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論 文 内 容 の 要 旨 

 

 

Introduction  

Nowadays, using the particle swarm optimization (PSO) algorithms to train neural networks 
(NN) has become an attractive research. A famous method used to train the NNs is the 
back-propagation (BP) algorithm. Recently, previous studies have shown that the NN trained by 
PSO algorithms (NN-PSO) obtained higher recognition rates and lower learning errors when 
compared to the NN trained by the conventional BP algorithm. However, the standard PSO 
(SPSO) algorithm may stick to a local minimum in the training process. In this situation, the 
SPSO algorithm is stopped, leading to a high learning error rate or a low recognition rate of the 
trained NN. So far few studies have tried to overcome this problem by improving the standard 
PSO algorithms. Normally in previous studies, the improved versions of the PSO required to add 
more compute-intensive tasks that often increase computational burden the SPSO algorithm.  
Typically, previous researchers have implemented the NN trained by PSO algorithms only in 
hardware or only in software. Normally, the hardware implementation of the NN-PSO in these 
studies has been tested in a simulation using ModelSim program with the SPSO algorithm but it 
has not been tested in the real classification tasks. The FPGA-based NN was commonly 
investigated with a function-approximation, and the researchers just focused on reducing learning 
errors in the training phase. 

The main objective 

To deal with the issues described above, this research has three main objectives. The first is to 
introduce the improved PSO algorithms which can overcome the premature convergence of the 
SPSO algorithm without adding many compute-intensive functions to it. 
The second objective is to propose co-design architectures between hardware and software for 
the NN-PSO. Compared to the hardware-only approach, the proposed co-design approach not 
only maintains the testing speed but also reduces the required FPGA resources concerning the 
logic elements and the memory bits previously reserved for the hardware implementation of the 
PSO algorithms. Compared to the software-only approach, the proposed co-design approach 
preserves the flexibility during in the training phase while obtaining the higher operating speed in 
the testing phase. The flexibility of the co-design is an easiness to modify the PSO parameters or 
change the PSO algorithms without redesigning or rebuilding the FPGA part. 
The third objective is to investigate the performances concerning the learning errors and 
recognition rates in classification tasks of the NN trained by PSO algorithms implemented in a 
real FPGA device with the proposed co-design architectures comparing to the NN trained by the 
standard and the dissipative PSO  (SPSO, DPSO) presented in previous studies. The DPSO 
algorithm is chosen because it keeps the particles out of the local minimum without adding many 
tasks to the PSO algorithm. 
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Summary of the thesis 

Chapter 1  

This chapter briefly presents the overview and objectives of this research. 

Chapter 2 

Chapter 2 presents related work concerning the NN, the SPSO, and the DPSO algorithms. It also 
details how the NN can be trained using the PSO algorithms. 
 

Chapter 3 

Chapter 3 focuses on the premature convergence issue of the SPSO algorithm by proposing three 
improved versions of the SPSO algorithm called wPSOd_CV, PSOseed, and PSOseed2. By 
modifying the velocity update function of the SPSO algorithm, these improved PSO algorithms 
do not add many compute-intensive tasks to the SPSO algorithm. 
The first PSO algorithm introduced in this chapter is the wPSOd_CV algorithm that has two 
main components called the velocity control and the weight control. The velocity control has a 
jump phase to increase the velocity of the particle so that particle can move to another searching 
area to avoid the premature convergence. The weight control is used to balance between the 
exploitation task and the exploration task of the wPSOd_CV algorithm.  
The wPSOd_CV algorithm has some drawbacks. Even modifying only the velocity update 
function, this algorithm adds several arithmetic operators, increasing the compute-intensive tasks 
of the SPSO algorithm. In addition, the jumping phase in the velocity control mechanism always 
has very big jumps. If the searching area has many solutions, the wPSOd_-CV has the possibility 
to meet other solutions and jump to other searching space before meeting the best solution. This 
issue leads to a possibility to ignore the best solution or require more iterations to reach the best 
solution. To overcome these drawbacks, the PSOseed algorithm is proposed. Avoiding jumping 
phases, for each particle the PSOseed algorithm uses a new variable called the seed position that 
is randomly generated in the initial phase of the algorithm. In each iteration, each particle is 
attracted and pulled to the position of its seed. The seed mechanism could reduce the possibility 
that the particle falls in a local minimum. Compared to the wPSOd_CV algorithm, the PSOseed 
algorithm does not use any division operator and use fewer multiplication operators. A limitation 
is that the PSOseed algorithm highly depends on the generated seeds. The performance of the 
PSOseed significantly is reduced if the seeds are poorly generated.  
This chapter also introduces the PSOseed2 algorithm to solve the issue concerning the seed 
positions of the PSOseed algorithm by proposing a seed control mechanism. The operation of the 
PSOseed2 algorithm is similar to the PSOseed algorithm. However, in each iteration, all seed 
positions will be reseeded if the particles in the PSOseed2 algorithm cannot find a better position 
when the fitness value of the algorithm does not change. 
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Chapter 4 

In the NN-PSO system, the PSO algorithms are only used in the training phase while the NN is 
used in both the training phase and the testing phase. Therefore, this chapter investigates 
co-design architectures by proposing a partitioning methodology between hardware and software 
for the NN-PSO. In this design, the NN is kept in hardware coded by SystemVerilog 
programming language while the PSO training is moved to the software side. The PSO 
algorithms are programmed using C language and executed by a processor.  
The co-design architectures has several advantages. First, the FPGA-based NN maintains the 
high speed of the testing phase. The FPGA-based NN has a higher operating speed than the 
software-based NN. Second, the required FPGA resources regarding the logic elements and the 
memory bits are reduced because the FPGA resources previously reserved for the hardware 
implementation of the PSO algorithms are not used in this approach. Third, in the training phase, 
it is easy to change the parameters of the PSO algorithms such as the number of iterations, the 
number of particles or even the new PSO algorithm can be used to improve performance of the 
NN-PSO in different practical applications. Finally, the co-design can employ the NIOS II 
processor or the ARM processor which is already implemented on an FPGA board. In this case, 
all components of the co-design approach can be handily deployed in a single System on Chip 
(SoC) FPGA board.  
 

Chapter 5 

Based on the partitioning methodology presented in chapter 4, chapter 5 focuses on the first 
co-design architecture which uses the NIOS II processor on the software side. The NIOS II is 
chosen because all components of this co-design architecture could be implemented in a single 
FPGA chip which is portable and has low power consumption. The NIOS II processor is also 
optimized by Altera for the FPGA design. Several publicly recognized databases for the 
classification jobs are used to confirm performance of the NN trained by the proposed PSO 
algorithms in this co-design architecture. Experiments were conducted on a real FPGA device 
called the DE1-SoC board. Experimental results confirmed that the NN-PSO was successfully 
implemented. The NN trained by the proposed PSO algorithms also had higher recognition rates 
and lower learning errors than the NN trained by SPSO algorithm and DPSO algorithm under the 
same conditions of the parameters and the FPGA device. Among three proposed PSO algorithms 
(wPSOd_CV, PSOseed, and PSOseed2), the NN trained by the PSOseed2 algorithm obtained 
the highest accuracy. In addition, the co-design architecture using the NIOS II processor has both 
advantages regarding the fast speed of the testing phase when compared with the software-only 
approach, and lower resource utilization when compared with the hardware-only approach. 
This chapter also mentions some drawbacks of the co-design architecture uses the NIOS II 
processor. The first drawback is that the frequency of the NIOS II cannot be set to a high value 
due to the constraints with the FPGA fabric. The second drawback is the FPGA resources 
regarding the logic elements and the memory bits. The NIOS II which is created using available 
resources from the FPGA devices could be the resource-intensive processor, especially, if a high 
computing power of the NIOS II is required.  
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Chapter 6 

This chapter deals with the performances of the NN trained by proposed PSO algorithms in the 
second co-design architecture that uses the ARM processor. The ARM processor is used to 
overcome the drawbacks of the first architecture using the NIOS II processor. The NIOS II 
processor is replaced by the ARM processor, and PSO algorithms are executed by the ARM 
processor on the software side. 
The using of the ARM processor can be explained by two reasons. First, the ARM processor can 
operate at a higher clock frequency than the NIOS II processor. Second, the ARM processor is 
physically implemented on the FPGA board while the NIOS II processor is implemented using 
the available FPGA resources of the FPGA device. Hence, the co-design approach using the 
ARM processor can reduce the required resources previously reserved for the NIOS II processor. 
Beside the ARM processor, the second architecture also can use the direct memory access 
(DMA) and random access memory (RAM). The DMA may increase the operating speed of the 
connections between the software side (the ARM processor) and the hardware-based NN. In the 
first architecure using NIOS II processor presented in chapter 5, on-chip memory which 
consumes FPGA resources is used.  The second architecture using the ARM processor employs 
DDR3 RAM to reduce the required memory bits previously reserved for the on-chip memory.  
Chapter 6 also shows experiments confirming that the NN-PSO was successfully implemented 
in the co-design architecture using the ARM processor. The co-design architecture using the 
ARM processor also had a higher testing speed and required lower FPGA resources than the 
NIOS II processor. The FPGA-based NN trained by the PSOseed2 obtained higher recognition 
rates and lower learning errors when compared with the FPGA-based NN trained by other PSO 
algorithms (SPSO, DPSO, wPSOd_CV, and PSOseed). However, the hardware implementation 
of the NN still requires many resources. A big NN that has a large number of input nodes may 
not be fitted in the FPGA device.  
 

Chapter 7 

Chapter 7 presents a method to improve performances of the NN trained by proposed PSO 
algorithms in the proposed co-design architectures. To reduce the required resources while 
maintaining the high recognition rate, this chapter proposes the third co-design architecture 
which is a combination between the co-design architecture using ARM processor presented in 
chapter 6 and the FPGA-based principal component analysis (PCA). The performances of the 
NN trained by the proposed PSO algorithm in the third co-design architecture are also discussed 
in this chapter.  The Generalized Hebbian Algorithm is used as the PCA because it was 
considered as one of the best PCA algorithms for the hardware implementation concerning the 
required resources.  
The operation of the third co-design architecture (the NN-PCA architecture) consists of two 
phases. The first phase is the unsupervised learning for the PCA training. The second phase is the 
supervised learning using the PSO algorithms to train the weights and biases of the NN.  
Regarding the accuracy in classification tasks, several publicly recognized databases for the 
classification jobs are used. Experimental results confirmed that the NN-PCA architecture was 
successfully implemented on a real FPGA board. With the same condition of the PSO 
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parameters and the same number of the hidden nodes, hardware-based PCA can reduce the 
required resources of the program while keeping high recognition rates. Furthermore, The 
NN-PCA architecture also obtained higher testing speed than the software-only approach. 
Compared with four other PSO algorithms (SPSO, DPSO, wPSOd_CV, and PSOseed) the NN 
trained by the PSOseed2 algorithm in NN-PCA architecture also achieved the highest 
recognition rates and the smallest learning errors. 

Chapter 8 

Chapter 8  concludes all chapters and discusses the future directions for continuing the research. 


