n) with respect to ĥ(n + 1) equal to zero,

we get

ĥ(n+ 1) = ĥ(n) +
1

2
UT (n)λAPA. (2.27)

Multiplying U(n) on both sides of equation (2.27), we have

U(n)ĥ(n+ 1) = U(n)ĥ(n) +
1

2
U(n)UT (n)λAPA. (2.28)
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By taking the constraint condition of equation (2.23) into consideration, we

have

r(n) = U(n)ĥ(n) +
1

2
U(n)UT (n)λAPA. (2.29)

Taking equations (2.19), (2.22) and (2.28) into account, we can get

e(n) =
1

2
U(n)UT (n)λAPA. (2.30)

Then

λAPA = 2[U(n)UT (n)]−1e(n). (2.31)

The update equation is now given by (2.27) with λAPA being the solution of (2.30)

and is expressed as

ĥ(n+ 1) = ĥ(n) +UT (n)[U(n)UT (n)]−1e(n) = ĥ(n) +U+(n)e(n), (2.32)

where U+(n) = UT (n)[U(n)UT (n)]−1. The above update equation corresponds

to the conventional APA with unity convergence factor [44]. In the practical

engineering applications, a convergence factor µAPA, also known as step size, is

adopted to tradeoff the mean square misadjustment and convergence speed, and

thus, the update equation (2.32) can be rewritten as

ĥ(n+ 1) = ĥ(n) + µAPAU
T (n)[U(n)UT (n)]−1e(n) = ĥ(n) + µAPAU

+(n)e(n).

(2.33)

In general, the step-size µAPA should be chosen in the range 0 < µAPA < 2

to control the convergence speed and the steady-state behavior of the APA. It

is worth noting that the APA becomes familiar normalized least mean square

(NLMS) when the Q = 1.
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2.4.2 Zero-attracting affine projection algorithm (ZA-

APA)

To improve the performance of the standard APA and to utilize the sparsity

property of the sparse multipath communication channel, an l1-penalty term is

cooperated into the cost function of the equation (2.24), which is known as zero-

attracting affine projection algorithm (ZA-APA) [75]. In the ZA-APA, the cost

function is defined by combining the cost function JAPA(n) of standard APA with

l1-penalty of the channel estimator and is given by

JZA−APA(n) =
∥∥∥ĥ(n+ 1)− ĥ(n)

∥∥∥2

+ [r(n)−U(n)ĥ(n+ 1)]TλZA−APA

+γZA−APA

∥∥∥ĥ(n+ 1)
∥∥∥
1
,

(2.34)

where λZA−APA is the vector of Lagrange multiplier with Q × 1. γZA−APA > 0

is a regularization parameter to balance the estimation error and the sparse l1-

penalty of ĥ(n+ 1). In order to minimize the cost function JZA−APA(n), we use

the Lagrange multiplier to calculate its gradient, which is expressed as

∂JZA−APA(n)

∂ĥ(n+ 1)
= 2ĥ(n+ 1)− 2ĥ(n)−UT (n)λZA−APA + γZA−APAsgn[ĥ(n+ 1)],

(2.35)

where sgn[·] is a component-wise sign function defined as

sgn[x] =


x

|x|
, x ̸= 0

0, x = 0
. (2.36)

As is known to us all, the minimum is obtained by letting
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∂JZA−APA(n)/∂ĥ(n+ 1) = 0. Thus, we can get

ĥ(n+ 1) = ĥ(n) +
1

2
UT (n)λZA−APA − 1

2
γZA−APAsgn[ĥ(n+ 1)]. (2.37)

Multiplying both sides by U(n) of (2.37), we can obtain

U(n)ĥ(n+1) = U(n)ĥ(n)+
1

2
U(n)UT (n)λZA−APA−

1

2
γZA−APAU(n)sgn[ĥ(n+1)].

(2.38)

Considering the constraint condition of equations (2.23), we can get the fol-

lowing expression

r(n) = U(n)ĥ(n)+
1

2
U(n)UT (n)λZA−APA−

1

2
γZA−APAU(n)sgn[ĥ(n+1)]. (2.39)

From the above discussion, we know that e(n) = r(n)−U(n)ĥ(n). Thus, the

Lagrange multiplier vector λZA−APA is obtained

λZA−APA = [U(n)UT (n)]−1{2e(n) + γZA−APAU(n)sgn[ĥ(n+ 1)]}. (2.40)

Substituting (2.40) into (2.37) and assuming that sgn[ĥ(n + 1)] ≈ sgn[ĥ(n)],

we can obtain the update function of the ZA-APA

ĥ(n+ 1) = ĥ(n) +U+(n)e(n) +
1

2
γZA−APAU

+(n)U(n)sgn[ĥ(n)]

−1

2
γZA−APAsgn[ĥ(n)]

. (2.41)

To balance the convergence speed and steady-state error, a step-size µZA−APA

is introduced and integrated into (2.41). Then, equation (2.41) can be rewritten
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as

ĥ(n+ 1)=ĥ(n) + µZA−APAU
+(n)e(n) +

1

2
γZA−APAU

+(n)U(n)sgn[ĥ(n)]

−1

2
γZA−APAsgn[ĥ(n)].

.

(2.42)

Comparing the update function (2.42) of the ZA-APA with the update func-

tion (2.33) of the standard APA, we find that there are two additional terms

in (2.42) which attract the tap coefficients to zero when the tap magnitudes of

the sparse channel are close to zero. These two additional terms are zero attrac-

tors whose attracting strengths are controlled by γZA−APA. Intuitively, the zero

attractor can speed the convergence of ZA-APA when the majority taps of the

channel of h are zero or close to zero, such as sparse channel.

2.4.3 Reweighted zero-attracting affine projection algo-

rithm (RZA-APA)

Unfortunately, the ZA-APA cannot distinguish the zero taps and the non-zero

taps of the sparse channel, and it exerts the same penalty on all the channel taps,

which forces all the taps to zero uniformly [67, 75]. Therefore, the performance of

the ZA-APA is degraded when the channel is a less sparse one. In order to improve

the performance of the ZA-APA and to solve this problem, a heuristic approach

first reported in [83] and employed in [67, 75] to reinforce the zero attractor

was proposed and was denoted as reweighted zero-attracting affine projection

algorithm (RZA-APA). In the RZA-APA,
N∑
i=1

log(1 + εRZA−APA

∣∣∣ĥi(n)
∣∣∣) is adopted

instead of
∥∥∥ĥ(n)∥∥∥

1
. Thus, the cost function of the RZA-APA can be written as

JRZA−APA(n) =
∥∥∥ĥ(n+ 1)− ĥ(n)

∥∥∥2

+ [r(n)−U(n)ĥ(n+ 1)]TλRZA−APA

+γRZA−APA

N∑
i=1

log(1 + εRZA−APA

∣∣∣ĥi(n+ 1)
∣∣∣) ,

(2.43)
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where γRZA−APA > 0 is a regularization parameter, and εRZA−APA > 0 is a positive

threshold, and λRZA−APA is the vector of the Lagrange multiplier with size ofQ×1.

The Lagrange multiplier is used for calculating the minimization of JRZA−APA(n)

and the gradient of JRZA−APA(n) can be expressed as

∂JRZA−APA(n)

∂ĥ(n+ 1)
= 2ĥ(n+ 1)− 2ĥ(n)−UT (n)λRZA−APA

+γRZA−APA
sgn[ĥ(n+ 1)]

1 + εRZA−APA

∣∣∣ĥ(n+ 1)
∣∣∣ .

(2.44)

Let ∂JRZA−APA(n)/∂ĥ(n+ 1) = 0 and assume

sgn[ĥ(n+ 1)]/(1 + εRZA−APA

∣∣∣ĥ(n+ 1)
∣∣∣) ≈ sgn[ĥ(n)]/(1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣),
and then we can get

ĥ(n+ 1) = ĥ(n) +
1

2
UT (n)λRZA−APA − 1

2
γRZA−APA

sgn[ĥ(n)]

1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣ . (2.45)

By multiplying U(n) on both sides of (2.45), the following equation can be

obtained

U(n)ĥ(n+ 1) = U(n)ĥ(n) + 1
2
U(n)UT (n)λRZA−APA

−1

2
γRZA−APAU(n)

sgn[ĥ(n)]

1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣ . (2.46)

Taking (2.23) and (2.46) into consideration, we can get

r(n) = U(n)ĥ(n) +
1

2
U(n)UT (n)λRZA−APA

−1

2
γRZA−APAU(n)

sgn[ĥ(n)]

1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣ . (2.47)
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Thus, the Lagrange multiplier vector λRZA−APA is obtained

λRZA−APA = [U(n)UT (n)]−1{2e(n) + γRZA−APAU(n)
sgn[ĥ(n)]

1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣},
(2.48)

where e(n) = r(n) − U(n)ĥ(n). Substituting (2.48) into (2.45), we can get the

update equation of the RZA-APA

ĥ(n+ 1) = ĥ(n) +U+(n)e(n) +
1

2
γRZA−APAU

+(n)U(n)
sgn[ĥ(n)]

1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣
−1

2
γRZA−APA

sgn[ĥ(n)]

1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣
.

(2.49)

Similarly, a step size µRZA−APA is introduced and cooperated into (2.49) to

balance the convergence speed and the steady-state error of the RZA-APA. Then,

equation (2.49) can be rewritten as

ĥ(n+ 1) = ĥ(n) + µRZA−APAU
+(n)e(n)

+
1

2
γRZA−APAU

+(n)U(n)
sgn[ĥ(n)]

1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣ − 1

2
γRZA−APA

sgn[ĥ(n)]

1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣ .

(2.50)

From the analysis and the priori knowledge of the sparse channel, we know

that the RZA-APA is more sensitive to taps with small magnitudes. Note that the

reweighted zero attractor mainly effects taps whose magnitudes are comparable

to 1/εRZA−APA while has less shrinkage exerted on
∣∣∣ĥ(n)∣∣∣ ≫ 1/εRZA−APA. Thus,

the RZA-APA can improve steady-state performance compared to the ZA-APA.

2.5 Proportionate-type adaptive filters

On the basis of the analysis and the prior knowledge, we know that PNLMS algo-

rithm is another type of sparse adaptive filter algorithm, which has been proposed
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to exploit the sparsity in nature, and has been applied for echo cancellation in

telephone networks. Recently, many improved PNLMS algorithms [74, 86–93] has

been proposed by using variable step size technique and l1-norm technique. Fur-

thermore, improved PNLMS (IPNLMS) [86] and the µ-law PNLMS (MPNLMS)

[87] are two commonly used algorithms. Thus, in this section, we review the

PNLSM, IPNLMS and MPNLMS algorithms.

2.5.1 Proportionate normalized least mean square algo-

rithm

The PNLMS algorithm, which is an NLMS algorithm improved by the use of

a proportionate technique, has been proposed for sparse system identification

and echo cancellation [66]. In this algorithm, each tap is assigned an individual

step size, which is obtained from the previous estimation of the filter coefficient.

According to the gain allocation rule in this algorithm, the greater the magnitude

of the tap, the larger the step size assigned to it, and hence the active taps

converge quickly. The update function of the PNLMS algorithm [66] is described

by the following equation with reference to Fig. 2.2.

ĥ(n+ 1) = ĥ(n) + µPNLMS
e(n)G(n)x(n)

xT (n)G(n)x(n) + δPNLMS

(2.51)

Here, G(n), which denotes as the gain matrix, is a diagonal matrix that modifies

the step size of each tap, µPNLMS is the global step size of the PNLMS algorithm

and δPNLMS = δ2x/N is a regularization parameter to prevent division by zero at

the initialization stage, where δ2x is the power of the input signal x(n). In the

PNLMS algorithm, the gain matrix G(n) is given by

G(n) = diag(g0(n), g1(n), · · · , gN−1(n)), (2.52)
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where the individual gain gi(n) is defined as

gi(n) =
γi(n)

N−1∑
i=0

γi(n)

, 0 ≤ i ≤ N − 1 (2.53)

with

γi(n) = max[ρg max[δp,
∣∣∣ĥ0(n)

∣∣∣ , ∣∣∣ĥ1(n)
∣∣∣ , · · · , ∣∣∣ĥN−1(n)

∣∣∣], ∣∣∣ĥi(n)
∣∣∣], (2.54)

where the parameters δp and ρg are positive constants with typical values of

δp = 0.01 and ρg = 5/N . δp is used to regularize the updating at the initial stage

when all the taps are initialized to zero, and ρg is used to prevent ĥi(n) from

stalling when it is much smaller than the largest coefficient.

2.5.2 Improved IPNLMS algorithm

The IPNLMS algorithm is a type of PNLMS algorithm used to improve the

convergence speed of the PNLMS algorithm. It is a combination of the PNLMS

and NLMS algorithms with the relative significance of each coefficient controlled

by a factor α. The IPNLMS algorithm [86] adopts the l1-norm to enable the

smooth selection of (2.54), and the update equation of the IPNLMS algorithm is

expressed as

ĥ(n+ 1) = ĥ(n)− µIPNLMS
e(n)K(n)x(n)

xT (n)K(n)x(n) + δIPNLMS

, (2.55)

whereK(n) = diag(k0(n), k1(n), · · · , kN−1(n)) is a diagonal matrix used to adjust

the step size of the IPNLMS algorithm, where

kj(n) =
1− α

2N
+ (1 + α)

∣∣∣ĥj(n)
∣∣∣

2
∥∥∥ĥ(n)∥∥∥

1
+ ε

, 0 ≤ j ≤ N − 1 (2.56)
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for a small positive constant ε and −1 ≤ α ≤ 1. At the initial stage, the step

size is multiplied by (1− α)/2N , since all the filter coefficients are initialized

to zero. Thus, in the IPNLMS algorithm, a regularization parameter δIPNLMS is

introduced, which is given by

δIPNLMS =
1− α

2N
δNLMS. (2.57)

We can see that the IPNLMS is identical to the NLMS algorithm for α = −1,

while the IPNLMS behaves identically to the PNLMS algorithm when α = 1. In

practical engineering applications, a suitable value for α is 0 or −0.5.

2.5.3 µ-law PNLMS algorithm

The µ-law PNLMS algorithm (MPNLMS) [87] is another enhancement of the

PNLMS algorithm that utilizes the logarithm of the magnitudes of the filter

coefficients instead of using the magnitudes directly in the PNLMS algorithm.

The update equation is the same as that in the PNLMS algorithm given by

(2.51). In the MPNLMS algorithm,

γi(n) = max[ρg max[δpF (
∣∣∣ĥ0(n)

∣∣∣), F (
∣∣∣ĥ1(n)

∣∣∣), · · · , F (
∣∣∣ĥN−1(n)

∣∣∣)], F (
∣∣∣ĥi(n)

∣∣∣)],
(2.58)

where

F (
∣∣∣ĥi(n)

∣∣∣) = log(1 + ϑ
∣∣∣ĥi(n)

∣∣∣), (2.59)

where ϑ is a large positive constant related to the estimation accuracy require-

ment, typically ϑ = 1000.

2.6 Conclusion

In this chapter, a review of adaptive filter algorithms has been introduced on

the basis of the sparse multipath communication system. We reviewed the stan-
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dard LMS algorithm and its variants as well as its related zero-attracting al-

gorithms, namely ZA-LMS and RZA-LMS algorithms. In addition, we also re-

viewed the APA and its related zero-attracting algorithms. Finally, we discussed

the PNLMS, IPNLMS and MPNLMS algorithms, which are also developed for

sparse signal estimation applications. Then, we discuss the proposed adaptive

sparse channel estimation algorithms in the next four chapters.
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Chapter 3

Zero-Attracting Variable Step

Size Least-Mean-Square

Algorithms

3.1 Introduction

Since the standard LMS and the VSS-LMS algorithms discussed in Sections

2.2.1 and 2.2.2 cannot utilize the property of sparse channels, we propose an

adaptive reweighted zero-attracting sigmoid functioned variable step size LMS

(ARZA-SVSS-LMS) algorithm [94] that is comprised of sigmoid functioned vari-

able step size LMS (SVSS-LMS), zero-attracting SVSS-LMS (ZA-SVSS-LMS),

reweighted ZA-SVSS-LMS (RZA-SVSS-LMS) algorithms and adaptive parame-

ter adjustment method. In this algorithm, the SVSS-LMS is a type of VSS-

LMS algorithms that utilizes a sigmoid function, while the ZA-SVSS-LMS and

the RZA-SVSS-LMS algorithms are realized by incorporating ZA-LMS and RZA-

35



3. ZERO-ATTRACTING VARIABLE STEP SIZE
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LMS techniques into our proposed SVSS-LMS algorithm. The ARZA-SVSS-LMS

algorithm is implemented by using an adaptive parameter adjustment method in

our proposed RZA-SVSS-LMS algorithm, by which the benefits of the ARZA-

SVSS-LMS algorithm are twofold. First, the convergence speeds of the proposed

algorithms are increased by the introducing sigmoid function step size control

methods based on the information provided by the mean square estimation er-

ror. Second, the steady-state misalignment is reduced by the incorporating an

adaptive parameter adjustment method [95] into our proposed RZA-SVSS-LMS

algorithm, particularly in a high signal-to-noise (SNR) environment. In addition,

the relevant parameters in the proposed algorithms, which control the convergence

speed and steady-state misalignment, are discussed qualitatively. The proposed

algorithms are used for sparse channel estimation, and the results of a simulation

demonstrate that the proposed algorithms significantly outperform the ZA-LMS,

RZA-LMS and standard LMS algorithms.

3.2 Proposed ARZA-SVSS-LMS algorithms

In this section, we propose a robust sparse channel estimation algorithm denoted

as ARZA-SVSS-LMS step-by-step. First, we propose an SVSS-LMS algorithm

which significantly improves the convergence speed and the steady-state perfor-

mance of the VSS-LMS algorithm. Then, we propose the ZA-SVSS-LMS and

RZA-SVSS-LMS algorithms on the basis of the SVSS-LMS, ZA-LMS and RZA-

LMS algorithms. Finally, we present our ARZA-SVSS-LMS algorithm by the

use of adaptive parameter adjustment method in our proposed RZA-SVSS-LMS

algorithm [94].

3.2.1 Proposed SVSS-LMS algorithm

Inspired by the VSS-LMS algorithm [76], several VSS-LMS algorithms based

on sigmoid functions have been proposed [96, 97]. One of the step size update
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functions in [96] is

µ(n) = β(
1

1 + e−α|e(n)| − 0.5), (3.1)

where α > 0 and β > 0. Although this VSS-LMS algorithm speeds up the

convergence and can achieve low steady-state misadjustment, its sigmoid function

is complex and µ(n) changes so rapidly when |e(n)| is close to zero. To reduce

the complexity of the sigmoid function and improve the performance of the this

VSS-LMS algorithm, we propose an SVSS-LMS algorithm with easy and flexible

implementation by modifying the sigmoid function.

On the basis of the conventional VSS-LMS algorithm discussed in Section 2.2.2

and the concept of the sigmoid function mentioned above, an SVSS-LMS algo-

rithm is proposed with a variable step size given by

µSVSS(n) = β(1− e−α|e(n)|m), (3.2)

where m > 0, α > 0 and β > 0, which are used to control µSVSS(n). The

relationship between the instantaneous error e(n) and the step size µSVSS(n) is
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Figure 3.1: Parameter effects on µSVSS(n).
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illustrated in Fig. 3.1 to give a better understanding of this sigmoid function.

It can be seen from Fig. 3.1a that in the early stages of adaptation, since the

error |e(n)| is large, a large µSVSS(n) is obtained. In this case, rapid convergence

can be achieved for the proposed SVSS-LMS algorithm. On the other hand, with

the increase in parameter α, the step size varies sharply, which may lead to a large

mean squares misadjustment even when |e(n)| is small. Moreover, we can also

see that the step size µSVSS(n) is proportional to β. When β is small, a smaller

µSVSS(n) is obtained, which results in a slower convergence of the system, lower

capacity of tracking the time-varying channel and less robustness. In contrast, a

larger β may lead to rapid changes µSVSS(n) which will cause the oscillation of

the system. To improve the system’s robustness and to make the system follow

the time-varying channel rapidly with faster convergence in the initial stage and a

smaller steady-state error in the steady stage, a parameterm is adopted to further

control the step size µSVSS(n). We can see from Fig. 3.1b that a small |e(n)| will
result in a large µSVSS(n) when m is small. With increasing of m, the learning

curve of µSVSS(n) is getting smoother. Thus, we conclude that the parameters α, β

and m can be used to control the step size µSVSS(n). In practical applications, we

should select these parameters carefully to balance the convergence speed and the

steady-state error and to meet the time-varying channel-tracking requirements.

On the basis of the discussion of the proposed sigmoid function and the anal-

ysis of the VSS-LMS algorithm in Section 2.2.2, an SVSS-LMS algorithm is pro-

posed for channel estimation. The update equation of the proposed SVSS-LMS

is

ĥ(n+ 1) = ĥ(n)− µSVSS(n)
∂JLMS(n)

∂ĥ(n)
= ĥ(n) + µSVSS(n)e(n)x(n), (3.3)

where µSVSS(n) is given by (3.2). In the initial convergence phase, as |e(n)| is
large, a large µSVSS(n) is obtained to ensure that the SVSS-LMS algorithm con-

verges more rapidly. When the algorithm reaches a steady state, |e(n)| becomes

smaller and µSVSS(n) reaches a minimum, meaning that we can obtain the best

Wiener value. Thus, the performance is superior to those of the standard LMS

and VSS-LMS algorithms because SVSS-LMS can effectively adjust the step-size
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as VSS-LMS by using a sigmoid function while maintaining the immunity against

independent noise disturbance.

3.2.2 Proposed ZA-SVSS-LMS algorithm

According to the above discussions, the steady-state error is proportional to the

step size while the convergence is inversely proportional to the step size. To

improve the performance of the above LMS algorithms, many step-size control

methods have been proposed and investigated. In this subsection, the SVSS-LMS

method is adopted to improve the previously proposed sparse LMS algorithms.

By combining the SVSS-LMS technique and the ZA-LMS method, we propose a

ZA-SVSS-LMS algorithm which is a ZA-LMS algorithm with a sigmoid functioned

variable step size discussed in Section 3.2.1. The cost function of the ZA-SVSS-

LMS algorithm is given by (3.4) and its update equation is given by (3.5).

JZA−LMS(n) =
1

2
e2(n) + γZA−LMS

∥∥∥ĥ(n)∥∥∥
1
, (3.4)

ĥ(n+ 1) = ĥ(n)− µSVSS(n)
∂JZA−LMS(n)

∂ĥ(n)
= ĥ(n) + µSVSS(n)e(n)x(n)

−ρZA−LMSsgn(ĥ(n)).

(3.5)

Here the step-size µSVSS(n) is obtained from (3.2), γZA−LMS > 0 is a regularization

parameter used to balance the estimation error and the sparse penalty of ĥ(n),

ρZA−LMS > 0 is zero-attracting factor that is used to control the zero-attracting

strength, and sgn(·) is the component wise sign function given by (2.11). Since

variable step-size (3.2) is used in the proposed ZA-SVSS-LMS algorithm, the

performance of the ZA-LMS algorithm is effectively improved.

3.2.3 Proposed RZA-SVSS-LMS algorithm

Motivated by the concept and analysis of the RZA-LMS algorithm, we propose

an RZA-SVSS-LMS algorithm by incorporating the reweighted zero-attracting
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(RZA) technique [67] into the proposed SVSS-LMS algorithm. The RZA-SVSS-

LMS algorithm is described as follows:

JRZA−LMS(n) =
1

2
e2(n) + γRZA−LMS

N∑
i=1

log(1 + εRZA−LMS

∣∣∣ĥi(n)
∣∣∣), (3.6)

ĥ(n+ 1) = ĥ(n) + µSVSS(n)e(n)x(n)− ρRZA−LMS
sgn(ĥ(n))

1 + εRZA−LMS

∣∣∣ĥ(n)∣∣∣ , (3.7)

where γRZA−LMS > 0 is the regularization parameter. Also the positive value of

εRZA−LMS is the threshold and ρRZA−LMS > 0 is used to control the zero-attracting

strength of the RZA-SVSS-LMS algorithm. Equations (3.6) and (3.7) are the cost

function and the update function of the proposed RZA-SVSS-LMS algorithm,

respectively. Similarly, by the use of the sigmoid functioned variable step size

µSVSS(n) in the RZA-SVSS-LMS algorithm instead of the fixed µRZA−LMS in the

RZA-LMS algorithm, the behaviors of the RZA-LMS algorithm is significantly

improved.

3.2.4 Proposed ARZA-SVSS-LMS algorithm

According to the results of previous papers [2, 67, 98], the performances for

most of the proposed algorithms are degraded at a high SNR. To improve the

performance and enhance the robustness of the proposed RZA-SVSS-LMS al-

gorithm, we propose an adaptive RZA-SVSS-LMS (ARZA-SVSS-LMS) algo-

rithm based on the concept in [95]. In the RZA-SVSS-LMS algorithm, the

reweighted zero attractor only effects taps whose magnitudes are comparable to

the parameter 1/εRZA−LMS, which is constant. To reach the optimum as rapidly

as possible at each iteration, we introduce a variable εARZA(n) into the term
N∑
i=1

log(1 + εRZA−LMS

∣∣∣ĥi(n)
∣∣∣) to enhance the robustness of the RZA-SVSS-LMS

algorithm. Initially, a large εARZA(n) is adopted, which is then decreased until it

meets the convergence requirement. The proposed ARZA-SVSS-LMS algorithm
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is expressed below.

To exploit the channel sparsity in the time domain, the cost function of the

proposed ARZA-SVSS-LMS algorithm is given by

JARZA(n) =
1

2
e2(n) + γRZA−LMS

N∑
i=1

log(1 + εARZA(n)
∣∣∣ĥi(n)

∣∣∣), (3.8)

where γRZA−LMS > 0 is a regularization parameter used to balance the estima-

tion error and the sparse penalty of ĥ(n), and εARZA(n) is the threshold. The

corresponding update equation of the proposed ARZA-SVSS-LMS algorithm is

ĥ(n+ 1) = ĥ(n) + µSVSS(n)e(n)x(n)− ρARZA
sgn(ĥ(n))

1 + εARZA(n)
∣∣∣ĥ(n)∣∣∣ , (3.9)

where ρARZA > 0 is used to control the zero-attracting strength. Then, an adaptive

parameter adjustment method is introduced by relating εARZA(n) to the current

mean square error e2(n) to enhance the robustness of the ARZA-SVSS-LMS al-

gorithm. We can form an estimate of e2(n) and use the following functions to

update εARZA(n).

U(n+ 1) = ξU(n) + (1− ξ)e2(n), (3.10)

ε̄ARZA(n+ 1) =
U(n+ 1)

ζ
, (3.11)

εARZA(n+ 1) =

(
ε̄ARZA(n+ 1)

Nδ2x

)− 1
2

=
1

θ

(
U(n+ 1)

Nδ2x

)− 1
2

(3.12)

where U(n + 1) is an estimation of e2(n), 0 ≤ ξ ≤ 1, and δ2x is the power of

the input signal, and θ = (ζ)−
1
2 and ζ is a constant relating the current mean

square error to ε̄ARZA(n + 1), where ε̄ARZA(n + 1) is the distance to the steady-

state mean square error, also named the noise floor, and it is considered that

convergence is achieved when noise floor reached to the required mean square
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error. In essence, εARZA(n) is adopted by utilizing the estimation of the mean

square error, which gives a large initial value of εARZA. With increasing time,

the bound of the mean square error become tighter. Finally, εARZA(n) with a

smaller amplitude is obtained when the ARZA-SVSS-LMS algorithm performs

effectively.

3.3 Analysis of the proposed ARZA-SVSS-LMS

algorithm

In this subsection, we analyze the mean square convergence of the proposed

ARZA-SVSS-LMS algorithm. First, the misalignment error vector is defined as

∆(n) = ĥ(n)− h, (3.13)

and the auto-covariance matrix of ∆(n) is defined as

K(n) = E{∆(n)∆T (n)}. (3.14)

Assuming that h is a real FIR channel vector, subtracting h from both sides of

(3.9), we obtain

ĥ(n+ 1)− h = ĥ(n)− h+ µSVSS(n)e(n)x(n)− ρARZAm(n), (3.15)

where

m(n) =
sgn(ĥ(n))

1 + εARZA(n)
∣∣∣ĥ(n)∣∣∣ . (3.16)

By taking

r(n) = hTx(n) + v(n) (3.17)
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and (2.2) and (3.13) into consideration [67], we obtain

∆(n+ 1) = ∆(n) + µSVSS(n)x(n)(r(n)− ĥT (n)x(n))− ρARZAm(n)

=∆(n) + µSVSS(n)x(n)v(n)− µSVSS(n)x(n)x
T (n)∆(n)− ρARZAm(n)

=(I− µSVSS(n)x(n)x
T (n))∆(n) + µSVSS(n)x(n)v(n)− ρARZAm(n)

. (3.18)

Substituting (3.18) into (3.14) yields

K(n+ 1) = [A(n)∆(n) + µSVSS(n)x(n)v(n)− ρARZAm(n)]

[A(n)∆(n) + µSVSS(n)x(n)v(n)− ρARZAm(n)]T

= [A(n)∆(n) + µSVSS(n)x(n)v(n)− ρARZAm(n)]

[∆T (n)AT (n) + µSVSS(n)v(n)x
T (n)− ρARZAm

T (n)]

= E{A(n)∆(n)∆T (n)AT (n)}+ E{µSVSS(n)v(n)A(n)∆(n)xT (n)}
+E{−ρARZAA(n)∆(n)mT (n)}
+E{µSVSS(n)v(n)x(n)∆

T (n)AT (n)}
+E{µSVSS(n)x(n)v(n)µSVSS(n)v(n)x

T (n)}
+E{−ρARZAµSVSS(n)x(n)v(n)m

T (n)}
+E{−ρARZAm(n)∆T (n)AT (n)}
+E{−ρARZAm(n)µSVSS(n)v(n)x

T (n)}
+E{ρ2ARZAm(n)mT (n)}

,

(3.19)

where A(n) = IN − µSVSS(n)x(n)x
T (n) and IN is the N × N identity matrix.

By taking into consideration the statistical independence between x(n) and v(n),

(3.19) can be simplified to

K(n+ 1) = E{A(n)∆(n)∆T (n)AT (n)}+ E{−ρARZAA(n)∆(n)mT (n)}
+E{µSVSS(n)x(n)v(n)µSVSS(n)v(n)x

T (n)}+ E{−ρARZAm(n)∆T (n)AT (n)}
+E{ρ2ARZAm(n)mT (n)}
= E{A(n)∆(n)∆T (n)AT (n)} − ρARZAE{A(n)∆(n)mT (n)}+ µ2

SVSS(n)δ
2
vδ

2
xIN

− ρARZAE{m(n)∆T (n)AT (n)}+ ρ2ARZAE{m(n)mT (n)}

,

(3.20)

where δ2v and δ2x denote the powers of the input signal and additive noise, respec-
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tively. Using the property that the fourth-order moment of a Gaussian variable

is three times the square of the variance [99], we obtain

E{A(n)∆(n)∆T (n)AT (n)} = (1− 2µSVSS(n)δ
2
x + 2µ2

SVSS(n)δ
4
x)K(n)

+µ2
SVSS(n)δ

4
xD(n)IN

, (3.21)

where D(n) = tr[K(n)]. Also,

E{A(n)∆(n)mT (n)} = E{m(n)∆T (n)AT (n)}}T

= (1− µSVSS(n)δ
2
x)E{∆(n)mT (n)}

. (3.22)

Combining (3.20)-(3.22), we obtain

K(n+ 1) = (1− 2µSVSS(n)δ
2
x + 2µ2

SVSS(n)δ
4
x)K(n) + µ2

SVSS(n)δ
4
xD(n)IN

+µSVSS(n)δ
2
vδ

2
xIN − ρARZA(1− µSVSS(n)δ

2
x)E{∆(n)mT (n)}

−ρARZA(1− µSVSS(n)δ
2
x){E{∆(n)mT (n)}}T + ρ2ARZAE{m(n)mT (n)}

.

(3.23)

By taking the trace on both sides of (3.23), it can be concluded that the adaptive

filter is stable if and only if [99]

0 < (1− 2µSVSS(n)δ
2
x + (N + 2)µ2

SVSS(n)δ
4
x) < 1, (3.24)

which is simplified to

0 < µSVSS(n) <
2

(N + 2)δ2x
. (3.25)

We can see that the proposed ARZA-SVSS-LMS algorithm has the same stability

condition for the mean square convergence as the ZA-LMS and standard LMS

[43]. Thus, we should choose a large initial step-size for µSVSS(n) that is subjected

to (3.25).
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Figure 3.2: Typical sparse multipath channel.

3.4 Performance of the proposed sparse channel

estimation algorithms

In this section, we report our investigation of the parameter effects and the es-

timation performances of the proposed ARZA-SVSS-LMS algorithm for sparse

channel estimation by computer simulation. We consider a sparse multipath

channel of length N = 16, whose number of dominant taps K is set to three dif-

ferent sparsity levels, namely K = 1, K = 4 and K = 8 , similarly to [2, 67, 98].

The nonzero channel taps follow a Gaussian distribution subjected to ∥h∥22 = 1,

and the positions of the dominant channel taps are random within the length of

the channel. An example of a typical sparse multipath channel with a channel

length of 16 and 4 dominant taps is shown in Fig. 3.2. In the simulation, the in-
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put signal x(n) of the channel is Gaussian random signal while the output of the

channel is corrupted by an independent white Gaussian noise v(n). In the simu-

lations, the power of the received signal is Eb = 1, while the noise power is given

by δ2v = 10−
SNR
10 and the SNR is defined as SNR= 10 log Eb

δ2v
. All the LMS algo-

rithms are run 100 times. We investigate the relevant parameters for the proposed

SVSS algorithms and compare the estimation behaviors of the proposed ARZA-

SVSS-LMS algorithm with those of the previously proposed ZA-LMS, RZA-LMS,

VSS-LMS and standard LMS algorithms at SNR=20 dB and 30 dB. In all the

experiments, the difference between the actual and estimated channels based on

the proposed sparsity-aware algorithms and the sparse channels mentioned above

is evaluated by the MSE, defined as [2]

MSE
{
ĥ(n)

}
= E

{∥∥∥h− ĥ(n)
∥∥∥2

2

}
, (3.26)

where h and ĥ(n) are the actual channel vector and its estimator, respectively.

3.4.1 Effects of parameters on the ARZA-SVSS-LMS al-

gorithm

First, the parameters θ and ρARZA are used to analyze the steady-state perfor-

mance of the proposed ARZA-SVSS-LMS algorithm, and the obtained results are

illustrated in Fig. 3.3. In the simulation, the parameters are ξ = 0.999, α = 100,

β = 0.04, m = 0.1, K = 4 and SNR = 30dB. It is observed from Fig. 3.3a that

the steady-state performance of the proposed ARZA-SVSS-LMS algorithm is de-

graded with increasing θ when θ is greater than 10. Figure 3.3b shows that ρARZA

has an important effect on the steady-state performance of the proposed ARZA-

SVSS-LMS algorithm. With decreasing ρARZA, the steady-state performance is

first improved and then degraded. This is because a small ρARZA reduces the zero-

attractor strength of the proposed ARZA-SVSS-LMS algorithm. On the other

hand, a large ρARZA results in a large deviation while a small ρARZA means a
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Figure 3.3: Effects of parameters on the proposed ARZA-SVSS-LMS algorithm.

weak zero attractor. Thus, in our proposed ARZA-SVSS-LMS algorithm, we can

choose suitable values of ρARZA and θ for the tradeoff between the convergence

speed and steady-state error.

Next, we investigate the effects of varying parameters α, β, m and SNR on

the proposed ARZA-SVSS-LMS algorithm where the obtained results are illus-

trated in Fig. 3.4. Since the proposed ARZA-SVSS-LMS algorithm is an im-

proved RZA-SVSS-LMS, then RZA-SVSS-LMS, SVSS-LMS and standard LMS

algorithms are also selected to study the parameter effects. The simulation pa-

rameters are µLMS = 0.05, ξ = 0.999, ρRZA−LMS = ρARZA = 5 × 10−4, α = 100,

β = 0.04, m = 0.1, K = 4, SNR = 30dB and θ = 5. When we change one of

these parameters, the other parameters are kept constant. The effects of α are

shown in Fig. 3.4a. It can be seen from Fig. 3.4a that the convergence speeds of

the proposed SVSS-LMS algorithms decrease rapidly with decreasing of α. When

α = 10, the proposed ARZA-SVSS-LMS and RZA-SVSS-LMS algorithms have

nearly the same performances. Additionally, both algorithms outperform the

proposed SVSS-LMS and standard LMS algorithms. However, with decreasing

α, both the convergence speed and the steady-state performance of the ARZA-

SVSS-LMS and RZA-SVSS-LMS algorithms are degraded, and the SVSS-LMS

algorithm has a lower mean square error. The effects of β are shown in Fig. 3.4b.
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Figure 3.4: Performance of algorithms with variable step size based on sigmoid
function.

It is found that with increasing β, both the convergence speed and the steady-

state performance of all the proposed SVSS-LMS algorithms are initially im-

proved. Also, the steady-state performance of the proposed ARZA-SVSS-LMS

algorithm even exceeds those of the RZA-SVSS-LMS and SVSS-LMS algorithms

when β = 0.03. When β is increased to 0.06, the steady-state performances of the

proposed SVSS-LMS algorithms degrade. Also, the proposed ARZA-SVSS-LMS
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and RZA-SVSS-LMS algorithms are superior to the SVSS-LMS and standard

LMS algorithms when β = 0.06 in terms of both the convergence speed and the

steady-state behavior. The performances of the proposed SVSS-LMS algorithms

with varying m are shown in Fig. 3.4c. Both the steady-state performance and

the convergence speed decrease with increasing m. For the case of m = 0.1,

both the convergence speed and the steady-state performances of the proposed

ARZA-SVSS-LMS and RZA-SVSS-LMS algorithms are better than those of the

SVSS-LMS and standard LMS algorithms, contrary to the case when m = 1 and

m = 5. When m is less than 0.1, the estimation performance of these SVSS-LMS

algorithms are nearly the same as the results of m = 0.1. The results of in-

vestigating the proposed ARZA-SVSS-LMS and RZA-SVSS-LMS algorithms by

simulation with different noise level are shown in Fig. 3.4d. In this experiment,

we evaluated the RZA-LMS, ARZA-SVSS-LMS and RZA-SVSS-LMS algorithms

because the performance of the RZA-LMS algorithm is better than or the same as

those of the standard LMS and ZA-LMS algorithms [67]. It is revealed that the

performances of the proposed ARZA-SVSS-LMS and RZA-SVSS-LMS algorithms

are superior to that of the RZA-LMS algorithm with respect to the steady-state

error. When the SNR is greater than 30 dB, the proposed ARZA-SVSS-LMS al-

gorithm can obtain a better steady-state performance than the RZA-SVSS-LMS

and RZA-LMS algorithms because the adaptive adjustment of εARZA(n) in the

ARZA-SVSS-LMS algorithm can effectively adjust the zero-attracting strength.

However, the convergence speeds of the proposed ARZA-SVSS-LMS and RZA-

SVSS-LMS algorithms are slightly degraded. Thus, we can choose suitable pa-

rameters to balance the convergence speed and steady-state performance.

3.4.2 Effects of sparsity level on the ARZA-SVSS-LMS

algorithm

Finally, we investigate the estimation performance of the proposed SVSS-LMS

algorithms over a time-varying sparse multipath channel and the simulation re-

sults are shown in Figs. 3.5, 3.6, 3.7 and 3.8. The simulation parameters are
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µLMS = µZA−LMS = µRZA−LMS = 0.05, ρZA−LMS = ρRZA−LMS = 5 × 10−4,

εRZA−LMS = 10 as suggested in [2, 67], ρARZA = 5 × 10−4, ξ = 0.999, α = 100,

β = 0.04, m = 0.1, θ = 5, µmax = 0.5, µmin = 0.002, κ = 0.998 and χ = 2× 10−3.

We can see from Fig. 3.5 that our proposed SVSS-LMS algorithms are supe-

rior to the standard LMS algorithm in terms of both the steady-state error and

the convergence speed for 20 dB. In particular, the proposed ARZA-SVSS-LMS,

RZA-SVSS-LMS and ZA-SVSS-LMS algorithms have the lowest steady-state er-

ror whenK = 1 shown in Fig. 3.5a. With the increasing of the number of non-zero

taps K, the steady-state performance of the ARZA-SVSS-LMS, RZA-SVSS-LMS

and ZA-SVSS-LMS are deteriorated. However, the proposed ARZA-SVSS-LMS

and RZA-SVSS-LMS algorithms still have the best steady-state performance for
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Figure 3.5: Performance of the proposed sparse channel estimation algorithms
for SNR=20 dB.
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Figure 3.6: Performance of the proposed sparse channel estimation algorithms
for SNR=30 dB.

K = 4. When K increases to 8, the ZA-SVSS-LMS is degraded and even worse

than the SVSS-LMS algorithm because the ZA-SVSS-LMS cannot distinguish the

non-zero taps and the zero taps, and uniformly exerts the l1-penalty on all the

channel taps. In this case, our proposed ARZA-SVSS-LMS algorithm still out-

performs the other SVSS-LMS and standard LMS algorithms. When the SNR

increases to 30 dB, we can see from Fig. 3.6 that the ARZA-SVSS-LMS and

RZA-SVSS-LMS algorithms have the same steady-state performance for K = 1.

When K = 4 and K = 8, the steady-state error of the RZA-SVSS-LMS algorithm

is increased. However, our proposed ARZA-SVSS-LMS still has the best steady-

state performance because of its adaptive parameter adjustment method which

effectively changes εARZA(n) and further reduces the steady-state error. Next,
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Figure 3.7: Performance of theARZA-SVSS-LMS algorithm for SNR=20 dB.

we compare the estimation performance of our proposed ARZA-SVSS-LMS al-

gorithm with the previously proposed VSS-LMS, ZA-LMS, RZA-LMS and stan-

dard LMS algorithms. The simulation results are shown in Figs. 3.7 and 3.8 for

SNR=20 dB and SNR=30 dB, respectively. It is found that our proposed ARZA-

SVSS-LMS algorithm has the best steady-state performance both at 20 dB and

30 dB. However, the convergence speed of the ARZA-SVSS-LMS algorithm is

slightly deteriorated compared to the RZA-LMS algorithm only when K = 8 at

30 dB, which can be improved by the proper selection of the parameters in the

ARZA-SVSS-LMS algorithm.

On the basis of the above discussions, it is expected that as the sparsity level

K increases, the steady-state performances of the sparsity-aware channel estima-

tion algorithms are degraded, which can indeed be observed in Figs. 3.5, 3.6, 3.7
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Figure 3.8: Performance of the ARZA-SVSS-LMS algorithm for SNR=30 dB.

and 3.8. It is observed that our proposed ARZA-SVSS-LMS algorithm not only

improves the convergence speed of the standard LMS algorithm but also enhances

steady-state performances of the sparse channel estimation algorithms compared

with the previously proposed ZA-LMS and RZA-LMS algorithms. In these sparse

channel estimation algorithms, the zero attractor accelerates the convergence

speed when the majority of the channel taps are zero or nearly zero. The adap-

tive parameter adjustment method in the proposed ARZA-SVSS-LMS algorithm

further improves the steady-state behavior of the RZA-SVSS-LMS algorithm at a

high SNR. For the same parameters, the proposed ARZA-SVSS-LMS algorithm

outperforms other sparse channel estimation algorithms. Thus, we can conclude

that the ARZA-SVSS-LMS algorithm is not only stable in the case of unknown

signals, but also robust to noise interference at both low and high SNRs when
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the signal is sparse.

3.5 Conclusion

In this chapter, we proposed a robust adaptive sparse channel estimation algo-

rithm, ARZA-SVSS-LMS algorithm, using a sigmoid functioned variable-step-

size and an adaptive parameter adjustment method, and the performances of the

proposed ARZA-SVSS-LMS algorithm and its related sparse algorithms were in-

vestigated and compared with those of previous l1-penalized LMS and standard

LMS algorithms in a sparse multipath channel. The effects of relevant parameters

in the ARZA-SVSS-LMS algorithm and the derived sparse channel estimation al-

gorithms were investigated in detail. The simulation results demonstrated that

the proposed ARZA-SVSS-LMS algorithm outperforms the previous l1-penalized

LMS algorithms. On the other hand, our proposed ARZA-SVSS-LMS algorithm

is much more robust than the RZA-LMS algorithm. In addition, the proposed

SVSS-LMS algorithms also have better performances than the VSS-LMS and

standard LMS algorithms.
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Chapter 4

Smooth Approximation l0-Norm

Constrained Affine Projection

Algorithm

4.1 Introduction

In this chapter, we propose a smooth approximation l0-norm constrained affine

projection algorithm (SL0-APA) to improve the convergence speed and the

steady-state error of affine projection algorithm (APA) for sparse channel esti-

mation [100]. The proposed algorithm ensures improved performance in terms of

the convergence speed and the steady-state error via the combination of a smooth

approximation l0-norm (SL0) penalty on the coefficients into the standard APA

cost function, which gives rise to a zero attractor that promotes the sparsity of

the channel taps in the channel estimation and hence accelerates the convergence

speed and reduces the steady-state error when the channel is sparse. The simula-
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tion results demonstrate that our proposed SL0-APA is superior to the standard

APA and its sparsity-aware algorithms in terms of both the convergence speed

and the steady-state behavior in a designated sparse channel. Furthermore, SL0-

APA is shown to have smaller steady-state error than the previously proposed

sparsity-aware algorithms when the number of non-zero taps in the sparse channel

increases.

4.2 Proposed SL0-APA algorithm

On the basis of the discussion of the ZA-APA in Section 2.4.2 and RZA-APA

in Section 2.4.3, we find that the RZA-APA can improve the performance of

ZA-APA for sparse channel estimation because
N∑
i=1

log(1 + εRZA−APA

∣∣∣ĥi(n+ 1)
∣∣∣)

is more similar to l0-norm [67, 82, 101]. On the other hand, solving l0-norm∥∥∥ĥ(n+ 1)
∥∥∥
0
is a NP-hard problem [19]. Fortunately, smooth approximation l0-

norm (SL0) with low complexity have been proposed as a accurate approximation

of
∥∥∥ĥ(n+ 1)

∥∥∥
0
to reconstruct sparse signals in CS theory [22, 102, 103]. Inspired

by the SL0 algorithm and in order to exploit the sparse characteristic of the

multipath channel in a more accurate way, a smooth approximation l0-norm con-

strained affine projection algorithm (SL0-APA) is proposed by exerting the SL0

on the cost function of standard APA to further improve the performance of the

RZA-APA [100].

Similar to the ZA-APA and RZA-APA discussed in Section 2.4.2 and Sec-

tion 2.4.3, respectively, the cost function of the SL0-APA is written as

JSL0(n) =
∥∥∥ĥ(n+ 1)− ĥ(n)

∥∥∥2

+ [r(n)−U(n)ĥ(n+ 1)]TλSL0 + γSL0

∥∥∥ĥ(n+ 1)
∥∥∥
0
,

(4.1)

where λSL0 is the vector of the Lagrange multiplier with size of Q×1 and γSL0 > 0

is a regularization parameter to tradeoff the estimation error and the sparse l0-

penalty of ĥ(n+ 1). Here, the smooth approximation of l0-norm
∥∥∥ĥ(n+ 1)

∥∥∥
0
is
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a continuous function defined as follows [103]

∥∥∥ĥ(n+ 1)
∥∥∥
0
=

N−1∑
i=1

∣∣∣ĥi(n+ 1)
∣∣∣∣∣∣ĥi(n+ 1)

∣∣∣+ δ
=

∣∣∣ĥ(n+ 1)
∣∣∣∣∣∣ĥ(n+ 1)

∣∣∣+ δ
, (4.2)

where δ is a small positive constant which is used for avoiding division by zero,

and the gradient of this continuous functions for SL0 is obtained

∂
∥∥∥ĥ(n+ 1)

∥∥∥
0

∂ĥ(n+ 1)
=

δsgn(ĥ(n+ 1))

(
∣∣∣ĥ(n+ 1)

∣∣∣+ δ)
2 . (4.3)

To obtain the minimum of the JSL0(n), we use Lagrange multiplier to calculate

the gradient of JSL0(n). Then the gradient of the cost function of the SL0-APA

is written as

∂JSL0(n)

∂ĥ(n+ 1)
= 2ĥ(n+ 1)− 2ĥ(n)−UT (n)λSL0 + γSL0

δsgn(ĥ(n+ 1))

(
∣∣∣ĥ(n+ 1)

∣∣∣+ δ)
2 . (4.4)

Let the left hand side of the equation of (4.4) be equal to zero. We can get

the following equation

ĥ(n+ 1) = ĥ(n) +
1

2
UT (n)λSL0 −

1

2
γSL0

δsgn(ĥ(n+ 1))

(
∣∣∣ĥ(n+ 1)

∣∣∣+ δ)
2 . (4.5)

Multiplying U(n) on both sides of (4.5), we can get

U(n)ĥ(n+ 1) = U(n)ĥ(n) +
1

2
U(n)UT (n)λSL0 −

1

2
γSL0U(n)

δsgn(ĥ(n+ 1))

(
∣∣∣ĥ(n+ 1)

∣∣∣+ δ)
2 .

(4.6)
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By taking the equation (2.23) into consideration, the equation (4.6) can be

rewritten as

r(n) = U(n)ĥ(n) +
1

2
U(n)UT (n)λSL0 −

1

2
γSL0U(n)

δsgn(ĥ(n+ 1))

(
∣∣∣ĥ(n+ 1)

∣∣∣+ δ)
2 . (4.7)

From the discussion of the ZA-APA and RZA-APA, we can get the Lagrange

multiplier vector λSL0 from (4.7) by taking e(n) = r(n)−U(n)ĥ(n) into account

λSL0 = [U(n)UT (n)]−1{2e(n) + γSL0U(n)
δsgn(ĥ(n+ 1))

(
∣∣∣ĥ(n+ 1)

∣∣∣+ δ)
2}. (4.8)

Substituting (4.8) into (4.5) and assuming that

δsgn(ĥ(n+ 1))/(
∣∣∣ĥ(n+ 1)

∣∣∣+ δ)
2

≈ δsgn(ĥ(n))/(
∣∣∣ĥ(n)∣∣∣+ δ)

2

, the update

function of the SL0-APA can be achieved

ĥ(n+ 1) = ĥ(n) +U+(n)e(n) +
1

2
γSL0U

+(n)U(n)
δsgn(ĥ(n))

(
∣∣∣ĥ(n)∣∣∣+ δ)

2

−1

2
γSL0

δsgn(ĥ(n))

(
∣∣∣ĥ(n)∣∣∣+ δ)

2

= ĥ(n) +U+(n)e(n) +
1

2
γSL0U

+(n)U(n)T(n)− 1

2
γSL0T(n)

, (4.9)

where T(n) = δsgn(ĥ(n))/(
∣∣∣ĥ(n)∣∣∣+ δ)

2

. Similar to the ZA-APA and RZA-APA,

a step size µSL0 is introduced into (4.9) to create a balance between the conver-

gence speed and steady-state error of the SL0-APA

ĥ(n+ 1) = ĥ(n) + µSL0U
+(n)e(n) +

1

2
γSL0U

+(n)U(n)T(n)− 1

2
γSL0T(n).

(4.10)

It is important to mention that our proposed SL0-APA is superior to APA,
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ZA-APA and RZA-APA for sparse channel estimation because we utilize a smooth

approximation of
∥∥∥ĥ(n+ 1)

∥∥∥
0
, which is proved to be an approximate and near-

accurate approximation of l0-norm in comparison with the sum-log function
N∑
i=1

log(1 + εRZA−APA

∣∣∣ĥi(n+ 1)
∣∣∣) in the RZA-APA. Moreover, it is easy to cal-

culate the gradient, as we can easily find a continuous gradient for this smoothed

l0-norm function2.

4.3 Analysis of the proposed SL0-APA

In this section, we analyze the mean-square-error (MSE) behavior of the SL0-

APA. Here, energy-conservation approach [106–108] is employed to obtain the

theoretical expressions for the MSE of the SL0-APA. Let us consider the received

signal r(n) that is derived from the following linear model

r(n) = U(n)h+ v(n), (4.11)

where h is the sparse channel vector of the multipath communication system

that we wish to estimate, v(n) is the additive Gaussian noise at instant n. Our

objective is to evaluate the steady-state MSE performance of the proposed SL0-

APA. The steady-state MSE is defined as

MSE , lim
n→∞

E[|e(n)|2], (4.12)

where E[·] denotes the expectation and

e(n) = r(n)−U(n)ĥ(n) (4.13)

2We derived the SL0-APA in this section by considering the l0-norm-based LMS and NLMS
[2, 84, 104] and the smooth approximation l0-norm in [103]. In the paper [105], l0-norm con-
strained APA was also derived around the same time as our paper was submitted for publication.
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is the estimated error at time n. Taking the equation (4.11) and (4.13) into

account, we obtain

e(n) = U(n)h+ v(n)−U(n)ĥ(n)

= U(n)[h− ĥ(n)] + v(n)
. (4.14)

Subtracting h from both sides of the SL0-APA update function (4.10), we get

the misaligment vector

∆(n+ 1) = h− ĥ(n+ 1)

= h−
{
ĥ(n) + µSL0U

+(n)e(n) +
1

2
γSL0U

+(n)U(n)T(n)− 1

2
γSL0T(n)

}
.

(4.15)

Substituting (4.14) into (4.15), we can get

∆(n+ 1) = h− ĥ(n)− µSL0U
+(n)

{
U(n)[h− ĥ(n)] + v(n)

}
−1

2
γSL0U

+(n)U(n)T(n) +
1

2
γSL0T(n)

= [IN − µSL0U
+(n)U(n)]∆(n)− µSL0U

+(n)v(n)

−1

2
γSL0U

+(n)U(n)T(n) +
1

2
γSL0T(n)

. (4.16)

Taking expectations on the both sides of (4.16), we get

E [∆(n+ 1)] = E [IN − µSL0U
+(n)U(n)] E [∆(n)]− µSL0E [U+(n)v(n)]

−1

2
γSL0E

[
U+(n)U(n)T(n)

]
+

1

2
γSL0E [T(n)]

.

(4.17)

We assume the additive noise v(n) is statistically independent of the input

signal x(n), and hence we have E [U+(n)v(n)] = 0. Therefore, the equation
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(4.17) can be simplified as

E [∆(n+ 1)] = E [IN − µSL0U
+(n)U(n)] E [∆(n)]

−1

2
γSL0E

[
U+(n)U(n)T(n)

]
+

1

2
γSL0E [T(n)]

. (4.18)

From the previous studies on sparse LMS algorithms [67, 109], in the steady-

state we have

E
{
sgn

[
ĥ(n)

]}
≈ sgn(ĥ). (4.19)

Thus, the E [T(n)] in (4.18) can be written as

E [T(n)] = E

 δsgn(ĥ(n))

(
∣∣∣ĥ(n)∣∣∣+ δ)

2

 =
δsgn(ĥ(n))

(
∣∣∣ĥ(n)∣∣∣+ δ)

2 . (4.20)

In addition, when the channel length is far larger than 1, N ≫ 1, the

E [U+(n)U(n)] can be written as [107, 110, 111]

E [U+(n)U(n)] = E
{
UT (n)

[
U(n)UT (n)

]−1
U(n)

}
≈ E

{
UT (n)

{
E
[
U(n)UT (n)

]}−1
U(n)

} . (4.21)

Since E
[
xT (n)x(n− 1)

]
= 0 for sparse channel estimation, the inner expectation
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reduces to

E[U(n)UT (n)]

= E




xT (n)

xT (n− 1)
...

xT (n−Q− 1)


[
x(n) x(n− 1) · · · x(n−Q− 1)

]


= E




∥x(n)∥2 xT (n)x(n− 1) · · · xT (n)x(n−Q− 1)

xT (n− 1)x(n) ∥x(n− 1)∥2 · · · ...
...

...
. . .

...

xT (n−Q− 1)x(n) xT (n−Q− 1)x(n− 1) · · · ∥x(n−Q− 1)∥2




= E




∥x(n)∥2 0 · · · 0

0 ∥x(n− 1)∥2 · · · 0
...

...
. . .

...

0 0 · · · ∥x(n−Q− 1)∥2


 .

(4.22)

Here, we define

R = δ2xIN , (4.23)

where δ2x is the power of the input signal. Thus,

E
[
U(n)UT (n)

]
≈ Tr(R)IQ = Nδ2xIQ. (4.24)

where Tr(·) is the trace of matrix and IQ is the Q×Q identity matrix. Moreover,

we can obtain

E
{[

U(n)UT (n)
]−1

}
≈

{
E
[
U(n)UT (n)

]}−1
=

1

Nδ2x
IQ. (4.25)
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Then we can approximate E
{
UT (n)

[
U(n)UT (n)

]−1
U(n)

}
by

E
{
UT (n)

[
U(n)UT (n)

]−1
U(n)

}
≈ E

{
UT (n)

1

Nδ2x
IQU(n)

}
≈ QR

Nδ2x
. (4.26)

Therefore, the equation (4.18) can be rewritten as

E [∆(n+ 1)] = E

[
IN − µSL0

QR

Nδ2x

]
E [∆(n)]

−1

2
γSL0

QR

Nδ2x
E [T(n)] +

1

2
γSL0E [T(n)]

. (4.27)

It is found that the matrix T(n) is approximatively bounded between −δIN

and δIN . Therefore, we see that such convergence is guaranteed only if

(IN − µSL0QR/Nδ2x) is less than 1 [44], which is given by

0 < µSL0 <
Nδ2x
Qλmax

, (4.28)

where λmax is the maximum eigenvalue of the autocorrelation matrix R of x(n).

We can observe that the stability condition of the SL0-APA is independent of

the parameter γSL0. We assume that the estimated vector ĥ(n) converges when

n → ∞. Then, (4.27) can be rewritten as

E [∆(∞)] =

[
IN − µSL0

QR

Nδ2x

]
E [∆(∞)]− 1

2
γSL0

QR

Nδ2x

δsgn(h)

(h+ δ)2
+

1

2
γSL0

δsgn(h)

(h+ δ)2
.

(4.29)

From (4.29), we can obtain

E [∆(∞)] = − γSL0
2µSL0

δsgn(h)

(h+ δ)2
+

γSL0
2µSL0

Nδ2x
QR

δsgn(h)

(h+ δ)2
, (4.30)
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which can be regarded as

E
[
ĥ(∞)

]
= h− γSL0

2µSL0

δsgn(h)

(h+ δ)2
+

γSL0
2µSL0

Nδ2x
QR

δsgn(h)

(h+ δ)2
. (4.31)

Note that the equation (4.31) implies that the optimum solution of the SL0-

APA is biased, as was also shown for zero-attracting least mean square (ZA-LMS)

algorithms [67]. We then proceed to derive the steady-state MSE for our proposed

SL0-APA. Firstly, multiplying both sides of (4.10) by U(n) from the left, we can

get

U(n)ĥ(n+ 1) = U(n)ĥ(n) + µSL0U(n)U+(n)e(n)

+1
2
γSL0U(n)U+(n)U(n)T(n)− 1

2
γSL0U(n)T(n)

. (4.32)

Furthermore,

U(n)ĥ(n+ 1) = U(n)ĥ(n) + µSL0e(n). (4.33)

Additionally, we define the posteriori error vector ep(n) and the priori error vector

ea(n) as

ep(n) = U(n)h−U(n)ĥ(n+ 1)

ea(n) = U(n)h−U(n)ĥ(n)
. (4.34)

Combining the equations (4.33) and (4.34), we have

ep(n) = ea(n)− µSL0e(n). (4.35)

In addition,

e(n) = r(n)−U(n)ĥ(n)

= U(n)h+ v(n)−U(n)ĥ(n)

= ea(n) + v(n)

. (4.36)
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By substituting (4.36) into (4.35), we have

ep(n) = (I− µSL0)e(n)− v(n). (4.37)

From the equation (4.35), we can also write the e(n) as follows:

e(n) =
1

µSL0

[ea(n)− ep(n)]. (4.38)

Substituting (4.38) to (4.10), we have

ĥ(n+ 1) = ĥ(n) +U+(n)[ea(n)− ep(n)] +
1

2
γSL0U

+(n)U(n)T(n)− 1

2
γSL0T(n).

(4.39)

On the basis of the discussion mentioned above, we notice that U(n)U+(n) =

U(n)UT (n)[U(n)UT (n)]−1 = I. By considering the power of both sides of equa-

tion (4.39), using the steady-state condition E

[∥∥∥ĥ(n+ 1)
∥∥∥2
]

≈ E

[∥∥∥ĥ(n)∥∥∥2
]

when n → ∞, and assuming that ea(n), ep(n) and ĥ(n) are independent of x(n)

in the steady state, we get

E
[
eTp (n)

[
U(n)UT (n)

]−1
ep(n)

]
= E

[
eTa (n)

[
U(n)UT (n)

]−1
ea(n)

]
−γ2

SL0

4
E
{
TT (n)U+(n)U(n)T(n)

}
+

γ2
SL0

4
E[TT (n)T(n)]

. (4.40)

Substituting (4.37) into the left hand side (LHS) of (4.40), we have

LHS = (1− µSL0)
2E

{
eT (n)

[
U(n)UT (n)

]−1
e(n)

}
−(1− µSL0)E

{
eT (n)

[
U(n)UT (n)

]−1
v(n)

}
−(1− µSL0)E

{
vT (n)

[
U(n)UT (n)

]−1
e(n)

}
+E

{
vT (n)

[
U(n)UT (n)

]−1
v(n)

} . (4.41)
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Moreover, substituting (4.36) into the right hand side (RHS) of (4.40), we have

RHS = E
{
eT (n)

[
U(n)UT (n)

]−1
e(n)

}
−E

{
eT (n)

[
U(n)UT (n)

]−1
v(n)

}
−E

{
vT (n)

[
U(n)UT (n)

]−1
e(n)

}
+E

{
vT (n)

[
U(n)UT (n)

]−1
v(n)

}
−γ2

SL0

4
E
{
TT (n)U+(n)U(n)T(n)

}
+
γ2
SL0

4
E[TT (n)T(n)]

. (4.42)

By combining the equation (4.41) and (4.42), we get

(2µSL0 − µ2
SL0)E

{
eT (n)

[
U(n)UT (n)

]−1
e(n)

}
= µSL0E

{
eT (n)

[
U(n)UT (n)

]−1
v(n)

}
+µSL0E

{
vT (n)

[
U(n)UT (n)

]−1
e(n)

}
+
γ2
SL0

4
E
{
TT (n)U+(n)U(n)T(n)

}
−γ2

SL0

4
E[TT (n)T(n)]

. (4.43)

We also assume that the additive Gaussian noise v(n) is statistically inde-

pendent of the input signal x(n). Thus the equation (4.43) can be simplified as

E
{
eT (n)

[
U(n)UT (n)

]−1
e(n)

}
=

1

2− µSL0

E
{
vT (n)

[
U(n)UT (n)

]−1
v(n)

}
+

γ2
SL0

4(2µSL0 − µ2
SL0)

E
{
TT (n)U+(n)U(n)T(n)

}
− γ2

SL0

4(2µSL0 − µ2
SL0)

E[TT (n)T(n)]

. (4.44)

Here, we also assume that the U(n) is statistically independent of e(n) at the

steady-state. Moreover,we use the definition of E
[
eT (n)e(n)

]
= E |et(n)|2 S [106],
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where

S ≈

{
I, µSL0 is small

1 · 1T , µSL0 is large
, (4.45)

where 1T = [ 1 0 · · · 0 ] and et(n) is the top entry of e(n) [106]. Then, the

LHS of the equation of (4.44) can be rewritten as

E
{
eT (n)

[
U(n)UT (n)

]−1
e(n)

}
≈ Tr

{
E
[
eT (n)e(n)

[
U(n)UT (n)

]−1
]}

≈ E|et(n)|2Tr
{
S · E

[[
U(n)UT (n)

]−1
]} . (4.46)

Similar to the calculation of the equation (4.46), the first term in the RHS of the

equation (4.44) can be written as

E
{
vT (n)

[
U(n)UT (n)

]−1
v(n)

}
= Tr

{
E
[
vT (n)v(n)

[
U(n)UT (n)

]−1
]}

= Qδ2vTr
{
E
[[
U(n)UT (n)

]−1
]} . (4.47)

In addition, the second term of RHS of the equation (4.44) can be rewritten as

γ2
SL0

4(2µSL0 − µ2
SL0)

E
{
TT (n)U+(n)U(n)T(n)

}
≈ γ2

SL0

4(2µSL0 − µ2
SL0)

δsgnT (h)

(hT + δ)2
E
{
U+(n)U(n)

} δsgn(h)

(h+ δ)2

. (4.48)

Then the last term of the right hand side of the equation (4.44) can be expressed

as

γ2
SL0

4(2µSL0 − µ2
SL0)

E[T(n)TT(n)] =
γ2
SL0

4(2µSL0 − µ2
SL0)

δsgnT (h)

(hT + δ)2
δsgn(h)

(h+ δ)2
. (4.49)
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When the µSL0 is small, we can get

Tr
{
S · E

[[
U(n)UT (n)

]−1
]}

= Tr
{
I · E

[[
U(n)UT (n)

]−1
]}

=
Q

Nδ2x

. (4.50)

Therefore, the MSE of the proposed SL0-APA with small step-size µSL0 can

be written as

MSEsmall =
1

2− µSL0

δ2v

+
γ2
SL0

4(2µSL0 − 1µ2
SL0)

δsgnT (h)

(hT + δ)2
Nδ2x
Q

QR

Nδ2x

δsgn(h)

(h+ δ)2

− γ2
SL0

4(2µSL0 − 1µ2
SL0)

δsgnT (h)

(hT + δ)2
Nδ2x
Q

δsgn(h)

(h+ δ)2

=
1

2− µSL0

δ2v +
γ2
SL0

4(2µSL0 − µ2
SL0)

δsgnT (h)

(hT + δ)2
(R− Nδ2x

Q
I)
δsgn(h)

(h+ δ)2

. (4.51)

When the step-size µSL0 is large, S ≈ 1 · 1T [106]. In this case,

Tr
{
S · E

[[
U(n)UT (n)

]−1
]}

=
1

Nδ2x
. (4.52)

Thus, the MSE of the proposed SL0-APA with large step-size µSL0 can be written

as

MSElarge =
1

2− µSL0

δ2vQ

+
γ2
SL0

4(2µSL0 − µ2
SL0)

δsgnT (h)

(hT + δ)2
Nδ2x

QR

Nδ2x

δsgn(h)

(h+ δ)2

− γ2
SL0

4(2µSL0 − µ2
SL0)

δsgnT (h)

(hT (n) + δ)2
Nδ2x

δsgn(h)

(h+ δ)2

=
1

2− µSL0

δ2vQ+
γ2
SL0

4(2µSL0 − µ2
SL0)

δsgnT (h)

(hT + δ)2
(QR−Nδ2xI)

δsgn(h)

(h+ δ)2

. (4.53)
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4.4 Results and discussions

In this section, we present the computer simulation results to illustrate the perfor-

mance of the proposed SL0-APA over a sparse multipath communication channel.

Moreover, the simulation results for predicting the mean-square error of the pro-

posed SL0-APA are also provided to verify the effectiveness of the theoretical

expressions obtained in Section 4.3. In addition, the computational complexity

of the SL0-APA is presented and compared with past sparsity-aware algorithms,

namely the ZA-APA, RZA-APA, and standard APA, NLMS algorithms.

4.4.1 Performance of the proposed SL0-APA

Firstly, we set up a simulation example to discussion the convergence speed of

the proposed SL0-APA in comparison with the previously proposed sparse chan-

nel estimation algorithms including the APA, ZA-APA, RZA-APA and NLMS

algorithms. In the setup of this experiment, we consider a sparse multipath

communication channel h whose length N is equal to 16 and whose number of

dominant taps K is set to two different sparsity levels, namely K = 1, K = 4,

similarly to [2, 67, 98, 104]. The dominant channel taps are obtained from a

Gaussian distribution subjected to ∥h∥22 = 1, and the positions of the dominant

channel taps are random within the length of the channel. The input signal x(n)

of the channel is a Gaussian random signal while the output of the channel is

corrupted by an independent white Gaussian noise v(n). An example of a typical

sparse multipath channel with a channel length of N = 16 and a sparsity level

of K = 4 is shown in Fig. 3.2. In the simulations, the power of the received

signal is Eb = 1, while the noise power is given by δ2v . In all the experiments,

the difference between the actual and estimated channels based on the sparsity-

aware algorithms and the sparse channel mentioned above is evaluated by the

MSE defined as follows:

MSE(n) = 10 log10 E

{∥∥∥h− ĥ(n)
∥∥∥2

2

}
(dB). (4.54)
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In this subsection, we aim to investigate the convergence speed and the steady-

state performance of the SL0-APA. The simulation parameters used to compare

the convergence speed while maintaining the same MSE are listed as follows:

µNLMS = 0.25, µAPA = 0.125, µZA−APA = 0.165, µRZA−APA = 0.18, µSL0 = 0.21,

γZA−APA = 5 × 10−5, γRZA−APA = 8 × 10−5, γSL0 = 3 × 10−6, εRZA−APA = 10,

δSL0 = 0.001, Q = 2, δ2v = 10−3, where µNLMS is the step-size parameter for

NLMS algorithm. It can be seen from Fig. 4.1 that our proposed SL0-APA

possesses the fastest convergence speed compared to the previously proposed

channel estimation algorithms used in this experiment at the same steady-state

error floor. In addition, all the affine projection algorithms, namely APA, ZA-

APA, RZA-APA and SL0-APA, converge much more quickly in comparison with

NLMS algorithm, because the affine projection algorithms reuse the old data

signal that is implemented by the use of parameter Q. Thus, we discuss the

effects of the affine projection order Q for SL0-APA and compare it with the APA

and NLMS algorithms. The computer simulation results with different values

of Q are shown in Fig. 4.2. It reveals that the convergence speed is improved

0 50 100 150 200 250 300 350 400 450 500
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Iterations

M
S

E
 (

d
B

)

NLMS

APA

ZA-APA

RZA-APA

SL0-APA

Figure 4.1: Convergence of the proposed SL0-APA.
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Figure 4.2: Affine projection order effects on the SL0-APA.

by the increment of the affine projection order Q. However, the steady-state

performance has deteriorated from Q = 2 to Q = 8. Thus, in our proposed SL0-

APA, the affine projection Q, the step-size µSL0, the regularization parameter

γSL0 and δSL0 should be take into account to balance the convergence speed and

the steady-state behavior.

Next, we show the effects of the sparsity levels on the steady-state performance

of the proposed SL0-APA at K = 1 and K = 4. To obtain the same convergence

speed, the simulation parameters used in this experiment are listed as follows:

µNLMS = 0.095, µAPA = µZA−APA = µRZA−APA = µSL0 = 0.05, γZA−APA = 5×10−5,

γRZA−APA = 8× 10−5, γSL0 = 4× 10−6, εRZA−APA = 10, δ = 0.01, δ2v = 10−3. We

can see from the Fig. 4.3 that our proposed SL0-APA has the best steady-state

performance compared to the ZA-APA, RZA-APA, APA and NLMS algorithms.

The SL0-APA can achieve 10 dB smaller MSE than the RZA-APA for K = 1

and Q = 2 shown in Fig. 4.3a. When the sparsity level K increases to 4, it is

seen in Fig. 4.3b that our proposed SL0-APA still outperforms other algorithms,

while its steady-state error increases in comparison with that of K = 1. When
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Figure 4.3: Performance of the SL0-APA with different sparsity levels for Q = 2.
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Figure 4.4: Performance of the SL0-APA with different sparsity levels for Q = 3.

the affine projection order increases to Q = 3, we can see from Fig. 4.4 that the

convergence speed is significantly improved compared to that of Q = 2 shown

in Fig. 4.3. However, the steady-state error is also slightly increased when the

Q increases. Furthermore, our proposed SL0-APA still has the best convergence

speed and lowest steady-state error.

Finally, we use the theoretical expressions obtained in Section 4.3 to predict
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Figure 4.5: Steady-state MSE performance of the SL0-APA with different step-
size µSL0 for K = 4.

the mean-square-error (MSE) of the proposed SL0-APA with different µSL0 and

compare the theoretical results with the simulation ones. The MSE comparisons

of the SL0-APA as a function of the step size µSL0 for the designated sparse

multipath communication channel with the simulation parameters of γSL0 = 4×
10−6, δ = 0.01, δ2v = 10−3, Q = 3 and K = 1 are shown in Fig. 4.5. The

theoretical results are obtained from (4.51) and (4.53) for small values of µSL0

and large values of µSL0, respectively, while the simulation results are obtained

by averaging 50 independent trials. We can see that the simulation results exhibit

good agreement with the theoretical expressions with different step size µSL0. In

addition, we can see that the steady-state misadjustment between the computer

simulation and the theory predicting is becoming larger with the decrement of

the µSL0 for small µSL0 shown in Fig. 4.5a, but the steady-state error is becoming

lower. For the large µSL0, both the steady-state error and the convergence speed

are deteriorated by the increment of the step size µSL0. Generally speaking, as

µSL0 increases, the MSE increases. Although a large zero attractor can help the

SL0-APA to converge faster, it will lead to a higher misadjustment. Thus, in

the most cases, we should choose the step size µSL0 carefully in order to balance

convergence speed and steady-state performance.
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4.4.2 Computational complexity

In this subsection, we present the computational complexity of the proposed SL0-

APA and compare it with the conventional sparsity-aware channel estimation

algorithms, including the APA, ZA-APA and RZA-APA. It is worth noting that

when the affine projection order Q is equal to 1, these three affine projection

algorithms converge to familiar NLMS, ZA-NLMS and RZA-NLMS algorithms,

respectively. Here, the computational complexity is the arithmetic complexity,

which includes additions, multiplications and divisions. We assume K non-zero

taps in a sparse channel model as an FIR filter with N coefficients, and the order

of these affine projection algorithms is Q. The computational complexity of the

proposed SL0-APA and the relevant sparsity-aware algorithms are shown in Table

4.1.

Table 4.1: Computational complexity

Algorithms Additions Multiplications Divisions
NLMS 3N 3N+1 1

ZA-NLMS N+3K N+3K+1 1
RZA-NLMS N+4K N+4K+1 N+1

APA
NQ2 +NQ

+K −N +O(Q3)
NQ2 +Q2 +NQ

+Q+O(Q3)
Q

ZA-APA
NQ2 +Q2 + 3NQ

−2Q− 2N
+3K +O(Q3)

NQ2 + 2Q2 + 3NQ
+2Q+K +O(Q3)

Q

RZA-APA
NQ2 +Q2 + 3NQ

−2Q− 2N
+4K +O(Q3)

NQ2 + 2Q2 + 3NQ
+Q+N + 2K +O(Q3)

N +Q

SL0-APA
NQ2 +Q2 + 3NQ

−2Q− 2N
+4K +O(Q3)

NQ2 + 2Q2 + 3NQ
+Q+N2 −N
+2K +O(Q3)

N +Q

According to Table 4.1, our proposed SL0-APA with the best steady-state

performance and fastest convergence speed needs more calculations than the

RZA-APA. The additional computational complexity comes from the continu-

ous function for SL0 approximation, which can be reduced by proper selection of
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this continuous function. Furthermore, the complexity of all the APAs are higher

than the NLMS algorithms. In addition, the sparsity property of the channel can

also help to reduce the computational complexity of the proposed SL0-APA.

4.5 Conclusion

In this chapter, we proposed an SL0-APA to exploit the sparsity of sparse channel

and to improve the performance on both the convergence speed and steady-state

error of the APA, ZA-APA, RZA-APA. This algorithm is mainly developed by

introducing a smooth approximation l0-norm, which has a significant impact on

the sparsity due to the incorporation of SL0 into the cost function of the standard

APA as an additional constraint. The improvement can evidently accelerate

the convergence speed by exerting such additional regularization term on the

zero taps of the sparse channel. Then, we derived a mathematical analysis for

predicting the mean square error of our proposed SL0-APA. We also showed the

convergence behavior and the steady-state performance in comparison with the

standard APA and relevant sparsity-aware channel estimation algorithms. In

summary, the simulation results demonstrated that the proposed SL0-APA with

moderate computational complexity accelerates convergence speed and improves

steady-state performance in a designated sparse channel.
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Chapter 5

Discrete Weighted

Zero-Attracting Affine Projection

Algorithm

5.1 Introduction

In this chapter, we propose a discrete weighted zero-attracting affine projection

algorithm (DWZA-APA) with low complexity for broadband multipath channel

estimation [112]. The proposed algorithm exploits the sparsity of the broadband

multipath channel and utilizes the relationship between the inactive channel taps

and discrete weighted coefficients to improve the convergence speed of the affine

projection algorithm (APA). In the proposed DWZA-APA, the discrete weighted

coefficients are mainly exerted on the inactive taps whose magnitudes are zero or

close to zero. Compared to the previously proposed sparsity-aware algorithms, the

proposed DWZA-APA can not only further improve the estimation performance
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but also reduce computational complexity with stable recovery compared with

the RZA-APA. Simulation results demonstrate that the DWZA-APA outperforms

the standard APA and its related sparsity-aware algorithm in terms of both the

convergence speed and steady-state performance.

5.2 Proposed DWZA-APA

On the basis of the update function (2.50) of the RZA-APA, we pro-

pose a DWZA-APA which uses a piece-wise approximation instead of the

1/(1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣) to make use of the sparseness of the multipath chan-

nel [112]. The following piece-wise linear function, which is a segment function,

is adopted to approximate the 1/(1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣) and hence it can be re-

garded as a fairly resemblance of the zero attractor term in (2.50)

f(ĥi) =

{
350

∣∣∣ĥi

∣∣∣ , ∣∣∣ĥi

∣∣∣ < 0.005

δw, elsewhere
(5.1)

for i = 1, 2, · · · , N . Where δw is a positive constant to adjust the weights effects

on the non-zero taps. By taking the stochastic characteristic of the channel into

account and substituting (5.1) into (2.50), we can get the update equation of the

proposed DWZA-APA and it is given by

ĥ(n+ 1) = ĥ(n) + µDWZAU
+(n)e(n)

+
1

2
γDWZAU

+(n)U(n)f(ĥ(n))sgn[ĥ(n)]

−1

2
γDWZAf(ĥ(n))sgn[ĥ(n)]

, (5.2)

where µDWZA is the step size of the DWZA-APA and γDWZA is the regularization

parameter. In contrast to the RZA-APA, the DWZA-APA eliminates the addi-

tional logic caused by the division from 1/(1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣) of the RZA-APA.
In addition, 1/(1 + εRZA−APA

∣∣∣ĥ(n)∣∣∣) needsN multiplications andN divisions, the
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piece-wise linear function (5.1) of our proposed DWZA-APA only needs less than

N multiplications and logic comparisons. Thus, our proposed discrete weighted

method by the use of a piece-wise linear function reduces the computational com-

plexity of the previous RZA-APA. On the other hand, our proposed DWZA-APA

mainly exert penalty on the zero taps or close to zero taps, which can speeds up

the convergence and reduces the steady-state error.

5.3 Results and discussions

In this section, the estimation performance of our proposed DWZA-APA are

presented for channel estimations over a sparse channel with its length of N is

equal to 16 and number of dominant taps is K. The dominant channel taps are

obtained from a Gaussian distribution subjected to ∥h∥22 = 1, and the positions

of the dominant channel taps are random within the length of the channel. The

input signal x(n) of the channel is Gaussian random signal while the output of

the channel is corrupted by an independent white Gaussian noise v(n) with its

power δv = 10−3. Moreover, the results are averaged over 100 independent trails

for each algorithm. For the sake of comparison, the performance is evaluated by

means of the mean-square-error (MSE) defined in (4.54).

Firstly, we set up an experiment to investigate the effects of the parameter δw

and the simulation result is illustrated in Fig. 5.1. The specification parameters

used in this experiment are µDWZA = 0.4 and γDWZA = 3× 10−4. It is found that

the steady-state performance of the DWZA-APA is improved with the increment

of the δw when δw < 1.5. When δw increases to 2.5, the steady-state error of

DWZA-APA is the same to these of δw = 2 and δw = 1.5. This is because the

DWZA-APA has nearly the same weights to all the channel taps. Therefore, in

this paper, δw = 2 is adopted to verify the performance of the DWZA-APA.

Next, we discuss the convergence speed and the steady-state performance

of the DWZA-APA and compere it with the previous sparse-aware algorithms,

namely, ZA-LMS, RZA-LMS, ZA-NLMS, RZA-NLMS, ZA-APA, RZA-APA and

the standard LMS, NLMS and APA. To compare the convergence speed of these

algorithms, the specification parameters are optimized and shown in Table 5.1
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Figure 5.1: Effects on the parameter δw on the proposed DWZA-APA withK = 1.

for obtaining the same steady-state error floor. The obtained simulation result

is demonstrated in Fig. 5.2. We can see from the Fig. 5.2 that the convergence

Table 5.1: Simulation parameters

Algorithms Step-size Regularization parameters
LMS µLMS = 0.028 -

ZA-LMS µZA−LMS = 0.031 ρZA−LMS = 2× 10−6

RZA-LMS µRZA−LMS = 0.034 ρRZA−LMS = 5× 10−5

NLMS µNLMS = 0.42 -
ZA-NLMS µZA−NLMS = 0.45 ρZA−NLMS = 6× 10−6

RZA-NLMS µRZA−NLMS = 0.5 ρRZA−NLMS = 5× 10−5

APA µAPA = 0.21 -
ZA-APA µZA−APA = 0.3 γZA−APA = 7× 10−5

RZA-APA µRZA−APA = 0.4 γRZA−APA = 3× 10−4

DWZA-APA µDWZA = 0.48 γDWZA = 3× 10−4
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Figure 5.2: Convergence of the proposed DWZA-APA with K = 1 and δw = 2.

speed of the DWZA-APA is much faster than the RZA-APA. This is because the

RZA-APA mainly takes effects on the taps whose magnitudes are comparable to

1/εRZA−APA while has less shrinkage exerted on
∣∣∣ĥ(n)∣∣∣ > 1/εRZA−APA. For the

DWZA-APA, it exerts the penalty mainly on the taps whose magnitudes are less

than 0.05 while it has weak zero attracting on the other taps whose magnitudes

are greater than 0.05. Thus, the DWZA-APA has strong zero attracting on the

inactive taps, which speeds up the convergence speed of these inactive taps. In

addition, the convergence speed of the DWZA-APA and RZA-APA is superior to

other sparsity-aware algorithms mentioned above.

Then, we exploit the steady-state performance of the DWZA-APA and com-

pare it with the previously proposed channel estimation algorithms, including

RZA-NLMS, ZA-APA, RZA-APA and the standard APA. In this experiment,

the detailed parameters are listed in Table 5.2 to obtain the same convergence

speed. The computer simulation results are shown in Fig. 5.3. Figure 5.3 shows
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that our proposed DWZA-APA is better than other algorithms in terms of the

steady-state error due to that the DWZA-APA mainly penalizes the discrete

weights on the zero taps. We can see that the MSE of DWZA-APA is about 1 dB

better than that of the RZA-APA.

Finally, we show the performance of the DWZA-APA over a cluster-sparse

multipath channel with the channel length of N = 256 [113, 114]. The sparsity

Table 5.2: Simulation parameters

Algorithms Step-size Regularization parameters
RZA-NLMS µRZA−NLMS = 0.4 ρRZA−NLMS = 3× 10−5

APA µAPA = 0.22 -
ZA-APA µZA−APA = 0.22 γZA−APA = 5× 10−5

RZA-APA µRZA−APA = 0.22 γRZA−APA = 1× 10−4

DWZA-APA µDWZA = 0.22 γDWZA1× 10−4
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Figure 5.3: Steady-state performance of the proposed DWZA-APA with K = 1.
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level is K = 8 and these 8 taps are always separated into two clusters with

4 taps for each cluster. An typical example of such cluster-sparse multipath

channel [113] is shown in Fig. 5.4, where the length of the channel is 100 and the

number of dominant taps is 8 which is divided into two clusters. Furthermore, the

positions of the two clusters are randomly spaced along the length of the channel.

In this experiment, the relevant parameters are listed as follows: µRZA−NLMS =

0.4, µAPA = µZA−APA = µRZA−APA = µDWZA = 0.22, ρRZA−NLMS = 6 × 10−6,

γAPA = 1× 10−5, γZA−APA = 1× 10−5, γRZA−APA = 7.5× 10−5, γDWZA = 3× 10−6.

Figure 5.5 demonstrates the performance of the DWZA-APA over such cluster-

sparse channel. We can see that the DWZA-APA is still better than other channel

estimation algorithms with respect to the steady-state performance. Additionally,

we found that all the algorithms have the same convergence at the initial stage.

After several iterations, the RZA-APA converges faster than the DWZA-APA.

After that, the convergence speed of the RZA-APA slows down, even it is slower
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Figure 5.4: Cluster-sparse multipath fading channel model.
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Figure 5.5: Performance of the DWZA-APA over a cluster-sparse channel.

than that of the ZA-APA. However, the DWZA-APA has better steady-state

performance compared with RZA-APA at steady stage. This is caused by the

introduction of piece-wise linear function in (5.1), which mainly exerts penalty on

the inactive channel taps at the initialization, and hence the convergence speed

of the zero taps are accelerated. Consequently, the DWZA-APA gives the same

penalty on the active taps uniformly and thus its convergence speed is reduced.

5.4 Conclusion

In this chapter, we proposed a DWZA-APA for sparse channel estimation in

broadband communication systems based on the approximate representation of

the sum-log function in the RZA-APA. The behaviors of the DWZA-APA are

evaluated over a sparse and a cluster-sparse channel. The simulation results show

that the DWZA-APA has a faster convergence speed and a lower steady-state
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error than that of the RZA-APA. The introduction of discrete weighted scheme

in the DWZA-APA, which is used to design the zero attractors, also reduces

the computational complexity of the RZA-APA by eliminating the division and

additional operations.
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Chapter 6

Lp-Norm Constrained

Proportionate Normalized

Least-Mean-Square Algorithm

6.1 Introduction

To make use of the sparsity property of broadband multipath wireless communi-

cation channels, we have proposed an lp-norm-constrained proportionate normal-

ized least-mean-square (LP-PNLMS) sparse channel estimation algorithm [115].

A general lp-norm is weighted by the gain matrix and is incorporated into the

cost function of the proportionate normalized least-mean-square (PNLMS) algo-

rithm. This integration is equivalent to adding a zero attractor to the iterations,

by which the convergence speed and steady-state performance of the inactive

taps are significantly improved. Our simulation results demonstrate that the

proposed algorithm can effectively improve the estimation performance of the
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PNLMS-based algorithm for sparse channel estimation applications.

6.2 Proposed LP-PNLMS algorithm

In this section, we propose an LP-PNLMS algorithm by incorporating the lp-norm

into the cost function of the PNLMS algorithm to create a zero attractor, making

it a type of ZA algorithm. The difference between the LP-PNLMS algorithm

and general ZA algorithms is that the gain-matrix-weighted lp-norm is taken into

account in designing the zero attractor [115]. On the other hand, the proposed

LP-PNLMS algorithm is based on the commonly used PNLMS algorithm, which

is also a sparse channel estimation algorithm and can improve the convergence

for the active taps. Regarding channel estimation, the purpose of the LP-PNLMS

algorithm is to minimize

(ĥ(n+ 1)− ĥ(n))TG−1(n)(ĥ(n+ 1)− ĥ(n)) + γLP

∥∥∥G−1(n)ĥ(n+ 1)
∥∥∥
p

subject to

r(n)− ĥT (n+ 1)x(n) = 0

, (6.1)

where G−1(n) is the inverse of the gain matrix G(n) in the PNLMS algo-

rithm, γLP > 0 is a very small constant used to balance the estimation er-

ror and the sparse lp-norm penalty of ĥ(n + 1), ∥·∥p is the p-norm defined as∥∥∥ĥ∥∥∥
p
= (

∑
i
ĥp
i )

1/p in (1.7) and 0 ≤ p ≤ 1. Note that in (6.1), we introduce an

lp-norm penalty to ĥ(n+ 1) after scaling the gain matrix by G−1(n), which is

different from the previously proposed ZA LMS algorithms.

To minimize (6.1), the Lagrange multiplier method is adopted, and the cost

function JLP(n+ 1) of the proposed LP-PNLMS algorithm is expressed as

JLP(n+ 1) = (ĥ(n+ 1)− ĥ(n))TG−1(n)(ĥ(n+ 1)− ĥ(n))

+γLP

∥∥∥G−1(n)ĥ(n+ 1)
∥∥∥
p
+ λ(r(n)− ĥT (n+ 1)x(n))

, (6.2)
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where λ is the Lagrange multiplier.

By calculating the gradient of the cost function JLP(n+1) of the LP-PNLMS

algorithm and assuming ĥ(n+ 1) ≈ ĥ(n) in the steady stage, we have

∂JLP(n+ 1)

∂ĥ(n+ 1)
= 0 and

∂JLP(n+ 1)

∂λ
= 0 (6.3)

and

ĥ(n+ 1) = ĥ(n) + λG(n)x(n)− γLP

∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n))∣∣∣ĥ(n)∣∣∣1−p . (6.4)

In practice, a small positive constant is necessary for the final term in (6.4)

to cope with the situation that an entry of ĥ(n) approaches zero, which is the

case for a sparse CIR at the initialization. Then the update equation (6.4) of the

LP-PNLMS algorithm is modified to

ĥ(n+ 1) = ĥ(n) + λG(n)x(n)− γLP

∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n))∣∣∣ĥ(n)∣∣∣1−p

+ εp

, (6.5)

where εp is a small value to prevent division by zero. By multiplying both sides

of (6.5) by xT (n), we obtain

xT (n)ĥ(n+ 1) = xT (n)ĥ(n) + λxT (n)G(n)x(n)

−γLP

xT (n)
∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n))∣∣∣ĥ(n)∣∣∣1−p

+ εp

.
(6.6)
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From (2.2), (6.3) and (6.5), we obtain

e(n) = −γLP

xT (n)
∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n))∣∣∣ĥ(n)∣∣∣1−p

+ εp

+ λxT (n)G(n)x(n). (6.7)

Then, the Lagrange multiplier λ is given as follows by solving (6.7):

λ =

e(n) + γLP

xT (n)
∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n))∣∣∣ĥ(n)∣∣∣1−p

+ εp

xT (n)G(n)x(n)
.

(6.8)

Substituting (6.8) into (6.5), we have

ĥ(n+ 1) = ĥ(n)− γLP

∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n))∣∣∣ĥ(n)∣∣∣1−p

+ εp

+

e(n) + γLP

xT (n)
∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n))∣∣∣ĥ(n)∣∣∣1−p

+ εp

xT (n)G(n)x(n)
G(n)x(n)

= ĥ(n) +
e(n)G(n)x(n)

xT (n)G(n)x(n)
− γLP

{
I− G(n)x(n)xT (n)

xT (n)G(n)x(n)

} ∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n))∣∣∣ĥ(n)∣∣∣1−p

+ εp

.

(6.9)

It is found that the magnitudes of the elements in the matrix

G(n)x(n)xT (n){xT (n)G(n)x(n)}−1 are much smaller than 1 for broadband mul-

tipath channel estimation. Therefore, the update equation (6.9) of the proposed
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LP-PNLMS algorithm is rewritten as

ĥ(n+ 1) = ĥ(n) +
e(n)G(n)x(n)

xT (n)G(n)x(n)
− γLP

∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n))∣∣∣ĥ(n)∣∣∣1−p

+ εp

. (6.10)

Here, we neglect the effects of the matrixG(n)x(n)xT (n){xT (n)G(n)x(n)}−1 and

assume that the filter order is large. Similarly to the PNLMS algorithm, a step

size µLP is introduced to balance the convergence speed and the steady-state error

of the proposed LP-PNLMS algorithm, and a small positive constant εLP = δ2x/N

is employed to prevent division by zero. Thus, the update function (6.10) can be

modified to

ĥ(n+ 1) = ĥ(n) + µLP
e(n)G(n)x(n)

xT (n)G(n)x(n) + εLP
− ρLP

∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n))∣∣∣ĥ(n)∣∣∣1−p

+ εp

= ĥ(n) + µLP
e(n)G(n)x(n)

xT (n)G(n)x(n) + εLP
− ρLPT(n)

,

(6.11)

where ρLP = µLPγLP and T(n) =
∥∥∥ĥ(n)∥∥∥1−p

p
sgn(ĥ(n)){

∣∣∣ĥ(n)∣∣∣1−p

+ εp}−1. Com-

paring update function (6.11) of the proposed LP-PNLMS algorithm with the

the update function (2.51) of the PNLMS algorithm, we see that our proposed

LP-PNLMS algorithm has the additional term γLPT(n), also defined as the zero

attractor, which attracts the small channel taps to zero with high probability. In

a words, in our proposed LP-PNLMS algorithm, the gain matrix G(n) assigns

a large step size to the active channel taps of the sparse channel, while the zero

attractor mainly exerts the lp-penalty on the inactive taps whose taps are zero or

close to zero. Thus, our proposed LP-PNLMS algorithm can further improve the

convergence speed of the PNLMS algorithm after the convergence of the large

taps which are active taps.
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6.3 Results and discussion
In this section, we present the results of computer simulations carried out to

illustrate the estimation performance of the proposed LP-PNLMS algorithm over

a sparse multipath communication channel and compare it with those of the

preciously proposed IPNLMS, MPNLMS, PNLMS and NLMS algorithms. We

consider a sparse channel h whose length N is 64 or 128 and whose number of

dominant active taps K is set to three different sparsity levels, namely K = 2, 4

and 8 similarly to previous studies [6,22,25-26]. The dominant active channel taps

are obtained from a Gaussian distribution with ∥h∥22 = 1, and the positions of the

dominant channel taps are randomly spaced along the length of the channel. The

input signal x(n) of the channel is a Gaussian random signal while the output

of the channel is corrupted by an independent white Gaussian noise v(n). An

example of a typical sparse multipath channel with a channel length of N = 64

and a sparsity level of K = 3 is shown in Fig. 1.2. In the simulations, the

power of the received signal is Eb = 1, while the noise power is given by δ2v and

the signal-to-noise ratio is defined as SNR = 10 log Eb

δ2v
. In all the simulations,

the difference between the actual and estimated channels based on the sparsity-

aware algorithms and the sparse channel mentioned above is evaluated by the

MSE defined in (4.54).

In these simulations, the simulation parameters are chosen to be µNLMS =

µPNLMS = µIPNLMS = µLP = 0.5, δNLMS = 0.01, ε = 0.001, α = 0, εp = 0.05,

ρLP = 1 × 10−5, δp = 0.01, ρg = 5/N , ϑ = 1000, p = 0.5, SNR = 30 dB. When

we change one of these parameters, the other parameters remain constant.

6.3.1 Estimation performance of the proposed LP-

PNLMS algorithm

6.3.1.1 Effects of parameters on the proposed LP-PNLMS algorithm

In the proposed LP-PNLMS algorithm, there are two extra parameters, p and

ρLP, compared with the PNLMS algorithm, which are introduced to design the
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zero attractor. Next, we show how these two parameters affect the proposed LP-

PNLMS algorithm over a sparse channel with N = 64 or 128 and K = 4. The

simulation results for different values of ρLP and p are shown in Figs. 6.1 and

6.2, respectively. According to the Fig. 6.1a, we can see that the steady-state

error of the LP-PNLMS algorithm decreases with decreasing ρLP when ρLP ≥
2 × 10−6, while it increases again when ρLP is less than 2 × 10−6. Furthermore,

the convergence speed of the LP-PNLMS algorithm rapidly decreases when ρLP

is less than 1 × 10−5. This is because a small ρLP results in a low ZA strength,

which consequently reduces the convergence speed. In the case of N = 128

shown in Fig. 6.1b, we observe that both the convergence speed and the steady-

state performance are improved with decreasing ρLP for ρLP ≥ 1 × 10−5. When

ρLP < 1 × 10−5, the convergence speed of the LP-PNLMS algorithm decreases

while the steady-state error remains constant.

Figure 6.2 demonstrates the effects of the parameter p. We can see from

Fig. 6.2a that the convergence speed of the proposed LP-PNLMS algorithm

rapidly decreases with increasing p for N = 64. Moreover, the steady-state

error is reduced with p ranging from 0.45 to 0.5, while it remains constant for

p = 0.6, 0.7 and 0.8. However, the steady-state performance for p = 1 is inferior

to that for p = 0.8. This is because the proposed LP-PNLMS algorithm is an l1-
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Figure 6.1: Effects of ρLP on the proposed LP-PNLMS algorithm.
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Figure 6.2: Effects of p on the proposed LP-PNLMS algorithm.

norm-penalized PNLMS algorithm, which cannot distinguish between active taps

and inactive taps, reducing its convergence speed and steady-state performance.

When N = 128, as shown in Fig. 6.2b, the steady-state performance is improved

as p increases from 0.45 to 0.6. Thus, we should carefully select the parameters

ρLP and p to balance the convergence speed and steady-state performance for the

proposed LP-PNLMS algorithm.

6.3.1.2 Effects of sparsity level on the proposed LP-PNLMS algorithm

On the basis of the results discussed discussed in Section 6.3.1.1 for our proposed

LP-PNLMS algorithm, we choose p = 0.5 and ρLP = 1 × 10−5 to evaluate the

channel estimation performance of the LP-PNLMS algorithm over a sparse chan-

nel with different channel lengths of N = 64 and 128, for which the obtained

simulation results are given in Figs. 6.3 and 6.4, respectively. From Fig. 6.3, we

see that our proposed LP-PNLMS algorithm has the same convergence speed as

the PNLMS algorithm at the initial stage. The proposed LP-PNLMS algorithm

converges faster than the PNLMS algorithm as well as the IPNLMS and NLMS

algorithms for all sparsity levels K, while its convergence is slightly slower than

that of the MPNLMS algorithm before it reaches a steady stage. However, the
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proposed LP-PNLMS algorithm has the smallest steady-state error for N = 64.

When N = 128, we see from Fig. 6.4 that our proposed LP-PNLMS algorithm not

only has the highest convergence speed but also possesses the best steady-state

performance. This is because with increasing sparsity, our proposed LP-PNLMS

algorithm attracts the inactive taps to zero quickly and hence the convergence

speed is significantly improved, while the previously proposed PNLMS algorithms

mainly adjust the step size of the active taps and thus they only impact on the

convergence speed at the early iteration stage. Additionally, we see from Figs. 6.3

and 6.4 that both the convergence speed and the steady-state performance of all

the PNLMS algorithms deteriorate when the sparsity level K increases for both

N = 64 and 128. In particular, when K = 8, the convergence speeds of the

PNLMS and IPNLMS algorithms are greater than that of the NLMS algorithm
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Figure 6.3: Effects of sparsity on the proposed LP-PNLMS algorithm for N = 64.
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Figure 6.4: Effects of sparsity on the proposed LP-PNLMS algorithm forN = 128.

at the early iteration stage, while after this fast initial convergence, their conver-

gence speeds decrease to less than that of the NLMS algorithm before reaching a

steady stage. Furthermore, we observe that the MPNLMS algorithm is sensitive

to the length N of the channel, and its convergence speed for N = 128 is less

than that for N = 64 at the same sparsity level K and less than that of the pro-

posed LP-PNLMS algorithm. Thus, we conclude that our proposed LP-PNLMS

algorithm is superior to the previously proposed PNLMS algorithms in terms of

both the convergence speed and the steady-state performance with the appropri-

ate selection of the related parameters p and ρLP. From the above discussion, we

believe that the gain-matrix-weighted lp-norm method in the LP-PNLMS algo-

rithm can be used to further improve the channel estimation performance of the

IPNLMS and MPNLMS algorithms.
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6.3.2 Computational complexity

Finally, we discuss the computational complexity of the proposed LP-PNLMS

algorithm and compare it with those of the NLMS, PNLMS, IPNLMS and

MPNLMS algorithms. The computational complexity is the arithmetic complex-

ity, which includes additions, multiplications and divisions. The computational

complexities of the proposed LP-PNLMS algorithm and the related PNLMS and

NLMS algorithms are shown in Table 6.1.

Table 6.1: Computational complexity

Algorithms Additions Multiplications Divisions
NLMS 3N 3N+1 1
PNLMS 4N+3 6N+3 N+2
IPNLMS 4N+7 5N+5 N+2
MPNLMS 5N+3 7N+3 N+3
LP-PNLMS 4N+4 9N+4 2N+2

According to Table 6.1, the computational complexity of our proposed LP-

PNLMS algorithm is slightly higher than those of the MPNLMS and PNLMS

algorithms, which is due to the calculation of the gradient of the lp-norm. Fur-

thermore, the MPNLMS algorithm has an additional logarithm operation, which

increases its complexity but is not included in the Table 6.1. However, the LP-

PNLMS algorithm noticeably increases the convergence speed and significantly

improves the steady-state performance of the PNLMS algorithm. In addition,

it also has a higher convergence speed and lower steady-state error than the

IPNLMS and MPNLMS algorithms when the channel length is large.

6.4 Conclusion

In this chapter, we have proposed an LP-PNLMS algorithm to exploit the sparsity

of broadband multipath channels and to improve both the convergence speed and

steady-state performance of the PNLMS algorithm. This algorithm was mainly
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developed by incorporating the gain-matrix-weighted lp-norm into the cost func-

tion of the PNLMS algorithm, which significantly improves its convergence speed

and steady-state performance. The simulation results demonstrated that our pro-

posed LP-PNLMS algorithm, which has an acceptable increase in computational

complexity, increases the convergence speed and reduces the steady-state error

compared with the previously proposed PNLMS algorithms.
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Chapter 7

Conclusions and Future Research
Directions

7.1 Conclusions of this dissertation

To fulfill the requirements of a high data rate and a high-quality service, broad-

band communication techniques have attracted much attention in both industry

and academia for their use in future communication systems. The broadband

wireless multipath channel, which can be regarded as a sparse channel, has im-

portant effects on coherent detection. Effective sparse channel estimation tech-

niques which can exploit the sparsity of the broadband wireless multipath channel

and provide sufficient gain for wireless communication systems, are attractive for

applications. Furthermore, adaptive channel estimation using adaptive filtering

algorithms is effective and easy to implement and has been widely studied. In

this dissertation, we have developed four sparse adaptive channel estimation al-

gorithms by utilizing the sparseness of the broadband multipath channel.

For sparse channel estimation, the conventional LMS algorithm cannot uti-

lize the sparseness of the channel and performs poorly. On the basis of CS

theory, variable step size techniques and ZA techniques [67], we have proposed

an ARZA-SVSS-LMS algorithm using the sigmoid functioned variable step size

and adaptive parameter adjustment methods. Simulation results showed that

the ARZA-SVSS-LMS algorithm can achieve better channel estimation perfor-

mance than the previously proposed ZA-LMS and RZA-LMS algorithms. In this
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algorithm, the SVSS technique reduces the steady-state error while the adap-

tive parameter adjustment method dynamically changes the ZA strength of the

ARZA-SVSS-LMS algorithm, thus significantly increases the convergence speed.

Chapter 4 proposed the SL0-APA to improve both the convergence speed and

steady-state performance compared with the ZA-APAs and NLMS algorithms.

The proposed SL0-APA can provide a zero attractor by integrating the SL0 into

the cost function of the APA, as a result of which both the convergence speed

and steady-state performance are improved. Furthermore, we provided a con-

vergence analysis of the SL0-APA. Simulation results were in good agreement

with ones obtained from the theoretical analysis for different values of µSL0. The

computational complexity of the SL0-APA was also discussed and compared with

previously proposed channel estimation algorithms. The SL0-APA has accept-

able computational complexity, a high convergence speed and a low steady-state

error.

Chapter 5 focused on reducing the computational complexity of the RZA-

APA. For this purpose, we presented the DWZA-APA algorithm to reduce the

computational complexity, which was implemented by introducing a piece-wise

linear segment function instead of the sum-logarithm function in the RZA-APA.

The DWZA-APA achieves a higher convergence speed and nearly the same steady-

state error compared with the RZA-APA. In addition, additions and divisions are

removed from the RZA-APA, thus reducing its computational complexity.

Chapter 6 presented a novel perspective for proportionate adaptive algo-

rithms. To the best of our knowledge, most of the existing proportionate adaptive

algorithms exploit the sparsity of a sparse signal by assigning a proportionate step

size to individual coefficients. Although these modified PNLMS algorithms can

increase the convergence speed and improve the steady-state performance by em-

ploying a suitable variable step size or gain matrix, they are mainly focused on

how to determine an appropriate step size and gain matrix G(n). Inspired by

the ZA algorithms, we proposed the LP-PNLMS algorithm by incorporating a

gain-matrix-weighted lp-norm into the cost function of the PNLMS algorithm to

obtain the benefits of both the PNLMS algorithm and the ZA algorithms. The

update equation of the LP-PNLMS algorithm shows that the zero attractor is

independent of G(n). Thus, the LP-PNLMS algorithm assigns a large step size
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to large coefficients and applies a zero attractor to the inactive taps. The simu-

lation results demonstrated that the LP-PNLMS algorithm can achieve the same

convergence speed as the PNLMS algorithm in the initial stage and that it con-

verges faster than the PNLMS algorithm when the active taps have converged.

The main advantage of this approach is that only the zero attractor must be

designed, which can be easily achieved in practical engineering applications.

7.2 Future Research Directions

From the investigations and discussions of this dissertation, we can conclude that

the proposed sparse adaptive filter algorithms demonstrate favorable performance

for sparse channel estimation applications. In the future, the following issues can

be further investigated.

7.2.1 For the ARZA-SVSS-LMS algorithm

In this dissertation, we proposed the ARZA-SVSS-LMS algorithm, which had

greater computational complexity than the ZA-LMS and RZA-LMS algorithms.

Although some low-complexity LMS algorithms have been proposed such as par-

tial update LMS algorithms, they are not considered to be ZA algorithms. In

[116], a segment ZA LMS algorithm was proposed and discussed. This algorithm

reduces the complexity of the RZA-LMS algorithm for echo cancellation applica-

tions. Thus, the development of low-complexity ZA LMS algorithms with high

channel estimation performance in terms of both the convergence speed and the

steady-state performance is necessary and desirable. In addition, the complexity

of the ARZA-SVSS-LMS algorithm can be reduced by using a suitable segment

linear function. Furthermore, the proposed µSVSS can also be improved by the

use of a nonparametric or optimal step size method. In addition, the proposed

ZA LMS algorithm can be expanded to leaky-LMS and block-LMS algorithms.
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7.2.2 For the sparse APA algorithms

We proposed the SL0-APA to improve the convergence speed and steady-state

performance of the previously proposed ZA algorithms. This algorithm is realized

by incorporating the SL0 into the cost function of the APA. In the future, the

lp-norm can also be used to design the zero attractor for sparse channel estima-

tion on the basis of the investigation of the ZA algorithms. Also, the APA has

higher complexity than the LMS algorithm, which is due to the use of the matrix

inverse of U(n) and the calculation of the gradient for SL0. Although a fast APA

(FAPA) [117] has been proposed and applied to related APAs, the complexity

of the matrix inverse can also be reduced. The calculation of the gradient for

SL0 can be reduced by selecting a suitable continuous function for smooth ap-

proximation of the l0-norm. Furthermore, the calculation of the gradient for SL0

can be obtained from a Taylor series, such as the SL0 in [104], which can reduce

the computational complexity of obtaining the gradient. Finally, the proposed

method and the previously proposed ZA algorithms can be expanded to a set-

membership affine projection sign algorithm to render them suitable for sparse

channel estimation applications. In addition, we also proposed the DWZA-APA

to reduce the complexity of the RZA-APA. However, in the future we hope to

design a ZA block APA for sparse-cluster signal applications.

7.2.3 For the sparse proportionate-type algorithms

Proportionate adaptive algorithms have favorable performance and have been

used for echo cancellation in telecommunication networks. We proposed the LP-

PNLMS algorithm to improve the convergence speed of the inactive taps and the

steady-state performance of the PNLMS algorithm. The computational complex-

ity can be reduced by using partial-updating approaches [68–71], which update

part of the coefficients. Moreover, the proposed gain-matrix-weighted lp-norm

can be expanded to µ-law PNLMS (MPNLMS) and IPNLMS algorithms to fur-

ther improve the channel estimation performance of the PNLMS algorithms. In

addition, the ZA technique can also be integrated into proportionate affine projec-

tion algorithms (PAPA) such as the improved PAPA (IPAPA) and µ-law PAPA
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(MPAPA). In the LP-PNLMS algorithm, a zero attractor is added to the update

function of the PNLMS algorithm, which is independent of the step size µLP and

gain matrix G(n). Thus, the variable step size techniques and gain allocation

methods can be employed to further improve the estimation performance of the

LP-PNLMS algorithm. On the other hand, analysis of the convergence character-

istics of the ZA sparse proportionate-type channel estimation algorithms should

be considered in future research.

7.2.4 Sparse adaptive filter applications

The proposed sparse adaptive filters were developed while focusing on broadband

multipath channel estimation applications. The proposed sparse channel esti-

mation algorithms can be integrated into the practical wireless systems, such as

the OFDM and MIMO systems, to investigate the bit-error-ratio (BER) perfor-

mance. Moreover, another area for investigation is the application of the proposed

algorithms in other scenarios different from channel estimation, such as adaptive

beamforming, echo cancellation and adaptive networks. On the other hand, the

development of 2D sparse adaptive filter algorithms based on the ZA techniques

for 2D sparse signal applications such as image processing should be considered

in the future. In addition, the sparse adaptive filter algorithms can be applied in

compressed sensing for sparse signal processing with high recovery probability.
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Appendix A

Proof for Theorem 1

Proof: We define the estimation error ∆(n+ 1) at the (n+ 1)th iteration

∆(n+ 1) = ĥ(n+ 1)− h

=∆(n) + µLMSx(n)e(n)

=∆(n)− 1

2
µLMSΓ(n)

, (A.1)

where

Γ(n) =
∂J(n)

∂ĥ(n)
= −2x(n)e(n) , (A.2)

where J(n) = e2(n) and Γ(n) is defined as the joint gradient error function that

includes the channel estimator error and the additive white Gaussian noise error

[2, 43–45]. Two gradient errors should be separated in order to obtain the lower

bound of the channel estimator. Hence, we split Γ(n) into two terms:

Γ(n) = Γ̃(n) + 2w(n), (A.3)

where Γ̃(n) is the gradient error and can be expressed as

Γ̃(n) = 2(Rĥ(n)−Rh), (A.4)
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and w(n) = [w0(n), w1(n) · · · , wN−1(n)]
T is the gradient noise error with its ex-

pectation E{w(n)} = 0 [2, 43], and hence

x(n)e(n) = −1

2
Γ(n)

= −(Rh̃(n)−Rh)−w(n)

= −R(h̃(n)− h)−w(n)

= −R∆(n)−w(n)

. (A.5)

Substituting equation (A.5) into the equation (A.1), we can get

∆(n+ 1) = ∆(n) + µLMSx(n)e(n)

= ∆(n)− µLMSR∆(n)− µLMSw(n)

= (IN − µLMSR)∆(n)− µLMSw(n)

= (IN − µLMSQΛQT )∆(n)− µLMSw(n)

= Q(IN − µLMSΛ)QT∆(n)− µLMSw(n)

, (A.6)

where the covariance matrixR of the input signal x(n) can be decomposed asR =

QΛQT . Here, Q is a N ×N unitary matrix and Λ = diag{λ1, λ2, · · · , λN−1, λN}
is an N ×N diagonal matrix with the eigenvalue of covariance matrix R located

at its diagonal. IN is a N × N identity matrix. By multiplying the QT at the

both side of the equation (A.6), we can rewrite it as

QT∆(n+ 1) = (IN − µLMSΛ)QT∆(n)− µLMSQ
Tw(n). (A.7)

Assuming ∆̄(n+ 1) = QT∆(n+ 1), ∆̄(n) = QT∆(n) and w̄(n) = QTw(n), the

equation (A.7) can be rewritten as

∆̄(n+ 1) = (IN − µLMSΛ)∆̄(n)− µLMSw̄(n). (A.8)
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Thus, the MSE lower bound of LMS can be obtained as

B = lim
n→∞

E
{∥∥∆̄(n+ 1)

∥∥2

2

}
= lim

n→∞
E
{[

(IN − µLMSΛ)∆̄(n)− µLMSw̄
T (n)

]T [
(IN − µLMSΛ)∆̄(n)− µLMSw̄(n)

]}
= lim

n→∞

{
(IN − µLMSΛ)2E

[∥∥∆̄(n)
∥∥2

2

]
+ µ2

LMSE
[
w̄T (n)w̄(n)

]}
= lim

n→∞

{
(IN − µLMSΛ)2nE

[∥∥∆̄(0)
∥∥2

2

]
+ µ2

LMS

n∑
i=0

(IN − µLMSΛ)2iE
[
w̄T (n)w̄(n)

]}
≥ lim

n→∞

{
µ2
LMS

N∑
i=0

(IN − µLMSΛ)2iE
[
w̄T (n)w̄(n)

]}
.

(A.9)

In the above equation, we use the recursion of
[∥∥∆̄(n)

∥∥2

2

]
and the

lim
n→∞

(IN − µLMSΛ)
2nE

[∥∥∆̄(0)
∥∥2

2

]
→ 0 when |IN − µLMSλi| < 1 to analyze the

MSE lower bound [2]. By considering the ith channel taps bi (i = 0, 1, · · · , N −
2, N − 1), we can get

bi = lim
n→∞

µ2
LMS

N−1∑
i=0

(1− µLMSλi)
2iE

{
|w̄i(n)|2

}
=

µLMSP

2− µLMSλi

, (A.10)

where P is the gradient noise power and E
{
|w̄i(n)|2

}
= λiP . For the standard

LMS channel estimation algorithm, it cannot utilize the sparsity of the multipath

channel. Thus, the MSE lower bound should be obtained from all the channel

taps and it can be expressed as

B =
N−1∑
i=0

bi =
N−1∑
i=0

µLMSP

2− µLMSλi

≥
N−1∑
i=0

µLMSP

2− µLMSλmin

=
µLMSNP

2− µLMSλmin

, (A.11)

where λmin is the minimum eigenvalue of covariance matrix R of the input signal

x(n). From the equation (A.11), we can see that the CRLB of non-sparse channel

estimator is B ∼ O(N). Then we consider a sparse channel, which is comprised

of K non-zero taps and (N−K) non-zero taps. Let A = {n ∈ N | 1 ≤ n ≤ N} be

the taps of the sparse channel and let C = {c1, c2, · · · , cK} ⊂ A (|C| = K, where

| · | is the cardinality, that is, the number of elements in the set) be the non-zero
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taps of the sparse channel h. Therefore, the sparse channel can be expressed as

hi =

{
cK , nonzero taps

0, otherwise
. (A.12)

Thus, the MSE lower bound of such sparse channel can be obtained from the

equation (A.10)

Bs =
N−1∑

i=0,i∈C

bi =
∑
i∈C

µLMSP

2− µLMSλi

≥
∑
i∈C

µLMSP

2− µLMSλmin

=
µLMSKP

2− µLMSλmin

∼ O(K).

(A.13)

From the above discussions and the proof for Theorem 1, the K non-zero taps

has important effects on the LMS-type sparse channel estimation. Thus, design

sparse channel estimation algorithms is a attractive and desirable topic.
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