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ABSTRACT 

 

Memory encoding have been one of the central topics in cognitive neuroscience. We experience 

many events in everyday life, some of which are remembered, while others are forgotten. What 

neural mechanisms underlie this process? To answer this question, this dissertation provides two 

sub topics with a complementary goal to investigate the cognition and neural mechanisms 

underlying the memory encoding system. We focused on two of considerably current topics in 

neuroscience research including the role of intrinsic fluctuations or low frequency fluctuations 

(LFFs) of neural signal lower than 0.1 Hz in the brain and dynamic aspects of functional 

connectivity across whole brain, during memory encoding.  

Growing evidence suggests that LFFs can account for much of the variability in task-

evoked activation, and variability in behavioral performances. Thus, we hypothesized that LFFs 

may affect memory encoding processes and contribute to variability of memory performances. If 

so, LFFs of neural activity during experience encoding would predict either that experience will 

be later remembered or forgotten. In the present study, twenty-five participants performed an 

incidental encoding task in a magnetic resonance imaging scanner, and their memory encoding 

performance was assessed by a subsequent surprise memory test. The encoding trials were 

classified into successful encoding and unsuccessful encoding trials based on answers from the 

memory test. To investigate the role of LFFs in encoding process, in the first sub topic, LFFs 

independent from task-related signal were extracted and tested whether these residual LFFs can 

predict subsequent memory performances. We found that LFFs amplitudes/functional 

connectivity at the time periods before the stimulus onset can predict whether the upcoming trial 

will be remembered. Specifically, higher amplitude of LFFs in the right fusiform gyrus, the left 

parahippocampal gyrus, the left middle frontal gyrus, and the left superior parietal lobule was 



 

observed before the stimulus later remembered (vs. later forgotten). In contrast, LFFs functional 

connectivity from the fusiform gyrus to brain regions inside cingulo-opercular (CO) network was 

stronger before the stimulus later forgotten. Our results lend new insight into the role of LFFs in 

memory encoding processes suggesting that LFFs was modulated with task-evoked responses 

and related to variability of memory performances. Remarkably, LFFs in the specific brain 

regions potentially facilitate memory encoding whereas the functional connectivity involving the 

CO network may bias toward bad memory. 

Previous neuroimaging studies revealed that local activation/deactivation of specific 

brain regions predicts successful memory encoding. However, research on large-scale functional 

organization in the brain emphasizes a network view of the brain rather than local 

activation/deactivation, showing that patterns of functional connectivity across the brain are 

organized in specific ways and are relevant to behavior and cognition. Notably, recent studies 

have revealed that large-scale brain networks dynamically fluctuate in relatively short time 

periods, typically within a timescale of 30-40 s. Furthermore, these studies have shown that 

dynamic fluctuations of large-scale functional connectivity patterns are associated with a variety 

of cognitive processes.  

In the second topics, we employed recently developed time-varying functional 

connectivity analysis to examine large-scale functional connectivity patterns during memory 

encoding processes. We found that a dynamic reconfiguration of large-scale brain networks in a 

short timescale (< 1 min) is related to memory encoding performance. A graph analysis revealed 

that network integration rather than segregation is a hallmark of successful memory encoding. 

This effect was primarily driven by increased integration of the subcortical, default-mode, and 

visual subnetworks with other subnetworks. Moreover, multivariate analysis using the graph 



 

metrics of integration showed that functional brain networks could be reliably classified into the 

period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set 

of brain systems dynamically interact to support successful memory encoding. 

Together, this dissertation provides a better understanding of the neural mechanisms of 

memory encoding, emphasizing the effect of LFFs to memory encoding and highlighting the 

importance of orchestration across many distinct brain systems to support better memory 

encoding.     
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1.2 Motivation and Literature Review 

 

In everyday life, new memories of events and episodes are constantly formed, sometimes 

incidentally. For instance, even when we do not explicitly try to memorize a scene, we are often 

able to vividly recall it later. Psychological studies have shown that cognitive operations engaged 

during initial experience encoding are important for memorability of that experience [1]. Although 

the mechanisms underlying memory encoding have extensively been investigated in cognitive 

psychology and neuroscience, it is still not fully understood.  

Most previous fMRI studies have focused on task-evoked responses to answer how neural 

activity is changed due to manipulated external stimuli and how the evoked responses are 

correlated to subsequent behaviors. However, only 5% from 20% of brain energy consumption is 

dedicated for the task execution whereas the rest is used to maintain spontaneous neural activity, 

the neural activity that is intrinsically generated by the brain [2]. Thus, we may lose sight of the 

possibility that behavior performances and functional activity observed during our experiment may 

be modulated by the intrinsic fluctuations. Beginning with the study that showed spontaneous 

blood-oxygen-level dependent (BOLD) fluctuations measured in the left somatomotor cortex were 

specifically correlated with spontaneous fluctuations in the right somatomotor cortex [3] and these 

lateral fluctuations were related to press force during right-hand button presses [4]. These findings 

have since raised widespread interest about the relationship between intrinsic fluctuations and 

variability in behaviors. Accumulating evidences over the past decades have shown that rather 

than motor performances, intrinsic fluctuations accounted for variability in other domains such as 

memory recollection [5], perception [6], [7], and cognitive control [8]. However, to date there are 

no studies focused on the role of intrinsic fluctuations in memory encoding processes. 
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In the first part of this dissertation underlying the topic “Low frequency fluctuations and 

its functional connectivity before memory encoding predict subsequent memory 

performances”, we hypothesized that intrinsic fluctuations may affect memory encoding 

processes and contribute to variability of memory performances. If so, intrinsic fluctuations of 

neural activity during experience encoding would predict either that experience will be later 

remembered or forgotten. Most of memory encoding studies have investigated how the brain 

operates during successful encoding and less encoding [9], [10]. They demonstrated that  greater 

activation in the medial temporal lobes (MTL) and the prefrontal cortex was exhibited to response 

to stimuli successfully remembered later (vs. forgotten), a phenomenon referred to as the 

subsequent memory effect (SME) [11]. On the other hand, brain regions that are part of the default-

mode network (DMN) tend to show stronger activation (or weaker deactivation) in response to 

stimuli that are later forgotten (vs. remembered), referred to as the subsequent forgetting effect 

(SFE) [11]. So far we know that activation/deactivation of specific sets of brain regions are 

predictive of successful memory encoding [12]–[19], however whether intrinsic fluctuations of 

observed neural activity from these brain regions contribute to variability of subsequent memory 

performances (subsequent remembering and subsequent forgetting) remain uncovered. 

To answer this question, here the intrinsic fluctuations or low frequency fluctuations 

(LFFs) in the range of 0.01–0.1 Hz [4] were extracted from task-evoked responses during 

experience encoding to test their effect on subsequent memory performances. We focused on the 

LFFs at the time periods before the stimulus onset (to make sure that the LFFs do not carry task-

driven signal) and used them to predict memory performances of upcoming trials. We first 

performed subsequent memory procedure [10], [20] in which participants participated the 

incidental memory encoding scan and their memory performances were assessed by the 
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subsequent surprise memory test. In the incidental encoding scan, the participants were instructed 

to make semantic judgement (man-made or natural objects) to given pictorial stimuli without prior 

knowledge to memorize the pictures. After that, they were asked to view pictures presented on a 

computer screen and to judge if each picture had been studied during scanning (studied with high 

confidence, studied with low confidence, or unstudied).  Based on their answers, encoding trials 

can be classified into those that would be remembered (here defined as HH) and those that would 

be forgotten (here defined as Miss). Comparing neural activation during HH to Miss trials and 

comparing neural activation during Miss to HH trials, it allowed us to identify SME and SFE 

related regions, respectively. Lastly, the LFFs independent from task-related signal were extracted 

from the obtained SME and SFE related regions and then tested whether these residual LFFs can 

predict subsequent memory performances.  

Our results revealed that prestimulus LFFs amplitude in the SME related regions including 

the right fusiform gyrus (rtFuG), the left parahippocampal gyrus (ltPHG), the left middle frontal 

gyrus (ltMFG), and the left superior parietal lobule (ltSPL) can predict HH and Miss trials while 

the SFE related regions cannot. Beside the LFFs amplitude, stronger LFFs functional connectivity 

from the rtFuG to the brain regions inside CO network was observed before onset of the Miss 

trials. Our results may suggest that measured neural responses during memory encoding might be 

modulated by the intrinsic fluctuations which were reported here as a significant contributor to the 

variability of subsequent memory performances. Interestingly, not only the prestimulus LFFs 

amplitudes but also the prestimulus LFFs functional connectivity before stimuli encoding can 

predict subsequent memory performances. These findings emphasize an involvement of LFFs 

underlying memory encoding processes but in different aspects. 
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In the second part of this dissertation, we investigated mechanism of memory encoding in 

term of dynamic functional connectivity underlying the topic “Large-scale network integration 

in the human brain tracks temporal fluctuations in memory encoding performance”. Several 

studies have shown that successful memory encoding is related to enhanced functional 

connectivity between memory-related regions [21]–[24], such as between the hippocampus and 

other areas. However, memory encoding is thought to require orchestration among many brain 

systems beyond the so-called memory system, because encoding success depends on a range of 

factors (e.g., attention, arousal, and motivation) processed in distributed brain networks [25]–[27]. 

Most previous studies have examined functional connectivity from a few selected “seed” regions, 

providing little evidence about how the entire brain functions as a network to support memory 

encoding. Therefore, the role of large-scale brain networks in memory encoding processes remains 

to be elucidated. 

Research on large-scale functional organization in the brain has advanced substantially in 

the past decade [28]–[32]. This line of research emphasizes a network view of the brain rather than 

local activation/deactivation, showing that patterns of functional connectivity across the brain are 

organized in specific ways and are relevant to behavior and cognition [30], [33], [34]. Notably, 

recent studies have revealed that large-scale brain networks dynamically fluctuate in relatively 

short time periods, typically within a timescale of 30-40 s [35]–[37]. Furthermore, these studies 

have shown that dynamic fluctuations of large-scale functional connectivity patterns are associated 

with a variety of cognitive processes [30], [35], [36], [38]–[40], and even exist during the resting 

state [41]–[45]. These findings have spurred emerging perspectives of dynamic brain networks, 

leading researchers to focus more on time-varying functional connectivity patterns in short time 
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windows, instead of the traditional “static” functional connectivity computed in periods of 6–10 

min. 

Integration and segregation are key concepts in characterizing dynamic brain networks 

[34], [46], [47]. Theoretically, integration of large-scale networks is important for efficient 

communication across entire systems, whereas segregation is critical for specialized functioning 

of particular modules without interference from the rest of the network [39], [40], [48]. 

Accumulating evidence suggests that the degrees of integration and segregation in the brain 

dynamically change over time [49]–[52]. For example, when the brain processes a cognitively 

demanding task (e.g., the N-back working memory task), the degree of integration tends to 

increase, which is suitable for efficient communication among the sensory, motor and cognitive 

control systems. On the other hand, the degree of segregation tends to increase over time as the 

brain learns specialized skills, which allows automatic processing of a habitual task without 

effortful cognitive control [35], [39]. Together, it is likely that the brain changes its large-scale 

network configurations (i.e., integration and segregation) in highly adaptive ways. However, 

research on dynamic reconfigurations of large-scale brain networks is still nascent, and the 

findings so far suggest that the relative importance between integration and segregation is strongly 

dependent on tasks and situations [51], [53], making it difficult to draw comprehensive conclusions 

at this stage. Thus, it remains an open question whether integration or segregation is important for 

memory encoding processes. 

In the present work, we examined whether and how dynamic functional connectivity 

patterns in the brain are related to memory encoding with distinct but complementary aims. The 

first aim was to clarify dynamic functional connectivity patterns in well-established memory-

related regions. For this, we constructed a network consisting of the brain regions associated with 
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the SME and those associated with the SFE (hereafter referred to as the SME/SFE regions, for 

simplicity). Capitalizing on previous research suggesting functional interactions among SME 

regions for successful memory encoding [11], we predicted that the SME regions would show 

greater functional connectivity during time periods of higher (vs. lower) memory encoding 

performance. The second aim was to explore whether and how dynamic fluctuations in large-scale 

networks across the brain are related to memory encoding performance. For this analysis, we used 

a functional atlas consisting of 224 nodes that cover the entire brain [29]. Using graph theory 

analysis [54], we quantified the degrees of integration and segregation in the large-scale network, 

and tested whether these graph metrics differed between the time periods of high encoding 

performance and those of low encoding performance. Our results revealed a dynamic 

reconfiguration of the large-scale brain network depending on memory encoding performance. 

Specifically, greater integration of the large-scale network is a hallmark of better encoding 

performance. This effect was particularly driven by increased inter-subnetwork integration of the 

subcortical, default-mode, and visual networks. 

 

1.3 Objectives 

TOPIC 1: Low frequency fluctuations and its functional connectivity before memory 

encoding predict subsequent memory performances 

- To investigate whether intrinsic fluctuations (here we defined as LFFs) can account for 

subsequent memory performance. We hypothesized that LFFs may be a significant 

contributing factor in successful memory encoding and account for trial-to-trial 

variability in encoding performance. 
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TOPIC 2: Large-scale network integration in the human brain tracks temporal 

fluctuations in memory encoding performance 

- To explore whether and how dynamic fluctuations in large-scale networks across the 

brain are related to memory encoding performance. 

- To investigate whether integration or segregation of large-scale brain networks is 

benefit for memory encoding processes. 
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CHAPTER 2 

TOPIC 1: Low frequency fluctuations and its functional connectivity before 

memory encoding predict subsequent memory performances 

2.1 Abstract 

Previous studies suggest that ongoing activity fluctuations or low frequency fluctuations (LFFs) 

in the brain contribute to variability in task-evoked responses and behaviors however little is 

known its effect on memory encoding. In the present study, we used event-related functional 

magnetic resonance imaging (fMRI) paradigm to investigate whether the LFFs during memory 

encoding task can predict subsequent memory performances. Participants underwent incidental 

memory encoding scan and their memory performances were assessed by later surprise memory 

test.  We found that LFFs occurring before the onset of a stimulus can predict whether the stimulus 

was remembered or forgotten. Higher amplitude of LFFs in the right fusiform gyrus, the left 

parahippocampal gyrus, the left middle frontal gyrus, and the left superior parietal lobule was 

observed before the stimulus later remembered (vs. later forgotten). In contrast, LFFs functional 

connectivity from the fusiform gyrus to brain regions inside cingulo-opercular (CO) network was 

stronger before the stimulus later forgotten. Our results lend new insight into the role of LFFs in 

memory encoding processes suggesting that LFFs was modulated with task-evoked responses and 

related with variability of memory performances. Remarkably, LFFs in the specific brain regions 

potentially facilitate memory encoding and subsequent memory performances whereas the 

functional connectivity involving the CO network may bias toward bad memory. 
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2.2 Methodology 

2.2.1 Participants 

A total of 30 university students (20 males; age 18–22 years, mean ± SD = 20.0 ± 1.2) participated 

in the study. Four participants who fell asleep in the scanner and did not respond in more than 20 

trials were excluded from the analysis. One additional participant who did not follow the 

instructions (not making any “low confidence” responses in the surprise memory test) was also 

excluded. The remaining 25 participants (17 males; age 18–22 years, mean ± SD = 20.1 ± 1.1) 

were therefore available for the analysis. All experimental procedures were approved by the Ethics 

Committee of Kochi University of Technology. 

2.2.2 Stimuli 

Stimuli consisted of color pictures (sized 8° × 6°) and a white fixation cross (sized 0.8° × 0.8°). 

The pictorial stimuli included 360 pictures showing man-made objects (e.g. commodities, 

stationery, musical instruments, and appliances) and 360 pictures showing natural objects (e.g. 

animals, plants, fruits, and natural scenes). These pictures were selected from the Bank of 

Standardized Stimuli (BOSS) [1]and a commercially available image database. All color pictures 

underwent luminance, contrast, and spatial frequency equalizing by in-house MATLAB 

(MathWorks, Natick, MA) code adapted from the SHINE toolbox [2]. Half of the pictures (180 

man-made and 180 natural pictures) were randomly selected for use in the incidental memory 

encoding task. The remaining 360 pictures were used as unstudied pictures in the surprise memory 

test. The tasks were programmed and administered using Presentation software (Neurobehavioral 
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Systems, Berkeley, CA). We projected the visual stimuli on a screen located behind the scanner. 

Participants viewed the projected visual stimuli through a mirror attached to a head coil. 

2.2.3 Experimental paradigm 

The experimental paradigm (Fig. 2.1) was based on the subsequent memory approach, which has 

been widely used in previous research [3]. Participants took part in a two-stage experiment: an 

incidental memory encoding task followed by a surprise memory test. During the incidental 

memory encoding scans, participants studied the pictorial stimuli. Twenty minutes later, memory 

for the studied pictures was assessed by the surprise memory test outside the scanner. 

 

Figure 2.1 Task design. Participants performed 3 sessions of incidental memory encoding task inside the scanner. 

Participants judged whether a picture contains man-made or natural object. Twenty minute later, they were asked to 

view pictures presented on a computer screen and to judge if each picture had been studied during scanning (studied 

with high confidence, studied with low confidence, or unstudied). Encoding trials can be classified into those that 
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would be remembered (here defined as HH) and those that would be forgotten (here defined as Miss) based on memory 

test’s answers.  

In the incidental memory encoding task, participants studied 360 pictures in three runs. 

Each run began with a central fixation cross for 15 s, followed by a continuous series of 180 rapidly 

intermixed trials. Sixty man-made picture trials, 60 natural-made picture trials, and 60 fixation 

trials were pseudo-randomly presented with counterbalancing (each trial type followed every other 

trial type equally often). Each run ended with an additional fixation period of 20 s. For a picture 

trial, a pictorial stimulus was presented on the screen for 2500 ms, followed by a 500-ms 

presentation of a fixation cross. For a fixation trial, only a fixation cross was presented for 3 s. 

During the picture trials, participants were instructed to make a semantic judgment (man-made or 

natural) by right-handed button press as soon as possible after the picture onset. The total time for 

performing the incidental encoding task was approximately 30 minutes.  

In the surprise memory test, participants were presented with the 360 studied pictures from 

the incidental memory encoding task, as well as 360 unstudied pictures. They were asked to 

indicate whether they recognized each picture as studied with high confidence, studied with low 

confidence, or unstudied. Each picture was displayed individually with self-paced timing. 

Participants responded by right-handed keyboard press. 

2.2.4 Image acquisition and preprocessing 

All scanning was performed using a 3T Siemens Verio MRI scanner (Siemens, Erlangen, 

Germany) equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical image 

was collected for each participant (MPRAGE; repetition time [TR] = 2500 ms; echo time [TE] = 
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4.32 ms; flip angle [FA] = 8°; field of view [FOV] = 230 mm; matrix = 256 × 256; in-plane 

resolution = 0.9 × 0.9 mm2; slice thickness = 1 mm; 192 slices; acceleration factor = 2). Functional 

data were collected using a multiband echo planar imaging (EPI) pulse sequence (TR = 720 ms; 

TE = 33 ms; FA = 52°; FOV = 192 mm; matrix = 64 × 64; in-plane resolution = 3 × 3 mm2; slice 

thickness = 3 mm; slice gap = 0.75 mm; 45 slices; multi-band acceleration factor = 5), which 

afforded whole-brain coverage. Preprocessing was carried out using SPM12 (Wellcome 

Department of Cognitive Neurology, London, UK). The first five volumes of each run were 

discarded before preprocessing. The remaining functional volumes were spatially realigned, 

coregistered to the individual high-resolution anatomical image, normalized to Montreal 

Neurological Institute (MNI) space, spatially smoothed with 8 mm full width at half maximum 

(FWHM) Gaussian kernel, and resampled to a spatial resolution of 2 × 2 × 2 mm3. 

2.2.5 Subsequent memory/forgetting effects 

The 360 encoding trials in the incidental encoding task were classified into either remembered 

with high confidence (HH), remembered with low confidence (LH), or forgotten (Miss) based on 

participants’ performances on the surprise memory test. We used a general linear model (GLM) to 

identify brain regions showing the subsequent memory effect (SME, i.e., greater activation in HH 

than Miss) and the subsequent forgetting effect (SFE, i.e., greater activation in Miss than HH). For 

the first-level GLM, we defined four task-related regressors (HH, LH, Miss, and Fixation). For 

each regressor, trials were modelled using a boxcar function (initiating at stimulus onset with the 

duration of 2500 ms) convolved with a canonical hemodynamic response function (HRF). The 

model also included six motion parameters as well as mean time series in the cerebral spinal fluid 

(CSF) and white matter (WM) as nuisance regressors. To obtain the mean time series in the CSF 
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and WM, we averaged time series of all voxels within the CSF and WM masks, each of which was 

derived from each individual’s segmented structural image (binarized with a threshold of tissue 

probability > 0.8) [4], [5]. The second-level random-effect analysis (one-sample t-tests) was 

performed using contrast images derived from individual participants (i.e., HH minus Miss for 

SME and Miss minus HH for SFE). The statistical threshold was set at voxel-wise P < 0.05, family-

wise error corrected across voxels with the gray matter (defined by “TPM.nii” implemented in 

SPM12, thresholded at 0.5). 

2.2.6 Prestimulus LFFs amplitude analysis 

The main purpose of this study is to investigate whether LFFs of task-evoked signal can account 

for encoding performances and subsequent memorability.  To do so, we extracted the LFFs 

(independent of task-related components) from selected ROIs and test whether LFFs amplitude 

can predict HH and Miss trials. We first extracted fMRI signal time courses from four areas which 

showed peak-activation SME and SFE. Each ROI was defined by a sphere (radius = 5 mm) 

centered at the peak coordinates (Table 2.1). We removed trial-evoked and nuisance signals using 

a voxelwise GLM, in accordance with previous studies [6], [7]. Each trial was modeled as a 2.5 s 

boxcar convolved with the HRF and its temporal and dispersion derivatives with trials binned (HH, 

LH, and Miss). We included the six motion parameters and the mean time series in the CSF and 

WM as separate regressors. After removing trial-evoked signal, as well as nuisance signals, the 

residual signal time courses were bandpass filtered, leaving only signal between 0.01 and 0.1 Hz 

[8]. Critically, this frequency band is outside the task frequency (0.33 Hz), filtering out responses 

that were consistently elicited by the task.  To prepare the signal time courses for the present main 

analysis, each LFFs was re-sampled at 1 s.  
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After obtaining LFFs, we reconstructed peritrial LFFs signal time courses separately for 

each trial condition (HH, LH, and Miss). To do so, we defined a 20-s time window around each 

trial, starting from 10 s before the stimulus onset to 10 s after the stimulus onset. The signal time 

courses were averaged within this time window across trials, separately for each trial condition. In 

our study, we used LFFs at the prestimulus time period (-1.5 s to 0 s relative to the stimulus onset 

of each trial resulting in pre-HH and pre Miss) to predict upcoming stimuli. The LFFs during this 

period is close to the stimulus but do not carry stimulus- or task-driven signal. This  specific time 

period has been used in previous studies [9]–[12] which predicted subsequent responses using 

ongoing prestimulus activity. In our work, the prestimulus time period included two time points 

immediately before the stimulus onset, and we averaged the LFFs amplitudes over these time 

points for HH, LH, and Miss trials separately. We performed one-way ANOVA (HH, LH, and 

Miss as factors) and t-tests (HH versus Miss) across participants to examine statistical differences 

in the mean LFFs amplitude among HH, LH, and Miss trials.  

2.2.7 Possible effect from the preceding trial to the encoding performance of following trial. 

Are trials more likely to identify as HH if they come after HH trial rather than Miss trial? To rule 

out the possibility of lingering effect of preceding trial to the performance of following trial, we 

performed generalized linear model regression using memory performance at trial t-1, t-2, and t-3 

as predictors and memory performance at trial t as observations. By using binomial distribution, 

memory performance were defined as binary values (HH and LH trials = “1”; Miss trials = “0”). 

Moreover, we classified encoding trials into the trials following HH trial (preceding HH) and the 

trials following Miss trial (preceding Miss) and then test whether prestimulus LFFs amplitude of 

preceding HH is likely to higher compared with those of the preceding Miss trials. The LFFs at 
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the time period -1.5 s to 0 s relative to the stimulus onset were averaged separately for the 

preceding HH and the preceding Miss trials. The averaged prestimulus LFFs amplitude of two trial 

types were then compared across 25 participants using pair t-test. 

2.2.8 Trial-to-trial variability analysis 

To investigate whether LFFs affect trial-to-trial variability in encoding performances during 

memory encoding task, we quantified this effect by regressing out LFFs from task-evoked 

responses and investigated a change in signal-to-noise ratio (SNR) after subtraction. To obtain 

task-evoked response time courses, we extracted BOLD response time courses containing tasked-

related component, and excluded the six motion parameters and the mean activity in CSF and WM. 

The extracted time courses were baseline corrected so that the averaged value across all time points 

was set to zero. To obtain LFFs, we extracted LFFs from the same ROI, and then excluded the 

task-related component and nuisance signals as described in the aforementioned prestimulus LFFs 

amplitude analysis. To quantify the effect of this regression, we compared the SNR for the task-

evoked responses before versus after LFFs regression as done in the previous study [13]. To 

compute the SNR, we decomposed each of the time courses (before and after LFFs regression, 

respectively) into “signal” time course and “noise” time course. The former was the time course 

explained by the task-related regressors (which was reconstructed from the HRF-convolved 

regressors multiplied by individual beta estimates resulting from the GLM), and the latter was the 

time course not explained by the task-related regressors (i.e., the residual after removing the 

reconstructed task-related time course). The signal power was calculated as the mean squared 

deviation from the baseline of the “signal” time course, and the noise power was calculated as the 
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mean square deviation of the “noise” time course. The significance of changes in these measures 

was assessed using t-tests. 

2.2.9 Prestimulus LFFs functional connectivity analysis 

Rather than LFFs amplitude, we next asked whether prestimulus LFFs functional connectivity 

before trials (pre-HH and pre-Miss) predicts subsequent memory performances. We applied 

psychophysiological interactions (PPIs) analysis [14] using SPM12 to investigate LFFs functional 

connectivity from seed ROI to other regions separately for pre-HH and pre-Miss conditions. First, 

we chose the right fusiform gyrus (rtFuG), the region showing the greatest SME at the group level 

(Figure 2.2A, Table 2.1), as a seed ROI. The LFFs time courses of the rtFuG ROI were extracted 

as described above (Prestimulus Low Frequency Fluctuations Amplitude Analysis), and was used 

as a physiological factor. This time courses were deconvolved using the canonical HRF before 

making PPI interaction term [15]. Second, we defined a psychological variable using a boxcar 

function that denotes prestimulus time points (-2.88 s to 0 s, corresponding to four volumes [16] 

before the HH trials vs. Miss trials. Here, we used a dummy variable coding the prestimulus time 

points for the HH trials with value 1 and those for the Miss trials with value –1. Third, we 

multiplied the deconvolved LFFs time courses with the psychological variable, and reconvolved 

it with the canonical HRF to make a PPI interaction term. Finally, we estimated a new GLM, which 

included the PPI interaction term, the LFFs time courses (before deconvolution), and the 

psychological variable convolved with the canonical HRF as PPI-related regressors. The model 

also included six motion parameters, mean time series in CSF and WM as regressors of no interest. 

The second-level random-effect analysis (one-sample t-tests) was performed using the single 

participant contrast values associated with the PPI interaction term.  
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2.3 Results 

The main purpose of this work was to investigate the effect of LFFs in memory encoding 

processes. As mentioned previously, we hypothesized that the LFFs of neural activity during 

encoding would affect encoding processes and cause variability of subsequent memory 

performances. To test this, we asked the participants to participate the incidental encoding scan in 

order to localize brain regions which are related to encoding processes. They were presented with 

pictorial stimuli and instructed to make a semantic judgment about the content of each image (man-

made or natural), without prior information about the subsequent memory test. In the memory test, 

participants indicated whether given pictures are studied pictures (reporting their confidence “high 

confidence studied” or “low confidence studied” or “unstudied”).  Based on their answers, all 

encoding trials could be categorized into subsequently remembered or subsequently forgotten 

trials. We looked for an evidence that LFFs of neural activity during encoding can predict whether 

the picture will be remembered or forgotten. 

2.3.1 Behavioral results 

Although participants were not informed about the surprise memory test after the fMRI scan, they 

were able to correctly distinguish between studied and unstudied pictures with accuracy of 74.2 ± 

6.3% (mean ± SD across participants). 67.7 ± 15.9% of the studied pictures were judged as studied 

(i.e., hit), whereas 80.8 ± 14.6% of the unstudied pictures were judged as unstudied (i.e., correct 

rejection). Based on the individual participants’ responses in the surprise memory test, the picture 

trials of the incidental encoding task were categorized into high-confidence hit (HH, the pictures 

later remembered with high confidence; 48.9 ± 15.4%), low-confidence hit (LH, the pictures later 
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remembered with low confidence; 18.8 ± 8.9%), or Miss (the picture later forgotten; 32.3 ± 15.9%) 

trials.  

Data obtained in previous study [17] using verbal stimuli indicated participants took longer 

reaction times (RTs) to make the semantic judgement for HH compared with LH and Miss trials 

respectively.  In our study using pictorial stimuli, RTs were different across 3 trial types (F (2, 48) 

= 4.08, P = 0.0230, ANOVA). An averaged RTs for HH trials (1,204.34 ± 275.20 ms) was 

significantly longer when compared to LH trials (1143.86 ± 295.03 ms) (P < 0.001, post-hoc t-

test) and Miss trials (1,156.07± 294.10 ms) (P < 0.001, post-hoc t-test), However, the RTs for LH 

trials were no longer compared to Miss trials (P < 0.001, post-hoc t-test), which is inconsistent 

with results obtained in the previous study [17]. The slightly differences were noted because of the 

different types of stimuli.  

2.3.2 Subsequent memory/forgetting effects 

In order to identify brain regions related to memory encoding processes, we compared neural 

activation during HH to Miss trials. The SME indicated fMRI signal that is greater for the 

successfully encoded stimuli than for unsuccessfully one was noted in the bilateral fusiform gyrus, 

the bilateral medial temporal lobe (MTL), the left superior parietal lobe, and the left middle frontal 

cortex (P < 0.05, FWE corrected; Figure 2.2A, Table 2.1). 
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Figure 2.2 Brain regions associated with the subsequent memory effect (SME) and subsequent forgetting effect 

(SFE) (A) SME related regions. Statistical map showing voxels that are significantly correlated with HH relative to 

Miss conditions and (B) SFE related regions. Statistical map showing voxels that are significantly correlated with 

Miss relative to HH condition (SFE). Color bar indicates t value. Results are overlain onto the lateral and medial 

aspects of a cortical surface of a canonical template. Activations in medial temporal area are overlain onto coronal 

slices of the canonical template. All activations are thresholded at P < 0.05, FWE corrected. 
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Table 2.1. Details of brain regions associated with subsequent memory effect (SME) and subsequent 

forgetting effect (SFE).  

 Region H 

MNI 

kE P FWE-corr 

x y z 

SME        

 Fusiform gyrus R 36 -60 -20 1106 < 0.001 

 Amygdala/Hippocampus L -26 -4 -18 155 < 0.001 

 Inferior temporal gyrus L -48 -54 -10 1303 < 0.001 

 parahippocampal gyrus L -26 -34 -20 1303 < 0.001 

 Superior parietal lobule L -24 -68 46 241 < 0.001 

 Middle frontal gyrus L -44 12 32 519 < 0.001 

 Cerebellum exterior L -6 -76 -36 49 < 0.001 

 Cerebellum exterior R 8 -76 -28 77 < 0.001 

 Inferior occipital gyrus L -36 -84 4 299 < 0.001 

 Fusiform gyrus L -40 -18 -24 25 < 0.001 

 Amygdala R 26 -2 -16 68 < 0.001 

 Inferior occipital gyrus R 28 -88 0 124 < 0.001 

SFE        

 Middle cingulate gyrus R 4 -26 44 1408 < 0.001 

 Superior frontal gyrus medial segment R 10 46 -2 621 < 0.001 

 Precuneus L -8 -72 26 219 < 0.001 

 Superior frontal gyrus R 24 46 36 129 < 0.001 

 Middle frontal gyrus L -32 34 36 93 < 0.001 

 Planum temporale R 62 -30 16 50 < 0.001 
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 Angular gyrus R 58 -50 34 153 < 0.001 

 Middle frontal gyrus R 28 30 40 40 < 0.001 

 Superior temporal gyrus L -66 -38 16 5 0.013 

 Middle temporal gyrus R 68 -22 -4 9 0.007 

 Supramarginal gyrus L -64 -28 20 2 0.024 

 

The MTL cluster included the amygdala/hippocampus and the parahippocampal gyrus. The 

left superior parietal lobe cluster included the left superior parietal lobe and extended into both 

middle and inferior extent of the occipital gyrus. The left middle frontal cortex cluster included 

the middle frontal gyrus and extended into the prefrontal gyrus and the inferior frontal gyrus. It is 

evident that our findings are consistent with previous studies [18]–[25] that reported many brain 

regions (e.g. prefrontal cortex, the MTL, fusiform cortex, the posterior parietal cortex, and the 

premotor cortex) involved in successful encoding.  

In the other hand which brain regions activate against this successful encoding? To 

examine this, we compared neural activation during Miss to HH trials. Greater activation was 

observed in the right middle cingulate gyrus, the right inferior frontal gyrus medial segment, the 

left precuneus and the right superior frontal gyrus (P < 0.05, FWE corrected; Figure 2.2B, Table 

2.1), which is consistent with results obtained in previous studies [26]–[28] (for meta-analysis, see 

[25]). It appears that the SFE observed here were noted as parts of default-mode network (DMN), 

known as task-negative network.  
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2.3.3 Prestimulus LFFs amplitude predicts subsequent memory performances 

Although previous studies have reported that neural activity in the SME related regions can predict 

how well stimuli will be remembered [18], [19], [23], [29]–[32], however whether intrinsic 

fluctuations of observed neural activity from these brain regions contribute to variability of 

subsequent memory performances remain uncovered. 

The results described above (Figure 2.2) strongly identified the neural activity that supports 

successful and unsuccessful memory encodings. Next, we asked whether LFFs of neural activity 

at the time points before stimulus onset (pre-HH and pre-Miss) observed in the SME and SFE 

related areas (Figure 2.2) can predict subsequent memory performances (HH trials or Miss trials).  

 

Figure 2.3 Prestimulus LFFs amplitude analysis. (A) Prestimulus LFFs amplitude analysis on the representative 

ROIs of subsequent memory effect (SME). The first column shows cross-sectional view of the representative ROIs 
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for SME related regions. The second column illustrates LFFs time courses at the time period from -10 s to 10 s relative 

to the stimulus onset.  The third column shows mean LFFs amplitude at the time period from -1.5 s to 0 s relative to 

the stimulus onset of each trial (pre-HH, pre-LH, and pre-Miss) (time period that is marked with blue rectangle in the 

second column). Mean LFFs amplitudes of pre-HH, pre-LH, and pre-Miss conditions are calculated and represented 

in red, green, and blue, respectively. (B) Prestimulus LFFs amplitude analysis on the representative ROIs of 

subsequent forgetting effect (SFE). Error bars indicate ± standard error of the mean. Time courses are resampled at 

1s. * Significant at P < 0.05. 

Based on the aforementioned SME results, we chose the rtFuG, the ltPHG, the ltMFG, and 

the ltSPL (Figure 2.3A, column 1) as representative ROIs of the SME. We selected the right middle 

cingulate gyrus (rtMCgG), the right superior frontal gyrus medial segment (rtMSFG), the left 

precuneus (ltPCu) and the right superior frontal gyrus (rtSFG) (Figure 2.3B, column 1) as 

representative ROIs of the SFE. We extracted signal time courses from these representative ROIs 

and then removed task-related signals and nuisance signals, and applied bandpass filter to obtain 

LFFs signal in a frequency range of 0.01-0.1 Hz [8] (Figure 2.1B, see Methods for details). By 

comparing LFFs amplitudes (at the time period -1.5 s to 0 s relative to the stimulus onset) [12] 

during pre-HH to pre-Miss, we observed significant differences between them in all 4 SME ROIs 

(the rtFuG: P = 0.0480; the ltPHG: P = 0.0077; the ltMFG: P = 0.0008; the ltSPL: P = 0.0012, 

ttest) (Figure 2.3A). Results of one-way ANOVA comparing the prestimulus LFFs amplitudes 

among HH, LH, and Miss trials also confirmed these differences (the rtFuG: (F (2, 48) = 2.26, P 

= 0.1158); the ltPHG: F (2, 48) = 2.07, P = 0.1374; the ltMFG: F (2, 48) = 7.76, P = 0.0012; the 

ltSPL: F (2, 48) = 5.81, P = 0.0055, ANOVA). 

We performed the same analysis to the SFE ROIs. Unlike the SME ROIs, we observed no 

significant differences in the LFFs amplitudes between pre-HH and pre-Miss in all SFE regions 
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(the rtMCgG: P = 0.1588; the rtMSFG: P = 0.3469; the ltPCu: P = 0.0684; the rtSFG: P = 0.6894, 

ttest) (Figure 2.3B). No significant differences were also observed when applying one-way 

ANOVA to compare HH, LH, and Miss conditions (the rtMCgG: (F (2, 48) = 1.81, P = 0.1745); 

the rtMSFG: F (2, 48) = 1.01, P = 0.3723; the ltPCu: F (2, 48) = 1.47, P = 0.2396; the rtSFG: F 

(2, 48) = 0.38, P = 0.6841, ANOVA). Thus, our results suggest that the LFFs in the brain regions 

demonstrating SME can predicts subsequent behavior, whereas the regions demonstrating SFE 

cannot. 

For the prestimulus LFFs amplitude analysis described above, we used LFFs at the 

prestimulus time period which is close as much as possible to the stimuli but do not carry task-

driven signal. Although this method has been used in many previous studies [9]–[12] but one may 

concern about the effect of preceding trial which may drive LFFs and encoding performance of its 

following trial. If there were some history-dependent effect, encoding trials would be more likely 

to identify as HH if they follow HH trials rather than Miss trials. To test this, we performed 

generalized linear model regression to test whether memory performance at trial t was influenced 

by memory performance at trial t-1, t-2, and t-3, however we didn’t observe significant relationship 

between them (P = 0.3744, t-test). Moreover, by classifying all encoding trials into the trials 

following HH trial (preceding HH) and the trials following Miss trial (preceding Miss), we 

observed no significant differences (P = 0.7200, t-test) between averaged prestimulus LFFs 

amplitude of preceding HH (-0.006±0.16)  and preceding Miss trials (-0.0243±0.17). It indicated 

that higher amplitude of LFFs is not likely caused by prior HH trial. These results ruled out the 

possibility that encoding performance and LFFs at current trial may be influenced and driven by 

lingering effect of preceding trial. 
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2.3.4 LFFs accounts for trial-to-trial variability in task-evoked activity 

Previous study [13] showed an improvement of signal-to-noise ratio (SNR) after subtracting 

ongoing activity fluctuations from task-evoked neural activity indicating the superposition 

between them . In our study, we tested whether LFFs account for trial-to-trial variability in task-

evoked activity. By simply regressed out LFFs from task-evoked response time courses and 

compared task-evoked response time courses before and after removal of the LFFs, we observed 

significant increase in SNR were substantially observed in 4 SME ROIs. There were a well 35.37% 

increase in SNR, 25.13% decrease in noise, and 1.73% increase in signal in the rtFuG (P < 0.001, 

t-test). The same trend was observed in the ltPHG (42.40% increase in SNR; 18.04% decrease in 

noise; 4.27% increase in signal; P < 0.001, t-test). As many as 122.09% and 145.58% increase in 

SNR were observed in the ltSPL (50.54% decrease in noise; 5.19% increase in signal) and the 

ltMFG (54.20% decrease in noise; 6.76% increase in signal; P < 0.001, t-test ). Although this was 

not much increase in signal compare to large amount of decrease in noise, it still indicates an 

influence of LFFs to task-evoked activity. 

2.3.5 Prestimulus LFFs connectivity predicts subsequent memory performances 

 

So far we showed that the prestimulus LFFs amplitude can predict whether the stimuli will be 

remembered. However, many previous studies [11], [16], [33], [34] revealed that in addition to the 

prestimulus intrinsic fluctuations amplitude, functional connectivity of intrinsic fluctuations also 

correlated with evoked neural response strength and subsequent behavior. Therefore, we next 

performed the functional connectivity analysis to test whether LFFs functional connectivity before 

the stimulus onset can predict subsequent memory performances. To do so, we performed a 
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psychophysiological interaction analysis (PPI) to investigate LFFs functional connectivity during 

pre-HH and pre-Miss. We hypothesized that LFFs functional connectivity within the SME related 

regions may impact encoding performances. Thus, In PPI analysis, the rtFuG, the brain region 

which exhibit highest peak activation of SME, was used as a seed region for PPI model. We aimed 

to identify brain regions whose activity was influenced by an interaction between the prestimulus 

LFFs in the rtFuG seed and conditions (HH or Miss).  

 

Surprisingly, by comparing pre-Miss to pre-HH, as can be seen in Figure 2.4 and Table 

2.2, the rtFuG seed positively connected to other regions (e.g. the bilateral anterior insular, the 

middle cingulate gyrus, the bilateral middle frontal gyrus, the thalamus proper, the cerebellum 

exterior, and the supramarginal gyrus which were not related with SME. 

 

 

 

Figure 2.4 Low frequency fluctuations (LFFs) functional connectivity map derived from the right fusiform 

gyrus (rtFuG) seed. The right fusiform seed showed greater LFFs functional connectivity to the following regions 

during pre-Miss compared to pre-HH conditions. Activations are shown at a threshold level of P < 0.001, uncorrected.  
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Table 2. Detail of brain regions resulted from the PPI analysis. The LFFs from these brain areas were 

connected with LFFs from the right fusiform seed before Miss trials (pre-Miss) compared to before HH 

trials (pre-HH). 

Region H 

MNI 

kE P FWE-corr 

x y z 

       

Anterior insular R 40 12 6 469 < 0.001 

Middle cingulate gyrus R 6 -22 40 874 <0.001 

Middle frontal gyrus R 34 48 24 117 0.073 

Middle frontal gyrus L -34 42 26 92 0.107 

Cerebella Vermal Lobules R 0 -74 -36 12 0.969 

Cerebella Vermal Lobules R 4 -60 -26 9 0.976 

Anterior insular L -42 4 2 44 0.644 

Cerebellum exterior L -6 -64 -16 13 0.954 

Supramarginal gyrus R 58 -34 46 66 0.429 

Thalamus proper R 8 -16 2 12 0.960 

Precuneus R 14 -70 38 29 0.811 

Posterior insular L -38 -16 -6 14 0.948 

Thalamus proper L -8 -20 4 8 0.980 

Temporal pole R 52 12 -8 4 0.993 

Precuneus R 16 -62 28 5 0.990 

Inferior frontal gyrus R 48 38 0 10 0.971 
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These areas are a part of cinguloopercular (CO) network, which known to maintain tonic 

alertness [35]. These results seem to indicate that at the time period before Miss trials (pre-Miss), 

the LFFs in the rtFuG disconnected with SME related regions but co-activated with the LFFs in 

the CO network. This phenomenon may benefits for maintaining the current task (semantic 

judgement task) but not good for memory encoding. 
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2.4 Discussion 

We demonstrated that LFFs amplitude before the stimulus onset can predict whether the stimulus 

will be later remembered. Higher prestimulus LFFs amplitude was observed in many brain regions 

including the right fusiform gyrus (rtFuG), the left parahippocampal gyrus (ltPHG), the left middle 

frontal gyrus (ltMFG), and the left superior parietal lobule (ltSPL) before the stimulus later 

remembered (vs. later forgotten). Furthermore, besides its amplitude, we demonstrated that the 

prestimulus LFFs functional connectivity can predict later memory performances of the upcoming 

stimuli. The stronger prestimulus LFFs functional connectivity from the rtFuG to the remote brain 

regions inside CO network was observed before the stimulus later forgotten (vs. later forgotten).  

After ongoing intrinsic fluctuations were found to relate with task-evoked responses during 

motor task and motor performances [13], many studied have replicated this investigation into other 

domains demonstrating that intrinsic fluctuations amplitude in memory recollection [36], 

perception [9]–[11], and cognitive control [12] regions correlate with evoked neural response 

strength, subsequent behavior, and variability in behaviors (for review see  [37]) .Moreover, 

several studies [38]–[40] revealed a coherence between spontaneous intrinsic fluctuations and 

brain functionality by showing that brain regions inside the same network are likely to exhibit 

highly correlation in their spontaneous intrinsic fluctuations for example visual, auditory, default 

mode, episodic memory, language, and attention systems. It became more likely that intrinsic 

fluctuations may reflect functionality of brain system and predict task performances however 

relationship between intrinsic fluctuations and memory encoding system and memory 

performances remain unclear.  
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By employing the incidental memory encoding task, we replicated the previous studies (for 

review see [25]) by showing the brain regions related with memory encoding processes including 

both the SME related regions (including the medial temporal lobe and prefrontal cortex) and SFE 

related regions (including the DMN).  The rtFuG exhibited the strongest SME related to successful 

encoding.  A study by [12] showed that the prestimulus LFFs at time points -1.5 and 0s predict 

subsequent response speed in a stroop task. In our study, the LFFs of brain signal extracted from 

the rtFuG and other SME related regions showed the differences in their amplitudes comparing 

between conditions (pre-HH and pre-Miss). We observed higher LFFs amplitudes in pre-HH 

compared to pre-Miss in all 4 SME ROIs (Figure 2.3A) but not in all 4 SFE ROIs (Figure 2.3B). 

Previous studies have shown that prestimulus neural activity localized to the medial temporal lobe 

(MTL) and sub-cortical structures can predict later memory performances [18], [41]–[44]. Our 

results support previous study by showing consistency between task-evoked responses and their 

spontaneous intrinsic fluctuations in the SME related regions and providing an evidence that higher 

LFFs benefit for memory encoding processes.  

 To test whether the task-evoked responses observed in the SME related regions was 

modulated by LFFs, we subtracted LFFs from task-evoked activity and expected to see a change 

in SNR after the subtraction. As expected, comparing task-evoked response time courses before 

and after removal of the LFFs, the significant increased SNR was observed in all SME ROIs. This 

results confirm our hypothesis that the task-related responses in the experiment were modulated 

with ongoing intrinsic fluctuations and these fluctuations impact behavior in a significant way. 

Many previous studies [11], [16], [33], [34] revealed that in addition to prestimulus 

intrinsic fluctuations amplitude, functional connectivity of intrinsic fluctuations and fluctuations 



 TOPIC 1: Low frequency fluctuations and its functional connectivity before memory encoding  

predict subsequent memory performances 

_____________________________________________________________________________ 

 

 2-24 

across large-scale network regions also correlated with evoked neural response strength and 

subsequent behavior. For example there was an evidence that prestimulus functional connectivity 

of intrinsic fluctuations in and across large-scale brain networks correlates with perception 

performances in an auditory perception task, showing functional connectivity before the target 

predicts whether it would heard or missed [16]. In our study, we showed that the stronger 

prestimulus LFFs functional connectivity from the rtFuG to the brain regions inside CO network 

was the predictor of subsequent memory performances. Due to our first finding showed higher 

LFFs amplitude in the SME related regions during pre-HH condition, therefore we hypothesized 

that we would also observe stronger LFFs functional connectivity within these related network. 

However, it appears that there was no stronger connection from the rtFuG to other SME related 

regions during pre-HH condition. Interestingly, increased positive LFFs functional connectivity 

from the rtFuG seed to the brain regions inside CO network was observed during pre-Miss rather 

than pre-HH condition. The CO network, was known to maintain tonic alertness [35]. Greater 

functional connectivity between the CO network and FuG during the prestimulus period might 

facilitate visual processing of upcoming stimuli. However in turn this might be disadvantageous 

for memory encoding, because participants would spent less time and pay less effort for visual 

scrutiny. These results are in line with previous studies [35], [45], [46] which characterized the 

role of CO network as to maintain current brain state and to prepare for response. It is noteworthy 

that for participants the goal of the task is to make semantic judgments (“task-relevant) and not to 

memorize the pictures (“task-irrelevant”). To date it is still unclear that functional connectivity of 

intrinsic fluctuations in the CO network benefit or deteriorates the perception [11], [34]. In our 

study, we indicate that intrinsic fluctuations in the CO network may facilitate the semantic 
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judgement task but may take neural resource from encoding processes and bias toward bad 

memory encoding.  

Together, our study demonstrates that the intrinsic fluctuations in SME related region 

benefit for memory encoding whereas it functional connectivity to the CO network is 

disadvantage. Our findings obtained here provide compelling evidence to support the view that 

LFFs are modulated with task-evoked responses during task and account for the variability in task 

performances. 
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CHAPTER 3 

TOPIC 2: Large-scale Network Integration in the Human Brain Tracks 

Temporal Fluctuations in Memory Encoding Performance 

3.1 Abstract 

Although activation/deactivation of specific brain regions have been shown to be predictive of 

successful memory encoding, the relationship between time-varying large-scale brain networks 

and fluctuations of memory encoding performance remains unclear. To elucidate this issue, we 

investigated time-varying functional connectivity patterns across the human brain in periods of 

30–40 s, which have recently been implicated in various cognitive functions. Participants 

performed a memory encoding task in a magnetic resonance imaging scanner, and their encoding 

performance was assessed with a subsequent surprise memory test. A graph analysis of functional 

connectivity patterns revealed that increased integration of the subcortical, default-mode, and 

visual subnetworks with other subnetworks are hallmarks of successful memory encoding. 

Moreover, multivariate analysis using the graph metrics reliably classified the brain network states 

into the period of high (vs. low) memory encoding performance. Our findings suggest that a 

diverse set of brain systems dynamically interact to support successful memory encoding.  
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3.2 Methodology 

3.2.1 Participants 

We used the same set of participants participated in topic 1. Please refer to page 2-2 for detail. 

3.2.2 Stimuli 

We used the same type of stimuli. Please refer to page 2-2 for detail. 

3.2.3 Experimental paradigm 

We used the same experimental paradigm. Please refer to page 2-2 for detail. 

3.2.4 Image acquisition and preprocessing 

We used the same setting and preprocessing processes. Please refer to page 2-4 for detail. 

3.2.5 Regions of interest 

In the current study, we used two different sets of ROIs. The first set of ROIs was used to 

investigate FC patterns among well-established memory-related brain regions. Therefore, we used 

a set of 21 ROIs derived from a recent meta-analysis of the SME/SFE [1]. The ROIs included 11 

brain regions associated with the SME (e.g., the inferior frontal cortex, hippocampus, intraparietal 

sulcus, and middle occipital gyrus) and 10 brain regions associated with the SFE (e.g., the frontal 

pole, superior temporal gyrus, posterior cingulate cortex, and temporoparietal junction; see 
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Supplementary file 1A for the list of all 21 ROIs). The second set of ROIs was used to investigate 

FC patterns across a large-scale brain network. We used 224 ROIs consisting of 10 subnetworks 

from the Power atlas [2]. The subnetworks had the following labels: sensorimotor networks 

(SMN), cingulo-opercular network (CON), auditory network (AUD), default mode network 

(DMN), visual network (VIN), fronto-parietal network (FPN), salience network (SAN), 

subcortical nodes (SUB), ventral attention network (VAN), and dorsal attention network (DAN) 

(see supplementary file 1C for the list of the ROIs). Although the Power atlas was originally 

derived from resting-state fMRI data, the same set of ROIs and subnetwork labels have been 

repeatedly used in task-fMRI studies on large-scale functional brain networks [3]–[8]. To cross-

validate our findings regarding large-scale networks, we also used 285 ROIs organized into 11 

subnetworks derived from the Gordon atlas (Gordon et al. 2016; Supplementary file 1P). 

3.2.6 Trial-related activation analysis 

To identify brain regions showing the SME (i.e., greater activation in HH than Miss trials) and the 

SFE (i.e., greater activation in Miss than HH trials), we performed trial-related 

activation/deactivation analysis using a general linear model (GLM). First, based on participants’ 

responses in the surprise memory test, we categorized the 360 picture trials of the incidental 

encoding task into three types: high-confidence hit (HH, subsequently remembered with high 

confidence), low-confidence hit (LH, remembered with low confidence), and Miss (forgotten) 

trials. Second, we constructed a GLM that included trial-related regressors denoting: 1) the onsets 

of HH trials, 2) the onsets of LH trials, 3) the onsets of Miss trials, and 4) the onsets of fixation 

trials, following the conventions of the subsequent memory approach (Wagner et al. 1998). Each 

trial was modeled using a box-car function (initiating at picture onset, duration = 2500 ms) 
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convolved with a canonical hemodynamic function provided by SPM12. The GLM also included 

eight nuisance regressors per run: six motion parameters as well as mean time series in the white 

matter (WM) and cerebral spinal fluid (CSF). The mean time series in the WM and CSF were 

obtained by averaging time series of voxels within the WM and CSF masks, each of which was 

derived from an individual’s segmented structural image (binarized at a threshold of tissue 

probability > 0.8) [11], [12]. The second-level random-effects analysis (one-sample t-tests) was 

performed using contrast images derived from individual participants (i.e., HH minus Miss for the 

SME and Miss minus HH for the SFE). The statistical threshold was set at voxel-wise P < 0.05, 

family-wise error corrected across voxels with the gray matter (defined by “TPM.nii” implemented 

in SPM12, thresholded at 0.5). For a set of selected ROIs (Figure 3.1A), we extracted beta 

estimates of individual participants and contrasts from 5-mm radius spheres centered on the MNI 

coordinates derived from the meta-analysis of the SME/SFE [1]. 

3.2.7 Extraction of fMRI time series 

We extracted residual time series data from each ROI using a voxel-wise GLM, in accord with 

previous research [6], [13]–[15]. More specifically, we averaged time series across voxels within 

a 5-mm radius sphere around each ROI, after regressing out the trial-related (HH, LH, Miss, and 

fixation) and nuisance (six motion parameters as well as WM and CSF) signals defined by the 

regressors of the aforementioned GLM. The obtained residual time series were used for FC 

analysis described below. For the additional control analysis using trial-evoked time series 

(Supplementary file 1I), we regressed out only the nuisance signals (i.e., motion parameters and 

WM/CSF time series), while maintaining the trial-related signals. All other procedures were 
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identical to the main analysis. In an additional analysis, we used another denoising method 

(“32P+scrubbing” denoising) that included 32 nuisance regressors (the six motion parameters and 

WM and CSF time series, as well as their temporal derivatives and quadratic terms) combined 

with motion scrubbing [16]. Note that we did not include global signal regression because it could 

introduce spurious anti-correlations. For scrubbing, frames with FD > 0.2 mm were censored [17]–

[19], and ignored in computing FC. All other procedures were identical to the main analysis. 

3.2.8 Definition of time windows 

We sought to examine time-varying FC patterns associated with incidental memory encoding 

performance. To do so, we first divided the extracted time series into 36-s (i.e., 50 TRs) time 

windows, resulting in 45 windows per participant. This window size was determined on the basis 

of recent studies showing dynamic changes in FC during relatively short periods (30–40 s) [5], [7], 

[20], [21]. Importantly, we confirmed that our findings were robust to a range of window sizes 

(7.2–60 s; see Supplementary file 1F). We also confirmed that our results were unchanged when 

we used overlapping sliding windows (sliding in steps of 1 TR, resulting in 2,100 windows per 

participant) or when we used time windows shifted by 5 s (with taking into account the 

hemodynamic delay; see Supplementary file 1G and 1H). Next, for each participant, we classified 

the time windows into either “high encoding” or “low encoding” states based on window-wise 

encoding performance: the proportion of HH trials (the number of HH trials divided by that of 

picture trials) computed within each window. We used participant-specific median values for the 

classification, ensuring roughly equal numbers of windows for the high and low encoding states 

at an individual level. When a window had the exactly the same value as the median, we classified 

the window into either the high or low encoding state, depending on each participant, so that we 

could maximally equate the number of windows between the two states. In additional analyses, we 

also used tertiles and quartiles (instead of medians) to classify the windows according to memory 

encoding performance (Supplementary file 1K and 1L). To examine history dependence in the 

encoding states, we computed the probability of state switching (i.e., high to low or low to high, 
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as opposed to high to high or low to low). We used a permutation test to determine statistical 

significance: the (group-averaged) probabilities of state switching for the empirical data were 

compared with a null distribution derived from 1,000 permutations (i.e., we permuted the order of 

45 windows within each participant and computed the probability of state switching for the 

permuted sequences of windows).  

To test the robustness and specificity of our findings, we repeated the classification analysis 

with several alternative inputs. First, we classified the windows based on the proportion of HH and 

LH trials (i.e., the number of HH plus LH trials divided by that of the picture trials). This analysis 

confirmed that our findings held true when we included the LH trials in computing the window-

wise encoding performance (see Supplementary file 1J). Second, to rule out the possibility that our 

findings resulted from simple visual-related brain responses, we classified the windows into “more 

pic” and “fewer pic” periods, based on the proportion of the picture trials (i.e., the number of 

picture trials divided by the total number of trials including fixation trials) irrespective of encoding 

performance. Third, to assess the influence of window-to-window variability in RT for semantic 

judgment (possibly reflecting task difficulty or general arousal level not directly related to memory 

performance), we classified the windows into “longer RT” and “shorter RT” periods based on 

mean RT computed within each window. The RT of a trial was defined as the time from the picture 

onset to the participant’s button press (1167.1 ± 240.8 ms, mean ± SD across participants). The 

results from the second and third analyses confirmed that our findings are specific to encoding 

performance (see Supplementary file 1N and 1O). 

3.2.9 Functional connectivity analysis 
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We examined how FC patterns among ROIs (either in the 21-node or 224-node networks) differed 

between the high and low encoding states. For each time window, we computed Pearson’s 

correlation coefficients of the time series between all pairs of ROIs, which were Fisher Z-

transformed to form a connectivity matrix. We then averaged the connectivity matrices across the 

windows, separately for the high and low encoding states. For statistical tests of the difference in 

FC patterns between the states, we used Wilcoxon’s signed-rank tests across participants. The 

significance threshold was set at P = 0.05, with multiple comparison corrections controlling for 

FDR.  To compute Euclidean distance, we used x, y, and z of MNI coordinates for each ROI. 

3.2.10 Graph analysis 

We performed graph analysis to examine integration and segregation of the 224-node network, 

using the Brain Connectivity Toolbox [22]. Note that this analysis was not applied to the 21-node 

network because graph metrics estimated in small networks are not necessarily stable [5], [22]. To 

derive graph metrics from the 224-node network, we constructed an unweighted, undirected graph 

from a 224 × 224 connectivity matrix by applying a proportional threshold of connection density 

= 0.15. To ensure that effects were not driven by the particular connection density, we checked 

robustness by varying the threshold values: 0.1, 0.15, 0.2, and 0.25 (Supplementary file 1F). 

Network topologies were characterized using the following metrics: global efficiency (Eg), 

local efficiency (Eloc), inter-subnetwork efficiency (Eis), and PC. In the present study, 𝑁 is the set 

of all nodes in the network, and 𝑛 is the number of nodes. (𝑖, 𝑗) is a link between nodes 𝑖 and 𝑗, (𝑖, 

𝑗 ∈ N). 𝑎𝑖𝑗 is the connection status between 𝑖 and 𝑗: 𝑎𝑖𝑗 = 1 when link (𝑖, 𝑗) exists; 𝑎𝑖𝑗 = 0 when 

no connection is present. 𝑑𝑖𝑗  is the shortest path length between nodes 𝑖 and 𝑗. 𝑀 is the set of 

subnetworks, and 𝑚 is the number of subnetworks.  
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The global efficiency (Eg) is a measure of integration. A network with high Eg is considered 

topologically integrated. The global efficiency of a network is the average of the inverse shortest 

path lengths across all pairs of nodes: 

𝐸𝑔 =
1

𝑛
∑

∑ 𝑑𝑖𝑗
−1

𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

 

The local efficiency (Eloc) is a measure of segregation. The local efficiency of node 𝑖 is 

the average of the inverse shortest path lengths defined in the subgraph consisting of 𝑖 and its 

neighboring nodes 

𝐸𝑙𝑜𝑐 =
1

𝑛
∑

∑ 𝑎𝑖𝑗𝑎𝑖ℎ[𝑑𝑗ℎ(𝑁𝑖)]
−1

𝑗,ℎ∈𝑁,𝑗≠𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁

 

where 𝑘𝑖is the number of links connected to 𝑖, and 𝑑𝑗ℎ(𝑁𝑖) is the shortest path length between j 

and h, that contains only neighbors of 𝑖. For a network- or subnetwork-level measure of 

segregation, Eloc is averaged across nodes within a network or subnetwork, respectively. 

The participation coefficient (𝑃𝐶)  is an alternative measure of integration, which 

quantifies the diversity of inter-subnetwork connections of a node: 

𝑃𝐶 =
1

𝑛
 ∑ (1 − ∑ (

𝑘𝑖(𝑚)

𝑘𝑖
)

2

𝑚∈𝑀

)

𝑖∈𝑁

 

where 𝑘𝑖(𝑚) is the number of links between 𝑖 and all nodes in subnetwork 𝑚. For a subnetwork-

level measure, 𝑃𝐶 is averaged across nodes within a subnetwork. 

Furthermore, we defined “inter-subnetwork” efficiency (Eis) as a measure of integration 

between a specific pair of subnetworks: 
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𝐸𝑖𝑠 =
1

𝑠
∑

∑ 𝑑𝑖𝑗
−1

𝑗∈𝑇

𝑡
𝑖∈𝑆 

 

where 𝑆 and 𝑇 are the (non-overlapping) sets of nodes in two subnetworks, and 𝑠 and 𝑡 are the 

numbers of nodes in them. Note that 𝑑𝑖𝑗 is defined over the entire network, and the shortest path 

may be mediated by nodes outside the subnetworks of interest. 

We also computed modularity as an index of how well a network can be partitioned into 

distinct communities: 

𝑄 = ∑ [𝑒𝑢𝑢 − (∑ 𝑒𝑢𝑣

𝑣∈𝑀

)

2

]

𝑢∈𝑀

 

where the network is partitioned into a set of non-overlapping modules M (identified by Newman’s 

algorithm), and 𝑒𝑢𝑣 is the proportion of all edges that connect nodes in module 𝑢 with nodes in 

module 𝑣 [5], [22]. 

These graph metrics were calculated for each window, then averaged across the windows, 

separately for the high and low encoding states. Finally, the graph metrics were compared between 

the two states across 25 subjects using Wilcoxon signed-rank test. All statistical results were 

corrected for multiple comparisons using FDR correction. 

To rule out the possible confounding effects of time, within and across sessions, we 

performed additional statistical analyses, as follows (Supplementary file 1M). First, to exclude the 

effects of the amount of time passed within each session, we define a 45-by-1 dummy vector 

denoting the order of windows within each session (i.e., [1, 2, 3, … 15], repeated three times), and 

regressed out this effect on a window-by-window basis before averaging graph metrics within each 

state. Second, to exclude the effect of the amount of time passed across sessions, we defined 

another 45-by-1 vector denoting session (i.e., [1, 1, … 2, 2, … 3, 3, …]), and regressed out this 



 TOPIC 2: Large-scale Network Integration in the Human Brain  

Tracks Temporal Fluctuations in Memory Encoding Performance 

________________________________________________________________________________ 

 

 3-10 

effect from graph metrics of each window. We confirmed that neither linear nor quadratic effects 

of the amount of time passed explained our results. 

It should be noted that a recent paper raised a concern about the possible influences of 

overall FC strength on graph metrics [23]. In short, the authors argued that weaker overall FC of a 

network may result in the inclusion of more random connections (particularly when a graph is 

constructed using proportional thresholding), which tends to give a higher value of global 

efficiency and a lower value of local efficiency. In other words, differences in graph-metric values 

between two networks may reflect differences in overall FC strength. To address this concern, we 

performed an additional analysis controlling for the effect of overall FC strength, as proposed in 

the paper [23]. Specifically, we first computed overall FC strength (the mean of all positive values 

across all elements of a connectivity matrix) for each window. We then regressed out the overall 

FC strength from all graph metrics to obtain “adjusted” graph metrics. We performed the statistical 

analysis using these adjusted graph metrics in the same manner as the main analysis 

(Supplementary file 1T). 

We also analyzed “edge reliability” to confirm that the difference in the proportions of 

reliable edges between the high and low encoding states did not affect our results. Specifically, for 

each participant and state, we examined how often an edge appeared between a given node pair 

across time windows. An edge was defined as “reliable” if it consistently appeared across windows 

more than by chance. To determine the chance level, we created 100 randomized networks from 

each of the real networks per participant and state, while preserving degree distributions [22], and 

generated null distributions of the probability of edge appearance. The 95th percentile of this null 

distribution was used as a threshold to determine the reliable edges in the real networks. We 

compared the proportions of reliable edges (i.e., the number of reliable edges relative to all possible 

edges) between the high and low encoding states using a signed-rank test across participants.   
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3.2.11 Multivariate pattern analysis 

For the multivariate analysis based on graph metrics, we performed across-participant binary 

classification (with leave-one-out cross validation) using a support vector machine (SVM) 

implemented in LIBSVM [24]. We used PCs and local efficiency of the 10 subnetworks (averaged 

across windows for each participant and state) as inputs for the classifier. The input variables were 

Z-score normalized (mean = 0, standard deviation = 1) within each participant as a method of 

feature scaling. The SVM was trained using 48 samples from 24 participants (i.e., the high and 

low encoding states) with the default parameters (kernel type = radial basis function, gamma = 

1/the number of features; c = 1), and tested using two samples from the left-out participant. The 

classification accuracy was averaged across the 25 folds of cross validation. The statistical 

significance of classification accuracy was evaluated using a permutation test, as proposed by 

Golland and Fischl (2003) [25]. In the permutation test, the class labels (i.e., the high or low 

encoding states) of the original data are reversed in randomly selected participants, and the same 

SVM classification was performed to obtain a null distribution of classification accuracy (10,000 

permutations) The P value was calculated as the proportion of classification accuracies that are 

equal to or greater than the accuracy obtained by the original data. For control analyses, we 

repeated the same classification procedure, except we used different sets of input variables. 
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3.3 Results 

We used an incidental memory task (Wagner et al. 1998; Paller, Kutas, and Mayes 1987), in 

which participants (n = 25) in a MRI scanner were presented with pictorial stimuli and instructed 

to make a semantic judgment about the content of each image (man-made or natural), without 

knowing about a subsequent surprise memory test. To investigate dynamic fluctuations in FC 

patterns associated with memory encoding performance, we examined time-varying FC within a 

period of 36 s (consisting of 50 time points, given our sampling rate of 0.72 s; Figure 3.1A, B). 

3.3.1 Behavioral results 

Although participants were not informed about the surprise memory test after the fMRI scan, they 

were able to correctly distinguish between studied and unstudied pictures with accuracy of 74.2 ± 

6.3% (mean ± SD across participants). 67.7 ± 15.9% of the studied pictures were judged as studied 

(i.e., hit), whereas 80.8 ± 14.6% of the unstudied pictures were judged as unstudied (i.e., correct 

rejection). Based on the individual participants’ responses in the surprise memory test, the picture 

trials of the incidental encoding task were categorized into high-confidence hit (HH, the pictures 

later remembered with high confidence; 48.9 ± 15.4%), low-confidence hit (LH, the pictures later 

remembered with low confidence; 18.8 ± 8.9%), or Miss (the picture later forgotten; 32.3 ± 15.9%) 

trials. 

3.3.2 Classification of time windows based on encoding performance 
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To relate dynamic FC patterns to incidental memory encoding performance, we divided the fMRI 

time series into non-overlapping small time windows (each consisting of 50 repetition time (TR) 

or 36 s; 45 windows per participant), and classified them into two groups based on encoding 

performance defined for each window. Specifically, we first defined window-wise encoding 

performance by computing the proportion of HH trials (the number of HH trials divided by the 

number of picture trials) for each time window. We then classified the time windows into either 

high or low encoding states on the basis of the window-wise encoding performance, with median 

split at participant-specific cutoff points (see Methods for details). Figure 3.2 shows the 

distributions of the windows as a function of the window-wise encoding performance, pooled 

across all participants. We confirmed that the number of windows classified as the high encoding 

state (22.7 ± 1.9, mean ± SD across participants) and the low encoding state (22.3 ± 1.9) were 

closely matched (Wilcoxon signed-rank test, z24) = 1.0968, P = 0.2727). The proportion of HH 

trials was 64.6 ± 15.4% (5.18 ± 1.25 trials per window) for the high encoding state and 32.6 ± 

15.0% (2.59 ± 1.17 trials per window) for the low encoding state, confirming a difference in 

encoding performance between the two states.  

It should be noted that the proportion of the high encoding state was close to 50% in all 

three sessions (session 1: 51.2 ± 19.7%, session 2: 45.9 ± 18.7%, session 3: 54.1 ± 13.2%, mean ± 

SD across participants), with no increasing or decreasing trend over time (F(2,24) = 1.020, P = 0.367, 

one-way ANOVA). This ruled out the possibility that window-wise encoding performance is 

influenced by a mere effect of temporal proximity to the surprise memory test. In addition, we 

computed the probability of “state switching” (i.e., a window followed by the other type of 

window, such as high to low or low to high). If the state of each window was random and 

independent of the previous state, the probability of state switching would be approximately 50%. 

However, we found that the probability was significantly lower than the theoretical chance level 

of 50% (41.0%, P < 0.001, permutation test). This indicated a history dependence of window-wide 



 TOPIC 2: Large-scale Network Integration in the Human Brain  

Tracks Temporal Fluctuations in Memory Encoding Performance 

________________________________________________________________________________ 

 

 3-14 

encoding performance, such that the state type of a window tended to be carried over to the next 

window.  

 

Figure 3.1 Analysis overview. (A) Regions of interest (ROI) used in connectivity analysis. We used two sets of ROIs: 

One consisting of 21 well-established memory-related brain regions derived from a recent meta-analysis (Kim et al., 

2011) and the other consisting of 224 ROIs across the whole brain derived from a functional atlas (Power et al., 2010). 

(B) fMRI signal time series was extracted from each ROI and divided into 36-s time windows. Each window was 

classified as high or low encoding state based on encoding performance during that time window. Functional 

connectivity patterns and graph metrics were estimated within each window, then averaged within each state. SME, 

subsequent memory effect; SFE, subsequent forgotten effect; SMN, sensorimotor networks; CON, cingulo-opercular 

network; AUD, auditory network; DMN, default mode network; VIN, visual network; FPN, fronto-parietal network; 

SAN, salience network; SUB, subcortical network; VAN, ventral attention network; DAN, dorsal attention network. 

 

A B 
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Figure 3.2. Distributions of time windows classified as high and low encoding states. The histogram shows 

distributions of the time windows with regard to the window-wise encoding performance, pooled across participants 

(red, high encoding state; blue, low encoding state). Note that the two distributions are overlapping because we used 

participant-specific median split to classify the high and low encoding states. 

Figure 3.2 shows the distributions of the windows as a function of the window-wise 

encoding performance, pooled across all participants. The number of windows classified as the 

high encoding state (22.7 ± 1.9, mean ± SD across participants) and the low encoding state (22.3 

± 1.9) were closely matched (Wilcoxon signed-rank test, z24) = 1.0968, P = 0.2727). 

It should be noted that the proportion of the high encoding state was close to 50% in all 

three sessions (session 1: 51.2 ± 19.7%, session 2: 45.9 ± 18.7%, session 3: 54.1 ± 13.2%, mean ± 

SD across participants), with no increasing or decreasing trend over time (F(2,24) = 1.020, P = 0.367, 

one-way ANOVA). This ruled out the possibility that window-wise encoding performance is 

influenced by a mere effect of temporal proximity to the surprise memory test. In addition, we 
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computed the probability of “state switching” (i.e., a window followed by the other type of 

window, such as high to low or low to high). If the state of each window was random and 

independent of the previous state, the probability of state switching would be approximately 50%. 

However, we found that the probability was significantly lower than the theoretical chance level 

of 50% (41.0%, P < 0.001, permutation test). This indicated a history dependence of window-wide 

encoding performance, such that the state type of a window tended to be carried over to the next 

window. 

 3.3.3 Functional connectivity patterns among memory-encoding-related regions 

Do FC patterns differ between the high and low encoding states? To examine this issue, we first 

focused on well-established memory-encoding-related brain regions. Based on a recent meta-

analysis (Kim 2011), we defined a brain network consisting of 11 SME regions and 10 SFE regions 

(Figure 3.1A; for the detail of the regions of interest (ROIs), see Supplementary file 1A). By 

focusing on functionally well-characterized regions, we were able to make clear predictions, and 

thereby confirm effectiveness of our approach based on FC in relatively short time windows (i.e., 

50 TRs). Specifically, we predicted greater FC among the SME regions in the high encoding state 

relative to the low encoding state, given the proposed functional interactions among the SME 

regions for successful memory encoding (Kim 2011). Importantly, trial-related activation analysis 

of our own fMRI data confirmed the SME and SFE in these ROIs (Figure 3.3 A–C; Supplementary 

file 1B).   
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Figure 3.3. Functional connectivity patterns among memory-related brain regions. Functional connectivity 

patterns among memory-related brain regions. Trial-related activation analysis confirmed (A) the subsequent 

memory effect (SME, i.e., HH > Miss) and (B) subsequent forgetting effect (SFE, i.e., Miss > HH). Statistical 

parametric maps are thresholded at P < 0.05, FWE corrected across the whole brain. (C) Bar graph shows beta 

estimates (mean ± SEM across participants) for high-confidence hit (HH), low-confidence hit (LH), and Miss trials in 

representative ROIs from the SME/SFE regions. (D) Connectivity matrix of the high encoding state, averaged across 

participants. (E) Connectivity matrix of the low encoding state, averaged across participants. Color bars indicate 

Fisher-Z transform of Pearson’s correlation coefficients. (F) A matrix illustrating statistical differences in functional 

connectivity patterns between the high and low encoding states.  Color bar indicates z values derived from Wilcoxon 

signed-rank test across participants. Connections showing significant differences (P < 0.05, FDR corrected) are 

marked in red in the upper triangle of the matrix.  (G) Within-subnetwork connectivity for the SME and SFE regions 

(mean Fisher’s Z value of connections within the SME and SFE regions, respectively). Magenta and black circles 

represent individual-participant data for the high and low encoding states, respectively. Green horizontal lines indicate 

across-participant means. Asterisk indicates a significant difference in within-subnetwork connectivity between the 

high and low encoding states (Wilcoxon signed-rank test, P < 0.05). IFC, inferior frontal cortex; PMC, premotor 

cortex; HCP, hippocampus; PHG, parahippocampal gyrus; IPS, intraparietal sulcus; MOG, middle occipital gyrus; 

FP, frontal pole; ACC, anterior cingulate cortex; vmPFC, ventromedial prefrontal cortex; PCC, posterior cingulate 

cortex; TPJ, temporoparietal junction. 

To examine FC patterns, we calculated Fisher’s Z-transform of Pearson’s correlation 

coefficients of the windowed time series between all pairs of ROIs. The connectivity matrices were 

then averaged across time windows separately for the high and low encoding states (Figure 3.3D 

and E). While the connectivity matrices of the two states looked similar to each other, direct 

comparison revealed a significant difference in a pair of ROIs within the SME regions: the 

connectivity between the hippocampus and occipital cortex (Wilcoxon signed-rank test, z(24) = 

3.7266, P = 0.0002, surviving false-discovery-rate [FDR] correction among 21C2 = 210 tests; 

Figure 3.3F). We also computed “within-subnetwork” connectivity by averaging the values in the 

connectivity matrices only among the SME regions. The within-subnetwork connectivity for the 
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SME regions was significantly greater in the high vs. low encoding state (Wilcoxon signed-rank 

test, z(24) = 2.4889, P = 0.0128; Figure 3.3G). On the other hand, within-subnetwork connectivity 

for the SFE regions was not significantly different between the high and low encoding states (z(24) 

= 1.0897, P = 0.2758; Figure 3.3G). Overall, these results were consistent with our prediction of 

greater FC among the SME regions during the high encoding state (see Discussion for more 

details). 

3.3.4 Functional connectivity patterns across large-scale brain networks 

Next, to elucidate how a diverse set of brain systems are coordinated for successful memory 

encoding, we examined FC patterns across a large-scale brain network. In this analysis, we defined 

a brain-wide network consisting of 224 ROIs (organized into 10 subnetworks; Figure 3.1B; 

Supplementary file 1C). This network was derived from a well-established functional brain atlas 

[2], and the same ROIs and subnetwork labels have been used in many previous studies 

investigating dynamic/static FC during task fMRI (Cole et al. 2014; Cohen et al. 2014; Braun et 

al. 2015; Cohen and Esposito 2016; Mohr et al. 2016; Westphal, Wang, and Rissman 2017). To 

obtain FC patterns, we calculated pairwise correlations of the windowed time series among the 

224 ROIs (Figure 3.4A and B), just as we did for the SME/SFE networks. By comparing the high 

and low encoding states, we found significant differences in FC associated with encoding 

performance: 72 connections showed significant increases in FC during the high encoding states, 

whereas 335 connections showed significant decreases (surviving FDR corrections among 224C2 = 

24,976 tests; Figure 3.4C; Supplementary file 1D and 1E). Three-dimensional (3D) visualizations 

of differential FC patterns are shown in Figure 3.4D and E. Interestingly, the connections showing 

significant increases in FC during the high encoding state tended to be long range (Euclidean 

distance: 86.1 ± 27.3; Figure 3.4D), whereas those showing significant decreases tended to be short 

range (Euclidean distance: 67.3 ± 28.6; Figure 3.4E; increases vs. decreases: z(405) = 5.0244, P < 

0.0001, Wilcoxon rank-sum test). These observations suggest a systematic reconfiguration of the 

large-scale network between the high and low encoding states, rather than a homogeneous, brain-

wide increase or decrease in FC. 
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Figure 3.4. Functional connectivity patterns across large-scale brain network. (A) Connectivity matrix of the 

high encoding state, averaged across participants. (B) Connectivity matrix of the low encoding state, averaged across 

participants. Color bars indicate Fisher-Z transform of Pearson correlation coefficient.  (C) A matrix illustrating 

statistical differences in functional connectivity patterns between the high and low encoding states.  ROIs belonging 

to the same subnetwork were grouped together resulting in 10 subnetworks. Color bar indicates Z-value derived from 

Wilcoxon signed-rank test across participants. Connections showing significant differences (P < 0.05, FDR corrected) 
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are marked in color (red, high > low; blue, low > high) in the upper triangle of the matrix. (D) Three-dimensional (3D) 

visualizations of significantly greater functional connectivity during the high encoding state. (E) 3D visualizations of 

significantly greater functional connectivity during the low encoding state. 

In light of the pivotal role of the hippocampus in memory encoding, we also examined the 

FC patterns between the hippocampus and the large-scale network. In this analysis, we considered 

a 226-node network that combined the bilateral hippocampus ROIs [1] with the 224 ROIs [2]. As 

expected, we observed increased FC between the hippocampus and occipital cortex during the high 

vs. low encoding state (right hippocampus-left inferior occipital gyrus: z(24) = 3.9413, P < 0.0001; 

right hippocampus-left middle occipital gyrus: z(24) = 4.0495, P < 0.0001; surviving FDR 

corrections among 226C2 = 25,425 tests; Supplementary figure S1). The right hippocampus also 

showed increased FC with the right superior temporal gyrus (z(24) = 3.4575, P = 0.0005) and 

decreased FC with the right precentral gyrus (z(24) = −3.3499, P = 0.0008), while the left 

hippocampus showed decreased FC with the left superior temporal gyrus (z(24) = −3.6190, P = 

0.0003). 

3.3.5 Graph analysis on large-scale brain network 

The results described above imply a dynamic reconfiguration of a large-scale brain network 

between the high and low encoding states. In particular, the high encoding state appears to be 

characterized by enhanced long-range FC among distant brain regions, whereas the low encoding 

state seems to be characterized by increased local connectivity among neighboring regions. This 

may indicate that the brain shows different levels of functional integration/segregation depending 

on encoding performance. To formally test this possibility, we applied graph theory to derive 

measures of integration and segregation from the 224-node network. First, we computed global 

efficiency, a measure of integration defined for the entire network, and local efficiency (averaged 
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across all nodes), a measure of segregation. We found that global efficiency was significantly 

higher during the high (vs. low) encoding state (z(24) = 3.8611, P = 0.0001; Figure 3.5A), whereas 

local efficiency was significantly higher during the low (vs. high) encoding state (z(24) = −3.0808, 

P = 0.0021; Figure 3.5C). This suggests that a higher integration of the large-scale brain network 

is a hallmark of a better window-wise encoding performance. Next, to examine the network 

architecture in more detail, we examined subnetwork-wise measures of integration and 

segregation. Specifically, we computed participation coefficients (PCs) and local efficiency 

averaged across nodes within each subnetwork, as measures of integration and segregation, 

respectively [15], [27], [28]. We found significantly higher PCs during the high (vs. low) encoding 

state in several subnetworks (SMN: z(24) = 2.4082, P = 0.0160; DMN: z(24) = 2.3005, P = 0.0214; 

visual network [VIN]: z(24) = 2.5696, P = 0.0102; fronto-parietal network [FPN]: z(24) = 2.4889, P 

= 0.0128;  salience network [SAN]: z(24) = 2.8925, P = 0.0038; subcortical nodes [SUB]: z(24) = 

3.2423, P = 0.0012;  ventral attention network [VAN]: z(24) = 2.2467, P = 0.0247; surviving FDR 

correction among 10 tests; Figure 3.5B). On the other hand, local efficiency was significantly 

higher during the low (vs. high) encoding state in many  subnetworks (SMN: z(24) = −2.7849, P = 

0.0054; CON: z(24) = -2.3274, P = 0.0199; AUD: z(24) = −4.0226, P = −0.0001; VIN: z(24) = −2.8387, 

P = 0.0045; SAN: z(24) = −2.2467, P = 0.0247;  DAN: z(24) = −2.2736, P = 0.023; surviving FDR 

correction; Figure 3.5D). Only the SUB showed higher local efficiency during the high encoding 

state (z(24) = 2.5696, P = 0.0102; surviving FDR correction; Figure 3.5D). 
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Figure 3.5. Differences in integration/segregation of large-scale network between high and low encoding states. 

(A) Global efficiency, a measure of network integration. (B) Participation coefficient (averaged across nodes within 

each subnetwork), a measure of integration defined at subnetwork level. (C) Local efficiency (averaged across all 

nodes), a measure of segregation. (D) Local efficiency (averaged across nodes within each subnetwork), a measure of 

segregation defined at the subnetwork level. Graph metrics were computed for each time window, then averaged 

across windows separately for each state. Dots represent individual-participant data. Black horizontal lines indicate 

across-participant means. Asterisks indicate a significant difference between the states (P < 0.05, FDR corrected for 

subnetwork-wise metrics). 
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Figure 3.6. Differences in inter-subnetwork efficiency between high and low encoding states. Inter-subnetwork 

efficiency (Eis) was computed for each pair of subnetworks. Color bar indicates Z-value derived from Wilcoxon 

signed-rank test across participants. Subnetwork pairs showing significant differences (P < 0.05, FDR corrected) are 

marked in color (red, high > low; blue, low > high) in the upper triangle of the matrix. 

Furthermore, we asked whether functional integration between specific pairs of 

subnetworks differs between the high and low encoding states. For this aim, we defined “inter-

subnetwork efficiency” (Eis), which quantifies integration between each subnetwork pair. We 

found significant differences in inter-subnetwork efficiency between the high and low encoding 

states in many subnetwork pairs (surviving FDR correction among 10C2 = 45 tests; Figure 3.6). 

Specifically, higher inter-subnetwork efficiency for the high encoding state was observed among 
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some subnetworks, e.g., between the SUB, DMN, and VIN and the rest of the subnetworks (z(24) > 

2.3813, P < 0.0173). Only the SMN-AUD pair showed lower inter-subnetwork efficiency for the 

high encoding state (z(24) = −3.4575, P = 0.0005). 

We also examined modularity, an index of how well a network can be partitioned into distinct 

communities [8], [29]. However, we did not find a significant difference in modularity between 

the high and low encoding states (z(24) = 0.1480, P = 0.8824; see Discussion for more details). 

Although modularity is a measure of segregation, it should be noted that high (or low) modularity 

does not necessarily indicate low (or high) global efficiency (Pan and Sinha 2009; Meunier, 

Lambiotte, and Bullmore 2010). When we examined the window-to-window correlation between 

modularity and global efficiency, we did not find a significant relationship between the two metrics 

(Pearson r = 0.059 ± 0.410; z(24) = 0.7130, P = 0.4758). 

3.3.6 Multivariate pattern classification using graph metrics as features  

Graph analysis is considered an effective method for extracting a concise set of features from a 

large-scale network. If a set of graph metrics (e.g., participation coefficients computed at a 

subnetwork level) represent the large-scale network architecture well, one network state can be 

discriminated from another using multi-dimensional vectors of the graph metrics, instead of using 

the entire connectivity matrices. Building on this idea, we attempted to classify the high and low 

encoding states using the graph metrics of integration and segregation derived from the 224-node 

network. Specifically, we performed across-participant binary classification using support vector 

machine (SVM) with leave-one-out cross validation. When we used the subnetwork-wise PCs (i.e., 

10 features) as the input of the SVM classifier, we were able to reliably distinguish the high from 

low encoding states with 84% classification accuracy (P = 0.0015, permutation test; Figure 3.7A). 

Likewise, when we used subnetwork-wise local efficiency, we obtained a classification accuracy 

of 78% (P = 0.0013, permutation test; Figure 3.7B). Notably, when we used the entire FC patterns 

(i.e., Fisher Z-transform of Pearson’s correlation coefficients, 224C2 = 24,976 features) as the input, 
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classification accuracy dropped to chance levels (38%, P = 0.9865, permutation test), likely 

because of the curse of dimensionality. 

 

Figure 3.7. Multivariate classification analysis using graph metrics. (A) Prediction accuracy of support vector 

machine (SVM) classifier using subnetwork-wise PCs as the input. (B) Prediction accuracy of SVM classifier using 

subnetwork-wise local efficiency as the input. Bar graphs represent prediction accuracy obtained by different criteria 

for sorting time windows: encoding performance and two control criteria (proportion of picture trials and RT for 

semantic judgment). Asterisks indicate statistical significance (P < 0.05, permutation test). Green lines indicate 

significance threshold determined by permutation null distributions. The blue lines indicate the theoretical chance 

level (i.e., 50%). 

To ensure that the observed differences in the functional network architecture associated 

with encoding performance were not caused by other confounding factors, such as visual responses 

to pictures or reaction times (RTs) for semantic judgment, we performed two control analyses, as 

follows. First, to assess the influence of simple visual stimulation on functional network 

architecture, we sorted the windows based on the proportion of picture trials (varied across 
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windows because of occasional fixation trials), instead of dividing the states based on encoding 

performance. We used the same SVM approach as above, but this time to classify the periods with 

more picture trials and those with fewer picture trials (“more pic” vs. “fewer pic”; split at the 

participant-specific medians). In this control analysis, we did not see significant classification 

accuracy either with the subnetwork-wise PCs (38%, P = 0.8296, permutation test; Figure 3.7A) 

nor with the subnetwork-wise local efficiency (52%, P = 0.4511, permutation test; Figure 3.7B). 

Second, to examine the influence of RT for semantic judgment, we sorted the windows based on 

average RT computed within each window. We ran the SVM analysis to classify the periods of 

longer average RT and those of shorter average RT (“longer RT” vs. “shorter RT”; split at the 

participant-specific medians). Again, we did not observe significant classification accuracy either 

with the subnetwork-wise PCs (62%, P = 0.2122, permutation test; Figure 3.7A) or with the 

subnetwork-wise local efficiency (44%, P = 0.8040, permutation test; Figure 3.7B). Furthermore, 

we confirmed that classification based on encoding performance generally resulted in higher 

accuracy than that based on the proportion of pictures or RT, either with PCs (encoding vs. 

pictures: P = 0.0076; encoding vs. RT: P = 0.1448; Figure 3.7A) or with local efficiency (encoding 

vs. pictures: P = 0.0192; encoding vs. RT: P = 0.0098; Figure 3.7B). Overall, these results suggest 

that the observed differences in functional network architecture were specifically related to 

encoding performance, not to simple visual stimulation or RT for semantic judgment.   

3.3.7 Robustness check 

To check the robustness of our findings (particularly the graph analysis applied to the large-scale 

network; Figure 3.5), we performed a number of additional analyses. First, we confirmed that our 

results were robust across a range of window sizes and proportional thresholds (Supplementary 
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file 1F). Importantly, our finding of higher global efficiency during the high encoding state was 

maintained even for much shorter window sizes (at a minimum of 7.2 s). Second, the results did 

not change when we used overlapping sliding windows (in a steps of 1 TR; Supplementary file 

1G). Third, the results were unchanged when we shifted the time series by 5 s to take hemodynamic 

delay into account (Supplementary file 1H), or when we used task fMRI time series instead of 

residuals (see Methods; Supplementary file 1I). Fourth, we confirmed that our results were 

unchanged when we used both high- and low-confidence hit trials to define the window-wise 

encoding performance (Supplementary file 1J). Fifth, the results remained the same when we used 

the top and bottom tertiles or quartiles instead of median split to classify the time windows based 

on encoding performance (Supplementary file 1K and 1L; Supplementary figure S2). Finally, the 

results did not change after controlling for the effect of time passed within each session or across 

sessions (see Methods; Supplementary file 1M), ruling out the possibility that our findings were 

simply driven by gradual changes in psychological states over time (e.g., a decrease in 

concentration/motivation) or by primacy/recency effects. It should be emphasized that the 

significant differences in graph metrics were observed only in association with encoding 

performance, not with the proportion of picture trials or with RT for semantic judgment 

(Supplementary file 1N and 1O). 

 To cross-validate our findings regarding large-scale network characteristics, we repeated 

the same analyses using an independent atlas [9], which consisted of 285 nodes (see 

Supplementary file 1P). The results were consistent across the two atlases (Supplementary file 1Q; 

Supplementary figures S3–S5), further demonstrating the robustness of the findings. Likewise, the 

graph metrics computed on the 226-node network (i.e., the bilateral hippocampus combined with 

the Power atlas) also showed consistent results (Supplementary file 1R). 

3.3.8 Possible effects of overall functional connectivity strength 

For the graph analysis described above, we applied proportional thresholding to obtain unweighted 

graphs. Although this method has been widely used in previous research [5], [6], a recent study 

raised a concern [23], suggesting a possible influence of overall FC strength on graph metrics 
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computed by this method (it should be noted that the use of absolute thresholding or unthresholded 

weighted graphs may not effectively circumvent this issue, as discussed in the paper mentioned 

above). Specifically, if overall FC strength of a given connectivity matrix is weaker, the graph 

constructed from that connectivity matrix by proportional thresholding can include less-reliable 

(or false-positive) edges more frequently. This may confound graph metrics. In other words, 

differences in the reliability of edges between two graphs could result in spurious differences in 

graph metrics.  

To refute this possibility, we examined the “edge reliability” of large-scale graphs 

separately for the high and low encoding states. Here, edges were defined as reliable if they existed 

consistently across time windows more than by chance (see Methods). We found that the 

proportions of reliable edges were significantly high in both high and low encoding states (relative 

to randomized networks; Supplementary file 1S), and that they were not statistically different from 

each other (z(24) = 1.6817, P = 0.0926; Supplementary figure S6). In theory, a lower proportion of 

reliable edges (i.e., a higher proportion of false-positive edges) may result in a higher value of 

global efficiency, because it can introduce random connections between unrelated nodes [23]. In 

our case, the proportion of reliable edges was numerically higher for the high encoding state across 

a range of proportional thresholds (Supplementary file 1S). Therefore, if differences in edge 

reliability between the two states confounded our results, we would have found higher global 

efficiency during the low encoding state. However, this is the opposite of what we observed, ruling 

out the possibility that our findings were mere artifacts arising from less reliable edges.  

To further examine potential effects of overall FC strength, we performed an additional analysis 

using “adjusted” graph metrics, in which we regressed out the effect of overall FC strength 

estimated for each time window (see Methods). When we compared the high and low encoding 

states, we found no significant differences in these adjusted graph metrics (see Supplementary file 

1T). This suggests that overall FC strength shared a considerable amount of variance (on a 

window-by-window basis) with the graph metrics of integration/segregation. Importantly, 

however, the multivariate analysis using the adjusted subnetwork-wise PC resulted in a significant 



 TOPIC 2: Large-scale Network Integration in the Human Brain  

Tracks Temporal Fluctuations in Memory Encoding Performance 

________________________________________________________________________________ 

 

 3-30 

classification accuracy (84%, P = 0.0203, permutation test), indicating that the subnetwork-wise 

measure of integration still contains sufficient information for distinguishing between the high and 

low encoding states. On the other hand, the multivariate analysis using the adjusted subnetwork-

wise Eloc did not provide significant classification accuracy (38%, P = 0.7194, permutation test). 

This may imply that the result for the subnetwork-wise segregation associated with encoding 

performance is difficult to disentangle from the effect of overall FC strength, at least in this case. 

3.3.9 Addressing possible concerns about motion confounds 

Another issue is the potential effects of motion confounds on graph metrics. To examine this issue, 

we computed framewise displacement (FD) as an index of head motion [17]–[19]. We found a 

subtle but significant difference in mean FD between the high and low encoding states (high: 

0.1324 ± 0.0242, low: 0.1395 ± 0.0314; z(24) = −3.0270, P = 0.0025), and the window-wise FD 

was correlated with window-wise memory encoding performance (Pearson’s r = −0.0904 ± 

0.1635; z(24) = −2.3005, P = 0.0214) and global efficiency (Pearson’s r = −0.1743 ± 0.2701; z(24) = 

−2.5696, P = 0.0102). This raises the concern that our results could have been affected by motion 

artifacts. To address this issue, we performed a set of supplement analyses as below. 

 First, we repeated the analysis with including only half of the participants (n = 13) such 

that the difference in mean FD between the high and low encoding states became minimal in the 

subsample. In this subset of participants, mean FD was closely matched between the two states 

(high: 0.1265 ± 0.0142, low: 0.1265 ± 0.0129; signed rank = 39, P = 0.6848), and the window-

wise FD was not correlated with either memory encoding performance (Pearson’s r = 0.0032 ± 

0.1077; signed rank = 47, P = 0.9460) or global efficiency (Pearson’s r = −0.0778 ± 0.2716; signed 

rank = 33, P = 0.4143). The difference in global efficiency between the two states remained 

significant (signed rank = 89, P = 0.0007; Supplementary file 1U), indicating that the findings with 

this subset could not be explained by motion-derived confounds. 
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Second, to minimize potential impacts of motion confounds on graph metrics, we repeated 

the analyses using another denoising method that included an extended set of nuisance regressors 

and motion scrubbing (hereafter referred to as “32P+scrubbing” denoising; see Methods). This 

denoising method was effective for reducing the difference in mean FD between the high and low 

encoding states (high: 0.1078 ± 0.0096, low: 0.1093 ± 0.0086; z(24) = −1.9238, P = 0.0544) and the 

correlations of the window-wise FD with memory encoding performance (Pearson’s r = −0.0742 

± 0.1794; z(24) = −1.8700, P = 0.0615) and global efficiency (Pearson’s r = −0.0429 ± 0.2557; z(24) 

= −0.9014, P = 0.3674). The results based on 32P+scrubbing denoising revealed a significant 

difference in global efficiency between the high and low encoding states (z(24) = 4.0495, P = 

0.0001; Supplementary file 1V). The SVM classification analysis using the subnetwork-wise PCs 

also showed significant classification accuracy (74%, P = 0.0260; for more details, see 

Supplementary figures S7-S10 and Discussion). 

Third, we performed multivariate classification analysis using the graph metrics adjusted 

for the window-wise FD. The results revealed significant classification accuracy with the 

subnetwork-wise PCs adjusted for the window-wise FD (92%, P = 0.0049, permutation test), 

indicating that the graph metrics retained information about the encoding states even after 

controlling for window-wise FD. This result held true for the graph metrics based on 

32P+scrubbing denoising (84%, P = 0.0244, permutation test). 

Taken together, the results of these analyses indicate that our finding of large-scale 

integration associated with memory encoding performance cannot be accounted for by motion 

confounds. 
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3.4 Discussion 

We demonstrated dynamic reconfiguration of a large-scale functional brain network associated 

with moment-to-moment fluctuations in encoding performance. Importantly, we observed a higher 

level of network integration during periods of high (vs. low) encoding performance. This effect 

was mainly driven by increased inter-subnetwork integration of the subcortical, default mode, and 

visual networks with other subnetworks. Furthermore, dynamic reconfiguration of functional brain 

network architecture was uniquely related to encoding performance, and not accounted for by the 

effect of simple visual stimulation or RT for semantic judgment.  

Time-varying FC among memory-related brain regions 

Previous neuroimaging studies have repeatedly shown that successful memory encoding is 

associated with activation/deactivation of specific brain regions, particularly the SME regions 

(including the medial temporal lobe and prefrontal cortex) (Wagner et al. 1998; Brewer et al. 1998; 

Paller and Wagner 2002; Reber et al. 2002; Uncapher and Rugg 2005; Kim 2011) and SFE regions 

(including the posterior cingulate cortex and temporoparietal junction) (Wagner and Davachi 

2001; Otten and Rugg 2001; Daselaar, Prince, and Cabeza 2004; Kim 2011). However, the ways 

in which the dynamic interaction among these regions supports successful memory encoding 

remain unclear. By analyzing time-varying FC within short time windows (~36 s), we showed that 

FC among SME regions, particularly between the hippocampus and occipital cortex, was higher 

during periods of high (vs. low) encoding performance. This may indicate that successful encoding 

of visual information is supported by functional interaction between the visual area and the 

hippocampus, a key structure for memory formation [39]. 

Dynamic reconfiguration of a large-scale functional brain network  

Successful memory encoding is likely to be influenced by many state factors, such as arousal, 

attention to external stimuli, and motivation to perform a task [40]–[42]. Therefore, moment-to-

moment fluctuations in encoding performance may be associated with dynamic interactions among 
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a diverse set of brain systems, beyond the so-called memory system. In the current study, we 

observed differential FC patterns between the high and low encoding states, both within and across 

many subnetworks. Importantly, during the periods of high (vs. low) encoding performance, FC 

was increased between specific brain regions, whereas it was decreased between another specific 

set of regions. For instance, we observed significant FC increases within the DMN, such as among 

the superior frontal gyrus, angular gyrus, and precuneus. This finding is in line with a recent study 

reporting increased within-network connectivity in the DMN associated with successful memory 

encoding [43] . On the other hand, we observed significant FC decreases between the SMN and 

AUD, such as between the postcentral gyrus and superior temporal gyrus. This observation is in 

accord with the notion that neither auditory perception nor motor execution is required for 

incidental encoding of visual stimuli. In addition, we observed a marked increase in FC between 

distant brain regions, whereas FC decreases were prominent (but not limited to) between 

neighboring regions. These findings suggest a systematic reconfiguration of the large-scale 

functional brain network related to incidental encoding performance, rather than a uniform 

increase/decrease in FC across the entire network.  

Recent studies have shown the dynamic nature of FC patterns in the brain and their 

contributions to a variety of cognitive functions [3], [5], [7], [21], [44], [45]. For example, one 

study reported that dynamic FC in a time window of 40 s reflected moment-to-moment fluctuations 

in arousal level as indicated by RTs on a continuous performance task, and spontaneous eyelid 

closure [21]. Other studies have also shown that dynamic reconfigurations of FC patterns are 

observed across many situations, from performance of cognitively demanding tasks (e.g., working 

memory and Stroop tasks) to simple perceptual detection of visual and auditory stimuli [5], [6], 

[46]–[48]. Our findings extend previous studies by showing that temporal fluctuations in FC across 

a large-scale brain network are related to incidental memory encoding. 

Although our finding of large-scale integration associated with memory encoding is novel, 

several previous studies investigated FC changes during memory encoding. For example, a 

previous study reported increased FC between the hippocampus and neocortical regions including 

the occipital cortex during successful (vs. unsuccessful) memory encoding [49]. It should be noted 

that FC between the hippocampus and cortical areas is also considered to be important for memory 
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retrieval [50], [51]. One recent study examining FC patterns during memory retrieval reported 

greater FC among many brain regions during correct (vs. incorrect) retrieval [52]. This finding 

may suggest that successful memory encoding and retrieval are at least partially supported by 

common patterns of network dynamics. However, it has also been reported that functional coupling 

between specific regions (e.g., the hippocampus and other regions in the DMN) are different 

between memory encoding and retrieval [53]. Future studies should directly compare large-scale 

network configurations during encoding and retrieval in a single experiment. 

Network integration and segregation associated with incidental encoding performance 

Using graph analysis, we tested whether dynamic changes in network integration/segregation are 

associated with encoding performance. At the entire-network level, we found a higher degree of 

integration (as measured by global efficiency) during periods of high encoding performance. When 

we examined individual subnetworks, we generally observed greater integration and weaker 

segregation during the high encoding state. A notable exception was the SUB, which showed both 

higher PCs and local efficiency during the high encoding state. This indicates that the subcortical 

nodes (specifically the thalamus and putamen) are more interconnected with other nodes in the 

same subnetwork, as well as the nodes belonging to other subnetworks. Therefore, the subcortical 

nodes may play a unique role in incidental memory encoding, contributing to both within- and 

across-subnetwork functional interactions and serving as a hub to support large-scale network 

integration [54].  

When we examined inter-subnetwork graph metrics, we found that the SUB and DMN, 

among others, showed higher inter-subnetwork integration with many other subnetworks during 

the high encoding state. In addition to the aforementioned hub-like characteristics of the SUB, the 

increased inter-subnetwork integration between the DMN and other subnetworks should also be 

noted. Previous studies have shown the involvement of the DMN in episodic memory [55]–[57]. 

It has also been reported that FC within the DMN is associated with subsequent memory 

performance [43], [58]. Our results, on the other hand, revealed that inter-subnetwork integration 

between the DMN and other subnetworks was related to within-individual time-to-time 



Chapter 3 

________________________________________________________________________________ 

 

 3-35 

fluctuations of memory performance, providing further evidence of a central role of the DMN in 

successful memory encoding. Notably, some regions within the DMN (e.g., the posterior cingulate 

cortex and temporoparietal junction) exhibited the SFE (i.e., decreased trial-related activation for 

successful [vs. unsuccessful] memory encoding). This highlights the importance of examining both 

trial-related activation changes and FC changes to understand the role of specific brain systems in 

certain cognitive functions. 

Multivariate pattern classification using graph metrics 

Our multivariate analysis using graph metrics demonstrated that functional network architecture 

during the high and low encoding states can be reliably classified using subnetwork-wise metrics 

of integration. That is, the graph metrics defined at the subnetwork level contain sufficient 

information to distinguish the high from low encoding states. When we used the entire connectivity 

patterns as the input, the classification accuracy dropped to chance levels. This suggests that the 

use of graph metrics can efficiently reduce the number of features and achieve more accurate 

predictions. The method employed here could be useful for many other applications, such as 

comparing large-scale brain networks between specific disease groups and normal controls. In 

addition to other methods of connectivity pattern classification [5], [59], [60], multivariate analysis 

using graph metrics could facilitate future research on large-scale brain network architecture. 

Methodological considerations for graph analysis 

Several details of the analysis should be noted. First, recent studies have suggested that motion 

confounds may affect temporal fluctuations in FC patterns [19]. To address this concern, we 

performed three supplement analyses, all of which supported our main findings. As suggested by 

recent reports [16], [19], we found that a denoising method that included an extended set of 

nuisance regressors combined with motion scrubbing was effective for reducing FD and its 

correlation with graph metrics. Notably, our finding of large-scale integration associated with 

memory encoding was maintained regardless of the choice of denoising method. Another strategy, 

which was more effective for reducing the influence of FD on graph metrics, was to focus on a 

subset of participants whose FD was less dependent on memory performance. One possible 
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explanation for the significant correlation we observed between FD and memory performance in 

the full sample is that some individuals may have exhibited a fluctuating level of arousal over the 

course of the task, which could be positively correlated with window-wise memory performance 

and negatively correlated with mean FD [19]. Such momentary fluctuations in arousal level would 

be inevitable for some individuals, particularly during tasks that require continuous performance 

(like the one we used). The fact that we observed a significant difference in global efficiency 

between the high and low encoding states even after excluding such participants provides strong 

support for our finding. Although motion confounds would be expected to influence both 

momentary encoding performance and dynamic FC patterns, our supplement analyses suggest that 

the finding of large-scale integration associated with encoding performance was above and beyond 

the effect of motion confounds. 

Second, our measure of inter-subnetwork integration (Eis) and PCs characterize different 

aspects of a network: the former quantifies integration between a specific pair of subnetworks, 

whereas the latter quantifies the diversity of inter-subnetwork connections of a particular 

subnetwork/node to all other subnetworks [15], [22], [27], [28]. In our case, the results from these 

two metrics convergently suggested the core roles of the subcortical, default-mode, and visual 

systems in incidental encoding of visual stimuli. The present results concerning global efficiency 

and modularity should also be considered. Although we observed increased global efficiency 

during the high encoding state, this was not accompanied by decreased modularity. Unlike global 

efficiency, modularity is a metric based on the community structure of a network (Rubinov and 

Sporns 2010; Wig 2017). Thus, the current results may suggest that the number of long-range 

connections across modules was increased, rather than indicating that the network became less 

modular. 

Third, our additional analysis controlling for overall FC strength suggested that window-

to-window fluctuations in the graph metrics substantially covaried with overall FC strength. This 

makes it difficult to disentangle the effects of network integration/segregation from those of overall 

FC strength in examining dynamic changes in functional brain networks. However, this does not 

necessarily undermine the usefulness of graph analysis, for the following reasons. First, correcting 
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for overall FC strength would be overly strict: although it rules out the possibility that observed 

differences in graph metrics result from artifacts of spurious weak connections, it could also 

remove real differences in network architecture [23]. Second, even if graph metrics and overall FC 

strength are highly correlated, subnetwork-wise graph metrics may provide additional insight into 

detailed network organization (e.g., specificity and heterogeneity among subnetworks), which may 

not be captured by overall FC strength. Importantly, we examined the reliability of edges across 

time windows, and confirmed that our findings are not attributable to differential proportions of 

false-positive edges (Zalesky et al. 2014; van den Heuvel et al. 2017). In addition, the dynamic 

reconfiguration of the large-scale network associated with encoding performance was also 

supported by an analysis that did not rely on graph metrics. Overall, it is unlikely that our findings 

were solely due to temporal fluctuations in overall FC strength. 

The effects of denoising methods 

To remove possible motion confounds, we used six motion regressors together with nuisance 

signals derived from WM and CSF in the first place (hereafter “8P denoising”). We further 

repeated our main analyses using a more stringent denoising method that included an extended set 

of nuisance regressors and motion scrubbing (“32P+scrubbing” denoising). Notably, the results 

were largely consistent across the two denoising methods, especially for large-scale network 

integration. However, we also observed a few differences in the results between the two denoising 

methods. Below we discuss possible reasons for these differences. 

 First, when we used 32P+scrubbing denoising, FC differences in the memory-related 

regions between the high and low encoding states did not survive at the FDR-corrected statistical 

threshold (Supplementary figure S7). However, we did observe similar trends, to those we 

observed in 8P denoising, particularly for FC between the hippocampus and occipital cortex (z(24) 

= 2.6503, P = 0.0080). Meanwhile, the within-subnetwork connectivity among the SME regions 

was not significantly different between the two states (z(24) = 0.6861, P = 0.4926). This may suggest 

that FC did not necessarily increase among all nodes of the SME regions, but specifically increased 

between the hippocampus and occipital cortex. It should also be noted that the SME ROIs were 

defined on the basis of a meta-analysis of task activation, not FC. This may explain why the results 
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of FC patterns among the SME regions were less robust than those of the 224-node large-scale 

network. Importantly, in our additional analysis using the 226-node network (i.e., the bilateral 

hippocampus ROIs from the SME regions plus the 224 nodes from the Power atlas), the increase 

in FC between the hippocampus and occipital cortex during the high (vs. low) encoding state was 

also significant when 32P+scrubbing denoising was used (right hippocampus-left middle occipital 

gyrus: z(24) = 3.5652, P = 0.0004). Overall, the finding of increased FC between the hippocampus 

and occipital cortex during the high encoding state was found in both 8P and 32P+scrubbing 

denoising. 

 Second, in 32P+scrubbing denoising, the multivariate classification result for the 

subnetwork-wise PCs remained significant (classification accuracy = 74%, P = 0.0260), which is 

consistent with the results of the analysis using 8P denoising. On the other hand, the classification 

accuracy was not significant (28%, P = 0.8228) when we used the subnetwork-wise PCs adjusted 

for overall FC strength. This may indicate that the strategy of adjusting for overall FC strength 

would be too strict because it could remove potentially true information about network 

organization, as mentioned in previous studies [23]. In an attempt to at least control for potential 

effects of motion confounds, we performed the multivariate classification analysis using the 

subnetwork-wise PCs adjusting for window-wise FD, instead of adjusting for overall FC strength. 

This analysis resulted in significant classification accuracy (92%, P = 0.0049), ruling out the 

possibility that the successful classification of the high and low encoding states was merely due to 

motion confounds. 

 Third, when we used 32P+scrubbing denoising, we observed a significant difference in 

modularity between the high and low encoding states (Supplementary file 1V). Interestingly, 

modularity was higher in the high (vs. low) encoding states. It is important to distinguish between 

different graph metrics: unlike global efficiency and local efficiency, modularity is computed 

based on the community structure of a network. Theoretically, a highly modular network can 

simultaneously exhibit a high level of functional integration through sparse long-range connections 

across communities [30], [31]. One interesting possibility is that during the high encoding state, 

the large-scale functional networks may have been reconfigured to co-express high levels of 
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integration and segregation [62], [63]. However, the results of modularity difference associated 

with memory encoding performance were not robust compared with those of global efficiency 

(e.g., Supplementary file 1F), making it difficult to draw a conclusion at this stage. Future research 

should investigate this possibility by examining multiple metrics of integration and segregation to 

clarify how dynamic changes in network complexity are related to cognition and behavior.  

Limitations and future perspectives 

Although our study provides a number of novel findings about the dynamic FC associated with 

incidental memory encoding, several limitations should be considered. First, the current study was 

unable to determine the causal directions between dynamic FC and temporal fluctuations in 

encoding performance. Recent studies have shown that large-scale FC patterns during short time 

periods (e.g., 30–40 s) show dynamic fluctuation even in the resting state [15], [61], [64]–[66]. 

Given these previous findings, it could be hypothesized that intrinsic, spontaneous dynamics of 

FC patterns underlie moment-to-moment fluctuations in encoding performance. However, we 

cannot rule out the possibility that different levels of encoding performance across the time 

windows induce time-varying FC patterns. Future research should be conducted to test these two 

possibilities using methods that can causally manipulate large-scale FC patterns [67], [68]. 

Second, to examine dynamic changes in FC patterns, we divided the fMRI time series into 

short time windows, and sorted the windows in reference to behavioral data (i.e., encoding 

performance). As a result, we sorted the FC patterns into two “states.” However, this does not 

necessarily mean that there are only two dynamic FC states; it is possible that there are more than 

two dissociable states and only some of them are truly related to encoding performance. Some 

recent studies have employed other approaches, first identifying distinct dynamic FC states based 

solely on neural data, then relating individual states to behavioral measures [15], [21], [64]. Such 

approaches could provide further detail about the relationships between dynamic network 

architecture and memory encoding. Meanwhile, in the current study, comparison of the FC patterns 

of high and low encoding states revealed very similar patterns. This implies that approaches 

attempting to identify distinct dynamic states solely using neural data may not work for our data. 

However, approaches using behavioral data as references for classification may be particularly 
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useful when behavioral performance is associated with very subtle differences in network states, 

as in the current study. 

Third, although our study demonstrated large-scale integration associated with moment-

to-moment memory performance within individuals, we did not examine how the network 

characteristics are related to inter-individual variations in memory performance. To further clarify 

the role of large-scale networks in memory encoding, future studies should investigate how these 

networks are related to individual differences in memory performance in both healthy and clinical 

populations.          
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3.6 Supplementary information for chapter 3 

3.6.1 Supplementary figures 

 
 

Supplementary figure S1. Difference in functional connectivity patterns between the high 

and low encoding states in a 226-node network combining the bilateral hippocampus and the 

Power atlas. Color bar indicates z values derived from Wilcoxon signed-rank test across 

participants. L HCP, left hippocampus, R HCP, right hippocampus.  
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Supplementary figure S2. Levels of integration/segregation of a 224-node network associated 

with encoding performance. (A) Global efficiency and local efficiency during high, middle, and 

low encoding states. States were defined based on participant-specific tertiles of window-wise 

encoding performance. (B) Global efficiency and local efficiency during high, middle-high, 

middle-low, and low encoding states. States were defined based on participant-specific quartiles 

of window-wise encoding performance. Graph metrics were computed for each time window, then 

averaged across windows separately for each state. In the analysis shown in this figure, unlike any 

other analyses, we included 24 participants because we could not define mid tertile or mid quartiles 

for the remaining one participant. Dots represent individual-participant data. Black horizontal lines 

indicate across-participant means. Asterisks indicate a significant linear effect of encoding states 

(P < 0.05, one-way ANOVA with trend analysis).  
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Supplementary figure S3. Functional connectivity patterns across a 285-node network 

derived from the Gordon atlas. (A) Connectivity matrix of the high encoding state, averaged 

across participants. (B) Connectivity matrix of the low encoding state, averaged across 

participants. Color bars indicate Fisher’s Z-transform of Pearson’s correlation coefficients.  (C) A 

matrix illustrating statistical differences in functional connectivity patterns between the high and 

low encoding states. ROIs belonging to the same subnetwork were grouped together, resulting in 

11 subnetworks. Color bar indicates z values derived from Wilcoxon signed-rank test across 

participants. Connections showing significant differences (P < 0.05, FDR corrected) are marked 

in color (red, high > low; blue, low > high) in the upper triangle of the matrix. (D) Three-

dimensional (3D) visualizations of significantly greater functional connectivity during the high 

encoding state. (E) 3D visualizations of significantly greater functional connectivity during the 

low encoding state. SMN, sensorimotor networks; CON, cingulo-opercular network; CPN, 
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cingulo-parietal network; AUD, auditory network; DMN, default mode network; VIN, visual 

network; FPN, fronto-parietal network; SAN, salience network; VAN, ventral attention network; 

DAN, dorsal attention network; RST, retrosplenial-temporal network.  
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Supplementary figure S4. Differences in integration/segregation between high and low 

encoding states for a 285-node network derived from the Gordon atlas. (A) Global efficiency, 

a measure of network integration. (B) Participation coefficient (averaged across nodes within each 

subnetwork), a measure of integration defined at subnetwork level. (C) Local efficiency (averaged 

across all nodes), a measure of segregation. (D) Local efficiency (averaged across nodes within 

each subnetwork), a measure of segregation defined at the subnetwork level. Graph metrics were 

computed for each time window, then averaged across windows separately for each state. Dots 

represent individual-participant data. Black horizontal lines indicate across-participant means. 

Asterisks indicate a significant difference between the states (P < 0.05, FDR corrected for 

subnetwork-wise metrics).  
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Supplementary figure S5. Differences in inter-subnetwork efficiency between high and low 

encoding states for a 285-node network derived from the Gordon atlas. Inter-subnetwork 

efficiency (Eis) was computed for each pair of subnetworks. Color bar indicates z values derived 

from Wilcoxon signed-rank test across participants. Subnetwork pairs showing significant 

differences (P < 0.05, FDR corrected) are marked in color (red, high > low; blue, low > high) in 

the upper triangle of the matrix. 
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Supplementary figure S6. Edge reliability analysis. (A, B) Histograms showing the distributions 

of the probability of edge appearance in randomized networks. (C, D) Histograms showing the 

distributions of the probability of edge appearance in real networks. Distributions were first 

computed for each participant and state, then pooled across participants for illustration. Here, the 

probability of edge appearance indicates how consistently an edge appears between a given node 

pair across time windows. An edge is defined as “reliable” if the probability of appearance is higher 

than the 95th percentile threshold determined by the null distributions derived from randomized 

networks. The magenta vertical lines indicate the 95th percentile threshold (averaged across 

participants for illustration).     
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Supplementary figure S7. Functional connectivity patterns among memory-related brain 

regions, derived from 32P+scrubbing denoising. (A) Connectivity matrix of the high encoding 

state, averaged across participants. (B) Connectivity matrix of the low encoding state, averaged 

across participants. Color bars indicate Fisher’s Z-transform of Pearson’s correlation coefficients. 

(C) A matrix illustrating statistical differences in functional connectivity patterns between the high 

and low encoding states. Color bar indicates z values derived from Wilcoxon signed-rank test 

across participants. (D) Within-subnetwork connectivity for the SME and SFE regions (mean 

Fisher’s Z values of connections within the SME and SFE regions, respectively). Magenta and 

black circles represent individual-participant data for the high and low encoding states, 

respectively. Green horizontal lines indicate across-participant means. 
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Supplementary figure S8. Functional connectivity patterns across a 224-node network, 

derived from 32P+scrubbing denoising. (A) Connectivity matrix of the high encoding state, 

averaged across participants. (B) Connectivity matrix of the low encoding state, averaged across 

participants. Color bars indicate Fisher’s Z-transform of Pearson’s correlation coefficients.  (C) A 

matrix showing the statistical differences in functional connectivity patterns between the high and 

low encoding states. ROIs belonging to the same subnetwork were grouped together resulting in 

10 subnetworks. Color bar indicates z values derived from Wilcoxon signed-rank test across 

participants. Connections showing significant differences (P < 0.05, FDR corrected) are marked 

in color (red, high > low; blue, low > high) in the upper triangle of the matrix. (D) Three-

dimensional (3D) visualizations of significantly greater functional connectivity during the high 

encoding state. (E) 3D visualizations of significantly greater functional connectivity during the 

low encoding state.  
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Supplementary figure S9. Differences in integration/segregation of a 224-node network 

between high and low encoding states, derived from 32P+scrubbing denoising. (A) Global 

efficiency, a measure of network integration. (B) Participation coefficient (averaged across nodes 

within each subnetwork), a measure of integration defined at the subnetwork level. (C) Local 

efficiency (averaged across all nodes), a measure of segregation. (D) Local efficiency (averaged 

across nodes within each subnetwork), a measure of segregation defined at the subnetwork level. 

Graph metrics were computed for each time window, then averaged across windows separately for 

each state. Dots represent individual-participant data. Black horizontal lines indicate across-

participant means. Asterisks indicate a significant difference between the states (P < 0.05, FDR 

corrected for subnetwork-wise metrics).  
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Supplementary figure S10. Differences in inter-subnetwork efficiency between high and low 

encoding states for a 224-node network, derived from 32P-scrubbing denoising. Inter-

subnetwork efficiency (Eis) was computed for each pair of subnetworks. Color bar indicates z 

values derived from Wilcoxon signed-rank test across participants. Subnetwork pairs showing 

significant differences (P < 0.05, FDR corrected) are marked in color (red, high > low; blue, low 

> high) in the upper triangle of the matrix.  
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3.6.2 Supplementary files 

Supplementary file 1A. Details of 21 ROIs related with memory encoding.  

 

ROI ID Name of ROI Hemisphere 

MNI coordinates 

x y z 

Subsequent memory effect (SME) related areas 

1 
Inferior frontal cortex, premotor 
cortex, precentral gyrus 

L -46 26 19 

2 
Inferior frontal cortex, premotor 
cortex 

R 48 7 33 

3 Pre-supplementary motor cortex L -6 14 53 

4 
Hippocampus, parahippocampal 
gyrus, amygdala 

L -22 -9 -20 

5 
Hippocampus, parahippocampal 
gyrus, amygdala 

R 18 -7 -19 

6 Fusiform gyrus L -42 -46 -29 

7 Fusiform gyrus R 44 -53 -20 

8 Intraparietal sulcus L -28 -80 35 

9 Intraparietal sulcus R 26 -66 47 

10 Middle occipital gyrus R 28 -89 2 

11 Inferior occipital gyrus L -32 -92 -12 

Subsequent forgotten effect (SFE) related areas 
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12 Frontal pole L -26 54 27 

13 Frontal pole R 38 46 22 

14 Superior frontal cortex L -36 29 43 

15 Superior frontal cortex R 24 35 41 

16 Superior frontal cortex R 34 31 47 

17 
Anterior cingulate cortex, 
ventromedial prefrontal cortex 

- 0 45 5 

18 Superior temporal gyrus L -48 -14 -10 

19 
Posterior cingulate cortex, 
precuneus 

- 0 -29 40 

20 Temporoparietal junction L -53 -59 32 

21 Temporoparietal junction R 55 -49 30 

 

Notes. ROIs are derived from [1].Table 2 and 6. Coordinates are converted from Talairach to MNI space.  
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Supplementary file 1B. Differences in trial-related activation between HH and Miss trials 

in 21 ROIs related with memory encoding. 

 

SME SFE 

Name of ROI H z P Name of ROI H z P 

Inferior frontal cortex 

(IFC),  

Premotor cortex 

(PMC),  

precentral gyrus 

L 4.2647 0.00002 Frontal pole (FP) L -1.5471 0.12183 

Inferior frontal cortex,  

Premotor cortex 
R 3.6190 0.00030 FP R -3.0539 0.00226 

Pre-supplementary 

motor cortex 
L 3.0808 0.00206 Superior frontal cortex L -2.1929 0.02831 

Hippocampus (HCP),  

Parahippocampal gyrus 

(PHG),  

amygdala 

L 3.9688 0.00007 Superior frontal cortex R -3.7804 0.00016 

HCP, PHG, Amygdala R 4.2647 0.00002 Superior frontal cortex R -3.4037 0.00066 

Fusiform gyrus L 3.9419 0.00008 

Anterior cingulate cortex (ACC),  

ventromedial prefrontal cortex 

(vmPFC) 

- -4.2917 0.00002 

Fusiform gyrus R 4.3724 0.00001 Superior temporal gyrus L -1.9508 0.05109 

Intraparietal sulcus 

(IPS) 
L 3.6190 0.00030 

Posterior cingulate cortex (PCC) 

,  

precuneus 

- -3.9957 0.00006 
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IPS R 3.9150 0.00009 Temporoparietal junction (TPJ) L -3.2692 0.00108 

Middle occipital gyrus 

(MOG) 
R 4.2917 0.00002 TPJ R -4.3724 0.00001 

Inferior occipital gyrus L 3.9150 0.00009 
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Supplementary file 1C. 224 ROIs included in 10 subnetworks of the Power atlas.  

ROI 
ID 

Name of ROI 

(Automated 
Anatomical Label) 

Hemisphere 

MNI 
coordinates Assigned 

network 

x y z 

1 Precuneus_L L -7 -52 61 SMN 

2 undefined L 
-

14 -18 40 
SMN 

3 Supp_Motor_Area_L R 0 -15 47 SMN 

4 Supp_Motor_Area_R  R 10 -2 45 SMN 

5 Paracentral_Lobule_L L -7 -21 65 SMN 

6 Paracentral_Lobule_L  L -7 -33 72 SMN 

7 Postcentral_R  R 13 -33 75 SMN 

8 Parietal_Inf_L  L 
-

54 -23 43 
SMN 

9 Precentral_R  R 29 -17 71 SMN 

10 Precuneus_R  R 10 -46 73 SMN 

11 Postcentral_L  L 
-

23 -30 72 
SMN 

12 Precentral_L  L 
-

40 -19 54 
SMN 

13 Postcentral_R  R 29 -39 59 SMN 

14 Postcentral_R  R 50 -20 42 SMN 

15 Postcentral_L  L 
-

38 -27 69 
SMN 
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16 undefined R 20 -29 60 SMN 

17 Precentral_R  R 44 -8 57 SMN 

18 Postcentral_L  L 
-

29 -43 61 
SMN 

19 Supp_Motor_Area_R  R 10 -17 74 SMN 

20 Postcentral_R  R 22 -42 69 SMN 

21 Postcentral_L  L 
-

45 -32 47 
SMN 

22 Postcentral_L  L 
-

21 -31 61 
SMN 

23 Paracentral_Lobule_L  L 
-

13 -17 75 
SMN 

24 Precentral_R  R 42 -20 55 SMN 

25 undefined L 
-

38 -15 69 
SMN 

26 Parietal_Sup_L  L 
-

16 -46 73 
SMN 

27 Paracentral_Lobule_R  R 2 -28 60 SMN 

28 Supp_Motor_Area_R  R 3 -17 58 SMN 

29 Precentral_R  R 38 -17 45 SMN 

30 Postcentral_R  R 47 -30 49 SMN 

31 Postcentral_L  L 
-

49 -11 35 
SMN 

32 Insula_R  R 36 -9 14 SMN 

33 Postcentral_R  R 51 -6 32 SMN 
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34 Postcentral_L  L 
-

53 -10 24 
SMN 

35 Postcentral_R  R 66 -8 25 SMN 

36 Supp_Motor_Area_L  L -3 2 53 CON 

37 SupraMarginal_R  R 54 -28 34 CON 

38 Frontal_Sup_R  R 19 -8 64 CON 

39 Frontal_Sup_L  L 
-

16 -5 71 
CON 

40 Cingulum_Mid_L  L 
-

10 -2 42 
CON 

41 undefined R 37 1 -4 CON 

42 Supp_Motor_Area_R  R 13 -1 70 CON 

43 Supp_Motor_Area_R  R 7 8 51 CON 

44 Rolandic_Oper_L  L 
-

45 0 9 
CON 

45 Insula_R  R 49 8 -1 CON 

46 undefined L 
-

34 3 4 
CON 

47 Temporal_Pole_Sup_L  L 
-

51 8 -2 
CON 

48 Cingulum_Mid_L  L -5 18 34 CON 

49 undefined R 36 10 1 CON 

50 undefined R 32 -26 13 AUD 

51 Temporal_Sup_R  R 65 -33 20 AUD 

52 Temporal_Sup_R  R 58 -16 7 AUD 
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53 Rolandic_Oper_L  L 
-

38 -33 17 
AUD 

54 Temporal_Sup_L  L 
-

60 -25 14 
AUD 

55 Temporal_Sup_L  L 
-

49 -26 5 
AUD 

56 Rolandic_Oper_R  R 43 -23 20 AUD 

57 SupraMarginal_L  L 
-

50 -34 26 
AUD 

58 SupraMarginal_L  L 
-

53 -22 23 
AUD 

59 Rolandic_Oper_L  L 
-

55 -9 12 
AUD 

60 Rolandic_Oper_R  R 56 -5 13 AUD 

61 Postcentral_R  R 59 -17 29 AUD 

62 undefined L 
-

30 -27 12 
AUD 

63 Occipital_Mid_L  L 
-

41 -75 26 
DMN 

64 Rectus_R  R 8 48 -15 DMN 

65 Precuneus_L  L 
-

13 -40 1 
DMN 

66 Temporal_Mid_L  L 
-

46 -61 21 
DMN 

67 Occipital_Mid_R  R 43 -72 28 DMN 

68 Temporal_Pole_Mid_L  L 
-

44 12 -34 
DMN 

69 Temporal_Pole_Mid_R  R 46 16 -30 DMN 



 TOPIC 2: Large-scale Network Integration in the Human Brain  

Tracks Temporal Fluctuations in Memory Encoding Performance 

________________________________________________________________________________ 

 

 3-72 

70 Temporal_Mid_L  L 
-

68 -23 -16 
DMN 

71 Angular_L  L 
-

44 -65 35 
DMN 

72 Angular_L  L 
-

39 -75 44 
DMN 

73 Precuneus_L  L -7 -55 27 DMN 

74 Precuneus_R  R 6 -59 35 DMN 

75 Precuneus_L  L 
-

11 -56 16 
DMN 

76 Precuneus_L  L -3 -49 13 DMN 

77 Cingulum_Mid_R  R 8 -48 31 DMN 

78 Precuneus_R  R 15 -63 26 DMN 

79 Cingulum_Mid_L  L -2 -37 44 DMN 

80 Precuneus_R  R 11 -54 17 DMN 

81 Angular_R  R 52 -59 36 DMN 

82 Frontal_Sup_R  R 23 33 48 DMN 

83 Frontal_Sup_Medial_L  L 
-

10 39 52 
DMN 

84 Frontal_Sup_L  L 
-

16 29 53 
DMN 

85 Frontal_Mid_L  L 
-

35 20 51 
DMN 

86 Frontal_Sup_R  R 22 39 39 DMN 

87 Frontal_Sup_R  R 13 55 38 DMN 
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88 Frontal_Sup_L  L 
-

10 55 39 
DMN 

89 Frontal_Sup_L  L 
-

20 45 39 
DMN 

90 Frontal_Sup_Medial_R  R 6 54 16 DMN 

91 Frontal_Sup_Medial_R  R 6 64 22 DMN 

92 Cingulum_Ant_L  L -7 51 -1 DMN 

93 Frontal_Sup_Medial_R  R 9 54 3 DMN 

94 Frontal_Med_Orb_L  L -3 44 -9 DMN 

95 Frontal_Med_Orb_R  R 8 42 -5 DMN 

96 Cingulum_Ant_L  L 
-

11 45 8 
DMN 

97 Frontal_Sup_Medial_L  L -2 38 36 DMN 

98 Cingulum_Ant_L  L -3 42 16 DMN 

99 Frontal_Sup_L  L 
-

20 64 19 
DMN 

100 Frontal_Sup_Medial_L  L -8 48 23 DMN 

101 Temporal_Mid_R  R 65 -12 -19 DMN 

102 Temporal_Mid_L  L 
-

56 -13 -10 
DMN 

103 Temporal_Mid_L  L 
-

58 -30 -4 
DMN 

104 Temporal_Mid_R  R 65 -31 -9 DMN 

105 Temporal_Mid_L  L 
-

68 -41 -5 
DMN 

106 Frontal_Sup_Medial_R  R 13 30 59 DMN 
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107 Cingulum_Ant_R  R 12 36 20 DMN 

108 Temporal_Mid_R  R 52 -2 -16 DMN 

109 ParaHippocampal_L  L 
-

26 -40 -8 
DMN 

110 Fusiform_R  R 27 -37 -13 DMN 

111 Fusiform_L  L 
-

34 -38 -16 
DMN 

112 Cerebelum_Crus1_R  R 28 -77 -32 DMN 

113 Temporal_Pole_Mid_R  R 52 7 -30 DMN 

114 Temporal_Mid_L  L 
-

53 3 -27 
DMN 

115 Angular_R  R 47 -50 29 DMN 

116 Temporal_Mid_L  L 
-

49 -42 1 
DMN 

117 Frontal_Inf_Orb_L  L 
-

46 31 -13 
DMN 

118 Frontal_Inf_Orb_R  R 49 35 -12 DMN 

119 Lingual_R  R 18 -47 -10 VIN 

120 Occipital_Mid_R  R 40 -72 14 VIN 

121 Calcarine_R  R 8 -72 11 VIN 

122 Calcarine_L  L -8 -81 7 VIN 

123 Occipital_Mid_L  L 
-

28 -79 19 
VIN 

124 Lingual_R  R 20 -66 2 VIN 



Chapter 3 

________________________________________________________________________________ 

 

 3-75 

125 Occipital_Mid_L  L 
-

24 -91 19 
VIN 

126 Fusiform_R  R 27 -59 -9 VIN 

127 Lingual_L  L 
-

15 -72 -8 
VIN 

128 Calcarine_L  L 
-

18 -68 5 
VIN 

129 Occipital_Inf_R  R 43 -78 -12 VIN 

130 Occipital_Inf_L  L 
-

47 -76 -10 
VIN 

131 Occipital_Sup_L  L 
-

14 -91 31 
VIN 

132 Cuneus_R  R 15 -87 37 VIN 

133 Occipital_Mid_R  R 29 -77 25 VIN 

134 Lingual_R  R 20 -86 -2 VIN 

135 Cuneus_R  R 15 -77 31 VIN 

136 Lingual_L  L 
-

16 -52 -1 
VIN 

137 Temporal_Inf_R  R 42 -66 -8 VIN 

138 Occipital_Sup_R  R 24 -87 24 VIN 

139 Cuneus_R  R 6 -72 24 VIN 

140 Occipital_Mid_L  L 
-

42 -74 0 
VIN 

141 Fusiform_R  R 26 -79 -16 VIN 

142 Cuneus_L  L 
-

16 -77 34 
VIN 
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143 Cuneus_L  L -3 -81 21 VIN 

144 Occipital_Mid_L  L 
-

40 -88 -6 
VIN 

145 Occipital_Mid_R  R 37 -84 13 VIN 

146 Calcarine_R  R 6 -81 6 VIN 

147 Occipital_Mid_L  L 
-

26 -90 3 
VIN 

148 Fusiform_L  L 
-

33 -79 -13 
VIN 

149 Occipital_Mid_R  R 37 -81 1 VIN 

150 Precentral_L  L 
-

44 2 46 
FPN 

151 Frontal_Inf_Tri_R  R 48 25 27 FPN 

152 Frontal_Inf_Tri_L  L 
-

47 11 23 
FPN 

153 Parietal_Inf_L  L 
-

53 -49 43 
FPN 

154 Frontal_Mid_L  L 
-

23 11 64 
FPN 

155 Temporal_Inf_R  R 58 -53 -14 FPN 

156 Frontal_Sup_Orb_R  R 24 45 -15 FPN 

157 Frontal_Mid_Orb_R  R 34 54 -13 FPN 

158 Precentral_R  R 47 10 33 FPN 

159 Precentral_L  L 
-

41 6 33 
FPN 

160 Frontal_Mid_R  R 38 43 15 FPN 



Chapter 3 

________________________________________________________________________________ 

 

 3-77 

161 Parietal_Inf_R  R 49 -42 45 FPN 

162 Parietal_Inf_L  L 
-

28 -58 48 
FPN 

163 Parietal_Inf_R  R 44 -53 47 FPN 

164 Frontal_Mid_R  R 32 14 56 FPN 

165 Angular_R  R 37 -65 40 FPN 

166 Parietal_Inf_L  L 
-

42 -55 45 
FPN 

167 Frontal_Mid_R  R 40 18 40 FPN 

168 Frontal_Mid_L  L 
-

34 55 4 
FPN 

169 Frontal_Mid_Orb_L  L 
-

42 45 -2 
FPN 

170 Angular_R  R 33 -53 44 FPN 

171 Frontal_Mid_Orb_R  R 43 49 -2 FPN 

172 Frontal_Inf_Tri_L  L 
-

42 25 30 
FPN 

173 Frontal_Sup_Medial_L  L -3 26 44 FPN 

174 Cingulum_Mid_R  R 11 -39 50 SAN 

175 Parietal_Inf_R  R 55 -45 37 SAN 

176 Precentral_R  R 42 0 47 SAN 

177 Frontal_Mid_R  R 31 33 26 SAN 

178 Frontal_Inf_Tri_R  R 48 22 10 SAN 

179 Insula_L  L 
-

35 20 0 
SAN 
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180 Insula_R  R 36 22 3 SAN 

181 Frontal_Inf_Orb_R  R 37 32 -2 SAN 

182 Insula_R  R 34 16 -8 SAN 

183 undefined L 
-

11 26 25 
SAN 

184 Supp_Motor_Area_L  L -1 15 44 SAN 

185 Frontal_Mid_L  L 
-

28 52 21 
SAN 

186 Cingulum_Ant_L  L 0 30 27 SAN 

187 Cingulum_Mid_R  R 5 23 37 SAN 

188 Cingulum_Ant_R  R 10 22 27 SAN 

189 Frontal_Mid_R  R 31 56 14 SAN 

190 Frontal_Mid_R  R 26 50 27 SAN 

191 Frontal_Mid_L  L 
-

39 51 17 
SAN 

192 Thalamus_R  R 6 -24 0 SUB 

193 Thalamus_L  L -2 -13 12 SUB 

194 Thalamus_L  L 
-

10 -18 7 
SUB 

195 Thalamus_R  R 12 -17 8 SUB 

196 undefined L -5 -28 -4 SUB 

197 Putamen_L  L 
-

22 7 -5 
SUB 

198 undefined L 
-

15 4 8 
SUB 
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199 Putamen_R  R 31 -14 2 SUB 

200 Putamen_R  R 23 10 1 SUB 

201 Putamen_R  R 29 1 4 SUB 

202 undefined L 
-

31 -11 0 
SUB 

203 undefined R 15 5 7 SUB 

204 undefined R 9 -4 6 SUB 

205 Supp_Motor_Area_L  L 
-

10 11 67 
VAN 

206 Temporal_Sup_R  R 54 -43 22 VAN 

207 Temporal_Mid_L  L 
-

56 -50 10 
VAN 

208 Temporal_Sup_L  L 
-

55 -40 14 
VAN 

209 Temporal_Sup_R  R 52 -33 8 VAN 

210 Temporal_Mid_R  R 51 -29 -4 VAN 

211 Temporal_Sup_R  R 56 -46 11 VAN 

212 Frontal_Inf_Tri_R  R 53 33 1 VAN 

213 Frontal_Inf_Tri_L  L 
-

49 25 -1 
VAN 

214 Precuneus_R  R 10 -62 61 DAN 

215 Temporal_Mid_L  L 
-

52 -63 5 
DAN 

216 Parietal_Sup_R  R 22 -65 48 DAN 

217 Temporal_Mid_R  R 46 -59 4 DAN 
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218 Parietal_Sup_R  R 25 -58 60 DAN 

219 Parietal_Inf_L  L 
-

33 -46 47 
DAN 

220 Occipital_Mid_L  L 
-

27 -71 37 
DAN 

221 Precentral_L  L 
-

32 -1 54 
DAN 

222 Temporal_Inf_L  L 
-

42 -60 -9 
DAN 

223 Parietal_Sup_L  L 
-

17 -59 64 
DAN 

224 Precentral_R  R 29 -5 54 DAN 

Note. SMN, sensorimotor networks; CON, cingulo-opercular network; AUD, auditory network; DMN, default mode 
network; VIN, visual network; FPN, fronto-parietal network; SAN, salience network; SUB, subcortical nodes; VAN, 
ventral attention network; DAN, dorsal attention network.  
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Supplementary file 1D. 72 connections showing significant increase in FC during the high 

encoding state. 

Subnetwork pairs ROI pairs z P 

CON CON 

Frontal_Sup_R  Supp_Motor_Area_L  3.7266 0.0002 

Supp_Motor_Area_R  Frontal_Sup_R  3.8880 0.0001 

DMN 

 

SMN 

 

Frontal_Sup_L  Precentral_L  3.3499 0.0008 

Frontal_Sup_L  Paracentral_Lobule_R  3.4575 0.0005 

Frontal_Sup_L  Supp_Motor_Area_R  3.5383 0.0004 

Frontal_Sup_Medial_R  Postcentral_L  3.3499 0.0008 

Cingulum_Ant_R  Precentral_R  3.5652 0.0004 

CON 

Frontal_Sup_Medial_R  Rolandic_Oper_L  3.4306 0.0006 

Frontal_Sup_Medial_R  Temporal_Pole_Sup_L  3.5921 0.0003 

DMN 

 

Frontal_Sup_L  Precuneus_L  3.6190 0.0003 

Frontal_Sup_L  Angular_L  4.1033 0.0000 

Frontal_Sup_Medial_R  Precuneus_L  3.3768 0.0007 

Frontal_Sup_L  Precuneus_L  3.6190 0.0003 

Temporal_Mid_L  Frontal_Sup_Medial_L  3.5114 0.0004 

Temporal_Mid_R  Frontal_Sup_Medial_L  3.6459 0.0003 

Temporal_Pole_Mid_R  Frontal_Sup_Medial_R  3.4575 0.0005 

Angular_R  Frontal_Sup_Medial_L  3.5114 0.0004 
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Frontal_Inf_Orb_R  Frontal_Sup_Medial_L  3.4037 0.0007 

VIN 

 

SMN 

 

 

Occipital_Mid_L  Precentral_R  3.3499 0.0008 

Occipital_Inf_R  Insula_R  3.5114 0.0004 

Occipital_Inf_L  Precentral_R  3.8073 0.0001 

Fusiform_R  Postcentral_L  4.3724 0.0000 

Fusiform_R  Postcentral_L  3.5383 0.0004 

Fusiform_R  Insula_R  4.0495 0.0001 

Fusiform_R  Postcentral_L  3.6190 0.0003 

Occipital_Mid_L  Postcentral_R  4.0226 0.0001 

Occipital_Mid_L  Postcentral_L  3.4306 0.0006 

Occipital_Mid_L  Postcentral_R  3.4575 0.0005 

Occipital_Mid_L  Postcentral_L  3.5921 0.0003 

Occipital_Mid_L  Precentral_R  3.6190 0.0003 

Occipital_Mid_L  Precentral_R  3.5383 0.0004 

Fusiform_L  Postcentral_L  3.5921 0.0003 

CON 

Fusiform_R  Frontal_Sup_R  3.4844 0.0005 

Fusiform_R  Rolandic_Oper_L  3.8880 0.0001 

AUD Occipital_Mid_L  undefined 3.4037 0.0007 

DMN Calcarine_R  Frontal_Sup_L  3.4306 0.0006 
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 Lingual_R  Precuneus_L  3.3768 0.0007 

Fusiform_R  Temporal_Mid_L  3.5383 0.0004 

Occipital_Mid_L  Temporal_Pole_Mid_R  3.6459 0.0003 

Occipital_Mid_L  Temporal_Mid_L  3.5652 0.0004 

VIN 

 

Fusiform_R  Lingual_R  3.7266 0.0002 

Fusiform_R  Cuneus_R  3.6190 0.0003 

Cuneus_L  Fusiform_R  4.0226 0.0001 

Occipital_Mid_R  Occipital_Mid_L  3.4844 0.0005 

FPN 

 

CON Frontal_Mid_L  Cingulum_Mid_L  3.3768 0.0007 

AUD Precentral_L  Rolandic_Oper_R  3.4306 0.0006 

DMN 

 

Precentral_L  Temporal_Pole_Mid_L  3.4844 0.0005 

Frontal_Mid_R  Temporal_Pole_Mid_L  3.6459 0.0003 

Frontal_Sup_Orb_R  Temporal_Pole_Mid_R  3.5383 0.0004 

SAN 

 

SMN Cingulum_Mid_R  Precentral_R  3.3499 0.0008 

CON Frontal_Mid_L  Rolandic_Oper_L  3.3499 0.0008 

DMN 

 

Parietal_Inf_R  Temporal_Pole_Mid_L  3.4844 0.0005 

Frontal_Inf_Tri_R  Frontal_Sup_L  3.5114 0.0004 

Frontal_Inf_Tri_R  Frontal_Sup_Medial_L  3.5383 0.0004 

Frontal_Mid_L  Precuneus_L  3.5652 0.0004 
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Frontal_Mid_R  Frontal_Sup_Medial_R  3.3768 0.0007 

SUB 

 

SMN 

 

Putamen_R  Supp_Motor_Area_R  3.5921 0.0003 

undefined Paracentral_Lobule_L  4.1033 0.0000 

DMN 

 

Thalamus_R  Temporal_Mid_L  3.5921 0.0003 

Thalamus_R  Cerebelum_Crus1_R  3.8073 0.0001 

undefined Cerebelum_Crus1_R  3.4037 0.0007 

undefined Temporal_Mid_L  3.3499 0.0008 

undefined Temporal_Mid_L  3.5652 0.0004 

undefined Temporal_Mid_L  4.0764 0.0000 

VIN 

 

Thalamus_R  Occipital_Mid_L  4.1033 0.0000 

Thalamus_R  Occipital_Mid_R  3.4037 0.0007 

Putamen_R  Cuneus_R  3.4575 0.0005 

VAN 

 

DMN Temporal_Mid_R  Frontal_Sup_L  3.5383 0.0004 

SAN Temporal_Sup_R  Frontal_Mid_L  3.3499 0.0008 

SUB Temporal_Sup_L  undefined 3.7535 0.0002 

DAN 

 

FPN Parietal_Sup_R  Frontal_Inf_Tri_L  3.5383 0.0004 

SUB Parietal_Sup_R  Thalamus_R  3.3499 0.0008 
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Supplementary file 1E. 335 connections showing significant decrease in FC during the high 

encoding state. 

Subnetwork pairs ROI pairs z P 

SMN 

 

 

SMN 

 

 

Paracentral_Lobule_L  Supp_Motor_Area_R  -3.6728 0.0002 

Parietal_Inf_L  Supp_Motor_Area_L  -3.8611 0.0001 

Parietal_Inf_L  Paracentral_Lobule_L  -3.5114 0.0004 

Precentral_L  Supp_Motor_Area_L  -3.8611 0.0001 

Precentral_L  Paracentral_Lobule_L  -3.3499 0.0008 

Postcentral_R  Supp_Motor_Area_L  -3.5383 0.0004 

Postcentral_L  Paracentral_Lobule_L  -3.6190 0.0003 

Postcentral_L  Precentral_R  -3.5383 0.0004 

undefined Postcentral_R  -3.6459 0.0003 

Precentral_R  Precuneus_L  -3.4306 0.0006 

Postcentral_L  Supp_Motor_Area_L  -3.3499 0.0008 

Postcentral_L  Precuneus_L  -3.3499 0.0008 

Postcentral_L  Postcentral_R  -3.4575 0.0005 

Paracentral_Lobule_L  Postcentral_R  -3.7535 0.0002 

Paracentral_Lobule_L  Postcentral_R  -3.7266 0.0002 

undefined Paracentral_Lobule_L  -4.0226 0.0001 

Parietal_Sup_L  Postcentral_L  -3.7266 0.0002 



 TOPIC 2: Large-scale Network Integration in the Human Brain  

Tracks Temporal Fluctuations in Memory Encoding Performance 

________________________________________________________________________________ 

 

 3-86 

Supp_Motor_Area_R  Supp_Motor_Area_R  -4.0495 0.0001 

Supp_Motor_Area_R  Precentral_L  -3.9957 0.0001 

Supp_Motor_Area_R  Postcentral_L  -3.9150 0.0001 

Supp_Motor_Area_R  Precentral_R  -3.8073 0.0001 

Supp_Motor_Area_R  Postcentral_L  -3.5383 0.0004 

Supp_Motor_Area_R  Postcentral_L  -3.8342 0.0001 

Supp_Motor_Area_R  Precentral_R  -3.6728 0.0002 

Supp_Motor_Area_R  undefined -3.4306 0.0006 

Postcentral_L  Paracentral_Lobule_L  -3.5921 0.0003 

Postcentral_L  Postcentral_L  -3.5652 0.0004 

Postcentral_L  Postcentral_L  -3.6997 0.0002 

Postcentral_L  Paracentral_Lobule_L  -4.1033 0.0000 

Insula_R  undefined -3.3768 0.0007 

Insula_R  Supp_Motor_Area_R  -4.1302 0.0000 

Insula_R  Postcentral_L  -3.5921 0.0003 

Insula_R  Precentral_R  -3.4037 0.0007 

Insula_R  Postcentral_L  -3.6997 0.0002 

Insula_R  Precentral_R  -3.3499 0.0008 

Insula_R  Supp_Motor_Area_R  -3.5114 0.0004 
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Postcentral_R  Paracentral_Lobule_L  -4.0764 0.0000 

Postcentral_R  Supp_Motor_Area_R  -3.4306 0.0006 

Postcentral_L  Paracentral_Lobule_L  -3.4575 0.0005 

Postcentral_L  Supp_Motor_Area_R  -3.4037 0.0007 

Postcentral_L  Paracentral_Lobule_L  -4.0764 0.0000 

Postcentral_R  Paracentral_Lobule_L  -3.3499 0.0008 

Postcentral_R  Paracentral_Lobule_L  -3.8342 0.0001 

Postcentral_R  Postcentral_R  -3.7266 0.0002 

Postcentral_R  Paracentral_Lobule_L  -3.9688 0.0001 

CON 

 

SMN 

 

Frontal_Sup_L  Paracentral_Lobule_L  -4.1840 0.0000 

Cingulum_Mid_L  Insula_R  -3.9688 0.0001 

Rolandic_Oper_L  Supp_Motor_Area_R  -3.4844 0.0005 

CON Temporal_Pole_Sup_L  Rolandic_Oper_L  -3.5114 0.0004 

AUD 

 

SMN 

 

undefined Supp_Motor_Area_R  -3.5114 0.0004 

Temporal_Sup_R  Paracentral_Lobule_L  -3.6459 0.0003 

Rolandic_Oper_L  Paracentral_Lobule_L  -3.5652 0.0004 

Rolandic_Oper_L  Precentral_L  -3.5114 0.0004 

Rolandic_Oper_L  Postcentral_L  -3.3499 0.0008 

Rolandic_Oper_L  Supp_Motor_Area_R  -3.7266 0.0002 
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Temporal_Sup_L  Supp_Motor_Area_R  -3.3499 0.0008 

Temporal_Sup_L  undefined -3.4844 0.0005 

Temporal_Sup_L  Postcentral_L  -4.1840 0.0000 

Temporal_Sup_L  Supp_Motor_Area_R  -3.6728 0.0002 

Temporal_Sup_L  Supp_Motor_Area_L  -3.3499 0.0008 

Temporal_Sup_L  Paracentral_Lobule_L  -4.1840 0.0000 

Temporal_Sup_L  Parietal_Inf_L  -3.5652 0.0004 

Temporal_Sup_L  Postcentral_L  -3.6728 0.0002 

Temporal_Sup_L  undefined -3.5652 0.0004 

Temporal_Sup_L  Postcentral_L  -3.9688 0.0001 

Temporal_Sup_L  Paracentral_Lobule_L  -4.0764 0.0000 

Rolandic_Oper_R  Postcentral_L  -3.4575 0.0005 

Rolandic_Oper_R  Precentral_R  -4.2109 0.0000 

Rolandic_Oper_R  Precentral_R  -3.5114 0.0004 

Rolandic_Oper_R  Insula_R  -3.3499 0.0008 

SupraMarginal_L  Paracentral_Lobule_L  -3.8342 0.0001 

SupraMarginal_L  Postcentral_R  -3.5383 0.0004 

SupraMarginal_L  Precentral_R  -3.9419 0.0001 

SupraMarginal_L  Postcentral_L  -3.6459 0.0003 
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SupraMarginal_L  Paracentral_Lobule_L  -3.7804 0.0002 

SupraMarginal_L  Precentral_R  -3.5383 0.0004 

SupraMarginal_L  undefined -3.7535 0.0002 

SupraMarginal_L  Supp_Motor_Area_R  -3.3499 0.0008 

SupraMarginal_L  Paracentral_Lobule_L  -3.3499 0.0008 

Rolandic_Oper_L  Supp_Motor_Area_L  -3.4575 0.0005 

Rolandic_Oper_L  Supp_Motor_Area_R  -3.3768 0.0007 

Rolandic_Oper_L  Paracentral_Lobule_L  -3.3499 0.0008 

Rolandic_Oper_L  Postcentral_L  -3.5921 0.0003 

Rolandic_Oper_L  Supp_Motor_Area_R  -3.9419 0.0001 

Rolandic_Oper_L  Insula_R  -3.6997 0.0002 

Rolandic_Oper_R  Paracentral_Lobule_L  -3.4575 0.0005 

Rolandic_Oper_R  Paracentral_Lobule_L  -3.7804 0.0002 

undefined Paracentral_Lobule_L  -3.5652 0.0004 

CON 

 

Rolandic_Oper_R  Rolandic_Oper_L  -3.5114 0.0004 

Rolandic_Oper_L  Rolandic_Oper_L  -3.8342 0.0001 

Rolandic_Oper_L  Temporal_Pole_Sup_L  -3.4037 0.0007 

AUD 

 

Temporal_Sup_L  Temporal_Sup_R  -3.6728 0.0002 

SupraMarginal_L  Temporal_Sup_L  -3.5921 0.0003 
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SupraMarginal_L  Temporal_Sup_L  -3.4037 0.0007 

Rolandic_Oper_R  Temporal_Sup_L  -3.9419 0.0001 

DMN 

 

SMN 

 

Occipital_Mid_L  Precuneus_L  -3.5114 0.0004 

Rectus_R  Postcentral_L  -3.7804 0.0002 

Rectus_R  Postcentral_R  -4.3724 0.0000 

Temporal_Mid_L  Precuneus_L  -3.5114 0.0004 

Temporal_Mid_L  Postcentral_L  -3.7535 0.0002 

Temporal_Mid_L  Postcentral_R  -3.5652 0.0004 

Temporal_Mid_L  Postcentral_L  -3.4037 0.0007 

Temporal_Mid_L  Paracentral_Lobule_L  -3.6190 0.0003 

Temporal_Mid_L  Precentral_R  -3.3768 0.0007 

Occipital_Mid_R  Precuneus_L  -3.3768 0.0007 

Temporal_Pole_Mid_R  Postcentral_L  -3.5114 0.0004 

Temporal_Pole_Mid_R  Supp_Motor_Area_R  -3.4037 0.0007 

Temporal_Pole_Mid_R  Insula_R  -3.4037 0.0007 

Angular_L  Precuneus_L  -3.6997 0.0002 

Precuneus_L  Postcentral_L  -3.4037 0.0007 

Precuneus_L  Postcentral_R  -3.9688 0.0001 

Precuneus_L  Precuneus_L  -3.4575 0.0005 
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Precuneus_L  Postcentral_L  -3.3499 0.0008 

Precuneus_L  Postcentral_L  -3.4306 0.0006 

Precuneus_L  Precentral_R  -3.8073 0.0001 

Precuneus_L  Postcentral_R  -3.6190 0.0003 

Precuneus_L  Postcentral_L  -3.4575 0.0005 

Precuneus_R  Postcentral_R  -3.4037 0.0007 

Precuneus_R  Insula_R  -3.5114 0.0004 

Frontal_Sup_R  Paracentral_Lobule_L  -3.5114 0.0004 

Frontal_Sup_R  Paracentral_Lobule_L  -3.7266 0.0002 

Frontal_Sup_R  Precuneus_L  -3.4306 0.0006 

Frontal_Sup_Medial_R  Paracentral_Lobule_L  -3.4306 0.0006 

Frontal_Med_Orb_L  Postcentral_L  -3.7804 0.0002 

Frontal_Med_Orb_L  Postcentral_R  -3.6997 0.0002 

Frontal_Med_Orb_L  Postcentral_L  -3.7266 0.0002 

Frontal_Sup_Medial_L  Postcentral_R  -3.9150 0.0001 

Frontal_Sup_Medial_L  Paracentral_Lobule_L  -3.3768 0.0007 

Frontal_Sup_Medial_L  Parietal_Sup_L  -3.4575 0.0005 

Temporal_Mid_L  undefined -3.4844 0.0005 

Temporal_Mid_L  Paracentral_Lobule_L  -3.6459 0.0003 
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Temporal_Mid_L  Supp_Motor_Area_R  -3.8342 0.0001 

Temporal_Mid_L  Paracentral_Lobule_L  -3.5383 0.0004 

Temporal_Mid_L  Parietal_Inf_L  -3.6997 0.0002 

Temporal_Mid_L  Postcentral_R  -3.4844 0.0005 

Temporal_Mid_L  Postcentral_L  -3.8073 0.0001 

Temporal_Mid_L  Paracentral_Lobule_L  -3.6459 0.0003 

Temporal_Mid_L  Parietal_Sup_L  -3.3499 0.0008 

Temporal_Mid_R  Supp_Motor_Area_R  -3.4306 0.0006 

Temporal_Mid_R  Postcentral_R  -3.7535 0.0002 

ParaHippocampal_L  Postcentral_L  -3.5114 0.0004 

ParaHippocampal_L  Postcentral_R  -3.3499 0.0008 

Fusiform_R  Paracentral_Lobule_L  -3.5114 0.0004 

Fusiform_L  Postcentral_R  -3.6997 0.0002 

Temporal_Mid_L  Supp_Motor_Area_R  -3.5921 0.0003 

Temporal_Mid_L  Supp_Motor_Area_R  -3.5383 0.0004 

CON 

 

Occipital_Mid_L  SupraMarginal_R  -3.3499 0.0008 

Rectus_R  Frontal_Sup_R  -3.3768 0.0007 

Angular_L  Frontal_Sup_R  -3.7266 0.0002 

Temporal_Mid_L  undefined -3.4844 0.0005 
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Temporal_Mid_L  SupraMarginal_R  -3.4037 0.0007 

Temporal_Mid_L  Frontal_Sup_R  -3.4037 0.0007 

Fusiform_L  Frontal_Sup_R  -3.8073 0.0001 

Temporal_Pole_Mid_R  Frontal_Sup_L  -3.4306 0.0006 

AUD 

 

Occipital_Mid_L  Temporal_Sup_R  -3.5383 0.0004 

Occipital_Mid_L  Temporal_Sup_L  -3.4037 0.0007 

Occipital_Mid_R  Rolandic_Oper_L  -3.4844 0.0005 

Precuneus_L  undefined -3.9419 0.0001 

Precuneus_L  Rolandic_Oper_L  -3.5921 0.0003 

Precuneus_L  Rolandic_Oper_R  -3.8342 0.0001 

Precuneus_L  undefined -3.3768 0.0007 

Precuneus_L  Rolandic_Oper_L  -4.2378 0.0000 

Precuneus_L  SupraMarginal_L  -3.7535 0.0002 

Precuneus_L  undefined -3.6728 0.0002 

Precuneus_R  undefined -3.4575 0.0005 

Temporal_Mid_L  Temporal_Sup_L  -3.3768 0.0007 

Temporal_Mid_L  SupraMarginal_L  -3.5114 0.0004 

Fusiform_R  Postcentral_R  -3.5921 0.0003 

DMN ParaHippocampal_L  Rectus_R  -4.1302 0.0000 
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 ParaHippocampal_L  Temporal_Mid_R  -3.3768 0.0007 

ParaHippocampal_L  Temporal_Mid_L  -3.3768 0.0007 

VIN 

 

SMN 

 

 

Occipital_Mid_R  Precuneus_L  -3.5383 0.0004 

Occipital_Mid_R  Postcentral_R  -3.4306 0.0006 

Calcarine_R  Precuneus_L  -3.6190 0.0003 

Calcarine_L  Precuneus_L  -3.3499 0.0008 

Lingual_R  Parietal_Inf_L  -3.7266 0.0002 

Occipital_Mid_R  Precuneus_L  -3.5652 0.0004 

Cuneus_R  Paracentral_Lobule_L  -3.3768 0.0007 

Cuneus_R  Postcentral_R  -3.6459 0.0003 

Cuneus_R  Supp_Motor_Area_R  -3.5114 0.0004 

Cuneus_L  Precuneus_L  -3.3499 0.0008 

Cuneus_L  Precuneus_L  -3.8611 0.0001 

Cuneus_L  Supp_Motor_Area_R  -3.6997 0.0002 

Cuneus_L  Paracentral_Lobule_R  -3.3499 0.0008 

Cuneus_L  Supp_Motor_Area_R  -3.6459 0.0003 

Occipital_Mid_R  Precuneus_L  -3.3499 0.0008 

AUD 

 

Lingual_L  SupraMarginal_L  -3.7535 0.0002 

Calcarine_L  Temporal_Sup_L  -3.4575 0.0005 
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Calcarine_L  SupraMarginal_L  -3.4037 0.0007 

Cuneus_R  Postcentral_R  -3.4037 0.0007 

Cuneus_R  Postcentral_R  -3.3768 0.0007 

Cuneus_L  Rolandic_Oper_L  -3.6997 0.0002 

DMN 

 

Occipital_Mid_R  Occipital_Mid_L  -3.5652 0.0004 

Calcarine_R  Occipital_Mid_L  -3.3768 0.0007 

Calcarine_L  Occipital_Mid_R  -3.5383 0.0004 

Lingual_R  Occipital_Mid_L  -3.5652 0.0004 

Occipital_Mid_L  Cingulum_Mid_L  -3.4844 0.0005 

Calcarine_L  Angular_R  -3.5383 0.0004 

Calcarine_L  Temporal_Mid_R  -3.6997 0.0002 

Cuneus_R  Occipital_Mid_L  -3.7535 0.0002 

Cuneus_R  Temporal_Mid_L  -3.4306 0.0006 

Cuneus_R  Fusiform_L  -3.6997 0.0002 

Temporal_Inf_R  Fusiform_L  -3.4844 0.0005 

Occipital_Sup_R  Temporal_Mid_L  -3.5383 0.0004 

Occipital_Mid_L  Occipital_Mid_L  -3.4844 0.0005 

Occipital_Mid_L  Angular_L  -3.5114 0.0004 

Occipital_Mid_L  Cingulum_Mid_L  -3.7535 0.0002 
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Occipital_Mid_L  Frontal_Sup_R  -3.3499 0.0008 

Occipital_Mid_L  Cingulum_Ant_L  -3.4306 0.0006 

Cuneus_L  Occipital_Mid_L  -4.1302 0.0000 

Cuneus_L  Fusiform_R  -3.3499 0.0008 

Cuneus_L  Precuneus_R  -3.5383 0.0004 

Occipital_Mid_L  Angular_R  -3.4037 0.0007 

Calcarine_R  Occipital_Mid_R  -3.4037 0.0007 

Occipital_Mid_R  Temporal_Mid_L  -3.3499 0.0008 

VIN 

 

Cuneus_L  Lingual_R  -3.6459 0.0003 

Cuneus_L  Occipital_Mid_R  -3.5114 0.0004 

Cuneus_L  Cuneus_L  -3.3499 0.0008 

FPN 

 

SMN 

 

Precentral_L  Precuneus_L  -3.7266 0.0002 

Precentral_L  Supp_Motor_Area_L  -3.9688 0.0001 

Precentral_L  Paracentral_Lobule_L  -4.1033 0.0000 

Precentral_L  Paracentral_Lobule_L  -3.6459 0.0003 

CON 

Frontal_Sup_Orb_R  SupraMarginal_R  -3.7266 0.0002 

Angular_R  SupraMarginal_R  -3.6190 0.0003 

Parietal_Inf_L  undefined -3.4844 0.0005 

Frontal_Sup_Medial_L  Supp_Motor_Area_L  -3.5383 0.0004 
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AUD 

 

Precentral_L  Temporal_Sup_R  -3.4844 0.0005 

Precentral_L  Temporal_Sup_L  -3.7266 0.0002 

Precentral_L  SupraMarginal_L  -4.1840 0.0000 

Frontal_Inf_Tri_R  SupraMarginal_L  -4.1571 0.0000 

Frontal_Inf_Tri_L  SupraMarginal_L  -3.8342 0.0001 

Frontal_Inf_Tri_L  SupraMarginal_L  -3.7535 0.0002 

DMN Frontal_Inf_Tri_L  ParaHippocampal_L  -3.4306 0.0006 

VIN 

 

Frontal_Mid_L  Occipital_Mid_R  -3.6190 0.0003 

Frontal_Sup_Orb_R  Occipital_Mid_L  -3.4037 0.0007 

SAN 

 

SMN 

 

Cingulum_Mid_R  Precuneus_L  -3.3768 0.0007 

Cingulum_Mid_R  Supp_Motor_Area_L  -3.5921 0.0003 

Cingulum_Mid_R  Precentral_R  -3.5383 0.0004 

Cingulum_Mid_R  Postcentral_R  -4.1571 0.0000 

Insula_L  Insula_R  -3.3768 0.0007 

AUD 

 

Cingulum_Mid_R  Rolandic_Oper_L  -3.4844 0.0005 

Precentral_R  Temporal_Sup_R  -3.9688 0.0001 

Precentral_R  Temporal_Sup_R  -3.4575 0.0005 

Frontal_Inf_Tri_R  undefined -3.5114 0.0004 

Frontal_Inf_Tri_R  Temporal_Sup_R  -3.5114 0.0004 
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DMN 

Cingulum_Mid_R  Occipital_Mid_R  -3.4844 0.0005 

Cingulum_Ant_R  Cingulum_Ant_R  -3.3768 0.0007 

VIN 

 

Cingulum_Mid_R  Occipital_Mid_R  -3.3499 0.0008 

Cingulum_Mid_R  Calcarine_R  -3.6190 0.0003 

Cingulum_Mid_R  Calcarine_L  -3.4844 0.0005 

Cingulum_Mid_R  Lingual_R  -3.3499 0.0008 

Cingulum_Mid_R  Cuneus_R  -3.4844 0.0005 

Parietal_Inf_R  Occipital_Mid_L  -3.4844 0.0005 

Parietal_Inf_R  Occipital_Mid_L  -3.8880 0.0001 

Frontal_Mid_R  Occipital_Mid_L  -3.7535 0.0002 

Frontal_Mid_R  Occipital_Inf_R  -3.4037 0.0007 

FPN 

 

Cingulum_Mid_R  Angular_R  -3.4575 0.0005 

Supp_Motor_Area_L  Frontal_Sup_Medial_L  -3.4575 0.0005 

Frontal_Mid_L  Frontal_Inf_Tri_R  -3.3768 0.0007 

Frontal_Mid_L  Frontal_Mid_Orb_R  -3.4575 0.0005 

SAN Cingulum_Ant_R  Frontal_Mid_R  -3.6190 0.0003 

SUB SAN Putamen_L  Frontal_Mid_L  -3.4844 0.0005 

VAN 

 

SMN 

 

Temporal_Mid_L  Precuneus_L  -3.3499 0.0008 

Temporal_Mid_L  Supp_Motor_Area_R  -3.8342 0.0001 
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 Temporal_Mid_L  Paracentral_Lobule_L  -3.7266 0.0002 

Temporal_Mid_L  Paracentral_Lobule_R  -3.8342 0.0001 

Temporal_Sup_L  Paracentral_Lobule_L  -3.5114 0.0004 

Temporal_Sup_L  Precentral_R  -3.5383 0.0004 

Temporal_Sup_L  Postcentral_L  -3.4306 0.0006 

Temporal_Sup_L  Precentral_R  -3.5383 0.0004 

Temporal_Sup_L  Paracentral_Lobule_R  -3.4306 0.0006 

Temporal_Sup_L  Supp_Motor_Area_R  -4.2109 0.0000 

Temporal_Mid_R  Precuneus_L  -3.5652 0.0004 

Temporal_Mid_R  Postcentral_R  -3.5652 0.0004 

Temporal_Mid_R  undefined -3.6728 0.0002 

Frontal_Inf_Tri_L  Precuneus_L  -3.3768 0.0007 

Frontal_Inf_Tri_L  Supp_Motor_Area_R  -3.5114 0.0004 

CON Temporal_Mid_R  Frontal_Sup_R  -3.3499 0.0008 

AUD 

 

Temporal_Mid_L  Temporal_Sup_R  -3.7804 0.0002 

Temporal_Mid_L  Rolandic_Oper_L  -3.3768 0.0007 

Temporal_Mid_L  Temporal_Sup_L  -3.7804 0.0002 

Temporal_Mid_R  Rolandic_Oper_L  -3.7266 0.0002 

DMN Temporal_Sup_R  Precuneus_L  -3.4575 0.0005 
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 Temporal_Sup_R  Precuneus_R  -3.6190 0.0003 

Temporal_Mid_L  Precuneus_L  -3.5921 0.0003 

Temporal_Mid_L  Precuneus_R  -3.7535 0.0002 

Temporal_Sup_L  Temporal_Mid_L  -3.3768 0.0007 

Temporal_Sup_L  Temporal_Pole_Mid_R  -3.8611 0.0001 

Temporal_Sup_L  Precuneus_L  -3.8073 0.0001 

Temporal_Sup_L  Precuneus_L  -3.4037 0.0007 

Temporal_Sup_L  Temporal_Mid_L  -4.0226 0.0001 

Temporal_Sup_L  Temporal_Mid_L  -3.6728 0.0002 

Temporal_Sup_L  Temporal_Mid_L  -3.4575 0.0005 

Temporal_Sup_R  Temporal_Mid_R  -3.6459 0.0003 

Temporal_Mid_R  Temporal_Mid_L  -3.4575 0.0005 

Temporal_Sup_R  Temporal_Mid_L  -3.9150 0.0001 

Temporal_Sup_R  Precuneus_L  -3.5114 0.0004 

VIN 

 

Temporal_Mid_L  Lingual_R  -3.5114 0.0004 

Temporal_Mid_L  Occipital_Mid_R  -3.4844 0.0005 

Temporal_Mid_L  Occipital_Sup_R  -3.5383 0.0004 

Temporal_Sup_L  Cuneus_R  -3.5652 0.0004 

Temporal_Sup_L  Cuneus_L  -3.4575 0.0005 
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Temporal_Sup_R  Occipital_Sup_R  -3.4844 0.0005 

FPN 

 

Temporal_Sup_L  Precentral_L  -3.7804 0.0002 

Temporal_Sup_R  Precentral_L  -3.4844 0.0005 

VAN 

Temporal_Sup_R  Temporal_Mid_L  -3.9419 0.0001 

Temporal_Sup_R  Temporal_Sup_L  -3.3499 0.0008 

DAN 

 

SMN 

 

Temporal_Mid_R  Supp_Motor_Area_L  -3.4037 0.0007 

Temporal_Mid_R  Insula_R  -3.3499 0.0008 

Temporal_Mid_R  Postcentral_R  -3.4306 0.0006 

Precentral_R  Supp_Motor_Area_L  -3.9150 0.0001 

AUD 

 

Temporal_Mid_R  Temporal_Sup_R  -3.4306 0.0006 

Temporal_Mid_R  Postcentral_R  -3.6190 0.0003 

Occipital_Mid_L  SupraMarginal_L  -3.4306 0.0006 

Precentral_L  Temporal_Sup_R  -3.7266 0.0002 

Precentral_R  Temporal_Sup_R  -3.5383 0.0004 

Precentral_R  Temporal_Sup_L  -3.3768 0.0007 

DMN 

 

Temporal_Mid_L  Temporal_Mid_L  -3.9957 0.0001 

Temporal_Mid_L  Precuneus_L  -3.5921 0.0003 

Temporal_Mid_R  Occipital_Mid_L  -3.6190 0.0003 

Temporal_Mid_R  Temporal_Mid_L  -3.6728 0.0002 
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Temporal_Mid_R  Temporal_Mid_L  -3.3499 0.0008 

Temporal_Mid_R  Temporal_Mid_L  -3.4037 0.0007 

Temporal_Mid_R  Fusiform_R  -3.4037 0.0007 

Temporal_Mid_R  Fusiform_L  -3.8880 0.0001 

Parietal_Inf_L  Precuneus_L  -3.5652 0.0004 

Precentral_L  Precuneus_L  -3.4306 0.0006 

Precentral_R  Temporal_Pole_Mid_R  -3.5114 0.0004 

Precentral_R  Precuneus_L  -3.6190 0.0003 

VIN Temporal_Mid_L  Cuneus_L  -3.4306 0.0006 

FPN Parietal_Sup_R  Frontal_Sup_Orb_R  -3.4037 0.0007 

VAN 

 

Occipital_Mid_L  Temporal_Sup_R  -3.3768 0.0007 

Precentral_L  Temporal_Sup_L  -3.4575 0.0005 

Precentral_L  Temporal_Sup_R  -3.5114 0.0004 

Precentral_R  Temporal_Sup_R  -3.6997 0.0002 
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Supplementary file 1F. Robustness of graph-analysis results in different window sizes and 

proportional thresholds. We confirmed that the results of graph analysis comparing the high and 

low encoding states were robust across a range of window sizes (i.e., duration of time window; 7.2 

s, 14.4 s, 21.6 s, 30 s, 36 s, 45 s, and 60 s) and proportional thresholds (0.1, 0.15, 0.2, and 0.25). 

Duration of 
time 

window 
Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

10TR (7.2 s) 

0.10 3.1347 0.0017 1.9238 0.0544 2.1122 0.0347 1.9238 0.0544 

0.15 3.2154 0.0013 0.4440 0.6571 1.3857 0.1658 1.3588 0.1742 

0.20 3.0808 0.0021 -1.3857 0.1658 1.9238 0.0544 1.0090 0.3130 

0.25 3.0270 0.0025 -2.1122 0.0347 2.0315 0.0422 0.9552 0.3395 

20TR (14.4 s) 

0.10 3.6459 0.0003 1.3050 0.1919 2.7580 0.0058 2.4351 0.0149 

0.15 3.6459 0.0003 0.1480 0.8824 1.2781 0.2012 1.9238 0.0544 

0.20 3.7535 0.0002 -2.7580 0.0058 1.7893 0.0736 1.6010 0.1094 

0.25 3.7535 0.0002 -3.4306 0.0006 1.5471 0.1218 1.3319 0.1829 

30TR (21.6 s) 

0.10 3.5652 0.0004 0.0673 0.9464 3.2154 0.0013 1.6548 0.0980 

0.15 3.5652 0.0004 -1.7355 0.0827 3.3768 0.0007 0.9552 0.3395 

0.20 3.5114 0.0004 -3.0001 0.0027 3.1077 0.0019 0.0404 0.9678 

0.25 3.4844 0.0005 -3.3768 0.0007 3.0539 0.0023 -0.7938 0.4273 

41TR (30 s) 

0.10 3.4306 0.0006 -0.7399 0.4593 2.8387 0.0045 1.2781 0.2012 

0.15 3.4037 0.0007 -2.5427 0.0110 1.8162 0.0693 0.4978 0.6186 

0.20 3.5921 0.0003 -3.5921 0.0003 1.0897 0.2758 0.1480 0.8824 
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0.25 3.6728 0.0002 -3.8611 0.0001 1.0897 0.2758 -0.3363 0.7366 

50TR (36 s) 

0.10 3.9150 0.0001 -1.1705 0.2418 3.4575 0.0005 1.3319 0.1829 

0.15 3.8611 0.0001 -3.0808 0.0021 3.5114 0.0004 0.1480 0.8824 

0.20 3.8880 0.0001 -3.6190 0.0003 2.8118 0.0049 -0.5516 0.5812 

0.25 3.7535 0.0002 -3.5921 0.0003 3.3230 0.0009 -1.1705 0.2418 

62TR (45 s) 

0.10 4.0226 0.0001 0.9821 0.3260 3.6190 0.0003 2.2198 0.0264 

0.15 4.0764 0.0000 -2.6503 0.0080 3.8342 0.0001 1.7086 0.0875 

0.20 4.0226 0.0001 -3.4037 0.0007 3.5652 0.0004 1.2243 0.2209 

0.25 4.0226 0.0001 -3.8342 0.0001 3.2423 0.0012 0.2556 0.7982 

83TR (60 s) 

0.10 3.3230 0.0009 -0.3632 0.7164 2.9194 0.0035 2.7311 0.0063 

0.15 3.3499 0.0008 -2.5427 0.0110 3.5652 0.0004 2.0584 0.0396 

0.20 3.5652 0.0004 -3.1077 0.0019 2.1660 0.0303 1.2512 0.2109 

0.25 3.4037 0.0007 -3.5921 0.0003 2.3274 0.0199 0.4440 0.6571 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1G. Results of graph analysis using overlapping sliding windows. We 

confirmed that the results of graph analysis comparing the high and low encoding states were 

unchanged when we used sliding windows (in steps of 1 TR, resulting in 2,100 windows per 

participant). 

Duration 

of time 

window 

Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

36 s 

0.10 3.8880 0.0001 0.1480 0.8824 3.1347 0.0017 2.5427 0.0110 

0.15 3.9419 0.0001 -2.3544 0.0186 3.0539 0.0023 1.8969 0.0578 

0.20 3.8342 0.0001 -3.5383 0.0004 3.2423 0.0012 1.1166 0.2644 

0.25 3.8073 0.0001 -3.6997 0.0002 3.1077 0.0019 0.3363 0.7366 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1H. Results of graph analysis using time series shifted by 5 s. We 

confirmed that the results of graph analysis comparing the high and low encoding states were 

unchanged when we shifted time series (before dividing it into short time windows) by 5 s to take 

the hemodynamic delay of BOLD response into account (5s, according to canonical hemodynamic 

response function provided by SPM12). 

Duration 

of time 

window 

Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

36 s 

0.10 3.9688 0.0001 -0.4709 0.6377 2.8387 0.0045 1.7086 0.0875 

0.15 3.8342 0.0001 -2.4351 0.0149 3.2961 0.0010 0.7938 0.4273 

0.20 3.8611 0.0001 -3.2423 0.0012 3.0539 0.0023 0.1211 0.9036 

0.25 3.8611 0.0001 -3.6728 0.0002 2.7580 0.0058 -0.7399 0.4593 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1I. Results of graph analysis using time series that contain task-related 

signals. We confirmed that the results of graph analysis comparing the high and low encoding 

states were unchanged when we used time series that kept task-related signals instead of residual 

time series. 

 

Duration 

of time 

window 

Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

36 s 

0.10 4.1571 0.00003 0.6323 0.5272 3.3230 0.0009 3.2692 0.0011 

0.15 4.1302 0.0000 -2.0046 0.0450 2.8656 0.0042 2.1660 0.0303 

0.20 4.1033 0.00004 -3.2692 0.0011 3.2423 0.0012 1.0897 0.2758 

0.25 4.1302 0.00004 -3.9688 0.0001 3.0270 0.0025 0.3902 0.6964 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1J. Results of graph analysis including low-confidence hit trials. We 

confirmed that the results of graph analysis comparing the high and low encoding states were 

unchanged when we defined the window-wise encoding performance by using both high- and low-

confidence hit trials (i.e., the number of HH plus LH trials divided by that of the picture trials, 

computed within each time window). 

 

Duration 

of time 

window 

Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

36 s 

0.10 3.1077 0.0019 0.9283 0.3533 2.6772 0.0074 1.4395 0.1500 

0.15 3.2692 0.0011 -1.3857 0.1658 3.3768 0.0007 0.6861 0.4926 

0.20 3.0808 0.0021 -2.4082 0.0160 3.0808 0.0021 0.1480 0.8824 

0.25 2.7849 0.0054 -2.7849 0.0054 3.1885 0.0014 -0.5785 0.5629 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1K. Graph-analysis results using tertiles to classify high and low 

encoding states. In this control analysis, we classified the time windows based on participant-

specific tertiles of window-wise encoding performance, and compared graph metrics between the 

top and bottom tertiles. The proportion of HH trials was 69.7% ± 16.3% (5.58 ± 1.33 trials per 

window) for the top tertile and 28.4 ± 14.4% (2.24 ± 1.13 trials per window) for the bottom 

tertile. 

 

Duration of 
time 

window 
Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

41TR (30 s) 

0.10 3.7429 0.0002 0.4000 0.6892 3.2000 0.0014 1.7143 0.0865 

0.15 3.7429 0.0002 -1.8571 0.0633 3.8571 0.0001 1.3714 0.1702 

0.20 3.7714 0.0002 -3.3429 0.0008 2.8571 0.0043 0.7429 0.4576 

0.25 3.6000 0.0003 -3.7143 0.0002 2.4000 0.0164 0.2286 0.8192 

50TR (36 s) 

0.10 3.9419 0.0001 -0.1480 0.8824 3.8611 0.0001 2.3544 0.0186 

0.15 3.9419 0.0001 -2.3813 0.0173 3.4037 0.0007 1.2781 0.2012 

0.20 3.8880 0.0001 -3.4844 0.0005 2.9463 0.0032 0.5785 0.5629 

0.25 3.8342 0.0001 -3.6728 0.0002 3.4844 0.0005 -0.3632 0.7164 

62TR (45 s) 

0.10 3.7804 0.0002 0.1749 0.8612 3.9688 0.0001 1.3857 0.1658 

0.15 3.9150 0.0001 -2.8387 0.0045 3.9688 0.0001 0.7130 0.4758 

0.20 3.8342 0.0001 -3.5652 0.0004 3.2154 0.0013 0.0404 0.9678 

0.25 3.8073 0.0001 -3.8342 0.0001 2.9732 0.0029 -1.0897 0.2758 

83TR (60 s) 0.10 3.3768 0.0007 0.1749 0.8612 2.1929 0.0283 2.1660 0.0303 
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0.15 3.2154 0.0013 -2.3544 0.0186 3.4037 0.0007 1.4664 0.1425 

0.20 3.1347 0.0017 -3.4575 0.0005 2.6772 0.0074 1.0090 0.3130 

0.25 3.0808 0.0021 -3.5921 0.0003 2.7849 0.0054 0.5785 0.5629 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1L. Graph-analysis results using quartiles to classify high and low 

encoding states. In this control analysis, we classified the time windows based on participant-

specific quartiles of window-wise encoding performance, and compared graph metrics between 

the top and bottom quartiles. The proportion of HH trials was 73.2% ± 16.2% (5.91 ± 1.37 trials 

per window) for the top quartile and 24.7 ± 14.1% (1.94 ± 1.11 trials per window) for the bottom 

quartile. 

 

Duration of 
time 

window 
Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

41TR (30 s) 

0.10 4.2378 0.0000 -0.6323 0.5272 3.5383 0.0004 1.8700 0.0615 

0.15 4.2109 0.0000 -2.7041 0.0068 3.7266 0.0002 1.1435 0.2528 

0.20 4.2109 0.0000 -3.5921 0.0003 3.3499 0.0008 0.4978 0.6186 

0.25 4.0226 0.0001 -4.1033 0.0000 2.9732 0.0029 -0.1480 0.8824 

50TR (36 s) 

0.10 3.5383 0.0004 -0.2287 0.8191 3.3499 0.0008 2.1391 0.0324 

0.15 3.5652 0.0004 -2.0315 0.0422 3.0270 0.0025 0.8745 0.3819 

0.20 3.4844 0.0005 -3.1347 0.0017 2.7041 0.0068 0.2018 0.8401 

0.25 3.4575 0.0005 -3.4575 0.0005 2.6772 0.0074 -0.8476 0.3967 

62TR (45 s) 

0.10 3.5383 0.0004 0.1480 0.8824 3.5652 0.0004 1.9508 0.0511 

0.15 3.7535 0.0002 -2.3274 0.0199 3.3230 0.0009 1.0628 0.2879 

0.20 3.6728 0.0002 -3.2961 0.0010 2.2736 0.0230 0.7938 0.4273 

0.25 3.5921 0.0003 -3.6190 0.0003 2.0853 0.0370 -0.1211 0.9036 

83TR (60 s) 0.10 3.5921 0.0003 0.2825 0.7775 3.2692 0.0011 2.6234 0.0087 
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0.15 3.4306 0.0006 -3.0539 0.0023 3.5114 0.0004 1.7893 0.0736 

0.20 3.4575 0.0005 -3.5652 0.0004 2.9463 0.0032 0.8207 0.4118 

0.25 3.4844 0.0005 -3.5921 0.0003 3.0270 0.0025 -0.1480 0.8824 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.
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Supplementary file 1M. Results of graph analysis controlling for time passed within a 

session or across sessions. We confirmed that the results of graph analysis comparing the high 

and low encoding states were unchanged when we regressed out the effect of the amount of time 

passed within sessions (defined by a dummy variable denoting the order of windows [1, 2, 3, … 

15] in each session) or time passed across sessions (defined by a dummy variable denoting 

session ID [1, 1, … 2, 2, … 3, 3, …]) on a window-by-window basis. 

 

Covariate 

Eg Eloc PC Modularity 

z P z P z P z P 

Time passed within each session, 
linear 

3.5383 0.0004 -3.1077 0.0019 3.0270 0.0025 0.2018 0.8401 

Time passed within each session, 
quadratic 

3.8611 0.0001 -2.9732 0.0029 3.4306 0.0006 0.2287 0.8191 

Time passed across sessions, 
linear 

3.8880 0.0001 -3.2423 0.0012 3.5114 0.0004  0.0942 0.925 

Time passed across sessions, 
quadratic 

3.7804 0.0002 -3.2961 0.0010 3.3499 0.0008 0.3902 0.6964 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1N. Results of control analysis testing effect of proportion of picture 

trials. In this control analysis, we classified the time windows based on the proportion of the 

picture trials and compared the graph metrics between “more pic” and “fewer pic” periods. 

 

Duration 

of time 

window 

Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

36 s 

0.10 0.3363 0.7366 -0.9283 0.3533 -0.4978 0.6186 0.5247 0.5998 

0.15 0.5247 0.5998 -0.2287 0.8191 -0.6861 0.4926 0.7399 0.4593 

0.20 0.2556 0.7982 0.4709 0.6377 -0.5247 0.5998 0.9552 0.3395 

0.25 0.4171 0.6766 0.2018 0.8401 -0.6861 0.4926 0.6592 0.5098 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1O. Results of control analysis testing effect of reaction time for 

semantic judgment. In this control analysis, we classified the time windows based on mean RT 

(computed within each time window) for semantic judgment and compared the graph metrics 

between “longer RT” and “shorter RT” periods.  

 

Duration 

of time 

window 

Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

36 s 

0.10 -1.3588 0.1742 0.7668 0.4432 -1.2781 0.2012 -0.4709 0.6377 

0.15 -1.9508 0.0511 1.4126 0.1578 -1.7893 0.0736 -0.4440 0.6571 

0.20 -2.0046 0.0450 1.6010 0.1094 -0.9014 0.3674 -0.1211 0.9036 

0.25 -1.8969 0.0578 1.8700 0.0615 -0.9552 0.3395 0.2018 0.8401 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1P. 285 ROIs included in 11 subnetworks of the Gordon atlas.  

ROI ID 

 

MNI coordinates 

 

Assigned 
network 

 

x y z 

1 -18.80 -48.70 65.00 SMN 

2 -10.70 -47.50 60.30 SMN 

3 -15.60 -33.10 66.10 SMN 

4 -10.90 -29.30 69.50 SMN 

5 -6.60 -20.40 74.20 SMN 

6 -10.80 -41.10 64.90 SMN 

7 -5.00 -28.20 60.40 SMN 

8 -5.40 -15.90 48.80 SMN 

9 -35.80 -29.70 54.50 SMN 

10 -36.80 -22.80 61.90 SMN 

11 -20.50 -24.90 64.50 SMN 

12 -23.40 -13.80 64.20 SMN 

13 -17.20 -8.60 67.90 SMN 

14 -28.60 -44.70 61.70 SMN 

15 -54.10 -21.30 40.80 SMN 
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16 -35.20 -35.30 42.00 SMN 

17 -27.50 -37.20 61.40 SMN 

18 -47.20 -31.40 54.80 SMN 

19 20.80 -48.20 66.10 SMN 

20 16.50 -32.80 67.70 SMN 

21 4.80 -27.10 64.80 SMN 

22 11.90 -40.70 67.00 SMN 

23 5.10 -17.10 51.60 SMN 

24 6.80 -8.10 50.90 SMN 

25 38.10 -22.40 60.30 SMN 

26 19.70 -25.00 65.20 SMN 

27 12.40 -28.30 69.60 SMN 

28 29.20 -13.50 64.20 SMN 

29 17.00 -16.90 70.90 SMN 

30 20.90 -6.40 65.00 SMN 

31 29.50 -42.50 60.40 SMN 

32 34.20 -40.60 51.60 SMN 

33 39.60 -31.50 39.70 SMN 

34 28.00 -34.80 63.10 SMN 

35 39.20 -34.60 57.50 SMN 

36 37.30 -25.90 50.90 SMN 
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37 48.70 -26.10 52.20 SMN 

38 53.00 -22.70 39.10 SMN 

39 -51.80 -7.80 38.50 SMN 

40 -41.50 -12.50 50.40 SMN 

41 -51.50 -11.90 29.70 SMN 

42 -46.10 -17.80 52.70 SMN 

43 49.60 -7.40 36.10 SMN 

44 42.30 -11.00 47.30 SMN 

45 53.90 -8.30 26.10 SMN 

46 47.80 -15.10 49.30 SMN 

47 -16.60 -36.10 42.70 CON 

48 -9.40 -0.10 42.90 CON 

49 -8.40 14.60 33.80 CON 

50 -9.00 25.30 27.70 CON 

51 -8.00 -8.70 62.90 CON 

52 -42.10 -4.50 47.30 CON 

53 -57.70 -40.60 35.80 CON 

54 -38.70 -16.00 -5.30 CON 

55 -39.10 -1.60 -12.20 CON 

56 -37.70 2.90 11.70 CON 

57 -36.60 1.40 6.40 CON 
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58 -37.30 8.90 -0.90 CON 

59 -28.80 23.70 8.40 CON 

60 -59.80 -4.10 8.80 CON 

61 -55.10 -32.30 23.00 CON 

62 -58.80 -23.90 31.00 CON 

63 -51.80 -0.60 5.00 CON 

64 -48.60 7.50 11.10 CON 

65 -26.60 46.80 20.90 CON 

66 -28.80 38.30 28.20 CON 

67 16.20 -33.10 43.20 CON 

68 6.70 5.00 55.90 CON 

69 8.60 4.20 40.10 CON 

70 8.80 10.80 45.90 CON 

71 6.00 21.80 32.40 CON 

72 16.20 0.80 67.50 CON 

73 8.00 -6.20 63.70 CON 

74 42.50 -2.30 47.20 CON 

75 57.50 -40.30 34.70 CON 

76 54.90 -27.00 29.60 CON 

77 38.80 -14.40 -5.00 CON 

78 39.70 1.20 -13.10 CON 
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79 36.70 5.20 12.70 CON 

80 39.60 10.40 -1.60 CON 

81 36.50 5.70 6.00 CON 

82 33.70 22.60 3.70 CON 

83 34.00 24.40 10.00 CON 

84 50.10 3.00 3.90 CON 

85 24.40 50.80 24.30 CON 

86 31.30 39.70 25.60 CON 

87 -6.10 -26.00 28.50 CON 

88 -12.70 -64.90 31.80 CON 

89 -10.90 -73.40 42.90 CON 

90 7.60 -27.00 28.40 CON 

91 15.60 -69.50 39.60 CON 

92 -32.00 -29.30 15.60 AUD 

93 -46.30 -41.40 25.90 AUD 

94 -35.80 -33.50 19.90 AUD 

95 -52.70 -20.60 5.40 AUD 

96 -59.60 -38.50 16.50 AUD 

97 -58.70 -29.90 11.10 AUD 

98 -40.60 -38.30 14.50 AUD 

99 -33.70 -21.80 9.90 AUD 
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100 -37.20 -14.00 19.40 AUD 

101 -52.20 -14.10 15.20 AUD 

102 -50.60 -22.40 19.20 AUD 

103 -54.40 -1.40 -0.70 AUD 

104 33.60 -22.30 13.00 AUD 

105 36.40 -30.70 19.40 AUD 

106 53.80 -15.80 5.20 AUD 

107 59.20 -38.60 14.60 AUD 

108 61.70 -24.00 1.30 AUD 

109 60.00 -25.20 10.20 AUD 

110 38.40 -12.20 20.00 AUD 

111 36.60 -10.00 12.40 AUD 

112 60.90 -2.20 10.70 AUD 

113 54.20 -13.60 16.90 AUD 

114 39.70 -22.50 2.60 AUD 

115 55.80 2.00 -2.00 AUD 

116 -11.20 -52.40 36.50 DMN 

117 -11.70 26.70 57.00 DMN 

118 -47.20 -58.00 30.80 DMN 

119 -5.60 42.20 35.10 DMN 

120 -1.70 -17.70 39.10 DMN 
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121 -19.50 30.10 45.50 DMN 

122 -39.30 -73.90 38.30 DMN 

123 -27.50 53.60 0.00 DMN 

124 -5.90 54.80 -11.30 DMN 

125 -6.80 38.20 -9.40 DMN 

126 -63.20 -28.70 -7.20 DMN 

127 -53.10 -11.40 -16.00 DMN 

128 -15.90 48.60 37.20 DMN 

129 -19.50 56.30 27.50 DMN 

130 -6.50 54.70 18.10 DMN 

131 -15.70 64.70 13.70 DMN 

132 -6.00 44.90 6.30 DMN 

133 -26.20 26.60 38.80 DMN 

134 -29.30 16.80 50.70 DMN 

135 -41.70 16.10 47.50 DMN 

136 12.30 -51.60 34.50 DMN 

137 11.90 21.90 59.90 DMN 

138 7.70 44.10 5.50 DMN 

139 3.00 -19.60 37.90 DMN 

140 21.90 21.00 46.20 DMN 

141 48.90 -53.00 28.60 DMN 
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142 62.50 -25.60 -5.50 DMN 

143 7.40 -69.30 49.90 DMN 

144 46.50 -67.30 36.20 DMN 

145 7.20 48.40 -10.10 DMN 

146 57.50 -7.40 -16.40 DMN 

147 21.00 32.80 42.10 DMN 

148 21.40 42.80 35.10 DMN 

149 16.00 61.00 19.80 DMN 

150 8.20 53.80 14.00 DMN 

151 5.90 54.90 29.40 DMN 

152 13.80 46.70 42.10 DMN 

153 6.80 44.50 34.80 DMN 

154 30.60 18.90 48.70 DMN 

155 54.40 1.10 -12.90 DMN 

156 -18.40 -85.50 21.60 VIN 

157 -16.80 -60.10 -5.40 VIN 

158 -11.30 -83.20 3.90 VIN 

159 -22.00 -58.10 1.50 VIN 

160 -9.60 -58.00 3.00 VIN 

161 -16.70 -46.00 -3.70 VIN 

162 -13.70 -77.40 26.60 VIN 
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163 -31.30 -84.20 9.00 VIN 

164 -34.20 -86.60 -0.50 VIN 

165 -43.40 -67.60 9.70 VIN 

166 -28.80 -58.80 -9.10 VIN 

167 -34.40 -63.90 -15.70 VIN 

168 -34.30 -43.80 -21.60 VIN 

169 -5.40 -88.00 18.60 VIN 

170 -8.60 -77.50 -3.50 VIN 

171 -41.20 -72.10 -5.90 VIN 

172 -25.20 -97.20 -7.90 VIN 

173 -22.60 -81.70 -11.70 VIN 

174 22.00 -84.60 23.70 VIN 

175 22.30 -46.50 -9.90 VIN 

176 15.50 -74.10 9.40 VIN 

177 19.60 -45.30 -4.40 VIN 

178 15.60 -59.60 -5.00 VIN 

179 26.80 -55.00 54.20 VIN 

180 17.60 -78.30 34.00 VIN 

181 7.70 -85.60 31.60 VIN 

182 35.40 -77.10 21.10 VIN 

183 31.70 -85.70 2.40 VIN 
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184 43.80 -67.20 2.00 VIN 

185 47.30 -52.40 -11.70 VIN 

186 49.00 -54.50 8.80 VIN 

187 31.20 -45.60 -5.80 VIN 

188 26.90 -69.10 -6.60 VIN 

189 34.90 -44.00 -20.00 VIN 

190 13.80 -92.30 14.70 VIN 

191 10.50 -73.80 -1.50 VIN 

192 20.40 -87.30 -6.60 VIN 

193 5.10 -80.20 23.10 VIN 

194 14.60 -70.30 23.30 VIN 

195 -38.10 48.80 10.50 FPN 

196 -55.90 -47.70 -9.30 FPN 

197 -5.50 29.30 44.00 FPN 

198 -40.30 50.40 -4.80 FPN 

199 -34.10 -61.00 42.40 FPN 

200 -43.00 19.40 33.50 FPN 

201 -40.20 23.60 23.30 FPN 

202 -21.30 63.10 1.90 FPN 

203 -28.60 50.90 10.10 FPN 

204 47.90 -42.50 41.50 FPN 
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205 38.10 45.90 7.70 FPN 

206 59.70 -41.00 -10.90 FPN 

207 7.00 25.70 47.30 FPN 

208 42.80 48.30 -5.10 FPN 

209 41.50 -53.50 44.00 FPN 

210 35.70 -56.70 45.20 FPN 

211 37.80 28.70 35.60 FPN 

212 41.80 29.10 21.60 FPN 

213 38.60 18.80 25.50 FPN 

214 28.40 57.00 -5.10 FPN 

215 23.50 59.10 4.90 FPN 

216 30.90 52.20 9.90 FPN 

217 42.40 19.50 48.20 FPN 

218 38.90 9.60 42.70 FPN 

219 -10.00 33.90 21.50 SAN 

220 -32.50 17.20 -7.80 SAN 

221 8.40 34.70 22.60 SAN 

222 30.60 22.80 -4.70 SAN 

223 -3.80 12.10 64.60 VAT 

224 -44.80 -54.00 14.60 VAT 

225 -51.60 -55.90 11.40 VAT 
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226 -48.10 -40.00 2.40 VAT 

227 -50.00 20.80 10.60 VAT 

228 -47.20 39.00 -9.10 VAT 

229 -29.10 20.50 -14.00 VAT 

230 -44.30 33.20 -7.20 VAT 

231 -45.40 28.80 0.80 VAT 

232 -38.70 4.80 48.40 VAT 

233 -59.00 -18.00 -3.00 VAT 

234 57.50 -45.30 9.00 VAT 

235 60.90 -38.70 1.70 VAT 

236 57.10 -17.00 -2.60 VAT 

237 47.40 -39.60 13.20 VAT 

238 45.50 -37.30 3.40 VAT 

239 48.50 -26.50 -0.10 VAT 

240 52.50 23.70 10.30 VAT 

241 48.10 38.30 -9.20 VAT 

242 45.20 30.70 -5.60 VAT 

243 27.40 19.70 -14.90 VAT 

244 57.10 -6.30 -7.70 VAT 

245 46.60 -21.50 -8.50 VAT 

246 -27.30 -6.80 46.30 DAT 
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247 -27.30 1.90 52.90 DAT 

248 -19.80 6.40 55.70 DAT 

249 -21.30 -0.20 62.70 DAT 

250 -31.10 -48.90 47.10 DAT 

251 -42.90 -45.00 43.00 DAT 

252 -51.70 -30.90 39.90 DAT 

253 -43.60 36.30 8.50 DAT 

254 -20.40 -64.60 51.40 DAT 

255 -25.80 -65.00 32.20 DAT 

256 -9.90 -56.90 59.80 DAT 

257 -7.10 -63.70 54.90 DAT 

258 -30.00 -74.10 36.10 DAT 

259 -46.20 -57.70 -7.90 DAT 

260 -45.20 2.70 32.40 DAT 

261 -34.70 5.60 34.00 DAT 

262 -37.60 38.40 17.20 DAT 

263 -41.60 8.70 22.20 DAT 

264 -35.70 33.10 32.00 DAT 

265 10.30 -57.30 58.30 DAT 

266 29.20 1.90 52.40 DAT 

267 29.90 -7.80 47.40 DAT 
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268 22.60 5.60 57.60 DAT 

269 38.80 -42.60 40.40 DAT 

270 36.80 37.80 13.10 DAT 

271 48.10 38.40 2.40 DAT 

272 23.00 -66.40 51.80 DAT 

273 32.30 -63.60 33.80 DAT 

274 33.50 -48.20 49.40 DAT 

275 57.00 -53.80 -1.10 DAT 

276 47.30 2.00 37.60 DAT 

277 46.60 7.80 19.30 DAT 

278 -14.40 -57.80 18.40 RST 

279 -8.80 -49.80 4.20 RST 

280 -33.80 -33.20 -15.40 RST 

281 -22.50 -37.10 -15.00 RST 

282 13.80 -54.10 10.90 RST 

283 34.60 -35.60 -12.30 RST 

284 34.60 -23.90 -20.40 RST 

285 24.50 -36.20 -13.20 RST 

 

Note. SMN, sensorimotor networks; CON, cingulo-opercular network; CPN: Cingulo-Parietal network; AUD, auditory 
network; DMN, default mode network; VIN, visual network; FPN, fronto-parietal network; SAN, salience network; 
VAN, ventral attention network; DAN, dorsal attention network; RST: Retrosplenial temporal network.  
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Supplementary file 1Q. Graph-analysis results using 285 ROIs from the Gordon atlas. 

 

Duration of 
time 

window 
Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

41TR (30 s) 

0.10 3.9150 0.0001 0.5516 0.5812 2.5427 0.0110 2.1122 0.0347 

0.15 3.8880 0.0001 -1.0628 0.2879 2.7849 0.0054 1.8162 0.0693 

0.20 3.9419 0.0001 -3.6997 0.0002 2.0853 0.0370 1.4664 0.1425 

0.25 3.9688 0.0001 -3.8073 0.0001 2.4351 0.0149 1.1166 0.2641 

50TR (36 s) 

0.10 3.8342 0.0001 -0.4978 0.6186 3.1616 0.0016 1.6548 0.0980 

0.15 3.8611 0.0001 -3.1077 0.0019 2.6772 0.0074 1.1705 0.2418 

0.20 3.8342 0.0001 -3.8611 0.0001 3.1616 0.0016 0.2556 0.7982 

0.25 3.8880 0.0001 -3.9419 0.0001 3.4037 0.0007 -0.2018 0.8401 

62TR (45 s) 

0.10 3.7804 0.0002 1.3857 0.1658 3.5383 0.0004 3.1885 0.0014 

0.15 3.9419 0.0001 -2.2736 0.0230 3.1616 0.0016 2.8118 0.0049 

0.20 3.9957 0.0001 -3.6190 0.0003 3.3230 0.0009 1.8969 0.0578 

0.25 4.0226 0.0001 -3.7535 0.0002 2.4351 0.0149 1.6817 0.0926 

83TR (60 s) 

0.10 3.8073 0.0001 0.4709 0.6377 2.3813 0.0173 3.0808 0.0021 

0.15 3.6190 0.0003 -2.7311 0.0063 2.8387 0.0045 2.5696 0.0102 

0.20 3.6728 0.0002 -3.5114 0.0004 2.8925 0.0038 1.9508 0.0511 
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0.25 3.5652 0.0004 -3.7535 0.0002 3.1616 0.0016 0.9821 0.3260 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1R. Graph-analysis results using 226 ROIs from the Power atlas 

combining with the bilateral hippocampus ROIs derived from Kim’s meta-analysis. 

 

Duration of 
time 

window 
Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

41TR (30 s) 

0.10 3.8611 0.0001 -0.2018 0.8401 3.2154 0.0013 1.6817 0.0926 

0.15 4.0495 0.0001 -2.1929 0.0283 3.5652 0.0004 1.2781 0.2012 

0.20 4.0764 0.0000 -3.6997 0.0002 2.7849 0.0054 0.5785 0.5629 

0.25 3.9957 0.0001 -3.9419 0.0001 2.8118 0.0049 -0.0135 0.9893 

50TR (36 s) 

0.10 3.8880 0.0001 -1.4126 0.1578 3.4844 0.0005 1.1435 0.2528 

0.15 3.8611 0.0001 -3.1077 0.0019 3.1077 0.0019 0.2825 0.7775 

0.20 3.8880 0.0001 -3.5921 0.0003 2.5965 0.0094 -0.7399 0.4593 

0.25 3.6728 0.0002 -3.6728 0.0002 3.0270 0.0025 -1.2512 0.2109 

62TR (45 s) 

0.10 4.0226 0.0001 1.1974 0.2312 3.5652 0.0004 2.1660 0.0303 

0.15 4.0495 0.0001 -2.5965 0.0094 4.0495 0.0001 1.8700 0.0615 

0.20 4.0226 0.0001 -3.4844 0.0005 2.9732 0.0029 1.3588 0.1742 

0.25 4.0226 0.0001 -3.8073 0.0001 3.1347 0.0017 0.2556 0.7982 

83TR (60 s) 

0.10 3.3768 0.0007 -0.5785 0.5629 2.9463 0.0032 2.4889 0.0128 

0.15 3.4306 0.0006 -2.5696 0.0102 3.5383 0.0004 1.9508 0.0511 

0.20 3.5652 0.0004 -3.2692 0.0011 2.2736 0.0230 1.0897 0.2758 
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0.25 3.4306 0.0006 -3.6459 0.0003 2.2736 0.0230 0.3632 0.7164 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1S. Edge stability analysis. 

 

Threshold 

High encoding state 

(Real vs. Randomized) 

Low encoding state 

(Real vs. Randomized) 

High vs. low encoding 
states 

z P z P z P 

0.1 4.3724 0.00001 4.3724 0.00001 0.0042 2.8656 

0.15 4.3726 0.00001 4.3724 0.00001 0.0926 1.6817 

0.2 4.3724 0.00001 4.3724 0.00001 0.2699 1.1033 

0.25 4.3724 0.00001 4.3724 0.00001 0.0455 2.0000 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests. Comparisons between the real and randomized 
networks gave the same results in most cases because the signed ranks were identical.  
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Supplementary file 1T. Results of additional analysis using adjusted graph metrics. We 

computed “adjusted” graph metrics by regressing out overall FC on a window-by-window basis. 

 

Duration 

of time 

window 

Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

36 s 

0.10 0.2825 0.7775 -0.3094 0.7570 1.4126 0.1578 0.8745 0.3819 

0.15 0.0942 0.9250 -0.7130 0.4758 0.0673 0.9464 0.4171 0.6766 

0.20 -1.0090 0.3130 -0.0942 0.9250 -0.1211 0.9036 0.2018 0.8401 

0.25 -1.0090 0.3130 -0.0404 0.9678 0.4440 0.6571 -0.2018 0.8401 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests. Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.
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Supplementary file 1U. Graph-analysis results from the group of 13 subjects showing the 

minimal difference in FD between high and low encoding states. 

 

Duration of 
time 

window 
Threshold 

Eg Eloc PC Modularity 

Signed 
rank 

P 
Signed 
rank 

P 
Signed 
rank 

P 
Signed 
rank 

P 

41TR (30 s) 

0.10 87 0.0017 46 1.0000 74 0.0479 65 0.1909 

0.15 90 0.0005 29 0.2734 78 0.0215 57 0.4548 

0.20 90 0.0005 7 0.0046 73 0.0574 53 0.6355 

0.25 89 0.0007 1 0.0005 63 0.2439 46 1.0000 

50TR (36 s) 

0.10 90 0.0005 49 0.8394 72 0.0681 53 0.6355 

0.15 89 0.0007 24 0.1465 84 0.0046 44 0.9460 

0.20 90 0.0005 6 0.0034 69 0.1099 38 0.6355 

0.25 85 0.0034 9 0.0081 70 0.0942 30 0.3054 

62TR (45 s) 

0.10 90 0.0005 67 0.1465 91 0.0002 69 0.1099 

0.15 91 0.0002 17 0.0479 87 0.0017 63 0.2439 

0.20 91 0.0002 10 0.0105 85 0.0034 64 0.2163 

0.25 91 0.0002 0 0.0002 87 0.0017 52 0.6848 

83TR (60 s) 

0.10 76 0.0327 60 0.3396 68 0.1272 74 0.0479 

0.15 74 0.0479 38 0.6355 82 0.0081 76 0.0327 
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0.20 80 0.0134 24 0.1465 48 0.8926 72 0.0681 

0.25 77 0.0266 10 0.0105 50 0.7869 71 0.0803 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level.  
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Supplementary file 1V. Graph-analysis results using 32P+scrubbing denosing.  

 

Duration of 
time 

window 
Threshold 

Eg Eloc PC Modularity 

z P z P z P z P 

41TR (30 s) 

0.10 4.1302 0.00004 0.2287 0.8191 2.3544 0.0186 2.7041 0.0068 

0.15 4.2917 0.00002 -1.2781 0.2012 1.1705 0.2418 2.5965 0.0094 

0.20 4.2647 0.00002 -3.1077 0.0019 1.6279 0.1036 2.1660 0.0303 

0.25 4.2917 0.00002 -3.9419 0.0001 1.0628 0.2879 1.7355 0.0827 

50TR (36 s) 

0.10 3.8342 0.00013 1.1705 0.2418 2.5965 0.0094 2.9732 0.0029 

0.15 4.0495 0.00005 -1.1435 0.2528 3.1616 0.0016 2.4620 0.0138 

0.20 4.0495 0.00005 -2.7580 0.0058 2.5965 0.0094 2.1122 0.0347 

0.25 4.2109 0.00003 -3.8611 0.0001 3.0808 0.0021 1.5471 0.1218 

62TR (45 s) 

0.10 4.1840 0.00003 1.6817 0.0926 2.3274 0.0199 3.2154 0.0013 

0.15 4.2917 0.00002 -0.9014 0.3674 2.5696 0.0102 3.1616 0.0016 

0.20 4.2647 0.00002 -3.0001 0.0027 3.2154 0.0013 2.5427 0.0110 

0.25 4.2647 0.00002 -3.9957 0.0001 3.3768 0.0007 2.0315 0.0422 

83TR (60 s) 

0.10 3.1885 0.00143 -0.1749 0.8612 0.0404 0.9678 3.0270 0.0025 

0.15 3.6728 0.00024 -1.3588 0.1742 1.6548 0.0980 2.8656 0.0042 

0.20 3.6728 0.00024 -2.4082 0.0160 1.2512 0.2109 2.6234 0.0087 
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0.25 3.7266 0.00019 -3.9957 0.0001 2.0584 0.0396 2.4620 0.0138 

 

Notes. Statistics are derived from Wilcoxon signed-rank tests.  Graph metrics (Eg: global efficiency; Eloc: local 
efficiency; PC: participation coefficient; Modularity) were computed at the entire-network level. 
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CHAPTER 4 

CONCLUSION 

 

In the topic 1, we investigated whether the intrinsic fluctuations (here we defined as LFFs) can 

account for subsequent memory performance.  Our findings demonstrate that prestimulus LFFs in 

the SME related regions can predict whether the encoding trial will be remembered. Specifically, 

the higher LFFs amplitude was observed before the stimulus later remembered indicating that 

LFFs in these brain regions benefit for memory encoding. In contrast, before the stimulus later 

forgotten, we observed stronger LFFs functional connectivity from the fusiform gyrus to the brain 

regions inside the CO network. Together, our findings indicate the effect of LFFs to memory 

encoding processes providing compelling evidence to support the view that LFFs (independent 

from task-evoked responses) can account for the variability in task performances and later 

observed behaviors. 

In the topic 2, we analyzed time-varying FC patterns during an incidental encoding task, 

and found that dynamic reconfiguration of a large-scale functional brain network was associated 

with encoding performance. The periods of high encoding performance were characterized by 

greater network integration, mainly driven by inter-subnetwork integration between the 

subcortical, default mode, and visual networks. Our findings provide a better understanding of the 

neural mechanisms of memory encoding, highlighting the importance of orchestration across many 

distinct brain systems. 
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