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Summary

The spatial information processing is an essential aspect in human vi-

sion while the fundamental questions about spatial-frequency-tuned

channels remain controversial. In this dissertation, the impulse re-

sponses of double-pulse detection using various spatial structure stim-

uli with separate positive- and negative-contrast and using stimuli

with ring-structure Fourier spectrum at different spatial frequencies

were studied to explore the possible spatial-frequency-tuned channels

through the impulse response function (IRF) which was psychophys-

ically measured by the double-pulse detection threshold through the

working model and characterized a time-invariant linear system com-

pletely.

Firstly, in the first experiment, double-pulse thresholds and IRFs of

the positive- and negative- contrast detection by separated positive-

and negative-contrast stimuli with various circular spatial structures

were measured. The purpose is to explore the possible spatial-frequency-

tuned channels and to investigate the temporal characteristics and

sensitivities of the positive- and negative-contrast detection. Because

whether positive- and negative-contrast sensitivities are the same is a

fundamental issue of visual processing.

Results showed that the impulse responses of positive- and negative-
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contrast detection were similar except the maximum amplitude of the

first phase which concerned with the sensitivity of contrast detection.

It is simply reflecting that sensitivity of positive contrast detection

was lower than that of negative contrast detection. The different sen-

sitivity of positive- and negative-contrast detection can be originated

from the summation part instead of the linear filter part of visual

system according to the working model of human vision.

Although a new attempt was tried with use of stimuli with ring-

structure Fourier spectrum, however, the attempt to investigating

impulse responses of the possible spatial-frequency-tuned channels

failed because the strong very low spatial frequency component dom-

inated the Fourier spectrum of the various spatial structure stimuli,

because those had to be used for the measurement of the positive-

and negative-contrast experiment.

Secondly, in the second experiment, double-pulse thresholds of con-

trast detection using stimuli with ring-structure Fourier spectrum at

different spatial frequencies were measured psychophysically on hu-

man observers in order to get IRFs and then to investigate the impulse

responses and the sensitivities of the possible spatial-frequency-tuned

channels.

Results showed that: (1) the double-pulse detection thresholds of

lower spatial frequencies (1 and 2 cycle per degree (cpd)) were lower

than those of higher spatial frequencies (8 and 16 cpd), and (2) IRFs

of lower spatial frequencies (1 and 2 cpd) were significantly differ-
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ent with IRFs of higher spatial frequencies (8 and 16 cpd) both on

the phase, the first zero-crossing time, and the amplitude. The IRFs

of lower spatial frequencies had two or three phases while those of

higher spatial frequencies had only one phase (except one observer

had a very weak second phase). The first zero-crossing time of IRFs

of lower spatial frequencies were shorter and the amplitude of IRFs

of lower spatial frequencies were higher, compared to those of higher

spatial frequencies. (3) The peak frequency of temporal contrast sen-

sitivity function (tCSF) derived from IRFs was higher in lower spatial

frequencies (1 and 2 cpd) than that in higher spatial frequencies (8

and 16 cpd).

Above results indicated that at least two kinds of spatial-frequency-

tuned channels, the lower- and higher-spatial-frequency-tuned chan-

nels that dominate the detection of lower spatial frequencies (0, 1, and

2 cpd) and the detection of high spatial frequencies (8 and 16 cpd), re-

spectively, exists in human vision. The lower-spatial-frequency-tuned

channel is bandpass and the higher-spatial-frequency-tuned channel

is low-pass. However, the accurate number of spatial-frequency-tuned

channels could not be estimated because of the possible limit of mea-

surement with the double pulse method for the IRF that is using the

detection threshold.

These results in the present study were discussed with physiological

consideration which supported that the M- and P-pathways in human

visual system dominated the detection of the lower spatial frequencies
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( 0, 1, and 2 cpd) and the higher spatial frequencies (8 and 16 cpd),

respectively, in the present study.

The different impulse responses between the M- and P-pathways and

the difference between spatial frequency and spatial structure were

also discussed.

Five chapters are included in this dissertation. Chapter 1 introduces

the background knowledge about the temporal sensitivity, the working

model of temporal sensitivity, the IRF, the estimation of IRF, the

double-pulse method, the staircase method, and the psi method.

Chapter 2 is about impulse responses and sensitivities of positive-

and negative-contrast detection. IRFs and double-pulse thresholds of

positive- and negative-contrast detection with various circular spatial

structure stimuli were measured to investigate the temporal charac-

teristics and sensitivities of positive- and negative-contrast detection.

Introduction section reviews conflicting results about sensitivities of

the positive- and negative-contrast detection measured by various in-

vestigators. Method section describes the stimuli, the log contrast

energy threshold, apparatus, calibration of CRT, procedure, estima-

tion of IRFs, and statistical analysis of the experiment. Results sec-

tion shows results of the positive- and negative-contrast detection

thresholds of double-pulse detection, the comparison of positive- and

negative-contrast thresholds, IRFs of positive- and negative-contrast

detection, the paired comparison of positive- and negative-contrast

IRFs, and the distributions of peak times and amplitude of IRFs. Dis-
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cussion and Conclusion sections as described above. Appendix section

shows the comparison of calculated IRFs between two models.

Chapter 3 is about impulse responses of the possible spatial-frequency-

tuned channels. IRFs and double-pulse thresholds of contrast detec-

tion of stimuli with ring-structure of Fourier spectrum at different

spatial frequencies were measured to investigate the temporal char-

acteristics of the possible spatial-frequency-tuned channels. Intro-

duction section reviews the possible spatial-frequency-tuned channels.

Method section describes the stimuli, the log contrast energy thresh-

old, apparatus, calibration of CRT, procedure, and estimation of IRFs

in the experiment. Results section shows results about IRFs of spatial

frequency 1, 2, 4, 8, and 16 cpd, the peak time and the amplitude of

IRFs, the double-pulse detection thresholds, and temporal contrast

sensitivity functions derived from IRFs. Discussion and Conclusion

sections as described above with motion models concerned with im-

pulse responses.

Chapter 4 includes experimental techniques; estimating of the psy-

chometric function using the extreme value distribution function, the

display model for calibration, the comparison of the staircase method

and the psi method, an introduction of the Fourier-spectrum con-

trast, and the contrast variation simulation of eye movements. A

reverse form of the extreme value distribution function is derived to

estimate the psychometric function of contrast detection. A display

model that can get less than 3% display error rate of the CIE 1931

v



luminance and chromatic coordinate on a CRT monitor is introduced

for the accurate calibration. The comparison of the staircase and psi

methods shows that both methods can get similar thresholds while the

psi method is more efficient than the staircase method in the present

study. The simulation results showed that the positive- and negative-

contrast stimuli and the spatial frequency stimuli used in this study

are better than the Gabor stimuli in term of the contrast variation

caused by the eye movement during the double pulses.

Chapter 5 summarizes the conclusions of this dissertation.
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Chapter 1

Background

This chapter introduces brief background knowledge about the temporal sensi-

tivity, the working model of temporal sensitivity, the IRF, the estimation of IRF,

the double-pulse method, the staircase method, and the psi method.

1.1 The temporal sensitivity

The temporal sensitivity is an important aspect of human vision. The importance

related to the requirement of dynamic visual information capture. The temporal

sensitivity was investigated through various stimuli varying over time in different

ways, for example, sinusoids, rectangular pulses, and double-pulse.

In general form, the stimulation can be described as a function of spatial and

temporal argument as following equation.

S(x, y, t) = St(x, y)

S(x, y, t) is the stimulation of two dimension space point (x, y) at time point t,
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Background

St the function of a two dimension space stimulation (x, y) vary over time t. In

other words, the stimulation is a sequential spatial distribution which vary over

time.

The response of human vision system can be simplified as Equation 1.1 with-

out consideration of other factors rather than spatial and temporal factor, x, y,

and t.

R = V (S(x, y, t)) (1.1)

The purpose of the visual psychophysics research is to identify the relationship

V between the stimulation S and the response R.

The stimulation can be simplified as

S(x, y, t) = Ssp(x, y)Stp(t)

when the spatial distribution Ssp dose not vary over time. In other words, the

one dimension control variable Stp is what I am interested in while the spatial

distribution dose not vary over time.

In most cases, V can not be described as a linear system. But, it can be

simplified as a linear system or can be decomposed as a linear system followed by

a non-linear system. In this case, the Linear Systems Theory will be a powerful

tool. Indeed, the Linear Systems Theory had played a key role in the investigation

of temporal sensitivity [Watson, 1986].

Following content introduces a working model which can explain many aspects

of temporal sensitivity and is composed by a linear filter followed by a non-linear

summation process.
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Figure 1.1: The working model. A temporal linear filter is followed by a
Minkowski summation. The model input is the stimuli varied over time and
the model output is the sensitivity. f(t) is the input of the linear filter. h(τ) is
the IRF. R(t) is the internal response. β is the factor of summation. S is the
sensitivity.

1.2 The working model

Temporal sensitivities in many kinds of stimuli were explained by a generic model

which was called as ’a working model’ [Watson, 1986]. The working model in-

cluded a linear filter followed by a probability summation over time (see Figure

1.1). In Watson’s later model [Watson and Ahumada, 2005], a more general sum-

mation, Minkowski summation, was used. Characteristics of the linear filter were

investigated by estimating the impulse response function (IRF) or the temporal

transfer function of the filter.

The first part of the working model is a linear system which is described by

the impulse response function as following equation.

R(t) =
∞∑
t=0

h(τ)f(t− τ)

R(t) is the output of the system, f(t) the input of the system, h(t) the impulse

response function or the weight function. This equation is the definition of linear
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system. The output R(t) is the weight-summation of history input f(t− τ).

The second part of the working model is a Minkowski summation described

as follow equation.

S =

(
∞∑
t=0

R(t)β

) 1
β

S is the sensitivity, R(t) the output of the linear system, β factor of the summa-

tion.

A linear system can be identified completely by the impulse response func-

tion h(t) or the transform function G(q). The transform function is defined as

following equation.

G(q) =
∞∑
k=1

h(k)q−k

G(q) is the transform function, h(k) the impulse response function, q the forward

shift operator by

qf(t) = f(t+ 1)

and the backward shift operator q−1

q−1f(t) = f(t− 1)

The linear system can be expressed as following equation by the transform

function.

R(t) = G(q)f(t)

As described before, the purpose of the psychophysical investigation is to

explore the characteristics of the relationship V in Equation 1.1 which is identified

by the impulse response function or the transform function of the first part of
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the working model and the summation factor β of the second part of the working

model. So, the key task is to the estimate the impulse response function which

is introduced as following.

1.3 Impulse response function

The impulse response function (IRF) is also called as the weighting function,

which is a linear weighting of sequential inputs and characterizes a time-invariant

linear system completely. It can be used to predict response to any temporally

modulated response, theoretically.

In mathematics, the impulse response function is a weight of the history input

described as following equation.

R(t) =
∞∑
t=0

h(τ)f(t− τ)

R(t) is the output of the system, f(t) the input of the system, h(t) the impulse

response function.

In psychophysical investigation, IRFs have been obtained for various purposes.

IRFs were calculated from transfer functions by the Fourier transform under var-

ious luminance conditions [Kelly, 1961, 1971] and by reconstructing the temporal

phase spectrum [Stork and Falk, 1987]. From temporal summation index of posi-

tive and negative flashes, hypothetical IRFs of positive and negative flashes were

obtained [Ikeda, 1965]. Chromatic IRFs as the responses of red, green, yellow,

or blue flashes were also measured [Uchikawa and Ikeda, 1986; Uchikawa and

Yoshizawa, 1993]. Burr and Morrone [Burr and Morrone, 1993] provided a new
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model set to estimate IRF and measured chromatic and achromatic IRFs. Later,

they measured IRFs during saccades [Burr and Morrone, 1996]. Shinomori and

Werner investigated senescence of IRFs [Shinomori and Werner, 2003], IRFs of S-

cone pathways [Shinomori and Werner, 2006, 2008], and aging of human S-cone

pathways [Shinomori and Werner, 2012]. Additionally, reaction time could be

estimated by a model based on IRF [Cao et al., 2007].

The impulse response function is estimated psychophysically from sequential

double-pulse detection thresholds which were divided by various inter-stimuli-

interval (ISI). The double-pulse method and the estimation method are described

as following.

1.4 Double-pulse method

The double-pulse method includes two same pulses divided by an inter-stimuli-

interval (ISI) which only displays the background. The duration of the pulse

need to be short enough. In this study, the duration of the pulse was 6.7 msec (1

frame) which is the minimum value using a CRT display at 150 Hz frame rate.

The intensity of double-pulse was measured by the intensity of single pulse

while the intensities of two pulses were the same in this study.

Figure 1.2 showed the frame sequence of the double-pulse used in this study.

The double-pulse detection threshold is the intensity value of the double-pulse

which observer can detect the stimuli from background in a certain probability.
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Figure 1.2: The double-pulse method. Gray rectangles indicate frames displayed
on the CRT display in one trial of the double-pulse method. From the left to the
right, the 1st, 3rd, and 5th frames are background frames and the 2nd and 4th
frames are stimulus frames which include the stimulus images. The first pulse
begins from the 2nd frame and ends at the 3rd frame. The second pulse begins
from the 4th frame and ends at the 5th frame. The pulse one and the pulse two
are totally same. Other frames display background only. The temporal interval
marked as ISI is the inter-stimuli-interval.

1.5 Estimation of IRF

In the field of electric engineering, the IRF can be obtained directly by measuring

the response of a system to a pulse-input with very huge intensity and very tiny

duration. For human vision channels, IRFs can be estimated from double-pulses

thresholds using the working model [Watson, 1986, 1979] with both Watson’s

model set [Watson, 1986] and Burr and Morrine’s model set [Burr and Morrone,

1993].

The estimation of IRF is a reverse procedure of the working model. In other

words, the estimation procedure is to get the IRF from the sequential thresholds

which were corresponding with various ISI setting of a double-pulse method.

In mathematics, this procedure was called as the system identification. The

purpose of the system identification is to get the model parameters of system

through controlling input of the system and obtaining output of the system. In
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the experiments of this dissertation, the input variable is the ISI and the output

value is the threshold.

According to the working model, the threshold can be expressed as following

equation.

C−1 =

∑
i

∣∣∣∣∣∑
j

fjhi−j

∣∣∣∣∣
β
 1

β

(1.2)

In Equation 1.2, C was the contrast at threshold. C−1 was the Minkowski

summation of the convolution of input f and IRF h. Following Shinomori [Shi-

nomori and Werner, 2003], β was set to 4.

The IRF shape can be expressed mathematically using various elementary

functions with corresponding parameters. There are two kinds of expression of

IRF shapes. One is using the sinusoidal function proposed by Burr and Morrine

(see equation 1.3) and the other is using the exponential function proposed by

Watson (see equations 1.4, 1.5, and 1.6).

Burr and Morrine’s model set [Burr and Morrone, 1993] was expressed as

Equation 1.3. It had 4 parameters, a0, a1, a2 and a3. Parameter, a0 was the

overall gain of the function. Parameter, a1 was the fundamental frequency of

oscillation. Parameter, a2 was the modulation of frequency over time. Parameter,

a3 was the steepness of the exponential decay.

h(t) = a0u(t)t sin{2π[a1t(t+ 1)−a2 ]}e−a3t (1.3)

In Watson’s model set [Watson, 1986], the IRF was expressed as Equations

8



Background

1.4, 1.5, and 1.6.

h(t) = ξ[h1(t)− ζh2(t)] (1.4)

h1(t) = u(t)[τ(n1 − 1)!]−1(t/τ)n1−1e−t/τ (1.5)

h2(t) = u(t)[kτ(n2 − 1)!]−1(t/(kτ))n2−1e−t/(kτ) (1.6)

There were 4 parameters, ξ, ζ, τ , and k (n1 was set to 3 and n2 was set to

5). Parameters, ξ and ζ were weighting values of two components. Parameter, τ

was time constant. Parameter, k was the time constant ratio. u(t) was the unit

step function.

Those model-parameters were estimated by a nonlinear regression analysis

procedure with a least-square method. I practically used nlinfit function in

the statistics toolbox of Matlab. Millenary initial parameters were generated

randomly to try to cover possible shape of IRFs. Because the calculated IRFs

from these models were similar (See the following section for details), IRFs only

from Burr and Morrone’s model were presented in this dissertation.

1.6 The staircase and psi method

Threshold is an important basic measurement in psychophysics. The threshold

values are estimated through a procedure included serial trials. The staircase

method and the psi method are introduced in the following content.
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1.6.1 The staircase method

The staircase method is a classic method to measure threshold. The two-down-

one-up (2d1u) staircase method is introduced here. From an initial intensity value

above the pre-set threshold value, decrease the intensity value of stimulus with

certain step after two correct answers and increase the intensity value after one

incorrect answer. The step is usually big at initial trials and is small at later

trials. The point where the intensity changes direction is called the turning point

(see Figure 1.3). After achieving a certain number (e.g. 6) of turning point,

the procedure will finish. The estimated threshold value is the mean of last four

turning point.

1.6.2 The psi method

The psi method proposed by Kontsevich and Tyler [Kontsevich and Tyler, 1999].

The principle of the psi method is to maximize the entropy gathered from trials.

The psi method needs to set the initial distribution of thresholds and slopes. The

psi method can estimate the threshold and slope at the same time. A typical

psi procedure was displayed in Figure 1.4. Prins and Kingdom’s implementation

[Prins and Kingdom, 2009] of the psi method was used in this dissertation.

The psi method estimated the threshold and the slope values adaptively

through a 2-dimension distribution of those two parameters. An initial distri-

bution was set as a prior distribution of the threshold and the slope before the

beginning of a psi procedure. After each trial, the prior distribution was updated

dynamically using the observer’s response. The strategy for placing the new trial

was to choose the one that leads to the smallest expected entropy one step ahead

10
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Figure 1.3: The staircase procedure. The abscissa is the number of trials and the
ordinate is the intensity of stimulus. The filled circles indicate correct answers
and the empty circles indicate incorrect answers. Points marked by red circles
are the turning points.
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Figure 1.4: The psi procedure. The top panel shows the intensity of 20 trials.
The abscissa is the number of trials and the ordinate is the intensity of stimulus.
The filled circles indicate correct answers and the empty circles indicate incorrect
answers. The blue line indicates the estimated thresholds after each trial. The
other panels show the distributions of thresholds and slopes. The abscissa is the
threshold and the ordinate is the slope.
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Kontsevich and Tyler [1999], Ht+1.

Ht+1 = −
∑
λ

pt(λ)log(pt(λ))

λ was a vector of threshold and slope, pt(λ) was the probabilities that reflect

the chance for the psychometric function with parameter λ to match the actual

psychometric function. The intensity of the next trial was decided by maximizing

the information gathered from observer’s responses. The psi process stopped

when the number of trials was bigger than a pre-setting-value.

A comparison between the staircase method and the psi method is showed in

Chapter 4. In this dissertation, the psi method was used to control the intensity

of stimuli in various trials. The thresholds were calculated as the average value

of the last four turning-points.
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Chapter 2

IRFs of Positive- and

Negative-Contrast Detection

In this chapter, double-pulse thresholds and IRFs of the positive- and negative-

contrast detection by separated positive- and negative-contrast stimuli with var-

ious circular spatial structures were measured. The purpose is to explore the

possible spatial-frequency-tuned channels and to investigate the temporal charac-

teristics and sensitivities of the positive- and negative-contrast detection. Because

whether positive- and negative-contrast sensitivities are the same is a fundamen-

tal issue of visual processing.

Results showed that the impulse responses of positive- and negative-contrast

detection were similar except the maximum amplitude of the first phase which

concerned with the sensitivity of contrast detection. It is simply reflecting that

sensitivity of positive contrast detection was lower than that of negative contrast

detection. The different sensitivity of positive- and negative-contrast detection

can be originated from the summation part instead of the linear filter part of

14



IRFs of Positive- and Negative-Contrast Detection

visual system according to the working model of human vision.

2.1 Introduction

It has been a basic psychophysical issue whether positive- and negative-contrast

sensitivities are the same [Bowen et al., 1989]. In previous literature, conflict-

ing results have been reported in various experimental conditions by different

investigators. Boynton, Ikeda, and Stiles reported that a decrement threshold

was lower than an increment threshold in the case of using red increment or

decrement upon green background [Boynton et al., 1964]. Short also reported

similar results under a low background luminance condition [Short, 1966]. Patel

and Jones found that the increment threshold was consistently greater than the

decrement threshold [Patel and Jones, 1968]. Bowen et al. reported more sensi-

tive to decrements than increments using saw-tooth contrast stimulation [Bowen

et al., 1989]. However, Herrick [Herrick, 1956] and Rashbass [Rashbass, 1970]

found little difference between increments and decrements. Watson and Nach-

mias found positive thresholds were equal with negative ones using grating targets

[Watson and Nachmias, 1977]. These reports about increments and decrements

were studied in terms of temporal sensitivity.

In this study, I tried to investigate the positive- and negative-contrast sensi-

tivities with double-pulse method using various spatial structure stimuli. Firstly,

the detection thresholds of double pulses were compared between positive- and

negative-contrast stimuli. Secondly, the IRFs that were estimated from sequen-

tial double-pulse detection thresholds were also be compared to investigate the

temporal characteristics of positive- and negative-contrast detection.
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Results indicated that, positive contrast detection thresholds were signifi-

cantly higher than negative contrast detection thresholds. However, there was

no significant difference at three conditions on one observer and four conditions

on another one observer in all six conditions on five observers. This individ-

ual difference can be one of reasons why conflictive results have been reported

in previous literature. Moreover, the results showed that in terms of temporal

characteristics, the IRFs of positive contrast were similar to the IRFs of negative

contrast. According to the working model, the possible source of different sensi-

tivity is the summation part while the temporal linear filter part was similar. The

slope values of positive contrast detection were significantly different with those

of negative contrast detection except one observer and it supports that the source

of different sensitivities between positive- and negative-contrast is the summation

part, which was concerned with the slope value.

2.2 Method

2.2.1 Stimuli

The stimuli in this study had a circular spatial structure with a 2D Gaussian

envelope, which was defined by Equation 2.1. L0 was background luminance.

m was amplitude of cosine function. m was adjusted between 0 and 1 for the

positive stimuli that only included positive contrast components and was adjusted

between -1 and 0 for the negative stimuli that only included negative contrast

components. Higher absolute value of m indicated larger stimulus contrast. m

was controlled by a psi method in various trials. f was the spatial structure factor
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Figure 2.1: Stimulus images and luminance profiles with the same maximum
luminance amplitude. The first two rows are for positive contrast stimuli and the
last two rows are for negative contrast stimuli. The first and the third rows are
images of stimuli in different spatial structures 0, 1, 2, 4, 8, and 16 cpd. The
second and the forth rows are luminance profiles of stimuli.

of stimulus. Because Fourier spectrum of stimuli’s images includes relatively-large

low spatial frequency components, I use the term ’spatial structure’ instead of

’spatial frequency’ here while cpd is still as the unit to distinguish various spatial

structure stimuli. G(x, y) was a 2D normal distribution (Gaussian distribution)

function with±0.3 degree SD in visual angle. The schema of positive and negative

stimulus images and luminance profiles are presented in Figure 2.1.

L(x, y) = L0(1 +m
1 + cos(2πf

√
x2 + y2)

2
G(x, y)) (2.1)
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2.2.2 Log Contrast Energy Threshold

In a common usage of the double-pulse method, a contrast threshold was mea-

sured as the detection threshold. The contrast itself at a certain point, (x, y)

could be defined by one-pulse’s intensity, IT (x, y) against background intensity,

IB in a duration of the pulse. In order to compare positive- and negative contrast

equitably, contrast, C(x, y) was defined as Equation 2.2 and Equation 2.3. The

negative-contrast was transformed into its mirror value along the background

intensity axis.

C(x, y) =
IT (x, y)

IB
, IT (x, y) ≥ IB (2.2)

C(x, y) =
2IB − IT (x, y)

IB
, IT (x, y) < IB (2.3)

In order to determine the contrast of the stimuli in different spatial struc-

tures, I used the contrast energy concept and defined the contrast energy, CE as

Equation 2.4, which was modified from Watson, Barlow and Robson’s definition

[Watson et al., 1983].

CE =
1

mn

m∑
x=1

n∑
y=1

C2(x, y) (2.4)

C(x, y) was the contrast of the stimulus at (x, y) and counted by each screen

pixel. Thus, m and n were the size of the stimulus in pixel. The thresholds for

the double-pulse method was defined as the log contrast energy, log(CE).
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2.2.3 Apparatus

Stimuli were presented on a CRT display (CPD G500, SONY) that was controlled

by the visual stimulation generator (VSG) system for vision experiments (ViSaGe,

Cambridge Research System). The VSG system was configured in 42 bits color

mode (14 bits for each phosphor) in 150 Hz frame rate at 640×481 pixel size.

The commands to control frame presentation and switch were implemented by

the real time sequencer (RTS) of the VSG system through interface functions of

the VSG Toolbox for Matlab (Toolbox version 1.27, Matlab version 7.1), which

was running on Windows XP operating system.

The CRT display and the chin rest were placed in the dark room which had

two chambers separated by a 90mm×65mm window. The distance between the

CRT display and the observers’ eye was 1800 mm.

2.2.4 Calibration

The luminance and chromaticity coordinates of the CRT monitor were measured

by the chromameter (CS-200, Konica-Minolta) and accuracy of the meter and

calibration was confirmed by the spectroradiometer (CS-1000, Konica-Minolta).

For the calibration of stimuli on the CRT monitor, my own software could di-

rectly control the chromameter and firstly stored the data of xy coordinates and

luminance in 14336 (2048×7, see Figure 4.5) points on entire gamut area and

phosphors’ intensity level of the screen. Equal-energy-white in different luminance

levels was especially focused (2048 points) for the stimuli in this experiment. The

software secondly made the look-up-table with a model to determine RGB digi-

tal values for presentation of a certain luminance and chromatic coordinates on
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the screen. Before each session, at least 200 random points were measured after

one-hour-warming-up of the CRT to confirm the accuracy of the presentation.

By this calibration procedure, the error rate of CIE luminance and chromaticity

coordinates (x, y, L) on the CRT was less than 3% (see Figure 4.6). The error

rate was calculated by

error rate =
expected value−measured value

expected value
× 100

Rise and fall time of CRT phosphors, and interval time between two frames

were measured with a p-i-n 10 silicon photodiode (Radiometer/Photometer Model

550, EG&G Gamma Scientific Inc.). Peak-to-peak timing error of ISI was less

than 3%.

More information about the display model can be seen at corresponding sec-

tion of Chapter 4.

2.2.5 Procedure

One male and four female students in Kochi University of Technology partici-

pated as observers including the author, who was only a non-naive observer. The

observers were from 20.5 to 38.0 (the mean, 24.3) years old. All observers had

normal color vision tested by Ishihara-plate and D-15, and normal visual acuity

(±1.0 min. of arc. in the visual acuity test with the Landolt C ring).

Two kinds of stimulus configurations, positive- and negative-contrast config-

urations were tested. Each contrast configuration included stimuli of 6 different

spatial structures (0, 1, 2, 4, 8, and 16 cycles per degree). Each spatial structure

condition included 14 ISI settings, those were 6.7, 13.3, 20.0, 26.7, 33.3, 40.0,

20



IRFs of Positive- and Negative-Contrast Detection

46.7, 53.3, 60.0, 66.7, 86.7, 106.7, 133.3 and 166.7 msec (in terms of number of

frames, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 20 and 25 frames (6.7 msec/frame)).

These ISI settings were arranged in a pseudo-random order. In each ISI setting,

the detection threshold in the log contrast energy was determined by a standard

psi procedure [Kontsevich and Tyler, 1999] implemented by Prins and Kingdom

[Prins and Kingdom, 2009]. Each setting initially consisted of 20 trials. At the

end of the procedure, 10 trials would be appended if the change of estimated

threshold at the last 6 trials was beyond pre-set-value or the number of incorrect

answer was more than 8. For each observer, detection threshold was measured 5

times as independent sequences in the psi method. In total, about 135,000 trials

were performed in this experiment.

At the beginning of each session, the observer adapted to darkness of the

experimental room for 5 minutes and to the screen background for another 5

minutes. In each session, there were 4 times of regular breaks, each with 2

minutes. Additionally, the observer could ask for a break after an arbitrary

trial when he or she felt tired. A long low-high tone was used to announce the

beginning of one trial. The observer pressed any button to begin after he was

ready.

The frame sequence of one trial was shown in Figure 2.2. Each trial began

with 2 beeps. About 1 sec later, the first pulse (pulse 1) was displayed following

ISI frames in presenting only the background, then the second pulse (pulse 2) was

displayed. The stimuli were presented in the same quadrant defined by a central

fixation cross. The observer was asked to judge the position of the pulses. A beep

was played after the observer pressed corresponding button to input the answer.
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Figure 2.2: Frame sequence of one trial. Gray rectangles indicate frames displayed
on the CRT display. From the left to the right, the 1st, 3rd, and 5th frames
are background frames and the 2nd and 4th frames are stimulus frames. Two
beeps are presented to remind the beginning of the trial and one beep provided
a feedback to the observer’s response.

2.2.6 Estimation of IRFs

Thresholds were calculated as the average value of the last four turning-points

which did not use assumptions about the distribution of threshold values. The

psi method was only used to control the contrast of the stimuli. The IRF was

estimated from double-pulses thresholds using the working model [Watson, 1986,

1979] with both Watson’s model set [Watson, 1986] and Burr’s model set [Burr

and Morrone, 1993]. Shinomori’s estimation method [Shinomori and Werner,

2003] was also used to confirm the estimation results. I presented IRFs only from

Burr and Morrone’s model set in this chapter while other methods got similar

results under the same statistical significant level.

More detail about the estimation of IRFs can be found at Chapter 1. The

comparison between the Burr and Morrone’s mode set and the Watson’s model

set is described later.
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2.2.7 Statistical analysis

I used two alternative non-parameteric statistics tests, the paired Wilcoxon signed

rank test (for paired comparison) and the Wilcoxon rank-sum test (Mann-Whitney’s

U test) to test the hypotheses because as shown later, the distribution of thresh-

old data is not Normal distribution. Both the paired Wilcoxon signed rank test

and the Wilcoxon rank-sum test perform the two-sided test and do not need the

Normal distribution assumption.

2.3 Results

2.3.1 Thresholds

Thresholds were estimated as the mean of the last four turning-points which did

not use assumptions about the distribution of threshold values. The psi method

was only used to control the intensity of stimuli.

Figure 2.3 showed observers’ positive- and negative-contrast thresholds (points

with error bars in Figure 2.3, each point and error bar were calculated from 5

independent measurements) and model thresholds (continual curves in Figure 2.3,

calculated from IRFs using the working model). Positive thresholds were visually

higher than negative thresholds in most cases. Statistical tests were used in the

following contents to provide more reliable analysis.

2.3.2 Comparison of Thresholds

Figure 2.4 shows the paired comparisons of positive- and negative-contrast thresh-

olds that include 14 ISI settings separately, 6 spatial structure configurations for
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Figure 2.3: Thresholds on all observers. Red curves, empty circles, and lines
indicated positive contrast and black curves, filled circles, and lines indicated
negative contrast. The first to the fifth rows are for observers SL, MS, MT, MM,
and YK, respectively. The first to the sixth columns are for spatial structures 0,
1, 2, 4, 8, and 16 cpd, respectively. Thresholds are the mean of 5 independent
measurements (denoted by circles with error bars) and model-thresholds (denoted
by smooth curves) calculate from IRFs using the model. Error bars, sometimes
smaller than points, indicate ±1 SEM. The abscissa is ISI in millisecond and the
ordinate is log contrast energy threshold. The number inside parenthesis at title
is the mean-ratio of negative thresholds to positive thresholds.
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Figure 2.4: Paired comparisons of positive and negative thresholds. The diagonal
line denotes equality of positive- and negative-contrast thresholds. Sample size,
n and the p-value from the paired Wilcoxon signed rank test are displayed in the
title. A: All 5 observers’ data together. B-F: Data of observers SL, MS, MT, MM
and YK, respectively.
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p 0 cpd 1 cpd 2 cpd 4 cpd 8 cpd 16 cpd
SL 0.0000 0.1100 0.0064 0.0705 0.0004 0.0718
MS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MT 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000
MM 0.5765 0.0011 0.3062 0.2927 0.5346 0.0000
YK 0.0000 0.0000 0.0084 0.0000 0.0000 0.0000

Table 2.1: The p-value of Wilcoxon rank-sum test to the hypothesis of positive-
and negative-contrast thresholds with equal medians. The p-values over 0.05 were
indicated by bold and italic fonts.

all 5 observers (420 paired mean-thresholds in total). The diagonal lines denote

equality of positive- and negative-contrast thresholds. Most of points are above

the diagonal lines and it indicates that positive contrast thresholds are higher

than negative contrast thresholds. Paired Wilcoxon signed rank test shows that

this difference is statistically significant (n = 420, p < 0.0000) for all observers.

In Figure 2.4, almost all points locate above the diagonal lines on observers MS

(Panel C), MT (D), and YK (F). On observers SL (B) and MM (E), some of

points are below the line. The Wilcoxon rank-sum test is used for observers and

spatial structure configurations separately and the p-values are listed in Table

2.1. Positive thresholds are significantly different with negative thresholds (at

the 0.05 significance level) except observer SL’s 1, 4, and 16 cpd, and observer

MM’s 0, 2, 4, and 8 cpd.

The means of ratios of negative contrast detection thresholds to positive con-

trast detection thresholds (ς) are listed in Table 2.2. As expected, positive con-

trast detection thresholds are higher than negative contrast detection thresholds

while individual differences exist in part of spatial structures. For example, the

values, ς of observer MM’s 0, 4, and 8 cpd (denoted by bold and italic fonts) are

larger than 1.
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ς 0 cpd 1 cpd 2 cpd 4 cpd 8 cpd 16 cpd
SL 0.8336 0.9540 0.9084 0.9348 0.8700 0.9294
MS 0.6106 0.5326 0.6601 0.6538 0.5764 0.5291
MT 0.6970 0.7444 0.8639 0.7596 0.7594 0.8060
MM 1.0271 0.7504 0.8595 1.0194 1.0831 0.7910
YK 0.6246 0.6994 0.8394 0.7907 0.7639 0.6741

Table 2.2: The means of ratios of negative contrast detection thresholds to pos-
itive contrast detection thresholds, ς. The ratios, ς, over 1.0 were indicated by
bold and italic fonts.

As showed above, positive contrast detection thresholds were significantly

higher than negative contrast detection thresholds while individual differences

existed in part of spatial structures.

2.3.3 IRFs of Positive- and Negative-Contrast Detection

IRFs of positive- and negative-contrast detection were estimated from various

ISI-interval-double-pulse thresholds. The first maximum amplitude of positive

IRFs were significant lower than that of negative IRFs. The first and the second

peak time of positive and negative IRFs were similar. Figure 2.5 showed similar

normalized positive IRFs and negative IRFs.

2.3.4 Paired Comparison of IRFs

IRF shapes in Figure 2.5 qualitatively suggest similarity between positive- and

negative-contrast IRFs under the normalization of the peak. Thus, I quantita-

tively compared six properties of IRFs directly obtained from the shape of each

IRF (not from parameters a0 ∼ a3); the peak time of the first (excitatory) phase

(1PT+), the peak time of the second (inhibitory) phase (2PT-), the time interval

between two peaks (∆PT), the maximum (positive) amplitude of the first (posi-
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Figure 2.5: IRFs normalized in terms of peak amplitude on all observers. Red
curves denote positive contrast IRFs and black curves denote negative contrast
IRFs. The first to the fifth rows are for observers SL, MS, MT, MM, and YK,
respectively. The first to the sixth columns are for spatial structures 0, 1, 2, 4, 8,
and 16 cpd, respectively. All positive IRFs are normalized to match to negative
IRFs in each panel, in terms of the peak amplitude. Each normalized factor,
which is the enhanced factor for the positive IRF, is shown in the title of the
panel. The abscissa is time in millisecond and the ordinate is weighted values of
IRFs without dimension (normalized only in positive IRFs as described above).
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tive) phase (1MA+), the maximum (negative) amplitude of the second (negative)

phase (2MA-), and the ratio of 2PT- to 1PT+ (rPT). Only two lobes were han-

dled because the number of data with more than two lobes was about half in all

data including the weak third lobe.

Figure 2.6 shows comparison results of 1PT+, 2PT-, ∆PT, 1MA+, 2MA-

and rPT. Two IRFs of observer MS in 4 cpd and observer MM in 4 cpd on both

positive- and negative-contrast were excluded in Figures 2.6B, 2.6C, 2.6E and

2.6F, and the corresponding statistic calculation, because of lack of the second

phrase. In Figure 2.6 except Panel 2.6D, points were equably distributed around

both sides of diagonal lines and the deviations were relatively small. The standard

deviation values of 1PT+, 2PT-, ∆PT, 1MA+, 2MA- and rPT are 3.78, 10.03,

7.43, 7.42, 5.97 and 0.32 respectively. In Figure 2.6D (1MA+), most of points

are located under the diagonal line. The p-values of paired Wilcoxon signed rank

test of 1PT+, 2PT-, ∆PT, 1MA+, 2MA- and rPT are 0.8755, 0.7635, 0.6982,

0.0000, 0.4945, and 0.6570 respectively and the corresponding n values are 30,

28, 28, 30, 28, and 28 respectively. This means that differences between positive-

and negative-contrast IRFs are not statistically significant at significance level

of 0.05 except 1MA+. After removing data of observer SL’s 1, 4, and 16 cpd

and observer MM’s 0, 2, 4, and 8 cpd data, the p-values of 1PT+, 2PT-, ∆PT,

2MA- and rPT are 0.2228, 0.8892, 0.9223, 0.9095, and 0.3382 respectively (n

values are 23, 22, 22, 22, and 22 respectively) and differences between positive-

and negative-contrast IRFs are still not statistically significant. The significant

difference of 1MA+ is consistent with significant differences between positive-

and negative-contrast thresholds.
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Figure 2.6: Comparisons of six properties between positive- and negative-contrast
IRFs. Data come from 5 observers’ IRFs on spatial structure 0, 1, 2, 4, 8, and
16 cpd. The sample size n, the p-value of the paired Wilcoxon signed rank
test, the mean value, and the standard deviation value are displayed on the title.
Diagonal lines denote equal value of positive- and negative-contrast IRFs. A: The
peak time of the first (positive) phase (1PT+); B: The peak time of the second
(negative) phase (2PT-); C: The time interval between two peaks (∆PT); D:
The maximum (positive) amplitude of the first (positive) phase (1MA+), axis is
relative amplitude of IRFs; E: The maximum (negative) amplitude of the second
(negative) phase (2MA-); F: The ratio of 2PT- to 1PT+ (rPT).
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2.3.5 The Peak Time and the Maximum Amplitude of

IRFs

Distributions of these parameters were also estimated using the maximum likeli-

hood estimation method and practically performed by mle function in the statis-

tics toolbox of Matlab. Figure 2.7 shows distributions of peak time and max-

imum amplitude of IRFs from 5 observers’ IRFs on 6 spatial structures. The

data of 1PT+ could be fitted by the normal distribution with location parameter

µ = 21.92, scale parameter σ = 3.75. The data of 2PT- could be fitted with pa-

rameters µ = 67.27 and σ = 9.94. 1MA+ and 2MA- requires to be fitted by the

extreme value distribution with location parameter µ = 14.80, scale parameter

σ = 4.79 and shape parameter k = 0.18, and with µ = −8.32, σ = 6.77 and

k = −0.65, respectively.

Figure 2.8 shows distributions of 1PT+, 2PT-, 1MA+ and 2MA- for com-

parison between positive- and negative-contrast IRFs. As the same with Figure

2.7, both positive and negative peak time can be fitted by the normal distribu-

tion, and positive and negative maximum amplitude can be fitted by the extreme

value distribution. The means and deviations of 1PT+, 2PT-, 1MA+, and 2MA-

are reasonably close between the positive- and negative-IRFs. Table 3 shows the

confidence intervals of 1PT+, 2PT-, 1MA+, and 2MA- at 98% confidence level.

The confidence intervals with estimated distribution-parameters of 1PT+, 2PT-

and 2MA- intersect with each other. It indicates similarity between positive- and

negative-contrast IRFs. In the case of 1MA+, the confidence interval, µ does not

intersect with each other. It indicates that significant difference exists between

positive and negative 1MA+ and it is consistent with the statistical analysis de-
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Figure 2.7: Distributions of the peak time and the maximum amplitude. The
texts near the probability density function curves were names and parameters
(estimated values and confident intervals at 98% confidence level) of the best
fitted distributions. A: The histogram and the distribution fit of 1PT+ and
2PT-. B: The histogram and the distribution fit of 1MA+ and 2MA-.
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Figure 2.8: Distributions of the peak time and the maximum amplitude for
comparing positive- and negative-contrast IRFs. Data come from 5 observers’
positive- and negative-contrast IRFs on spatial structure 0, 1, 2, 4, 8, and 16
cpd. Red curves and lines are for positive contrast IRFs and black ones are for
negative contrast IRFs. The texts nearby the probability density function curves
are parameters (estimated values and confident intervals at 98% confidence level)
of the best fit distributions. A: The histogram and the distribution fitting of
positive and negative 1PT+. B: The histogram and the distribution fitting of
positive and negative 2PT-. C: The histogram and the distribution fitting of
positive and negative 1MA+. D: The histogram and the distribution fitting of
positive and negative 2MA-.

scribed above. These results indicate that positive- and negative-contrast IRFs

are almost identical except the amplitude of the first peak.
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ci 1PT+ 2PT- 1MA+ 2MA-
µ(positive) [20.24, 23.62] [62.31, 72.48] [11.02, 14.54] [-10.45, -4.92]
µ(negative) [20.16, 23.64] [62.60, 71.49] [14.76, 19.51] [-12.49, -4.62]
σ(positive) [2.87, 5.36] [8.25, 16.75] [2.46, 5.40] [3.84, 8.50]
σ(negative) [2.95, 5.51] [7.05, 13.46] [3.10, 7.14] [4.70, 13.49]

Table 2.3: The confidence intervals of µ and σ in 1PT+, 2PT-, 1MA+, and 2MA-
at 98% confidence level. ’Positive’ and ’negative’ in parenthesis denote the value
of positive- and negative-contrast IRFs.

2.3.6 Comparison of calculated IRFs between two model

sets

In Watson’s model set [Watson, 1986], the IRF was expressed as Equations 2.5,

2.6, and 2.7.

h(t) = ξ[h1(t)− ζh2(t)] (2.5)

h1(t) = u(t)[τ(n1 − 1)!]−1(t/τ)n1−1e−t/τ (2.6)

h2(t) = u(t)[kτ(n2 − 1)!]−1(t/(kτ))n2−1e−t/(kτ) (2.7)

There were 4 parameters, ξ, ζ, τ , and k (n1 was set to 3 and n2 was set to 5

as the minimum values which can get the best fitting of the data). Parameters, ξ

and ζ were weighting values of two components. Parameter, τ was time constant.

Parameter, k was the time constant ratio. u(t) was the unit step function.

The Figure 2.9 shows an example of measured thresholds, IRFs, and the

model-thresholds. The green line indicates the Watson model set and the red

line indicates the Burr and Morrone model set. Different color and shape points
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Figure 2.9: Watson model set and Burr and Morrine model set. Data came from
observer YK’s positive 0 cpd setting. The green line denotes the IRF estimated by
the Watson model set and the red line denotes the IRF estimated by the Burr and
Morrine model set. A: Measured thresholds (denoted by points in various colors
and shapes) and model-thresholds (continual curves). Different color and shape
points are used to distinguish thresholds from various sessions except for the filled
black circles, which denote the mean values. The abscissa is ISI in milliseconds
and the ordinate is the log contrast energy threshold. B: IRFs corresponding
to model-thresholds. The abscissa is time in milliseconds and the ordinate is
response value without dimension.
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Values Model 1PT+ 2PT- ∆PT 1MA+ 2MA- rPT
µ B 21.92 67.27 45.30 18.52 -7.34 3.09

W 22.00 68.45 46.09 18.22 -5.59 3.11
σ B 3.78 10.03 7.43 7.42 5.97 0.32

W 3.91 9.09 6.61 7.68 6.27 0.46
p-value B 0.8755 0.7635 0.6982 0.0000 0.4945 0.6670

W 0.7355 0.4836 0.2293 0.0000 0.0734 0.4432

Table 2.4: Comparison of parameters, µ, σ and p-values of 1PT+, 2PT-, ∆PT,
1MA+, 2MA-, and rPT between Burr and Morrone model set (B) and Watson
model set (W). Means, µ and standard deviations, σ are from both of positive-
and negative-contrast IRFs. The p-values are from the paired Wilcoxon signed
rank test between the positive contrast IRFs and the negative contrast IRFs.

are used to distinguish thresholds from various sessions except for the filled black

circles, which are for the mean values. In most cases, two model sets produced

almost identical IRFs. Shinomori’s estimation method [Shinomori and Werner,

2003] was additionally used to confirm the estimation results. IRFs estimated by

the Burr and Morrone model set are presented in this dissertation.

Table 2.4 shows the similarity between IRFs in the Burr and Morrone model

set and Watson model set. Means, µ and standard deviations, σ are from both

positive- and negative-contrast IRFs. The p-values are from paired Wilcoxon

signed rank test between the positive- and negative-contrast IRFs. The µ and

σ are close except 2MA- and the statistical significance confirmed by p-values is

consistent in both model sets at 1% statistical significance level. The difference in

2MA- is probably caused by different expression of damping in model equations.

Table 2.5 shows the confidence intervals of 1PT+, 2PT-, 1MA+, and 2MA- at

98% confidence level by Watson model set. The intervals are basically consistent

with those in Table 2.3 by Burr and Morrone model set. However, the confidence

intervals of positive and negative µ of 1MA+ intersect under 98% confidence
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ci 1PT+ 2PT- 1MA+ 2MA-
µ(positive) [19.89, 23.84] [64.83, 73.92] [10.39, 14.40] [-7.19, -1.90]
µ(negative) [20.59, 23.68] [63.58, 71.59] [14.07, 19.32] [-10.51, -3.57]
σ(positive) [3.36, 6.26] [7.91, 13.91] [2.67, 6.00] [3.37, 8.87]
σ(negative) [2.63, 4.91] [6.66, 12.57] [3.35, 7.78] [4.66, 11.87]

Table 2.5: The confidence intervals of µ and σ in 1PT+, 2PT-, 1MA+, and 2MA-
at 98% confidence level. Positive and negative in parentheses denote the confi-
dence intervals of positive- and negative-contrast IRFs. The intersected intervals
of µ in 1MA+ are denoted by bold and italic fonts.

level in IRFs by Watson model set, although they do not intersect under 95%

confidence level.

Table 2.6 shows normalization factor value that is the ratio to match the first

peak amplitude of the positive-contrast IRF to the one of the negative-contrast

IRF. The values of this factor in Burr and Morrine model are the same as those

shown in Figure 2.5. With this factor value, however, the difference between Burr

and Morrone model set and Watson model set is large. In 9 of 30 conditions for

observers and spatial structures, the difference is more than 10%.

2.4 Discussion

As described in Introduction, in this study, I tried to compare the detection

thresholds of double pulses between positive- and negative-contrast stimuli and to

investigate the temporal characteristics of positive- and negative-contrast detec-

tion through IRFs. Results indicated that positive contrast detection thresholds

were significantly higher than negative contrast detection thresholds. However,

there was no significant difference at three conditions on one observer and four

conditions on another one observer. Moreover, the IRFs of positive contrast were
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Observer Model 0 cpd 1 cpd 2 cpd 4 cpd 8 cpd 16 cpd
SL B 1.10 1.08 1.08 1.13 1.13 1.09

W 1.11 1.03 1.10 1.18 1.34 1.12
MS B 1.58 2.07 1.55 1.87 1.82 1.81

W 1.38 2.08 1.59 1.65 2.45 2.02
MT B 1.49 1.43 1.22 1.33 1.46 1.07

W 1.48 1.47 1.22 1.39 1.44 1.04
MM B 1.04 1.81 1.18 1.22 0.95 1.29

W 0.93 1.85 1.29 1.20 0.97 1.17
YK B 1.32 1.81 1.19 1.44 1.14 1.38

W 1.23 1.65 1.04 1.42 1.11 1.60

Table 2.6: Comparison of normalization factor of IRFs between Burr and Morrone
model set (B) and Watson model set (W). The normalization factor is the ratio
to match the first peak amplitude of the positive-contrast IRF to the one of the
negative-contrast IRF. The values in Burr and Morrine model are the same as
those shown in Figure 3B. The data sets are denoted by bold and italic font if
the difference is more than 10%.

similar with the IRFs of negative contrast. I discussed about these results and

additionally the possible source of different sensitivity according to the working

model.

2.4.1 Difference of double-pulse thresholds between positive-

and negative-contrast

As described in the Introduction, previous literature reported conflicting results

regarding positive- and negative-thresholds. The results on 4,200 threshold-

samples from about 135,000 trials indicated that positive contrast detection thresh-

olds were higher than negative contrast detection thresholds, with the exception

of observer SL’s 1, 4, and 16 cpd and observer MM’s 0, 2, 4, and 8 cpd. I

considered four possible reasons for this conflict.

Individual differences in detection threshold on various spatial structures could
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be the first reason why different investigators reported conflicting results in vari-

ous conditions. In this research, negative-contrast thresholds are larger for only

one observer (MM) in some spatial structure (0, 4 and 8 cpd). Even for this

observer, however, negative contrast thresholds are smaller in other conditions

(1 and 16 cpd) with statistical significance. Although I do not have a rational

model to explain this change depending on spatial structure and why it occurred

only for this observer, this kind of individual difference can cause the conflicting

results between researches.

The comparison between positive- and negative-contrast thresholds was taken

under comparable conditions, not only stimuli condition but also contrast defini-

tion condition. The only difference between positive- and negative-condition was

the contrast polarity controlled by the parameter, m in Equation 2.1. This differ-

ence was dispelled by the definition of negative contrast thresholds defined as its

mirror value along the background intensity axis (see Equation 2.3). Thus, the

difference between thresholds was not caused by the asymmetrical log function

that I used in the definition of the log contrast energy.

In terms of the model analysis, I considered the working model, the differences

between positive and negative thresholds might be caused by the linear filter

part, the summation part, or both. The results show that positive and negative

IRFs are similar, which supported the notion that the temporal characters of

the linear filter are basically the same between positive- and negative-contrast

detection. Thus, there is a high possibility that threshold differences originate

from the summation part. I compared the slope values (β, estimated using the

psychometric function described at Chapter 4) between positive- and negative-

contrast detections using the Wilcoxon rank-sum test with separated observers’
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data. The result of this analysis indicated that positive contrast slope values

were not significantly different with negative contrast slope values for observer

MM (n = 84, p = 0.2930). On the contrary, for observers SL (n = 84, p = 0.0422),

MS (n = 84, p < 0.0001), MT (n = 84, p = 0.0274), and YK (n = 84, p < 0.0001),

positive contrast slope values were significantly different from negative contrast

slope values under the 0.05 significant level. This result is consistent with the

threshold result that positive- and negative-contrast thresholds of observer MM’s

0, 2, 4, and 8 cpd are not significantly different. It is worth to notice that

observer SL’s p-value is close to 0.05 while the positive- and negative-contrast

contrast thresholds are not significantly different at observer SL’s 1, 4, and 16

cpd. It supports the notion that significant differences of thresholds originate

from differences of slope values in Minkowski summation instead of IRFs of linear

filters.

The result is supported by physiological and anatomical researches. Phys-

iological and anatomical differences of ON- and OFF-cells can have important

role in positive and negative thresholds. Watson thought that the difference

of thresholds is generally caused by the difference of ON- and OFF-center cells

[Watson, 1986]. Moreover, this difference of thresholds might be caused by the

different structures (size and cone type) of receptive fields of ON- and OFF-cells.

Chichilnisky and Kalma reported that the receptive fields of ON cells were larger

in diameter than those of OFF cells [Chichilnisky and Kalmar, 2002]. They also

mentioned that if cells with smaller receptive fields are more closely spaced, a

larger number of OFF cells than ON cells may encode a given stimulus. Field et

al. reported that the ON- and OFF- midget and parasol cells each sampled the

complete population of L- and M-cones [Field et al., 2010]. By combining those
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two results, I can expect that the number of OFF cells is higher than that of ON

cells in the same area. Those results supported the notion/theory that negative

contrast thresholds were lower than positive contrast thresholds.

2.4.2 Similarity in impulse responses

The similarity between positive- and negative-contrast IRFs indicates that the

temporal characteristics of the initial stage of visual system for positive- and

negative-contrast detections are similar. However, I have to mention the accuracy

of the data. The time duration of a single frame displayed on the CRT was 6.7

msec in the experiment. Considering the 3% peak-to-peak timing error, the

temporal resolution in the experiment was about 7 msec. Thus, the possibility

that less than 7 msec temporal differences of IRFs may still exist was not indicated

by the data.

This similarity is reasonable because the complete population of L- and M-

cones was sampled by the ON- and OFF- midget and parasol cells [Field et al.,

2010] and the same population should not cause differences in temporal character-

istics. Evidence from physiological research showed that ON- and OFF-responses

of retinal cells were similar in experiments with cats [Kruger and Fischer, 1975]

and macaques [Kremers et al., 1993] and black-responses dominated macaque V1

[Yeh et al., 2009]. This evidence supports my finding that differences of ON- and

OFF-responses were located after retina, if they exist, rather than at retina. In

vitro electrode recordings from the retinal ganglion cells of macaques showed that

L-OFF cells had slower response than L-ON cells (about 13%, 5 msec, longer at

the peak) under a 15 or 8.33 msec stimulus display interval, which is the temporal
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resolution of the experiment [Chichilnisky and Kalmar, 2002]. However, many

others reported similar characteristics between ON- and OFF-cells [Benardete

and Kaplan, 1999, 1997; Kremers et al., 1993; Pandarinath et al., 2010]. These

results were consistent with my results.

Before the experiment, it was expected that the difference of spatial frequency

component of stimuli would cause some differences of IRFs in temporal character-

istics because of the difference of receptive field size between ON- and OFF-cells

[Chichilnisky and Kalmar, 2002]. However, the difference was not observed in the

data. In this study, all spatial structure stimuli (0,1,2,4,8, and 16 cpd) included

relatively strong low spatial frequency component in their Fourier spectrums be-

cause I focused about comparison between positive- and negative contrasts and

the low spatial frequency component corresponds this parity of contrasts. Thus,

there is the possibility that the stimuli used in this study were dominated by

the low spatial-frequency-tuned channel and were not so much sensitive to higher

spatial-frequency-tuned channels.

2.4.3 Peak time of IRFs

The means of the first (excitatory) peak time (1PT+) and the secondary (in-

hibitory) peak time (2PT-) are 22.0 msec (σ = 3.78) and 67.0 msec (σ = 9.97), re-

spectively. This is consistent with Shinomori and Werner’s results [Shinomori and

Werner, 2003]. The mean of the peak difference (∆PT) is 45.0 msec (σ = 7.39).

The mean of ratio 2PT-/1PT+ is 3.09 (σ = 0.31).

As mentioned previously, the distributions of peak time of IRFs can be ex-

plained by the normal distribution and the distributions of amplitude of IRFs

42



IRFs of Positive- and Negative-Contrast Detection

can be explained by the extreme-value distribution. The normal distribution was

symmetric and the extreme-value distribution was asymmetric. Different distri-

butions reflected different variation regularity of the peak time and the maximum

amplitude.

2.5 Conclusion

It is concluded that positive- and negative-contrast impulse responses were similar

while the sensitivity of positive- and negative-contrast detection was different.

This sensitivity difference originates from the summation part rather than the

linear filter part of the visual system.
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Chapter 3

IRFs of Spatial-Frequency-

Tuned-Channels

In this chapter, double-pulse thresholds of contrast detection using stimuli with

ring-structure Fourier spectrum at different spatial frequencies were measured

psychophysically on human observers in order to get IRFs and then to investigate

the impulse responses and the sensitivities of the possible spatial-frequency-tuned

channels.

Results showed that: (1) the double-pulse detection thresholds of lower spatial

frequencies (1 and 2 cycle per degree (cpd)) were lower than those of higher spatial

frequencies (8 and 16 cpd), and (2) IRFs of lower spatial frequencies (1 and 2 cpd)

were significantly different with IRFs of higher spatial frequencies (8 and 16 cpd)

both on the phase, the first zero-crossing time, and the amplitude. The lower

spatial frequencies had two or three phases while the higher spatial frequencies

had only one phase (except one observer had very weak second phase). The

first zero-crossing time of IRFs of lower spatial frequencies were shorter and the
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amplitude of IRFs of lower spatial frequencies were higher, compared to those of

higher spatial frequencies. (3) The peak frequency of temporal contrast sensitivity

function (tCSF) derived from IRFs was higher in lower spatial frequencies (1 and 2

cpd) than that in higher spatial frequencies (8 and 16 cpd). The results indicated

that at least two kinds of spatial-frequency-tuned channels, the lower- and higher-

spatial-frequency-tuned channels that dominates the detection of lower spatial

frequencies (1 and 2 cpd) and the detection of high spatial frequencies (8 and

16 cpd), respectively, exists in human vision. However, the accurate number of

spatial-frequency-tuned channels could not be estimated because of the possible

limit of measurement with the double pulse method for the IRF that is using the

detection threshold.

3.1 Introduction

The spatial frequency was defined as an oscillation of luminance or color in space

by De Valois [De Valois and De Valois, 1990]. The spatial frequency is usually

measured by the repeat of sinusoidal components which is determined by the

Fourier transform.

The exploration of spatial-frequency-tuned channels was pioneered by Camp-

bell and Robson whose results supported that independent mechanisms sensitive

to limited ranges of spatial frequencies existed [Campbell and Robson, 1968] and

was followed by the research about an selective adaptation effect for spatial fre-

quency [Blakemore and Campbell, 1969]. Evidences have been provided that hu-

man vision contains different narrow ranges of spatial-frequency-tuned channels

through comparing detection of simple sinusoidal gratings and complex gratings
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which sum two sinusoids with various frequencies [Graham and Nachmias, 1971;

Sachs et al., 1971]. In previous literature, these spatial-frequency-tuned chan-

nels have been considered as spatial channels, which are not incidentally spatial-

frequency-tuned but must be inevitably tuned in narrow band for the purpose of

spatial information processing. The number of spatial-frequency-tuned channels

has been considered as 4 [Wilson and Bergen, 1979], 6 [Wilson et al., 1983] and 7

[Anderson and Burr, 1985]. Recent spatial contrast detection model [Watson and

Ahumada, 2005] included contrast sensitivity filter, oblique effect filter, and par-

allel spatial frequency and orientation channels, followed by the Minkowski sum-

mation and the model has 11 spatial channels. Many investigations about spatial

channels concentrated on the spatial contrast sensitivity function (CSF), which

described the relationship between contrast sensitivity and spatial frequency. The

CSF was thought as the envelop of spatial frequency tuning curve of a number

of narrow and independent visual channels [Campbell and Robson, 1968; Sachs

et al., 1971; Wilson et al., 1983].

Wilson and Wilkinson thought, however, that the assumptions of multiple

spatial channels have been broken on channel linearity, parallelism, and inde-

pendency except detection threshold [Wilson and Wilkinson, 2004]. There is

the opinion [Logvinenko, 2003] that the fundamental questions of spatial chan-

nels remain controversial because localized adaptation effect at a certain spatial

frequency [Blakemore and Campbell, 1969; Campbell and Robson, 1968], for ex-

ample, cannot be the evidence of multiple channels but it may reflect the multiple

analyzer within a single channel. Although it is much true in the viewpoint of

mathematical model, some physiological evidences (See [Nishimoto et al., 2005,

2006]) support that multiple spatial channels originated from signals from differ-
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ent receptive fields in size at retina. Thus, the standing point in this study is that,

at least, the multiple spatial-frequency-tuned channels can exist and they pos-

sibly have different temporal characteristics, but it could be difficult to confirm

the number of channels from psychological data.

IRFs of various spatial frequencies were measured in order to investigate the

temporal characteristics of possible spatial-frequency-tuned channels. The IRF

can be estimated from double-pulse detection thresholds. Detection threshold

as a criterion in this study provides a safety assurance of linearity. Without

assumption about channel independency, the temporal characteristics of spatial-

frequency-tuned channels, which were stimulated by spatial frequency stimuli

with separately circular structure Fourier spectrum, were investigated by IRFs.

3.2 Method

3.2.1 Stimuli

The stimuli were defined by the Equation 3.1. L(x, y) was the luminance of stim-

uli. The factor f indicated the spatial frequency. G(x, y) was the 2-D Gaussian

distribution function. The operator fft indicated the 2-D fast Fourier transform

and the operator fft−1 indicated the reversed 2-D fast Fourier transform. The

operator flt indicated the operation that set the Fourier spectrum components as

zero except the circular part corresponded with the spatial frequency f . The con-

trast intensity of the stimuli was controlled by the factor m(m > 0) which could

adjust the contrast of the stimuli without changing neither the mean luminance

of the stimuli nor the relational structure of its Fourier spectrum components.
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L0 was the background luminance which equalled with the average luminance of

the stimulus (10 cd/m2).

L(x, y) = L0(1 +mfft−1(flt(fft(cos(2πf
√
x2 + y2)G(x, y))))) (3.1)

The stimulus with a circular structure Fourier spectrum showed in Figure

3.1. The stimuli images had circular 2D-Fourier spectrum components at spatial

frequencies 1, 2, 4, 8, and 16 circles per degree (cpd). The average luminance

of stimuli, equalling the background luminance, was 10 cd/m2. The chromatic

coordinates of the stimulus and the background were set to the equal-energy-

white, (0.3333, 0.3333) in chromatic coordinate of CIE 1931.

Stimuli were presented in one of four quadrants defined by a central fixation

cross and a rectangle border at a 10 cd/m2 background which had the same

chromaticity with the stimulus (equal-energy-white). Both of height and width

of the center cross were 2 degree in visual angle. The four positions of the stimuli

were located 0.71 degree to one side or the other and 0.71 degree above or below

to the center of the fixation cross. The background size was about 4 degree height

and 6 degree width.

3.2.2 Log Contrast Threshold

In a common usage of the double-pulse method, a contrast threshold was mea-

sured as the detection threshold. The contrast C was defined by the peak ampli-

tude of one-pulse’s intensity IT against background intensity IB in a duration of

the pulse when the pulse intensity was the same. The thresholds for the double-
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Figure 3.1: Stimuli images, stimuli profiles, Fourier spectrum, and spectrum pro-
files. Five columns indicate spatial frequencies 1, 2, 4, 8, and 16 cpd. The first
row includes the images of stimuli in various spatial frequencies. The second row
includes the luminance profiles of stimuli. The third row includes images of the
Fourier spectrum (in log scale) of the stimuli images. The fourth row includes
the profiles of the Fourier spectrum (in log scale).
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pulse method was defined as the log contrast, log(C). The log contrast energy

and the Fourier-spectrum contrast were also used for comparison.

3.2.3 Apparatus

Stimuli were presented on a CRT display (CPD G500, SONY) that was controlled

by the visual stimulation graphic (VSG) system for vision experiments (ViSaGe,

Cambridge Research System). The VSG system was configured in 42 bits color

mode (14 bits for each phosphor) in 150 Hz frame rate at 640×481 pixel size.

The commands to control frame presentation and switch were implemented by

the real time sequencer (RTS) of the VSG system through interface functions of

the VSG Toolbox for Matlab (Toolbox version 1.27, Matlab version 7.1), which

was running on Windows XP operating system.

The CRT display and the chin rest were placed in the dark room which had

two chambers separated by a 90mm×65mm window. The distance between the

CRT display and the observers’ eye was 1800 mm.

3.2.4 Calibration

The luminance and chromaticity coordinates of the CRT monitor were measured

by the chromameter (CS-200, Konica-Minolta) and accuracy of the meter and

calibration was confirmed by the spectroradiometer (CS-1000, Konica-Minolta).

For the calibration of stimuli on the CRT monitor, my own software could di-

rectly control the chromameter and firstly stored the data of xy coordinates and

luminance in 14336 (2048×7, see Figure 4.5) points on entire gamut area and

phosphors’ intensity level of the screen. Equal-energy-white in different luminance
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levels was especially focused (2048 points) for the stimuli in this experiment. The

software secondly made the look-up-table with a model to determine RGB digi-

tal values for presentation of a certain luminance and chromatic coordinates on

the screen. Before each session, at least 200 random points were measured after

one-hour-warming-up of the CRT to confirm the accuracy of the presentation.

By this calibration procedure, the error rate of CIE luminance and chromaticity

coordinates (x, y, L) on the CRT was less than 3% (see Figure 4.6). The error

rate was calculated by

error rate =
expected value−measured value

expected value
× 100

Rise and fall time of CRT phosphors, and interval time between two frames

were measured with a p-i-n 10 silicon photodiode (Radiometer/Photometer Model

550, EG&G Gamma Scientific Inc.). Peak-to-peak timing error of ISI was less

than 3%.

3.2.5 Procedure

One male and four female students in Kochi University of Technology were par-

ticipated as observers including the author, who was only a non-naive observer.

The observers were aged from 21.5 to 39 (the mean was 25.3). All observers had

normal color vision tested by Ishihara-plate and D-15 and normal visual acuity

(±1.0 min. of arc. in the visual acuity test with the Landolt ring).

Five stimuli with spatial frequencies 1, 2, 4, 8, and 16 cpd were included

in experiment. Each spatial frequency condition included 14 ISI settings (13.4,

26.8, 33.5, 40.2, 46.9, 60.3, 73.7, 87.1, 100.5, 120.6, 140.7, 160.8, 187.6, and 201.0
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msec; in terms of number of frames, 2, 4, 5, 6, 7, 9, 11, 13, 15, 18, 21, 24, 28,

and 30 frames, 6.7 msec/frame). These ISI settings were arranged in a pseudo-

random order. In each ISI setting, the detection threshold in the log contrast

energy was determined by a standard psi procedure [Kontsevich and Tyler, 1999]

implemented by Prins and Kingdom [Prins and Kingdom, 2009]. Each setting

initially consisted of 20 trials. At the end of the procedure, 10 trials would be

appended if the change of estimated threshold at the last 4 trials was beyond

pre-setting-value or the number of incorrect answer was more than 10. For each

observer, detection threshold was measured 5 times as independent sequences in

the psi method. In total, about 40,000 trials were included in this experiment.

At the beginning of each session, the observer adapted to darkness of the

experimental room for 5 minutes and to the screen background for another 5

minutes. In each session, there were 4 times of regular breaks, each with 2

minutes. Additionally, the observer could ask for a break after an arbitrary trial

when he felt tired. A long low-high tone was used to announce the beginning of

an ISI setting. The observer pressed a button to begin after he was ready.

Frame sequence of one trial was similar with Figure 2.2. Each trial began with

2 beeps. About 200 milliseconds later, the first pulse was displayed following

ISI frames in presenting only the background, and then the second pulse was

displayed. The stimuli were presented in one of the four quadrants defined by a

central fixation cross. The observer was asked to judge the position as to where

the stimulus was displayed. A feedback beep was played after the observer pressed

corresponding button to input the answer.
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3.2.6 Estimation of IRFs

Thresholds were calculated as the average value of the last four turning-points

which did not use assumptions about the distribution of threshold values. The

psi method was only used to control the contrast of the stimuli. The IRF was

estimated from double-pulses thresholds using the working model [Watson, 1986,

1979] with both Watson’s model set [Watson, 1986] and Burr’s model set [Burr

and Morrone, 1993]. Shinomori’s estimation method [Shinomori and Werner,

2003] was also used to confirm the estimation results. We presented IRFs only

from Burr and Morrone’s model set in this chapter while other methods got

similar results under the same statistical significant level.

More detail about the estimation of IRFs can be found at Chapter 1.

3.3 Results

The temporal impulse response functions (IRFs) were measured in order to in-

vestigate temporal characteristics of possible spatial-frequency-tuned channels

(SFTC) of human vision. Stimuli with ring-structure Fourier spectrum at spatial

frequencies 1, 2, 4, 8, and 16 cpd were used in the measurement of double-pulse

contrast detection thresholds on five observers. IRFs were estimated from se-

quential double-pulse contrast detection thresholds.

Results showed that: (1) the double-pulse detection thresholds of lower spatial

frequencies (1 and 2 cpd) were lower than those of higher spatial frequencies (8 and

16 cpd), and (2) IRFs of lower spatial frequencies (1 and 2 cpd) were significantly

different with IRFs of higher spatial frequencies (8 and 16 cpd) both in the phase,

the first zero-crossing time, and the amplitude. The lower spatial frequencies
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Figure 3.2: Box plots of the log contrast (panel A), the log contrast energy
threshold (panel B), and the Fourier-spectrum contrast threshold (panel C). The
abscissa is the spatial frequency in cpd and the ordinate are the log contrast
(panel A), the log contrast energy (panel B), and the Fourier-spectrum contrast
(panel C). The p-value of the Wilcoxon rank-sum test between thresholds of the
lower spatial frequencies (1 and 2 cpd) and the higher spatial frequencies (8 and
16 cpd) is displayed on the title of panels. The threshold values of panel C were
gotten using the following equation CF = kf

√
CE. CE is the log contrast energy,

CF the Fourier-spectrum contrast, kf factor of spatial frequency f . The values
of kf are 0.03369 (1 cpd), 0.02541 (2 cpd), 0.01838 (4 cpd), 0.01308 (8 cpd), and
0.00935 (16 cpd) respectively. ’p=0.0000’ donates the p-value is less than 0.0001.

had two or three phases while the higher spatial frequencies had only one phase

(except one observer had very weak second phase). The first zero-crossing time of

IRFs of lower spatial frequencies were shorter and the amplitude of IRFs of lower

spatial frequencies were higher, compared to those of higher spatial frequencies.

(3) The peak frequency of temporal contrast sensitivity function (tCSF) derived

from IRFs was higher in lower spatial frequencies (1 and 2 cpd) than that in

higher spatial frequencies (8 and 16 cpd).
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Spatial frequency 1 cpd 2cpd 4 cpd 8 cpd 16 cpd
Observer SL 3 3 3 1 2
Observer MS 2 3 1 1 1
Observer MT 3 3 1 1 1
Observer MM 3 2 3 1 1
Observer YK 2 3 2 1 1

Table 3.1: Phase count of IRFs. Numbers in table cells indicate corresponding
phase count of IRFs.

3.3.1 Threshold

Figure3.2 showed the box plot of the threshold. The threshold values were dis-

played in Figure3.3. The differences between the lower spatial frequency and the

higher spatial frequency was statistically significant (p < 0.0001) on both the log

contrast threshold, the log contrast energy threshold, and the Fourier-spectrum

contrast threshold defined in Chapter 4.

3.3.2 IRF

Figure 3.3 showed all five observers’ thresholds, model thresholds, and IRFs at

spatial frequencies 1, 2, 4, 8, and 16 cpd. A very small part of thresholds in part

of session at part of ISI setting were identified as the outlier and were skipped

when calculated the mean threshold. Visually, the phase of IRFs at lower spatial

frequencies were different with those at higher spatial frequencies. More details

were showed in the following contents.

3.3.2.1 Phase of IRFs

The phase of IRF was calculated by following rules. The IRF is a tri-phasic IRF

if abs(2MA−) >= 10% × (1MA+) and (3MA+) >= 10% × abs(2MA−). The
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Figure 3.3: Thresholds (A) and IRFs (B) on all observers. The first to the fifth
rows are for observers SL, MS, MT, MM, and YK, respectively. The first to the
fifth columns are for spatial frequencies 1, 2, 4, 8, and 16 cpd respectively. A:
Thresholds. Thresholds are the mean of 5 independent measurements (denoted
by points with error bars) and model-thresholds (denoted by smooth curves)
calculate from IRFs using the working model. Error bars indicate ±1 SEM (some
of error bars are smaller than the size of point). The abscissa is ISI in millisecond
and the ordinate is log contrast energy threshold. B: IRFs. The abscissa is
time in millisecond and the ordinate is the normalized amplitude of IRF without
dimension. Observers’ IRFs were normalized to their own 1 cpd IRFs respectively
by a factor displayed on the title of the corresponding panel.
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IRF is a bi-phasic IRF if abs(2MA−) >= 10%×(1MA+) and (3MA+) < 10%×

abs(2MA−). The IRF is a mono-phasic IRF if abs(2MA−) < 10% × (1MA+).

’1MA+’ means the maximum amplitude of the first (positive) phase. ’2MA-’

means the minimum amplitude of the second (negative) phase. ’1MA+’ means

the maximum amplitude of the first positive phase. As showed in Table 3.1, all

IRFs at the low spatial frequency (1 and 2 cpd) had two or three phases and

most of IRFs at the high spatial frequencies (8 and 16 cpd) had one phase except

observer SL’s 16 cpd IRF had a weak second phase while observer SL’s other

spatial frequencies IRFs were tri-phasic IRFs. Observers MS and MT have the

mono-phasic IRFs of 4 cpd while other observers have bi- or tri-phasic IRFs of 4

cpd.

3.3.2.2 Peak Time, Zero-crossing Time, and Amplitude of IRFs

I quantitatively compared six properties of IRFs directly obtained from the shape

of each IRF: the peak time of the first (excitatory) phase (1PT+), the peak time

of the second (inhibitory) phase (2PT-), the first zero-crossing time (1ZC), the

time interval between 1PT+ and 1ZC (∆PT), the maximum (positive) amplitude

of the first (positive) phase (1MA+), and the maximum (negative) amplitude of

the second (negative) phase (2MA-).

Figure 3.4 was the box plot of 1PT+, 2PT-, 1ZC, 1MA+, 2MA-, and ∆PT,

which showed significant differences between lower spatial frequencies and higher

spatial frequencies visually.

The p-values of the Wilcoxon rank-sum test also showed significant differences

of 1ZC (p = 0.0002), 1MA+ (p < 0.0002), ∆PT (p < 0.0002) between the lower

spatial frequencies and the higher spatial frequencies. The significant difference
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Figure 3.4: Box plots of the peak time of the first (excitatory) phase (1PT+)
(panel A), the peak time of the second (inhibitory) phase (2PT-) (panel B), the
first zero-crossing time (1ZC) (panel C), the maximum (positive) amplitude of
the first (positive) phase (1MA+) (panel D), the maximum (negative) amplitude
of the second (negative) phase (2MA-) (panel E), and the time interval between
1PT+ and 1ZC (∆PT) (panel F). The box plot is a simplified visualization of
the sample distribution. The top and the bottom of the box are the 25th and
75th percentiles of the samples respectively. The line in the middle of box is the
sample median. The whiskers extend to the furthest observations. Observations
beyond 1.5 times of the interquartile ranges are marked as outliers displayed with
a ’+’ sign. The p-values of the Wilcoxon rank-sum test between lower spatial
frequencies (1, 2, and 4 cpd) and higher spatial frequencies (8 and 16 cpd) are
displayed on the title of the panel. The mean µ and the standard deviation
σ of corresponding values of the lower spatial frequency and the higher spatial
frequency are displayed nearby corresponding boxes. The abscissa is the spatial
frequency in cpd and the ordinate are the peak time in millisecond (panel A,
B, C, and F), and the amplitude (panel D and E). Panel B and E only include
spatial frequencies 1, 2, and 4 cpd because the lack of the second phase of spatial
frequencies 8 and 16 cpd IRFs in most cases.
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Figure 3.5: Temporal contrast sensitivity functions (tCSF). The tCSF was calcu-
lated from the IRF through the definition of the transform function of the linear
system. Panels A, B, C, D, and E are observers SL, MS, MT, MM, and YK’s
tCSFs respectively. The abscissa is the temporal frequency (Hz) in log scale and
the ordinate is the sensitivity (relative units) in log scale. Panel F is the box plot
of the temporal frequency of the peak amplitude of all tCSFs. The minimum
temporal frequency of the peak amplitude were set to 0.5 Hz when the temporal
frequency is less than 0.5 Hz. The abscissa is the spatial frequency in cpd and
the ordinate is the temporal frequency of the peak amplitude in Hz.

of 1PT+ was not detected (p = 0.7617).

The mean of 1ZC of the lower spatial frequencies and the higher spatial fre-

quencies were 66.5± 9.28 and 128.3± 50.56 respectively. The mean of 1MA+ of

the lower spatial frequencies and the higher spatial frequencies were 5.6 ± 1.30

and 0.7 ± 0.45 respectively. The mean of ∆PT of the lower and higher spatial

frequencies were 33.2± 5.49 and 95.5± 49.84 respectively.
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3.3.3 Temporal Contrast Sensitivity Function

The temporal contrast sensitivity functions (tCSF) that calculated from IRFs

through the definition of the transform function (see equation 3.2) of the linear

system showed in Figure 3.5. In equation 3.2, G(q) is the transform function,

g(k) the impulse response function, q = eiwπ, w = 0, ..., 1 . The tCSF is plotted

as log(|G(eiwπ)|) v.s. log(eiwπ), w = 0, ..., 1.

G(q) =
∞∑
k=1

g(k)q−k, (q = eiwπ, w = 0, ..., 1) (3.2)

The tCSFs of the lower spatial frequencies (1 and 2 cpd) and the higher

spatial frequencies (8 and 16 cpd) had different temporal frequency responses

on all observers visually. The box plot of the temporal frequency of the peak

amplitude of tCSFs also showed significant difference between the lower spatial

frequency and the higher spatial frequency (see Figure 3.5F). The mean of the

temporal frequency of peak amplitude of the tCSFs of the lower spatial frequency

and the higher spatial frequency were 6.5±0.96 and 1.0±1.04 Hz respectively. The

temporal frequency of peak amplitude of the tCSFs of the lower spatial frequency

and the higher spatial frequency were significantly different (the Wilcoxon rank-

sum test, p=0.0001).

Same with the IRF differences in the time domain, the different temporal

frequency responses in the frequency domain also indicated different temporal

characteristics between the low spatial-frequency-tuned channel and the high

spatial-frequency-tuned channel.
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3.4 Discussion

3.4.1 Spatial-Frequency-Tuned Channels

The spatial frequency stimuli in this study had ring-structure Fourier spectrum

components at spatial frequencies 1, 2, 4, 8 and 16 cpd in all directions of the

2-D space (see Figure 3.1). As showed in Results, lower spatial frequencies (1 and

2 cpd) and higher spatial frequencies (8 and 16 cpd) had significantly different

IRFs especially different phase. Spatial frequency 4 cpd was located between

the lower- and higher-spatial frequencies and showed some border characteristics

which will described later.

The Gaussian patch of 0 cpd used in Chapter 2 had a very low Fourier spec-

trum component. The IRFs of the 0 cpd were also compared with those of 1, 2, 4,

8, and 16 cpd of this chapter. As showed in Figure 3.6, all average IRFs of 0, 1, 2

cpd were tri-phasic IRFs (corresponding with the bandpass characteristics) while

IRFs of 8 and 16 cpd were mono-phasic IRFs (abs(2MA−) < 0.1×1MA+) (cor-

responding with the bandpass characteristics). It indicated that at least two kinds

of spatial-frequency-tuned channels, the lower- (bandpass) and higher- (low-pass)

spatial-frequency-tuned channels that dominates the lower spatial frequencies (0,

1, and 2 cpd) and the higher spatial frequencies (8 and 16 cpd), respectively,

exists in human vision.

Although the 1PT+, 2PT-, 1ZC, and 1MA+ of 0 cpd were different from

those of 1 and 2 cpd, average IRFs of 0, 1, and 2 cpd were all tri-phasic IRFs (see

Figure 3.6). The stimuli of 0 cpd were the positive- or negative-contrast Gaussian

patch which only included either positive- or negative-contrast component while

the stimuli of 1 and 2 cpd had a positive centre and negative surround structure.
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Figure 3.6: Average IRFs (panel A), corresponding tCSFs (panel B), normalized
average IRFs (panel C), and normalized tCSFs (panel D). Data come from five
observers’ IRFs at 0, 1, 2, 4, 8, and 16 cpd. The positive- and negative-contrast
IRFs of 0 cpd were came from the experiment using Gaussian patch in Chapter 2.
Various style lines denote 0, 1, 2, 4, 8, and 16 cpd respectively. Panel A includes
IRFs of spatial frequencies 0, 1, 2, 4, 8, and 16 cpd. The error bars at peak
points denote ±1 S.E.M. . The abscissa is time in millisecond and the ordinate
is the relative response. Panel B includes tCSFs derived from corresponding
IRFs. The error bars at 1.25, 2.5, 5, 10, and 20 Hz denote the variation range
of tCSFs at corresponding points. The abscissa is the temporal frequency in Hz
and the ordinate is the relative sensitivity. ’+0’ and ’-0’ donate positive- and
negative-contrast IRFs or tCSFs of 0 cpd respectively.
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The difference between 0 and 1, 2 cpd was possibly originated from the centre-

surround latency which was about 3-8 ms reported by Lee and Smith [Lee et al.,

1989; Smith et al., 1992]. The 3-8 ms latency was close to 6-10 ms interval between

the first peak time of 0 and 1 cpd which were measured in this study.

At the same time, the difference between IRFs of 0 cpd and 1, 2 cpd caused

different peak temporal sensitivity, about 10 and 7 Hz respectively. This difference

extended the range of temporal sensitivity and should be important to the motion

sensitivity which was discussed later.

The 4 cpd spatial frequency showed some transitionary characteristics between

1, 2 cpd and 8, 16 cpd on both the phase of IRF and the peak sensitivity of tCSF.

For observer SL and MM, the 4 cpd IRFs (bi-phasic) and tCSF (bandpass) were

more similar with those of 1 and 2 cpd than those of 8 and 16 cpd. For other

observers, the 4 cpd IRFs (very weak second phase) and tCSF (low-pass) were

more similar with those of 8 and 16 cpd than those of 1 and 2 cpd.

The border between the lower-and higher-spatial-frequency-tuned channels

should be around 4 cpd spatial frequency while the individual difference among

various observers exist. The transitionary instead of transilient border between

the lower- and higher-spatial-frequency-tuned channels was reasonable because

the visual system is a complex neural network although parts of system showed

different characteristics while processing different spatial frequencies. Further-

more, the transitionary border can not cause some kind of temporal sensitivity

’ditch’ nearby the border.

The tCSFs of this study were consistent with Kelly’s measurement results

with traveling-wave stimuli using stabilizing retinal images technology [Kelly,

1979]. The corresponding tCSF can be obtained by fixing spatial frequency in
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the FIG.13 or FIG.15 of Kelly [1979]. The tCSFs of spatial frequencies 8 and 16

cpd in FIG.13 or FIG.15 were also low-pass and the CSFs of spatial frequencies 1

and 2 cpd were bandpass. Both of peak sensitivities of those tCSFs were similar

with those of tCSFs of this study.

3.4.2 Spatial-Frequency-Tuned Channels and the M and

P Pathways

Following discussion showed that the M- and P-pathways in human visual system

dominated the detection of the lower spatial frequencies (0, 1, and 2 cpd) and

the higher spatial frequencies (8 and 16 cpd), respectively, in the present study.

Firstly, larger receptive field of the Magno-cellular(M)-pathway and smaller

receptive field of the Parvo-cellular(P)-pathway provided the neural basic of the

lower- and higher-spatial-frequency-tuned channels.

Secondly, phasic and tonic response to light steps of the M- and P-pathway

[Kaplan, 2004] and reports of tri-phasic IRFs in some M-ON cells with low spatial

frequency but not with high spatial frequency [Benardete, 1994] were consistent

with most of multi-phasic IRFs of the lower spatial frequencies and mono-phasic

IRFs of the higher spatial frequencies.

Thirdly, faster conduction velocity of axons of the M-pathway than that of the

M-pathway [Kaplan, 2004] which were consistent with earlier first zero-crossing

time of the lower spatial frequencies than those of the higher spatial frequencies.

Fourthly, the M-pathway with high luminance contrast gain and the P-pathway

with low luminance contrast gain [Kaplan and Shapley, 1986] which were consis-

tent with the result that lower thresholds and higher first-phase-positive-amplitude
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(1MA+) (higher sensitivity) of the lower spatial frequencies and higher thresholds

and lower 1MA+ (lower sensitivity) of the higher spatial frequencies, respectively.

3.4.3 Comparison with Results of Local Spatial Channels

Kontsevich and Tyler [Kontsevich and Tyler, 2013] measured the masking sen-

sitivity curves of local spatial channels using Gaussian test stimuli to probe low

frequency channels and using Gabor test stimuli to probe high frequency chan-

nels. Their results showed that the peak masking sensitivity of the low spatial

frequency channels were ranged between 1 and 3 cpd among various observers

and various eccentricity (see Figure 3 of their literature) and those of the high

spatial frequency channels were ranged between 6 and 9 cpd (see Figure 4 of

their literature). Their results were consistent with my results of the lower- (1

and 2 cpd) and higher- (8 and 16 cpd) spatial-frequency-tuned channels although

totally different measurements in corresponding experiments.

3.4.4 Motion Model

Some researches in motion perception suggest that motion detection for different

size of dot stimuli can be explained by only one single low-pass spatial filter

[Morgan, 1992; Morgan and Mather, 1994], but there is a motion type that cannot

be explained by the single filter [Bex et al., 1995].

In Watson and Ahumada’s model of human visual-motion sensing [Watson and

Ahumada, 1985], two different temporal impulse responses of the scalar motion

sensor were needed. In their model, one impulse response was tri-phasic and

another impulse response was bi-phasic.
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Adelson and Bergen’s spatiotemporal energy models for the perception of

motion [Adelson and Bergen, 1985] also needed two different temporal impulse

responses.

Above models showed that both the different impulse responses between the

lower- and higher-spatial-frequency-tuned channels and inside the lower-spatial-

frequency-tuned channel are essential to the motion perception of human vision,

which is mainly mediated by M-pathway.

3.4.5 Spatial Frequency and Spatial Structure

The spatial frequency was defined as an oscillation of luminance or color in space

by De Valois [De Valois and De Valois, 1990]. The spatial frequency is usually

measured by the repeat of sinusoidal components which is determined by the

Fourier transform.

Figure 3.7 showed the stimuli and corresponding Fourier spectrum in Chapter

2 and Chapter 3. Labels ’0+1’, ’0+2’, ’0+4’, ’0+8’, and ’0+16’ indicated stimuli

with spatial structures 0, 1, 2, 4, 8, and 16 cpd used in the positive- and negative-

contrast detection experiment in Chapter 2. The term ’spatial structure’ was used

for the stimuli because Fourier spectrum of the stimuli images included relatively-

large low spatial frequency components although the stimuli had circular spatial

structures in various spatial sizes. In term of spatial frequency, the stimuli labelled

with 0, ’0+1’, ’0+2’, ’0+4’, ’0+8’, and ’0+16’ had very low spatial frequency

components. Stimuli of spatial frequencies 1, 2, 4, 8, and 16 cpd were used in the

study of this chapter. The stimuli had a circular structure Fourier spectrum in

that the very low spatial frequency component did not exist.
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Figure 3.7: Fourier spectrum of stimuli in terms of spatial structure and spatial
frequency. The first row shows the positive stimuli with spatial structures 0, 1, 2,
4, 8, and 16 cpd in positive- and negative-contrast detection experiment, which
has titles ’0+1’, ’0+2’, ’0+4’, ’0+8’, and ’0+16’. The second row is the Fourier
spectrum of the stimuli showed in the first row. The third row is the profile
of the second row. Only positive contrast stimuli are showed here because the
Fourier spectrum of the negative contrast stimuli are identical to those of positive
contrast stimuli. The fourth row shows the stimuli in the spatial-frequency-tuned
channel experiment. The fifth row is the Fourier spectrum of the stimuli showed
in the fourth row. The sixth row is the profile of the fifth row. The DC parts are
not showed in above Fourier spectrum.
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Comparing the results of Chapter 2 and Chapter 3, I found the the reason why

the stimuli used in Chapter 2 did not ’hit’ the corresponding spatial-frequency-

tuned channels was the low spatial frequency component dominated the detection

of the stimuli used in Chapter 2. In other words, the spatial-frequency-tuned

channels were ’spatial-frequency-tuned’ instead of ’spatial-structure-tuned’. The

peripheral inhibition of receptive field played an important role in the difference

between spatial frequency and spatial structure.

3.5 Conclusion

At least two kinds of spatial-frequency-tuned channels, the lower- and higher-

spatial-frequency-tuned channels that dominates the lower spatial frequencies (0,

1, and 2 cpd) and the high spatial frequencies (8 and 16 cpd), respectively, exists

in human vision. The lower-spatial-frequency-tuned channel is bandpass and the

higher-spatial-frequency-tuned channel is low-pass.

In high possibility, the M- and P-pathways in human visual system dominated

the lower spatial frequencies (0, 1, and 2 cpd) and the higher spatial frequencies

(8 and 16 cpd), respectively, in the present study.
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Other Things

This chapter includes estimating of the psychometric function using the extreme

value distribution function, the display model, and the comparison of the staircase

method and the psi method.

4.1 Psychometric function

The psychometric function describes the relationship between the physical inten-

sity of stimuli and the observers’ responses. In a detection task, the observers’

responses are described by the possibility of seeing the stimulus. The Weibull dis-

tribution [Weibull, 1951] was used to describe the psychometric function [Green

and Luce, 1975; Watson, 1979]. However, I found that the extreme value distri-

bution can describe the psychometric function better and has a ’psychophysics

meaning’ that can explain why the extreme value distribution is better.
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Figure 4.1: The cumulative distribution function of the extreme value distribu-
tion. Color curves indicated the cumulative distribution function with various
parameters.

4.1.1 The Extreme Value Distribution

The central limit theory is concerned with the limit of the sums of random vari-

ables X1+X2+. . .+Xn as n→∞, whereas the extreme value theory is concerned

with the limit of the max(X1, X2, . . . , Xn) or min(X1, X2, . . . , Xn) as n→∞.

G(x) = 1− exp

(
−
(

1 + γ
−x− b
a

)− 1
γ

)
, 1 + γ

−x− b
a

> 0 (4.1)

The cumulative distribution of the extreme value distribution has a form

showed in Equation 4.1 (in case of min(X1, X2, . . . , Xn)). a is the scale parame-

ter. b is the position parameter. γ is the shape parameter which indicate different

types of distributions [de Hann and Ferreira, 2006]. It is the Fréchet class of dis-
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tributions when γ > 0. It is the Gumbel distribution when γ = 0. It is the

reverse-Weibull class of distributions when γ < 0. Figure 4.1 shows samples of

the cumulative distribution of the extreme value distribution.

4.1.2 Psychophysics Meaning

Let random variables Xi(i = 1, . . . , n) correspond to the sample space {xi}. xi

is the intensity value which the stimulus can be detected by the ith detector

(or reason). The probability that the stimulus can be detected by at least one

detector at intensity x is

P (min(X1, X2, . . . , Xn) ≤ x)

According to the extreme value theory (see [de Hann and Ferreira, 2006] for more

detail),

lim
n→∞

P (min(X1, X2, . . . , Xn) ≤ x) = G(x)

The form of G(x) see Equation 4.1 which is the min form of the extreme value

distribution. The random variable

min(X1, X2, . . . , Xn)

obeys the extreme value distribution when n → ∞. In another words, G(x) is

the probability that the stimulus can be detected at intensity x by at least one

detector when the count of detectors tends to infinity.

The reason, why the Weibull distribution was used, is that it is the most

simple function satisfying the distribution function condition [Weibull, 1951]. The

71



Other Things

Weibull distribution is a specific case of the extreme value distribution when the

shape parameter γ < 0.

4.1.3 Estimation of Psychometric Function

Psychometric functions were estimated using the reverse form of cumulative dis-

tribution function of the extreme value distribution (See Equation 4.1). The

extreme value distribution has three parameters, a, b, and γ. Parameters a and b

are the slope and the threshold. Parameter γ is for different types of distributions.

Observers’ responses were counted separately grouped by correct answers and

wrong answers in continual intervals at intensity axis. The percentages of correct

answers and wrong answers were calculated at each interval. The count of correct

answers was cumulated among the positive direction of the intensity axis and

the count of wrong answers was cumulated among the negative direction of the

intensity axis. The psychometric function was estimated from the percentage

data using a least-squares method. The threshold value is the parameter b which

corresponds about 63.21% of correct answer. The slope value is the parameter a.

Figure 4.2 showed some sample fittings using the extreme value distribution

function. In the cases of γ ≥ 0, measured data can not be fitted better using the

Weibull distribution function.

Figure 4.3 showed the histogram of the parameters of positive- and negative-

contrast detection and spatial-frequency-tuned detection. Most of values of pa-

rameter γ were less than 0 which corresponded to the Weibull distribution. The

other values of parameter γ were ≥ 0 which corresponded to the reverse form

of the Fréchet distributions and the Gumbel distribution. In cases of γ ≥ 0,
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Figure 4.2: Psychometric functions and percentages of correct answers. The x-
axis is the intensity of the stimulus in log contrast energy scale. The y-axis is the
percentages of correct answers. Title ’SL (1,1, 5) (0.026, 0.003, -0.601)’ means
observer SL’s positive contrast, 1 cpd, ISI=5 frames, b = 0.026, a = 0.003, and
γ = −0.601.
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Figure 4.3: The histogram of the parameters of positive- and negative-contrast
detection and spatial-frequency-tuned detection. Data is from the experiments
described in chapters 5, 6, and 7. The parameters are estimated by the psy-
chometric function in form of the extreme value distribution. The first row is
for positive- and negative-contrast detection and the second row is for spatial-
frequency-tuned detection. A, threshold. B, slope. C, parameter γ. D, threshold.
E, slope. F, parameter γ.

the extreme value distribution can describable the data better than the Weibull

distribution.

4.2 Display model

A display model was built to generate accurate luminance and chromatic coor-

dinate values on the display. The error rate of CIE (x,y,L) values were less than

3% using the display model with a CRT display controlled by the VSG system.
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Figure 4.4: The flowchart of the kernel procedure xyL2Vrgb. The expectative
luminance and chromatic coordinate (x,y,L) is transformed into the control values
of three guns of the CRT (vr,vg,vb).

4.2.1 Elements of the model

The kernel of the model was the procedure xyL2V rgb which calculated the control

values of three guns of CRT from the expectative (x,y,L) value. Figure 4.4 showed

the flowchart of the kernel procedure xyL2V rgb.

The (x,y,L) was transformed into (X,Y,Z) through the following formulas.

X =
x

y
L

Y = L

Z =
1− x− y

y
L

The (X,Y,Z) was transformed into (R,G,B) by
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R

G

B

 =


a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 a1,9 a1,10

a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 a2,9 a2,10

a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8 a3,9 a3,10





1

Z

Y

X

Y Z

XZ

XY

Z2

Y 2

X2


. The matrix A was the transform matrix which will be estimated from measured

data.

The procedure RevGamma was a reverse Gamma procedure which checked

a Gamma dictionary to get the correspond value. A linear insertion point was

gotten if item was not found in the dictionary. The RevGamma supported non-

linear Gamma functions.

4.2.2 Parameters estimation and calibration

The Gamma dictionary were measured by the CS-200 controlled by a program

automatically. The program displayed stimuli on the screen of CRT and con-

trolled the CS-200 to measure the correspond (x,y,L) value. The measurement

included following configurations.
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Figure 4.5: Measurement data of R, G, and B guns of G500 in 3D space. Data
is from 2048× 7 measurements of CRT display (CPD G500, SONY). The x-axis
is the CIE chromatic coordinate x. The y-axis is the CIE chromatic coordinate
y. The z-axis is the CIE luminance coordinate L (cd/m2). Color points indicate
correspond gun or guns together. Black points indicate R, G, and B guns together.
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• R gun only

• G gun only

• B gun only

• R and G guns together

• R and B guns together

• G and B guns together

• R, G and B guns together

• maximum R gun, and change G and B guns together

• maximum G gun, and change R and B guns together

• maximum B gun, and change R and G guns together

• randomize R, G, and B gun

Each configuration item above was measured in 211 = 2048 steps. The mea-

surement of the first three items generated the Gamma dictionary. Figure 4.5

showed a part of measurement data of CPD-G500 CRT.

The parameter matrix A was estimated by the nlinfit function provided by

Matlab using above measurement data. The parameter matrix which I used in

the experiment was listed below.
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A′ =



0.0378640475004 0.0277607870369 0.0498334124299

−0.107813525679 0.0238515357108 0.0845831302281

−0.307970317531 1.32024926101 −0.0166949996491

0.714496806732 −0.721473183762 0.00458798900889

1.32171123566e− 05 9.16550151932e− 07 −8.39973885568e− 07

−3.50598099590e− 05 −9.59914314205e− 06 7.10510835252e− 06

−0.000158054348075 0.000104068453633 1.34888190212e− 05

5.17797996435e− 07 4.82658718454e− 06 −2.01838884209e− 06

6.24592835946e− 05 3.23370199539e− 05 −1.13576092229e− 05

0.000165993018057 −7.28871521252e− 05 −4.52803540123e− 06


4.2.3 Model test

The error rate of (x,y,L) was less than 3%. The error rate was calculated by

error rate =
expected value−measured value

expected value
× 100

2000 random points were measured to test the display model. Figure 4.6

showed the results.

4.3 Comparison of the staircase and psi method

An control experiment was done to compare the staircase method and the psi

method. The detection thresholds of double pulses separated by 14 ISIs (0, 6.7,

13.3, 20.0, 26.7, 33.3, 40.0, 46.7, 53.3, 60.0, 66.7, 86.7, 106.7, and 133.3 msec, in
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Figure 4.6: Results of model test. Data is from 2000 random measurements from
the CRT display by the CS-200. A, the error rate of CIE coordinate x. The
x-axis is the trial number and the y-axis is the error rate of CIE coordinate x in
percentile. B, the error rate of CIE coordinate y. The x-axis is the trial number
and the y-axis is the error rate of CIE coordinate y in percentile. C, the error rate
of CIE coordinate L. The x-axis is the trial number and the y-axis is the error
rate of CIE coordinate L in percentile. D, The CIE coordinate points distribution
of measurement. The x-axis is the CIE coordinate x and the y-axis is the CIE
coordinate y. E, The error rate distribution of measurement. Length of Lines
indicate the error rates. The x-axis is the CIE coordinate x. The y-axis is the
CIE coordinate y. The z-axis is the error rate in percentile. F, the error rate of
CIE coordinate Z. The x-axis is the trial number and the y-axis is the error rate
of CIE coordinate Z in percentile.
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Figure 4.7: Thresholds estimated by the staircase method (panel A) and the psi
method (panel B). Data is from five independent measurement in 14 ISIs setting
for both staircase and psi method. Points come from different measurements are
marked with different color and shape. The abscissa is ISI in millisecond and
the ordinate is the threshold in cd/m2 which is the peak amplitude of luminance
of the stimulus. Error bars showed 1 SEM. Blue lines indicate the mean of the
thresholds.
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comparing item the psi method the staircase method p value
threshold 0.0362± 0.0093 0.0367± 0.0083 0.6997

threshold deviation 0.0062± 0.0033 0.0050± 0.0017 0.2062
count of trials 20 22.4± 4.07 0.0000

count of turning points 7.7± 1.57 6 0.0000

Table 4.1: The comparison between the psi method and the staircase method.

terms of number of frames, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 16, and 20 frames (6.7

msec/frame), ISI=0 means single pulse) were measured in the Gaussian patch

stimulus by both the staircase method and the psi method. Five independent

measurements were gotten for each threshold. Two methods were used alternately

in three days experiment. Thresholds were showed in Figure 4.7. Table 4.1 showed

the results of comparison.

The mean and the standard deviation of thresholds in all case of ISI were

similar between two methods. The mean thresholds measured by the psi method

was 0.0362±0.0093. The mean thresholds measured by the staircase method was

0.0367± 0.0083. The statistic value p of paired t-test between two methods was

0.6997 which indicated no significant difference between thresholds measured by

two methods.

The mean of threshold deviation (showed as the error bars at each threshold at

certain ISI) of the psi method and the staircase method were 0.0062±0.0033 and

0.0050 ± 0.0017. The paired t-test showed thresholds deviation of two methods

were not significantly different (p = 0.2062).

The mean of count of trials included in one session of the staircase method

was 22.4 ± 4.07. The psi method had a pre-set value, 20. The count of trials

included in one session of the staircase method was significantly bigger than that

of the psi method (paired t-test, p ≤ 0.0000). It indicated that the count of trials
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included in one session of the staircase method was significantly bigger than that

of the psi method.

The mean of count of turning point included in one session of the psi method

was 7.7 ± 1.57. The count of turning point included in one session of the stair-

case method was set to 6. The count of turning point of the psi method was

significantly bigger than that of the staircase method (paired t-test, p ≤ 0.0000).

It indicated that the count of turning-points included in one session in the psi

method was significant bigger than that of the staircase method.

Above results showed that the psi method is more efficient than the staircase

method while both methods can get similar thresholds with similar deviation.

4.4 Fourier-Spectrum Contrast

A new definition of contrast, Fourier-spectrum contrast, is introduced here.

The intensity IT of the stimulus was defined by the following equation.

IT = max(dDC(fft(L(x, y))))

L(x, y) is the luminance of the stimulus. dDC is the operator which delete

the DC part of the spectrum. fft is the operator of 2-d Fourier transform.

The background intensity IB was defined by the following equation.

IB = DC(fft(L(x, y)))

DC is the operator which get the DC part of the spectrum.

The Fourier-spectrum-contrast CF was defined by the intensity IT against the
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Figure 4.8: The relationship between the log contrast and the Fourier-spectrum
contrast. Different shape points indicate the data points which calculated by the
definition of the Fourier-spectrum contrast. The smooth curves are plotted using
the experiential formula CF = kfC

0.5
E .
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background intensity IB as following.

CF =
IT
IB

I calculated the Fourier-spectrum contrast of the stimuli which used in Chap-

ter 3. An experiential formula was divided as following.

CF = kfC
0.5
E

kf is the factor of spatial frequency. The values of kf are 0.03369 (1 cpd), 0.02541

(2 cpd), 0.01838 (4 cpd), 0.01308 (8 cpd), and 0.00935 (16 cpd) respectively.

Figure 4.8 showed the relationship between the log contrast energy and the

Fourier-spectrum contrast.

4.5 Simulation of Eye Movement Effect

On consideration of possible effect by the eye movement during the displaying of

double pulses, a simulation calculation has been done to evaluate the variation

of the stimuli contrast when the double pulses have a spatial position offset.

The Gabor stimuli was compared with the stimuli used in the positive- and

negative-contrast detection and the spatial frequency stimuli detection experi-

ments on the log contrast, the log contrast energy, and the the Fourier-spectrum

contrast.

The variation of the stimuli contrast was calculated by combining two stimuli

with a spatial position offset defined by two parameters, ∆d and θ. The ∆d was

the distance between two center of stimuli and was ranged between 0 and 0.5
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Figure 4.9: The simulation effect of contrast variation caused by eye movements.
The first column of panels, panel A, D, and G, are for the variation curves of
the Gabor stimuli. The second column of panels, panel B, E, and H, are for
the variation curves of the positive- and negative-contrast stimuli (PN stimuli)
used in Chapter 2. The third column of panels, panel C, F, and I, are for the
variation curves of the spatial frequency stimuli (SFTC stimuli) used in Chapter
3. The first row of panels is plotted in the log contrast scale, the second row
in the log contrast energy scale, the third row in the Fourier-spectrum contrast
scale. The red, green, blue, cyan, magenta curves indicate 1, 2, 4, 8, and 16 cpd
spatial frequencies or spatial structures stimuli respectively. The offset angle θ is
sampled from a set {0, π/8, π/4, 3π/8, π/2} and the offset distance ∆d is ranged
between 0 and 0.5 visual degree. The curves with various values of θ are plotted
in the same color. All contrast values are normalized.

visual degree. The θ was the offset angle between the x-axis and the line linked

two center of stimuli and was sampled from a set {0, π/8, π/4, 3π/8, π/2}.

As showed in Figure 4.9, the variation ranges of contrast of the Gabor stimuli

were far more large than those of the PN stimuli and the SFTC stimuli on the

log contrast, the log contrast energy, and the Fourier-spectrum contrast while

the spatial offset varied in the certain range. The contrast variation of the PN

stimuli and the SFTC stimuli were independent with the variation of the direction
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Figure 4.10: The simulation effect of contrast variation for Gabor stimuli. The
first, the second, and the third rows of panels are plotted in the log contrast,
the log contrast energy, and the Fourier-spectrum contrast respectively. The first
column to the fifth column of panels are for spatial frequencies 1, 2, 4, 8, and 16
cpd respectively. The offset angle θ is sampled from a set {0, π/8, π/4, 3π/8, π/2}
which were plotted with the red, green, blue, cyan, magenta curves respectively.
The offset distance ∆d is ranged between 0 and 0.5 visual degree. All contrast
values are normalized.

parameter θ while that of the Gabor stimuli were dependent with the θ. This

result indicated that the PN stimuli and SFTC stimuli used in this dissertation

are better than the Gabor stimuli in term of the contrast variation caused by the

eye movement during the double pulses.

Figure 4.10 showed the simulation effect of contrast variation for the Gabor

stimuli only. The irregularity of the contrast variation of the eye movement was

depending on the spatial frequency as showing in the figure. Figure 4.11 and

Figure 4.12 showed the simulation effect of contrast variation for the PN stimuli

and the SFTC stimuli respectively. Those two figures showed relatively regular

contrast variation of the eye movement on the spatial frequency (or the spatial
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Figure 4.11: The simulation effect of contrast variation for PN stimuli. The
first, the second, and the third rows of panels are plotted in the log contrast,
the log contrast energy, and the Fourier-spectrum contrast respectively. The first
column to the fifth column of panels are for spatial frequencies 1, 2, 4, 8, and 16
cpd respectively. The offset angle θ is sampled from a set {0, π/8, π/4, 3π/8, π/2}
which were plotted with the red, green, blue, cyan, magenta curves respectively.
The offset distance ∆d is ranged between 0 and 0.5 visual degree. All contrast
values are normalized.

structure), the offset angle, and the offset distance.

As showed in Figure 4.9, 4.10, 4.11, and 4.12 the effect of eye movement showed

different ways of scaling with various contrast definitions. The log contrast energy

and the Fourier-spectrum contrast showed more robust than the log contrast when

the spatial frequency, θ, and ∆ changed. The reason is that the definitions of the

log contrast energy and the Fourier-spectrum contrast are effected by all pixels

of the stimuli while the log contrast is only effected by the maximum luminance

pixels of the stimuli which is more sensitive with the effect of eye movements.

So, the scaling of the log contrast energy and the Fourier-spectrum should be so

much less sensitive to detect the possible specially-tuned channels because those
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Figure 4.12: The simulation effect of contrast variation for SFTC stimuli. The
first, the second, and the third rows of panels are plotted in the log contrast,
the log contrast energy, and the Fourier-spectrum contrast respectively. The first
column to the fifth column of panels are for spatial frequencies 1, 2, 4, 8, and 16
cpd respectively. The offset angle θ is sampled from a set {0, π/8, π/4, 3π/8, π/2}
which were plotted with the red, green, blue, cyan, magenta curves respectively.
The offset distance ∆d is ranged between 0 and 0.5 visual degree. All contrast
values are normalized.
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scaling are too much robust to the change of stimulation.

Above results and analysis showed the PN stimuli and the SFTC stimuli used

in this dissertation were better than the Gabor stimuli in simulation effect of

contrast variation at eye movements.

The irregularity of the contrast variation of the eye movement was avoided by

choosing the PN stimuli and the SFTC stimuli instead of the Gabor stimuli. The

log contrast was used to explore the possible spatial-frequency-tuned channels

because it was more sensitive to the change of stimulation.
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Conclusions

This chapter summarizes the conclusions which concluded from this dissertation.

5.1 Conclusion about Positive- and Negative-

Contrast

Positive- and negative-contrast impulse responses were similar while the sensi-

tivity of positive- and negative-contrast detection was different. This sensitivity

difference originates from the summation part rather than the linear filter part

of the visual system.

5.2 Conclusion about Spatial-Frequency-Tuned

Channels

At least two kinds of spatial-frequency-tuned channels, the lower- and higher-

spatial-frequency-tuned channels that dominates the lower spatial frequencies (0,
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1, and 2 cpd) and the high spatial frequencies (8 and 16 cpd), respectively, exists

in human vision. The lower-spatial-frequency-tuned channel is bandpass and the

higher-spatial-frequency-tuned channel is low-pass.

In high possibility, the M- and P-pathways in human visual system dominated

the lower spatial frequencies (0, 1, and 2 cpd) and the higher spatial frequencies

(8 and 16 cpd), respectively, in the present study.
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