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ABSTRACT 

 
Reorganization of Resting-State Functional Connectivity with a Feature-Representation 

Region after Visual Perceptual Training: an fMRI Study 

 

How quickly and accurately we extract important signals from our highly complex 

environment and making decisions rely on our perceptual ability [3]. Training or repeated 

exposure to a specific feature can improve perceptual ability and cause neural rewiring in the 

brain. This wave of research challenges demand to better understand some of core research 

questions include “how does the brain change with learning (online insight)?” and “how does 

it change after learning (offline insight)?”. 

Addressing these central questions would allow developing new and more effective 

interventions regarding individual variability in learning and is going to enable the next great 

advances in neuroscience.   

This dissertation aims to present both “online” and “offline” insights of the neural 

mechanisms underlying visual perceptual learning (VPL) by obtaining resting-state functional 

magnetic resonance imaging (fMRI) scans of human brains before and after a task fMRI 

session involving visual perceptual training. During the task-fMRI session, participants 

performed a motion discrimination task in which they judged the direction of moving dots 

with a coherence level that varied between trials. The main results include (i) examining 

neural activations during “online” training, (ii) neural activations changes between two 

separate days, (iii) functional connectivity change before and after task and, (iv) relationship 

between resting-state functional connectivity changes and VPL after training. Here, we 

suggest that around 20 minutes of perceptual training induces plastic changes in offline 

functional connectivity specifically in brain regions representing the trained visual feature. 

Further our results emphasized the distinct roles of feature-representation regions and 

decision-related regions in VPL. 
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Chapter 1 

TERMINOLOGY 

 

 

Less than three decades ago it was believed that after about puberty the human brain 

could not change and by the time it has become hard-wired and fixed [59]. However great 

amounts of studies showed that the brain never stops changing and in fact reorganizes itself 

through learning. Another misconception about the brain was that we only use parts of it at 

any given time and it is silent when we do nothing. It is found by research studies that even 

when we are at a rest and thinking of nothing, our brain is highly active. Advances in 

technology, such as Magnetic Resonance Imaging (MRI) and functional MRI (fMRI) paved 

the path for scientists to make aforementioned important discoveries. One of these interesting 

discoveries is that every time we learn a skill, we change our brain which has become a great 

frontier in neuroscience to understand the human brain. This chapter is organized introduce 

some of the main terminologies relevant to “how do we learn?” and “how does the brain 

change with learning?”  
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1.1 Neuroplasticity 
 

 

Learning is the ability to acquire new knowledge or skills through instruction or 

experience and that the capacity of the brain to change with experience and learning is called 

brain plasticity or neuroplasticity [1, 3]. According to prior studies the brain can change in 

three very basic ways to support learning [59], including (a) chemical changes (b) structural 

changes and, and (c) functional changes (see Fig 1 and Fig 2). 

 

 

(a) Chemical changes 

 

The brain functions by transferring chemicals signals between brain cells, which is called 

neurons. To support learning, the brain can increase the concentrations of these chemical 

signaling that is taking place between neurons (see Fig 1). Because this change can happen 

rapidly, this supports short-term improvement in the performance of a skill or memory.  

 

 

 

Figure 1. Neurons communication. 

Information from one neuron flows to another neuron across a small gap called a synapse.  

At the synapse, electrical signals are translated into chemical signals in order to  

cross the gap [60]. 
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(b) Structural changes 

 

The second way that the brain can change to support learning is by altering its structure. 

Here the physical structure of the brain is changing and this takes a bit more time. These type 

of changes are related to long-term improvement in a skill or memory. A remarkable example 

of this type of plasticity is the study that showed London taxi drivers have a larger 

hippocampus than London bus drivers. It is because taxi drivers have to memorize a map of 

London in order to navigate around London whereas bus drivers follow a limited set of routes. 

 

 

(c) Functional changes 

 

The third way that the brain can change to support learning is by altering its function. As 

a brain region is getting used it becomes more and more excitable and easier for the brain to 

use it again and travel its pathway. Brain includes these areas that increase their excitability, 

accordingly the brain shifts how and when they are activated. With learning, whole networks 

of brain activity are shifting and changing. So neuroplasticity is supported by chemical, by 

structural, and by functional changes, and these are happening across the whole brain. They 

can occur in isolation from one or another, but most often, they take place in concert. 

Together, they support learning and they're taking place all the time.  
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Figure 2. Neuroplasticity Types. 

Schematic illustration of chemical, structural and functional changes occurs  

in the brain as the effect of learning. 
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1.2 Learning 
 

 

Learning means the degree to adapting to the environment and responding to changes 

in it. It also refers to the process by which experiences change the nervous system and the 

behavior. Learning can take at least four basic forms: perceptual learning, stimulus-response 

learning, motor learning, and relational learning [63]. The main focus of the current thesis is 

on perceptual learning per se.  

 

What is perceptual learning? 

 

The ability to recognize stimuli that have been perceived before is called perceptual 

learning. It can involve learning to recognize entirely new stimuli, or it can involve learning 

to recognize changes or variations in familiar stimuli [3]. 

Perceptual learning and neuroplasticity have been studied in all the sensory modalities 

including vision, hearing, and touch perception [61, 62] and primarily accomplished by 

changes in the sensory association cortex. The focus of the current thesis is on vision modality 

per se. 

 

 

1.3 Visual Perceptual Learning  
 

 

Repeated exposure to a specific visual feature improves perceptual sensitivity and 

behavioural accuracy to the trained feature [1–3]. This process is known as visual perceptual 

learning (VPL), and is considered an effective tool for exploring experience-dependent 

plasticity in the brain [4–6]. For example, radiologists can identify a tumor from the pattern of 

spots on an X-ray scan easily, jewelers routinely classify diamonds that appear very similar to 

the uninitiated into different grades with high precision, whereas it is impossible for an 

untrained person to perform these skills. Such feats are possible because the experts’ eyes are 

trained through practice and experience. 

 

Therefore, VPL is regarded as an important tool that can help to clarify the mechanisms of 

adult visual and brain plasticity.  
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1.4 Models of Visual Perceptual learning  
 

 

Visual processing consists of many different stages leading from eyes to cortical 

areas for cognitive processes such as decision making (see Fig 3). It is unlikely that all 

types of visual perceptual learning sharing common cortical stages. The stages in which 

one type of visual perceptual learning occurs may depend on many factors, including the 

learned visual feature such as orientation and contrast, the type of tasks such as a 

detection task or a discrimination task, and exposure to a feature without a task [3,4]. For 

instance, some types of visual perceptual learning may only involve lower stages of visual 

processing, such as V1, while other types of visual perceptual learning may involve 

multiple stages of visual processing. Models of different mechanisms are proposed 

depending on the stages [66]. The following three models fit well with different types of 

perceptual learning that take place in different stages of the visual processing stream. 
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(a) Early stage, local network model:  

 

In this model, the neural reorganization due to perceptual learning can occur in a 

low-level cortex, including the primary visual cortex (V1), which is the first visual cortex 

onto which visual signals are projected [4,64,65]. This model indicates the mechanism of a 

type of perceptual learning that can involve only one level of visual processing and suggests 

that perceptual learning does not necessarily require lower-to-higher or higher-to lower 

connections between different cortical areas at different stages of visual processing (see Fig 

3). 

 

 

(b) Mid-level stage, reweighting:  

 

In this model [67], learning occurs by changing the strength (reweighting) of neural 

connections between the early visual stages, such as V1, in which highly local processing 

occurs, and a decision unit. The changes occur in the neural connections specifically for a 

given task. In this sense, it is possible that different stages between the earliest visual 

stage and the decision unit are involved (see Fig 3). 

 

 

 

(c) Higher-to-lower stages:  

 

This model is based on reverse hierarchy theory (RHT) indicates that learning is an 

attention guided process [66, 68]. According to this model, visual learning begins at 

high-level visual areas that may be able to deal with a task requiring discriminating 

signals with large differences (see Fig 3). When a task requires discrimination of signals 

with smaller differences, the site of learning proceeds to lower visual areas where signals 

with smaller differences can be discriminated. RHT indicates that learning is driven by 

the attention that selects neuronal population suitable for the levels of the signal.  
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Figure 3. Neural correlates of VPL. 

The regions of the brain thought to be altered by visual perceptual learning (VPL). Some 

experiments have indicated that training on a visual task changes visual representations in 

the early stages of visual signal processing. Others have instead suggested that training alters 

the weight of connections (ω1, ω2 … ωi) between the visual cortex and regions of the brain 

involved in decision making, or within the decision-making regions themselves. The figure is 

taken from Sasaki et al. 2010 [4]. 
  



   

9 

 

 

1.5 Major directions in VPL research 
 

 

Mainly, VPL research has three major divergent directions [4], Specificity versus 

generalization, Lower versus higher brain locus and task-relevant versus task-irrelevant 

(TR-VPL and TI-VPL, respectively) [4]. 

 

 

 

1.5.1 Specificity versus generalization of VPL 

 

The first direction compares the specificity and generalization divergence view of VPL.  

Seminal psychophysical studies reported that improvement in visual performance is largely 

specific to stimulus features such as retinal location, contrast orientation spatial frequency, 

motion direction, or background texture that are trained or exposed during training. In other 

words, VPL is not generalized to other features. Such high specificity of VPL has been often 

regarded as the evidence for refinement of the neural representation of a trained visual feature. 

 

 However, recent studies have indicated that under some conditions VPL can be generalized 

to untrained features. The recent VPL studies that reported generalization of VPL to untrained 

features under certain conditions. These results support the view that VPL is mostly caused by 

higher-level cognitive factors such as enduring attentional inhibition of the untrained features, 

selective reweighting of readout process to find specific visual representations which are the 

most useful for a trained task. 
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1.5.2 Lower versus higher brain locus of VPL 

 

 

The second direction of studies has suggested that VPL is associated with changes 

primarily in visual areas (visual model), while the other line of studies has proposed that VPL 

emerges from changes in higher-level cognitive areas that are involved in decision making or 

changes in weighting between the visual and cognitive areas (cognitive model).  

The accumulated findings can be generally framed in terms of one of two opposing models: 

the visual and cognitive models. Both models have concentrated substantial psychophysical, 

physiological, and computational findings in their respective favors. 

 

 

1.5.3 TR-VPL versus TI-VPL 

 

Third direction concerns, whether task-relevant and task-irrelevant VPL share a common 

mechanism or reflect distinct mechanisms. TR-VPL of a feature happens to training on a task 

of the visual feature and is gated by focused attention to the feature in principle. On the other 

hand, TI-VPL is defined as VPL of a feature that is irrelevant to a given task. It has been 

found that TI-VPL does not necessarily require attention to, and awareness of, the trained 

feature. Some studies have suggested that the same or similar mechanisms underlie TI-VPL 

and TR-VPL, while others have suggested distinct mechanisms. 
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1.6 Resting-State Functional Connectivity  
 

 

When one performs a specific cognitive task that involves attention or reflection, the 

brain only uses 5% of its total metabolic expenditure [18]. Yet, how does the brain expend the 

majority of its energy? In 1995, Biswal [18] and colleagues observed that regions that are 

co-activated during a task are correlated with their activity in the absence of a task. This 

observation led to the conclusion that intrinsic activity in the brain is a major source of energy 

expenditure.  

 

Spontaneous fluctuations involve the low-frequency (LF: <0.1 Hz) that can be 

measured indirectly using blood oxygen level-dependent (BOLD) functional magnetic 

resonance imaging (fMRI).  These BOLD signals across brain regions are known as 

resting-state functional connectivity (rs-FC). Previously, spontaneous low-frequency BOLD 

fluctuations were discarded as noise in task-based fMRI studies. These signals were 

considered to be crucial to understanding the intrinsic activity of the brain. 

Resting-state BOLD correlations are observed when subjects are instructed to relax inside the 

MRI scanner without engaging in a specific task. Temporal correlations do not appear to be 

random because patterns of connectivity have been reliably identified across studies and 

subjects. 

 

Resting-state functional connectivity analysis has largely enabled scientists to 

measure task-free (offline) changes and experience-dependent plasticity in the human brain 

which has become a great frontier in the understanding of offline mechanisms of human brain 

and in VPL as well. 
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Chapter 2 

INTRODUCTION 

 

 

2.1 Research Background   
 

 

Previous studies using functional magnetic resonance imaging (fMRI) in humans 

have revealed that different brain regions contribute to VPL in distinct ways, depending on 

their specialized roles [7,8]. These studies have typically examined how brain activation to 

specific visual stimuli changes over the course of perceptual training. For instance, several 

studies have shown that stimulus-induced activation in brain regions representing specific 

visual features (e.g., the early visual cortex) tends to increase after intensive perceptual 

training [2,9], whereas activation in regions related to higher-order cognitive processes tends 

to decrease after training [9]. Other studies have reported refinements in neural 

representations of trained visual features after VPL, indicating training-induced plasticity in 

feature-representation regions [5,8]. While these findings have provided useful insights into 

the “online” processes supporting VPL, it is also known that “offline” processes after task 

completion (e.g., consolidation during sleep) play critical roles [10,11]. However, because the 

majority of existing fMRI studies have exclusively investigated brain activation during task 

periods, the contribution of offline mechanisms to VPL remains to be elucidated. The 

importance of post-task offline processes in VPL has typically been studied by focusing on 

sleep-related consolidation processes [11,12]. However, recent studies have also highlighted 

the importance of wakeful resting periods immediately after training [13–15]. Neuroimaging 

studies utilizing resting-state functional connectivity (rs-FC) [16–18] are particularly useful 

for investigating experience-dependent reorganization in the brain after performing cognitive 

tasks. Evidence from diverse domains of cognitive neuroscience research has suggested that 
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post-task rs-FC changes reflect recent visual/cognitive experiences [14,19], and further 

predict the subsequent performance of memory and learning [15,20]. Studies of episodic 

memory are notable examples, showing that rs-FC between category-selective regions (e.g., 

the fusiform face area) and memory-related regions (e.g., the hippocampus) during wakeful 

rest immediately after performing encoding tasks is predictive of subsequent memory 

performance [13,21]. Although VPL and episodic memory formation are supported by 

different neural substrates, both involve experience-induced plasticity as underlying 

mechanisms [10,22,23]. This raises the possibility that rs-FC during wakeful rest immediately 

after training may also play a key role in VPL. 

                                  

 

2.2 Research Issues and Existing Gap 
 

 

Only a few studies have investigated training-induced rs-FC changes after VPL, and 

the results have been mixed. One study examined rs-FC before and after intensive training on 

a visual shape discrimination task, finding that rs-FC between the visual feature 

representation region (i.e., V3) and the dorsal attention system (e.g., the frontal eye field and 

superior parietal lobule) decreased after training [24]. However, this study investigated the 

effects of intensive training over several days (2–9 days) and did not examine rs-FC changes 

in the early learning phase. In contrast, another fMRI study used visual motion discrimination 

training with a much shorter timescale (~90 min), finding that rs-FC between the 

hippocampus and striatum increased during a wakeful rest period immediately after training 

[25]. While this study revealed rapid reorganization of rs-FC after a brief period of perceptual 

training, no rs-FC changes were detected in the visual feature representation region, unlike the 

earlier study. Thus, it remains unclear whether visual feature representation regions show 

training-induced rs-FC changes immediately after training. 
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2.3 The Current Study 
 

 

In the current fMRI study, we examined whether a brief period of visual perceptual 

training-induced rapid reorganization of rs-FC changes immediately after training in the 

visual feature representation regions. Participants were trained on a visual motion 

discrimination task for a short period (~30 min), in which they judged the direction of 

coherently moving dots randomly chosen from three coherence levels (20, 40 and 80%). We 

localized the MT+, a brain region representing visual motion [26–33], by analyzing the 

parametric effects of motion coherence on stimulus-induced activation during the task fMRI 

(t-fMRI) session. Importantly, we obtained resting-state fMRI (rs-fMRI) scans before and 

immediately after the task to examine whether a brief period of visual motion discrimination 

training induces rs-FC changes with the MT+. Furthermore, we examined whether 

training-induced rs-FC changes immediately after training were associated with subsequent 

performance improvement. This question was inspired by recent reports that 

experience-induced rs-FC changes shortly after memory encoding tasks predict subsequent 

memory performance in later periods (~24 hours) [21]. To examine this issue, we invited the 

same participants back on the second day of the experiment to perform the motion 

discrimination task in the scanner. 
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Chapter 3 

 

MATERIALS AND METHODS 

 

 

This chapter provides the study experimental design protocol, parameters and neuroimaging 

data pre- and post-processing steps in detail.    

 

 

 

 

3.1 Participants 
 

 

Twenty-one healthy right-handed participants with normal or corrected-to-normal 

vision were recruited for the experiment. All participants were native Japanese speakers with 

no history of neuropsychiatric disorders or current use of psychoactive medications. All 

participants provided written informed consent according to guidelines approved by the 

institutional review board of Kochi University of Technology. Participants received 1000 yen 

per hour for participation. One participant was excluded due to being scanned on day 2 after 

30 days from day 1 experiment (see experimental protocol), while all other participants were 

scanned on day 2 after 1 or 2 days apart (see Fig 4). Thus, the data from 20 participants (mean 

age 18.6 years, range 18–21; eight females) were analyzed and reported in the study. 
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3.2 Experimental Procedure 

      

3.2.1 Session Procedure 

 

 

The experiment was conducted in four stages over 2 days (day 1 and 2). On day 1, 

participants were scanned during three consecutive stages: started with pre-task resting-state 

functional magnetic resonance imaging (rs-fMRI) followed by task-fMRI (t-fMRI) and 

completed with post-task rs-fMRI. On day 2, the same participants underwent the second 

t-fMRI session with the same task settings used for day 1. 

 

 

3.2.2 Task design 

 

 

In each t-fMRI session, participants performed six runs of a visual motion 

discrimination task, in which they judged the direction of random-dot motion (see Fig 5). 

Randomly moving dots were presented with three coherence levels (20, 40 and 80%) and with 

two directions (upward and downward). Participants discriminated which of the two 

directions the majority of dots were moving in, by pressing one of two target buttons. 

Assignments of the target buttons to the motion directions were counterbalanced across 

participants (left and right buttons are assigned to upward and downward motion respectively, 

and vice versa). The target button assignment for each participant was constant for two 

separate t-fMRI sessions. The presentation order of the stimuli (three coherence levels and 

two directions) was pseudorandomized. Each run consisted of 70 trials. The first and last five 

trials in each run were presented with the highest coherence level (80%) and were excluded 

from data analysis. Thus, the middle 60 trials (20 trials for each coherence level) were 

included in our analysis. Participants performed a total of 360 (6 × 60) effective trials on each 

t-fMRI session. 
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3.2.3 Single trial design 

 

 Each trial began with a 750-ms presentation of a red fixation cross-cueing the 

subsequent stimulus comprised of coherently moving dots for 300 ms. The color of the 

fixation cross became white when the dot stimuli disappeared, and remained white for 1750 

ms (see Fig 6). Participants were required to press the corresponding button with their right 

thumb as quickly and accurately as possible within a response window of 1050 ms (see Fig 6). 

The onset of the response window was matched to the timing of the dot stimuli presentation. 

In rs-fMRI sessions, all participants were scanned for 5 minutes and 20 seconds before and 

after t-fMRI on day 1. The following instructions were given to the participants: please rest 

with your eyes open, and remain calm.  
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Figure 4. Experimental procedure 

Experiments were conducted over 2 days: day 1 and day 2. On day 1, fMRI scanning started 

with pre-task resting-state scans, followed by motion discrimination task scans, and post-task 

resting-state scans. On day 2, the same motion discrimination task was  

administered in the scanner 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. Motion discrimination task. 

In each task-fMRI session (day 1 and 2), participants performed six runs of the motion 

discrimination task. The coherence level (20, 40, or 80%) and motion direction (upward or 

downward) varied from trial to trial. Participants were required to press the corresponding 

button with their right thumb as quickly and accurately as possible within  

a response window of 1050 ms. 
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Figure 6. A sample single trial. 

Each trial of the motion discrimination task began with 750-ms presentation of a red fixation 

cross-cueing a subsequent visual stimulus comprised of coherently moving dots for 300 ms. 

The color of the fixation cross became white when the dot stimuli disappeared and remained 

white for 1750 ms. Participants were asked to respond within a response window of 1050 ms. 
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3.2.3 Stimuli 

 

 

All stimuli were generated in MATLAB version 2012a, using the Psychophysics 

Toolbox extension, version 3.0.10 [34,35]. The stimuli were similar to those used in a 

previous study of perceptual decision-making [8,36] Each motion stimulus was composed of 

150 white dots moving inside a donut-shaped display patch with a white cross in the center of 

the patch, on a black background (see Fig 6). The display patch and cross were centered on 

the screen and extended from 6 to 12° of visual angle. Within the display patch, every dot 

moved at the speed of 10° of visual angle per second. Some dots moved coherently in one 

direction, while others moved randomly. The percentage of coherently moving dots 

determined the coherence, which was presented with three levels (20, 40, and 80%). Dot 

presentation was controlled to remove local motion signals following a standard method for 

generating motion stimuli [27,28,37,38]. Specifically, upon stimulus onset, the dots were 

presented at new random locations on each of first three frames. They were relocated after 

two subsequent frames so that the dots in frame 1 were repositioned in frame 4, and the dots 

in frame 2 were repositioned in frame 5, and so on. When repositioned, each dot was either 

randomly presented at the new location or aligned with the pre-determined motion direction 

(upward or downward), depending on the pre-determined motion strength on that trial. Each 

stimulus was composed of 18 video frames with 60 Hz refresh rates (i.e., 300-ms 

presentation).  

    

3.3 fMRI Scanning 
 

 

Participants were scanned with a 3T Siemens Verio MRI scanner with a 32-channel 

head coil to obtain anatomical and functional scans. High-resolution anatomical images were 

acquired from each participant on day 1 after the second resting scan with a 

magnetisation-prepared rapid acquisition gradient echo (MPRAGE) T1-weighted sequence 

(repetition time (TR) 2500 ms; echo time (TE) 4.32 ms; flip angle (FA) 8°; 192 slices; slice 

thickness 1 mm, in-plane resolution 0.9 × 0.9 mm2). Functional images were acquired using a 

multi-band acceleration echo-planar imaging sequence (TR 0.8 sec; TE 30 ms; FA 45°; 80 

slices in interleaved order; slice thickness 2 mm; in-plane resolution 3 × 3 mm2; multiband 

factor 8). Each functional run during the motion discrimination task involved 245 volumes, 
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and each resting-state acquisition involved 400 volumes. The first 10 volumes of all 

functional runs (task and rest) were discarded to allow for T1 equilibration of longitudinal 

magnetization.  

 

 

3.4 fMRI Preprocessing 
 

Functional data were analyzed using SPM12 (http://fil.ion.ucl.ac.uk/spm/software/spm12). 

Preprocessing of functional images (both resting scans and task scans) involved sequential 

realignment across volumes and runs, coregistration of functional images to anatomical 

images, spatial normalisation to a standard MNI template with normalisation parameters 

estimated for the anatomical scans, spatial smoothing with a 8-mm full-width at 

half-maximum (FWHM) Gaussian kernel, and resampling into 1-mm isotropic voxels. No 

global signal regression was performed. Due to imaging, short TR slice time correction was 

not applied to the data. Table 1 shows the fMRI pre and post processing in detail. 

 

 

3.5 General linear model 
 

3.5.1 First-level analysis 

 

A general linear model (GLM) [39] approach was used to estimate parameter values 

for task events. In the t-fMRI analysis, the effect of interest was the influence of changing 

coherence levels of visual motion from trial to trial. The trials with upward motion and those 

with downward motion were modeled with separate regressors, each of which was modulated 

by the parametric effect of mean-centered coherence levels across trials. Trials in which 

participants did not make a button press were separately coded in the GLM as nuisance 

effects. Those task events were time-locked to the stimulus onset of each trial, then convolved 

with canonical hemodynamic response function (HRF) implemented in SPM. Additionally, 

six motion parameters (three translation and three rotation parameters per frame), as well as 

white matter (WM) and cerebrospinal fluid (CSF) signal time series, were also included in 

GLM as nuisance effects.  
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Parameters were then estimated for each voxel across the whole brain. In the rs-fMRI 

analysis, time series were extracted from 5-mm radius spheres centered on individual seed 

coordinates (the MT+, dACC and bilateral insula) after regressing out the eight nuisance 

variables (i.e., six motion parameters, WM and CSF signal time series). The extracted seed 

time series was then band-pass filtered between 0.01 Hz to 0.1 Hz to reduce the effects of 

low-frequency drift and high-frequency noise [13,25,40]. Finally, a separate GLM was 

estimated for each seed, which included the seed time series as the regressor of interest in 

addition to the eight nuisance variables. 

 

 

3.5.2 Second-level analysis 

 

 

Maps of parameter estimates were first contrasted with individual participants.  The 

contrast maps were collected from all participants and were subjected to a group-mean 

one-sample t-test based on permutation methods (5000 permutations) implemented in 

randomize in FSL suite (http://fmrib.ox.ac.uk/fsl/).  Then voxel clusters were identified 

using a voxel-wise uncorrected threshold of P < .001.  The voxel clusters were tested for a 

significance with a threshold of P < 0.05 corrected by family-wise error (FWE) rate.  The 

peaks of significant clusters were then identified and listed on tables.  If multiple peaks were 

identified within 12 mm, the most significant peak was kept. 
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Table 1 fMRI Pre- and post-processing steps 
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3.6 Brain-behavior correlation analysis  
 

 

To compute training-induced rs-FC changes between specific pairs of regions, we 

used a method following Tambini et al. (2010) [13]. First, fMRI time series were extracted 

from a 5-mm radius sphere centered on the peak coordinates of each of the regions identified 

by the rs-FC analysis with the MT+ seed (Post-task vs. Pre-task rest), after regressing out the 

eight nuisance variables (six motion parameters and WM/CSF signal time series). Next, 

Pearson correlation coefficients between the two-time series (the MT+ and each region of 

interest) were calculated, and subsequently, Fisher Z transformed. The difference in Z 

(Post-task minus Pre-task) was used as an individual participant’s measure of 

training-induced rs-FC change. Finally, Pearson correlation coefficients between the 

training-induced rs-FC change and accuracy change were computed across participants. 

Distributions of variables (behavioral and rs-FC changes) were not significantly different 

from a normal distribution (Lilliefors test, P > 0.062). 
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Chapter 4 

 

RESULTS 

  

 

 

 

4.1 Behavioral results 
 

 

To assess behavioural improvement after visual perceptual training, participants’ 

discrimination accuracy and reaction time for coherently moving dots were compared 

between the 2 days of t-fMRI sessions (day 1 and 2). Participants showed a marginally 

significant increase in overall discrimination accuracy (day 1: 83.8 ± 8.0%, mean ± standard 

deviation; day 2: 86.8 ± 5.8%; paired t test, t(19) = 1.95, P = 0.066; Cohen’s dav = 0.43) [41] 

and a significant decrease in overall discrimination reaction time (day 1: 696 ± 70 ms; day 2: 

665 ± 72 ms; paired t test, t(19) = 3.17, P = 0.005; Cohen’s dav = 0.43), (see Fig 7). These 

results confirmed that a single session of brief visual perceptual training (~30 min) induced 

behavioural improvement that lasted over 24 hours. Behavioural improvement further 

assessed during day 1 runs. Run-specific behavioural measures such as accuracy, reaction 

time and Inverse Efficiency (IE) were calculated for 6 runs in day 1 separately. An analysis of 

variance did not show significant effect of accuracy, reaction time and IE across 6 runs of the 

day 1 (accuracy: F(5,114) = 0.29 , P = 0.91; reaction time: F(5,114) = 0.56 , P = 0.73, IE: 

F(5,114) = 0.21 , P = 0.96). Additional comparisons were conducted between first (run 1) and 

last (run 6) runs in day 1. Participants did not show significant improvement from run 1 to run 

6 (ACC: paired t test, t(19) = 1.14, P = 0.268; RT: paired t test, t(19) = 1.09, P = 0.29; IE: 

paired t test, t(19) = 0.30, P = 0.76), (see Table 2). 
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Figure 7. Behavioral results. 

The left panel shows subjects performed motion discrimination task more accurately  

(left panel) and faster (right panel) in day2. 

 

 

 

 

 

 

 

Table 2. Session-wise behavioral measures (6 runs of day 1) 

 

 run 1 run 2 run 3 run 4 run 5 run 6 

ACC(%) 84.4 (6.4) 85.6 (8.8) 84.3 (10.6) 83.6 (12.5) 82.5 (9.1) 82.7 (9.4) 

RT(ms) 586 (71) 594 (61) 594 (61) 576 (72) 567 (82) 570 (78) 

IE(ms) 7.0 (0.9) 7.0 (0.7) 7.1 (0.8) 7.0 (0.8) 6.9 (0.7) 6.9 (0.8) 
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4.2 Task-related fMRI activation 
 

 

To identify brain regions involved in visual motion discrimination, we examined 

stimulus-induced fMRI activation that was parametrically modulated by the coherence level 

of moving dots. First, we combined t-fMRI data from both sessions (day 1 and 2) to probe 

stimulus-induced activation. As predicted, we found that stimulus-induced activation was 

positively modulated by the coherence level in the MT+, a region that is well established as 

the feature-representation region for visual motion (P < 0.05, cluster-level FWE corrected; see 

Fig 8A and Table 3). The peak MNI coordinates of the MT+ (x = 42, y = −64, z = 6) were 

close to those reported in previous studies [8,42,43]. On the other hand, stimulus-induced 

activation was negatively modulated by the coherence level in the dorsal anterior cingulate 

cortex (dACC) and bilateral insula (see Fig 8A), the regions known to show task-difficulty 

dependent activation during perceptual decision-making tasks [44,45]. Next, we examined 

whether these regions showed learning-dependent activation changes between day 1 and day 

2. For this analysis, we extracted the parametric effects of coherence level from these regions 

separately for day 1 and day 2 (see Fig 8B). No region showed a significant difference in the 

parametric effect of the coherence level between day 1 and day 2 (t(19) < 0.90, P > 0.382). 

Note that we used orthogonal contrasts for localizations of the regions (day 1 and 2, 

combined) and comparisons of activation (day 1 vs. day 2), thereby avoiding circular analysis. 

Run-specific learning-dependent activation changes further assessed on day 1 runs.  

  



   

28 

 

 

We extracted the parametric effects of coherence level from the regions (MT+,dACC, and 

bilateral insula) separately for each run of day 1. No region showed significant difference in 

the parametric effect of the coherence level across day 1 runs (MT: F(5,114) = 1 , P = 0.38; 

left insula: F(5,114) = 1.52 , P = 0.19, right insula: F(5,114) = 1.27 , P = 0.28; dACC: 

F(5,114) = 0.65 , P = 0.66). Additional comparisons between first and last runs of day 1 of the 

parametric activation of the regions (MT+,dACC, and bilateral insula), also did not show 

significant improvement from run 1 to run 6 (MT: paired t test, t(19) = 0.64, P = 0.52; left 

insula: paired t test, t(19) = − 0.17, P = 0.86; right insula: paired t test, t(19) = − 1.05, P = 

0.30; dACC: paired t test, t(19) = 0.17, P = 0.86). 
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Figure 8. Task-related fMRI activation.  

(A) Positive and negative parametric effects of motion coherence. The statistical maps 

indicate brain regions showing significant activation increases with the coherence level (hot, 

including the MT+) and decreases with the coherence level (cold, including the dACC and 

bilateral insula). All maps are thresholded at P < 0.05, cluster-level FWE corrected across 

the whole brain. (B) Mean beta values for regions MT+, dACC, left and right insula. Peak 

coordinates derived from combining day 1 and day 2 task-fMRI data. 
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Table 3. Activation by the parametric effect of motion coherence 

Regions showing significant activation by the parametric effect of motion coherence during 

the performance of direction discrimination task (cluster-level FWE-corrected P < 0.05). 

    MNI coordinates  

Region Hemi #voxels x y z Peak t 

Positive parametric effect       

Frontal pole R 2758 16 50 40 7.32 

Temporal occipital fusiform cortex R 2379 26 −52 −18 7.72 

 Lateral occipital cortex (MT+) R  42 −64 6 7.59 

Lateral occipital cortex L 1525 −44 −64 42 8.89 

Parietal operculum cortex R 797 46 −24 22 7.87 

Precuneus cortex R 765 0 −54 32 5.78 

Cingulate gyrus L 668 −4 −28 42 7.48 

Putamen* L 575 −30 −16 2 6.07 

Temporal occipital fusiform cortex L 453 −30 −58 −14 5.68 

Superior parietal lobule R 334 18 −46 70 5.25 

Parietal operculum cortex L 329 −40 −28 20 5.64 

Middle temporal gyrus R 270 58 −8 −28 5.35 

Lateral occipital cortex L 248 −38 −84 −10 4.45 

Frontal medial cortex L 212 −2 46 −18 5.24 

Insular cortex/putamen* R 208 32 −16 4 5.21 

Superior temporal gyrus R 193 58 0 −4 5.42 

Negative parametric effect       

Paracingulate gyrus (dACC) R 2559 16 22 32 7.83 

Insular cortex R 1945 36 22 0 7.41 

Insular cortex L 1748 −26 20 2 7.41 

Supramarginal gyrus L 617 −32 −38 34 5.25 

Occipital pole R 533 −6 −92 −2 6.09 

Anatomical labels derived from Harvard-Oxford cortical structural atlas. *Labels derived from 

Harvard-Oxford Subcortical structural atlas. L= left hemisphere, R = right hemisphere, 

#voxels = number of voxels. The MT+ was identified as the second peak of the cluster. 
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4.3 Resting-state functional connectivity 
 

To examine training-induced changes in rs-FC, we contrasted seed-based functional 

connectivity during the pre-task and post-task rs-fMRI sessions. In this analysis, we selected 

the MT+ as the primary seed that was localized by the parametric effect of the coherence level 

on the day 1 t-fMRI session (MNI coordinates: x = 42 y = −66, z = 8). Note that we used only 

data from day 1 to avoid possible artifacts resulting from differences in head position between 

day 1 and day 2. First, we obtained rs-FC maps with the MT+ seed separately for the pre-task 

and post-task rs-fMRI sessions. This revealed that a greater number of voxels located across 

broad brain regions showed significant rs-FC with the MT+ during the post-task (relative to 

pre-task) rs-fMRI session (see Fig 9 and Fig 10). More specifically, we found prominent 

increases in rs-FC with the MT+ during the post-task (relative to pre-task) rs-fMRI session in 

the bilateral postcentral gyrus (POG), the left precentral gyrus (PrG), the left superior 

temporal gyrus (STG), the left middle temporal gyrus (MTG) and the lateral occipital cortex 

(LOC) (P < 0.05, cluster-level FWE corrected; see Fig 11 and Table 4). On the contrary, 

rs-FC with the MT+ was significantly decreased in subcortical regions (the thalamus and 

putamen) after the t-fMRI session (see Fig 11 and Table 4). Notably, we found no significant 

change in rs-FC between the pre- and post-task rs-fMRI sessions when we used the dACC, a 

task-difficulty dependent region, as a seed (x = 14, y = 22, z = 34; P > 0.056, cluster-level 

FWE corrected). Likewise, there were no significant rs-FC changes between the rs-fMRI 

sessions when we used the right and left insula as seeds (right: x = 36, y = 22, z = 0; P > 0.052, 

cluster-level FWE corrected; left: x = −30, y = 30, z = 0; P > 0.202, cluster-level FWE 

corrected). These findings suggest that the post-task rs-FC change occurred specifically in the 

brain regions representing the trained visual feature, but not in the task-difficulty dependent 

regions. 
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Figure 9. Resting-state functional connectivity with MT+ seed 

(A) Pre-task rs-FC maps indicating areas that showed significant rs-FC with the MT+ before 

participants performed the motion discrimination task. (B) Post-task rs-FC maps indicating 

areas that showed significant rs-FC with the MT+ after participants performed the motion 

discrimination task. All maps are thresholded at P < 0.05, cluster-level FWE corrected  

across the whole brain. 

 



   

33 

 

 
 

Figure 10. Resting-state functional connectivity with MT+ seed (flat view). 

This figure illustrates the figure 9 in full-flat view. Green dotted-oval shapes show functional 

connectivity enhancement in post-training compared to pre-training resting state.   
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Figure 11. Training-induced rs-FC changes. 

The statistical map indicates brain regions showing training-induced rs-FC changes with the 

MT+ seed (hot: Post-task > Pre-task rest, cold: Pre-task > Post-task rest). The arrowhead 

indicates the left PrG. All maps are thresholded at P < 0.05, cluster-level FWE corrected 

across the whole brain.  
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Table 4. Resting-state functional connectivity change with MT+ 

Regions showing significant rs-FC with the MT+ in pre-task rest, post-task rest, and contrasts 

of post-task > pre-task rest and pre-task > post-task rest (cluster-level FWE-corrected P < 

0.05). Subpeaks in a given cluster were listed if it survived at P < 0.05, voxel-wise FWE 

corrected across the whole brain. 

    MNI coordinates  

Region Hemi #voxels x y z Peak t 

Pre-task rest       

Lateral occipital cortex R 43483 44 66 6 23.4 

 Precentral gyrus L  36 22 56 10.7 

 Cerebellum** L  6 72 42 7.30 

 Postcentral gyrus R  6 36 66 6.97 

 Supramarginal gyrus R  60 36 14 6.77 

 Insular cortex R  40 2 12 6.67 

Supplementary motor cortex R 1136 6 2 58 6.56 

Parietal operculum cortex L 393 42 36 24 5.51 

Post-task rest       

Lateral occipital cortex R 70088 44 −66 6 21.1 

 Temporal pole R  28 12 −30 8.69 

 Parahippocampal gyrus  L  −30 −6 −24 7.15 

 Parahippocampal gyrus R  20 −2 −20 6.42 

 Amygdala* R  30 −4 −24 6.2 

 Precentral gyrus L  −36 8 20 6.19 

 Parahippocampal gyrus R  22 2 −26 6.16 

 Intracalcarine cortex R  4 −66 12 6 

 Thalamus* R  20 −30 0 5.94 

Post-task rest > Pre-task rest       

Postcentral gyrus R 15884 22 −40 66 9.95 

 Postcentral gyrus R  52 −12 50 9.6 

 Postcentral gyrus L  −24 −40 68 8.19 

 Inferior temporal gyrus L  −46 −46 −4 7.62 

 Middle temporal gyrus L  −56 −54 −6 7.49 

 Superior temporal gyrus L  −64 −16 2 6.72 

 Planum temporale L  −52 −18 0 6.59 

 Superior frontal gyrus L  −14 −4 60 6.45 

 Postcentral gyrus R  40 −14 32 6.41 

 Middle temporal gyrus  R  52 2 −24 6.37 

 Precentral gyrus L  −54 −4 24 6.32 

 Central opercular cortex R  42 −12 14 6.27 

Precuneous cortex R 217 −10 −68 18 4.68 

Pre-task rest > Post-task rest       

Thalamus* L 2163 −6 −2 6 7.79 

 Thalamus* L  −12 −22 14 7.59 

 Thalamus* R  6 −16 12 7.04 
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 Thalamus* R  4 −4 6 6.75 

 Thalamus* L  −16 −8 6 6.47 

 Thalamus* R  20 −24 14 6.26 

 Putamen* R  20 16 2 6.25 

Anatomical labels derived from Harvard-Oxford cortical structural atlas. *Labels derived from 

Harvard-Oxford Subcortical structural atlas. **Labels derived from Automated Anatomical 

Labels. L= left hemisphere, R = right hemisphere, #voxels = number of voxels. 
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4.4 Brain-behavior correlation 
 

 

We tested whether the training-induced rs-FC change in the MT+ predicts individuals’ 

performance improvement (i.e., accuracy gain) on day 2. We found that accuracy gains were 

positively correlated with training-induced rs-FC changes between the MT+ and left PrG (r = 

0.522, P = 0.018, uncorrected), indicating that ~27% of the inter-individual variation in 

accuracy gains was explained by the training-induced rs-FC change between these regions 

(Fig 12). However, given that we observed training-induced rs-FC change with the MT+ in 19 

regions, the brain-behavior correlation in the left PrG did not survive multiple comparison 

corrections (see Table 5). We further tested whether the training-induced rs-FC change in the 

MT+ predicts individuals’ performance improvement in reaction time (RT) and inverse 

efficiency (IE) on day 2 (see Tables 6 and 7). We found that only IE was negatively correlated 

with training-induced rs-FC changes between the MT+ and right PoG (r = − 0.49, P = 0.028, 

uncorrected). Additionally, to examine whether the combined two opposing changes of 

cortical and subcortical regions could predict the behavioral learning effects, we extracted 

principal components (PC) from positive and negative connectivity change maps. Next, the 

simple regression analysis was conducted to predict accuracy based on the combined first PCs 

of each opposing changes. This was repeated with other behavioral indices such as reaction 

time and IE as well. The results did not show significant regression equation for the 

dependent variables (ACC: P = 0.83, R 2= 0.02; RT: P = 0.71, R 2= 0.04; IE: P = 0.78, R 2= 

0.03). 
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Figure 12. Brain-behavior correlation. 

Pre-task and post-task rs-FC between the MT+ and left PrG and right PoG. The y-axis 

indicates the correlations (Fisher Z transformed) between the time series extracted from the 

MT+ and left PrG and right PoG, averaged across participants. The error bars indicate s.e.m. 

The bar graph is provided for visualization purposes, and no statistical test was applied to 

this data. Scatter plots showing individual differences in behavioural improvement (accuracy 

gain on day 2 relative to day 1) as a function of training-induced rs-FC change. 
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Table 5. Brain-behavior correlation (MT+, Accuracy) 

Brain-behavior correlation in regions showing training-induced rs-FC changes with MT+ 

seed: Accuracy gain was used as the behavioral index. 

Region Hemi r value P-value 

Post-task rest > Pre-task rest   

Postcentral gyrus R 0.023 0.924 

Postcentral gyrus R 0.089 0.710 

Postcentral gyrus L 0.047 0.844 

Inferior temporal gyrus L −0.111 0.643 

Middle temporal gyrus L 0.087 0.715 

Superior temporalgyrus L 0.091 0.703 

Planum temporale L 0.133 0.576 

Superior frontal gyrus L −0.188 0.427 

Postcentral gyrus R 0.471 0.036 

Middle temporal gyrus  R 0.063 0.790 

Precentral gyrus L 0.522 0.018 

Central opercular cortex R 0.110 0.645 

Pre-task rest > Post-task rest   

Thalamus* L 0.005 0.984 

Thalamus* L 0.145 0.542 

Thalamus* R 0.019 0.935 

Thalamus* R 0.127 0.592 

Thalamus* L −0.206 0.384 

Thalamus* R 0.263 0.263 

Putamen* R 0.230 0.330 

Anatomical labels derived from Harvard-Oxford cortical structural atlas. *Labels derived from 

Harvard-Oxford Subcortical structural atlas. L = left hemisphere, R = right hemisphere. 
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Table 6. Brain-behavior correlation (MT+, RT) 

Brain-behavior correlation in regions showing training-induced rs-FC changes with MT+ 

seed: Reaction time was used as the behavioral index. 

Region Hemi r value P-value 

Post- vs. Pre-task rest    

Postcentral gyrus R 0.243 0.301 

Postcentral gyrus R 0.001 0.997 

Postcentral gyrus L 0.269 0.252 

Inferior temporal gyrus L −0.074 0.757 

Middle temporal gyrus L −0.119 0.616 

Superior temporal gyrus L 0.080 0.736 

Planum temporale L −0.232 0.324 

Superior frontal gyrus L 0.328 0.158 

Postcentral gyrus R −0.168 0.479 

Middle temporal gyrus  R −0.090 0.706 

Precentral gyrus L −0.180 0.448 

Central opercular cortex R −0.298 0.202 

Post- vs. Pre-task rest    

Thalamus* L −0.114 0.633 

Thalamus* L −0.310 0.184 

Thalamus* R −0.230 0.329 

Thalamus* R −0.217 0.359 

Thalamus* L −0.061 0.797 

Thalamus* R −0.271 0.247 

Right Putamen* R 0.035 0.885 

Anatomical labels derived from Harvard-Oxford cortical structural atlas (* = Harvard-Oxford 

subcortical structural atlas). L= left hemisphere, R = right hemisphere. 
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Table 7. Brain-behavior correlation (MT+, IE) 

Brain-behavior correlation in regions showing training-induced rs-FC changes with MT+ 

seed: Inverse Efficiency was used as the behavioral index. 

Region Hemi r value P-value 

Post- vs. Pre-task rest    

Postcentral gyrus R 0.017 0.943 

Postcentral gyrus R −0.116 0.626 

Postcentral gyrus L 0.066 0.783 

Inferior temporal gyrus L 0.095 0.690 

Middle temporal gyrus L −0.110 0.645 

Superior temporal gyrus L − 0.046 0.848 

Planum temporale L −0.198 0.403 

Superior frontal gyrus L 0.218 0.356 

Postcentral gyrus R −0.490 0.028 

Middle temporal gyrus  R −0.065 0.785 

Precentral gyrus L −0.480 0.032 

Central opercular cortex R −0.223 0.344 

Post- vs. Pre-task rest    

Thalamus* L −0.072 0.763 

Thalamus* L −0.260 0.269 

Thalamus* R −0.120 0.615 

Thalamus* R − 0.212 0.369 

Thalamus* L 0.071 0.765 

Thalamus* R −0.317 0.174 

Right Putamen* R −0.220 0.352 
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4.5 Rs-FC and activation change correlation 

  
Finally, we tested whether the training-induced rs-FC change in the MT+ predicts individuals’ 

task activation change (i.e., accuracy gain) on day 2. The correlation between task activation 

change (from day 1 to day 2) and rs-FC change conducted. However, given that we observed 

some significant correlations between rs-FC changes and activation changes in thalamus, 

postcentral gyrus, the results did not survive after multiple comparison corrections (see Tables 

8-11).  
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Table 8. Task-Rest fMRI correlation (MT+ seed, MT+ activation change) 

Task-Rest fMRI correlation in regions showing training-induced rs-FC changes with MT+ 

seed and MT+ activation change. 

Region Hemi r value P-value 

Post- vs. Pre-task rest    

Postcentral gyrus R −0.278 0.235 

Postcentral gyrus R 0.346 0.134 

Postcentral gyrus L −0.323 0.164 

Inferior temporal gyrus L −0.025 0.918 

Middle temporal gyrus L −0.042 0.859 

Superior temporal gyrus L −0.420 0.065 

Planum temporale L −0.139 0.559 

Superior frontal gyrus L −0.031 0.896 

Postcentral gyrus R 0.171 0.471 

Middle temporal gyrus  R −0.107 0.653 

Precentral gyrus L 0.029 0.903 

Central opercular cortex R 0.148 0.533 

Post- vs. Pre-task rest    

Thalamus* L 0.357 0.122 

Thalamus* L 0.472 0.035 

Thalamus* R 0.272 0.246 

Thalamus* R 0.260 0.268 

Thalamus* L 0.562 0.010 

Thalamus* R 0.310 0.184 

Right Putamen* R 0.298 0.202 

 

  



   

44 

 

 

Table 9. Task-Rest fMRI correlation (MT+ seed, dACC activation change) 

Task-Rest fMRI correlation in regions showing training-induced rs-FC changes with MT+ 

seed and dACC activation change. 

Region Hemi r value P-value 

Post- vs. Pre-task rest    

Postcentral gyrus R −0.504 0.023 

Postcentral gyrus R −0.296 0.205 

Postcentral gyrus L −0.068 0.777 

Inferior temporal gyrus L −0.105 0.659 

Middle temporal gyrus L −0.186 0.433 

Superior temporal gyrus L −0.261 0.267 

Planum temporale L −0.026 0.913 

Superior frontal gyrus L −0.229 0.332 

Postcentral gyrus R −0.196 0.407 

Middle temporal gyrus  R 0.007 0.978 

Precentral gyrus L −0.084 0.724 

Central opercular cortex R 0.009 0.971 

Post- vs. Pre-task rest    

Thalamus* L 0.147 0.537 

Thalamus* L 0.049 0.837 

Thalamus* R 0.118 0.621 

Thalamus* R 0.062 0.796 

Thalamus* L 0.046 0.846 

Thalamus* R 0.081 0.735 

Right Putamen* R −0.156 0.512 
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Table 10. Task-Rest fMRI correlation (MT+ seed, Right Ins activation change) 

Task-Rest fMRI correlation in regions showing training-induced rs-FC changes with MT+ 

seed and right insula activation change. 

Region Hemi r value P-value 

Post- vs. Pre-task rest    

Postcentral gyrus R −0.457 0.043 

Postcentral gyrus R 0.044 0.853 

Postcentral gyrus L −0.418 0.067 

Inferior temporal gyrus L −0.202 0.393 

Middle temporal gyrus L −0.081 0.736 

Superior temporal gyrus L −0.337 0.146 

Planum temporale L −0.287 0.220 

Superior frontal gyrus L −0.319 0.170 

Postcentral gyrus R −0.029 0.903 

Middle temporal gyrus  R −0.231 0.328 

Precentral gyrus L −0.186 0.432 

Central opercular cortex R −0.065 0.785 

Post- vs. Pre-task rest    

Thalamus* L 0.473 0.035 

Thalamus* L 0.316 0.174 

Thalamus* R 0.293 0.211 

Thalamus* R 0.328 0.159 

Thalamus* L 0.397 0.083 

Thalamus* R 0.384 0.094 

Right Putamen* R 0.326 0.161 
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Table 11 Task-Rest fMRI correlation (MT+ seed, Left Ins activation change) 

Task-Rest fMRI correlation in regions showing training-induced rs-FC changes with MT+ 

seed and left insula activation change. 

Region Hemi r value P-value 

Post- vs. Pre-task rest    

Postcentral gyrus R −0.531 0.016 

Postcentral gyrus R −0.034 0.887 

Postcentral gyrus L −0.249 0.289 

Inferior temporal gyrus L −0.200 0.397 

Middle temporal gyrus L −0.399 0.082 

Superior temporal gyrus L −0.312 0.180 

Planum temporale L −0.426 0.061 

Superior frontal gyrus L −0.153 0.521 

Postcentral gyrus R 0.028 0.908 

Middle temporal gyrus  R −0.170 0.474 

Precentral gyrus L −0.165 0.487 

Central opercular cortex R −0.382 0.096 

Post- vs. Pre-task rest    

Thalamus* L 0.368 0.110 

Thalamus* L 0.096 0.686 

Thalamus* R 0.346 0.134 

Thalamus* R 0.237 0.315 

Thalamus* L 0.223 0.344 

Thalamus* R 0.249 0.289 

Right Putamen* R 0.039 0.870 
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Chapter 5 

 

DISCUSSION AND FUTURE WORK 

 

 

5.1 Feature-specific resting-state functional connectivity change  
 

 

While most previous fMRI studies on VPL have investigated task-related brain 

activation [2,9], offline processes following task periods are also known to be important for 

VPL [10,11,22]. For instance, a previous study revealed an fMRI signal increase in the early 

visual cortex (V1) during sleep after visual perceptual training [12]. This elevated fMRI 

signal in the feature representation region may indicate a spontaneous reactivation of the 

trained visual feature and the consolidation process during sleep. Recent studies further show 

that training-induced fMRI signal changes are observed even during wakeful resting periods 

immediately after the task session [13,14,46]. In particular, Urner et al. (2013) [25] showed 

that brief training on a visual motion discrimination task (~90 min) induced a significant 

increase in rs-FC between the hippocampus and striatum immediately after training. However, 

they did not observe training-induced rs-FC changes in visual feature representation regions, 

leaving it unclear whether visual feature representation regions show offline rs-FC changes 

during the early learning period.  
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The current study provides the first direct evidence of rapid training-induced rs-FC 

changes in the MT+ immediately after training on a visual motion discrimination task. One 

possible explanation for the lack of rs-FC changes in the MT+ in the previous study is that 

only low-coherence (20%) visual motion stimuli and control static dots were used. In the 

current study, we used high- as well as low-coherence visual motion stimuli, which might 

have facilitated offline reactivation in the MT+. 
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5.2 Model specification 
 

 

The current finding that training-induced rs-FC changes were specifically observed 

in the MT+ is of particular interest. One of the long-standing questions regarding the 

mechanisms underlying VPL is the distinct roles of visual feature-representation regions and 

higher-order cognitive regions. Some studies have emphasized the critical roles of 

learning-induced plasticity in visual feature-specific areas (“visual model”), whereas other 

studies have reported that higher-order cognitive regions involved in decision making 

(including the dACC) also play key roles (“cognitive model”) [7]. Although both types of the 

region are likely to contribute to VPL [47], recent evidence suggests that specific fMRI signal 

patterns induced in the early visual cortex during offline periods (i.e., without explicit 

perceptual discrimination tasks) are sufficient for VPL [48]. Our current findings are 

consistent with this notion, revealing that the visual feature representation regions are 

specifically plastic and exhibit rapid rs-FC changes immediately after a brief period of visual 

perceptual training. 
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5.3 History replaying role of resting-state functional connectivity 
 

 

The role of experience-induced rs-FC changes immediately after tasks is a topic of 

current interest across a range of research domains, including episodic memory encoding and 

motor learning [13,15,49]. Many recent studies have reported that rs-FC during passive, 

wakeful rest periods reflect preceding visual/cognitive experience [50-53]. These 

experience-induced resting-state fMRI signals appear to reflect spontaneous reactivation of 

recent experiences and offline consolidation processes, thereby contributing to the subsequent 

behavioural performance of memory and learning. For example, a previous study revealed 

that rs-FC immediately after memory encoding tasks increased in the medial temporal lobe 

(including the hippocampus), which further predicted memory performance the next day [21]. 

Another study reported that a short period of sensorimotor learning-induced a rapid increase 

in rs-FC among the frontoparietal regions and cerebellum [19]. Taken together with the 

current finding of MT+ specific rs-FC reconfiguration after visual perceptual training, these 

results suggest that experience-induced plastic changes in rs-FC during a wakeful rest period 

immediately after task performance may reflect offline processes that are critically important 

for many different types of memory and learning. 

 

 

If training-induced rs-FC changes immediately after tasks play a key role in early 

consolidation processes, the rs-FC changes during this period may predict subsequent 

performance improvements (e.g., ~24 hours after training). Inspired by similar findings in 

recent memory research [21] we tested this possibility by examining the relationship between 

training-induced rs-FC changes and performance improvements on day 2 (relative to day 1). 

We obtained a suggestive result that the rs-FC change between the MT+ and motor-related 

region (i.e., the precentral gyrus) was correlated with behavioural improvement, although this 

result did not survive multiple comparison correction and should be interpreted with caution.  
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5.4 Different temporal profiles of learning and different results 
 

 

A notable characteristic of the current results is the significant increase in rs-FC 

between the MT+ and the widespread cortical regions (e.g., sensorimotor and temporal 

cortices) after training. This is in contrast to the findings of a previous study, which showed a 

decrease in rs-FC between the visual feature representation regions and dorsal attention 

system [24]. This apparent discrepancy may be related to the different temporal structure of 

visual perceptual training and the intervals between training and resting-state fMRI scans. 

Specifically, the previous study involved several days of intensive visual perceptual training 

(2–9 days) and examined rs-FC changes well after the learning was established. In contrast, 

the current study focused on the effects of a single session of short-term visual perceptual 

training (~30 min), and examined rs-FC changes in the early learning phase, immediately 

after the task session. Previous studies investigating post-task rs-FC change immediately after 

training have generally reported increased rs-FC in regions specifically related to the task 

performed [19,25]. Interestingly, previous studies investigating training-dependent changes in 

task-related fMRI activation have also reported similar distinct profiles depending on early vs. 

late learning phases [56]. For example, one study showed that V1 activation during the visual 

perceptual task markedly increased during a relatively early phase of learning, then decreased 

and returned to baseline during a later learning phase [56].  
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The current findings may indicate that training-induced rs-FC changes exhibit a 

similar temporal profile depending on early/late learning phases. This issue is an interesting 

research target for future studies. It is also notable that we found a training-induced decrease 

in rs-FC between the MT+ and subcortical regions (e.g., the thalamus), which was the 

opposite of what we observed in the sensorimotor and temporal cortices. According to a 

previous study, stimulus-induced activation after VPL and one-night sleep was positively 

correlated with post-training behavioral performance in the precentral and middle temporal 

gyri whereas negatively correlated in the thalamus [11]. In line with this previous report, our 

results suggest opposing contributions of cortical and subcortical regions to offline 

consolidation processes of VPL. 
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5.5 Dissociation between learning and adaptation 
 

 

It has been shown that VPL can be distinguished from visual adaptation, another 

form of short-term perceptual plasticity, although recent evidence suggests that the boundary 

between the two types of plasticity is more ambiguous than previously thought [57]. To 

discriminate VPL from adaptation, one typical experimental procedure is to examine the 

specificity of brain response changes to trained vs. untrained visual features [9,24,56]. 

However, it is difficult to perform such analyses in the current experimental design. 

Nonetheless, this issue may be partially addressed by considering that there was no significant 

activation decrease in area MT+ or behavioral improvement (two characteristic components 

of adaptation) in the course of the 6 runs of t-fMRI on day 1 (see Table 2). These observations 

suggest that the current results would not involve adaptation effects. 

 

5.6 Other future avenues 
 

(a) Here, we did not have prior knowledge about which brain regions would show 

performance-dependent rs-FC changes with the MT+. From a post-hoc perspective, our 

findings seem to suggest that spontaneous coactivation between the MT+ and motor cortex 

during the post-task rest reflect (or facilitate) the offline consolidation process that associate 

specific visual features with motor outputs. Our findings may serve as a foundation for future 

studies to formally test the relationship between training-induced rs-FC changes in specific 

brain regions during the early learning phase (i.e., immediately after training) and 

performance improvement in later phases (over days). Moreover, graph analysis [54,55] could 

be useful for examining the relationship between rapid reorganization of large-scale 

functional brain networks immediately after training and subsequent behavioural 

improvement. 

 

(b) Here, we focused on VPL of basic primitive features, such as motion direction. 

However, to what extent is learning of primitive feature generalizable for more complex 

features like semantic processing, categorization learning, and other types of learning? This 

challenging question leads a clear future pathway from our findings in the way that if the 

complex features with their own distinguishing characteristics have basically common aspects 
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of mechanisms shared by learning of primitive features, the generalization aspect of 

neuroplasticity would largely be addressed accordingly. The degree of transferring depends 

on neural pathways: The transfer of learning from one task to another depends on some 

degree of overlap in neural processing pathways as well as on the complexity of the visual 

training tasks involved. 

    

 

 

(d) Vision is a whole body experience, what we touch influences how we see. Taste is 

affected by our sense of smell. Our sight informs how we hear. Our senses depend on each 

other. So our findings in resting state functional connectivity change, clearly show primary 

sensory regions such as premotor and auditory cortices have a stronger connection with MT+ 

(visual cortex) after task. This notion can also be considered as a future study to further 

investigating cross-modal perception. 

 

(e) Why do some of us learn things more easily than others? by addressing this central 

question, it would allow developing new and more effective interventions regarding 

individual patterns and variability in learning and neuroplasticity as it can be seen from fig 7. 

A fuller understanding of VPL also has implications for clinical applications and is vital for 

patients with weak or degraded vision.  
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Chapter 6 

 

CONCLUSION 

 

 

In conclusion, our study revealed that a brief period of visual perceptual training 

induces rapid rs-FC changes immediately after training in visual feature representation 

regions, but not in higher-order cognitive regions. This finding provides further support for 

the distinct roles of visual feature representation regions and decision-related regions in VPL, 

with a particular emphasis on offline plasticity in feature representation regions during the 

early learning phase. In a broader context, our study highlights the critical role of 

experience-induced plasticity during wakeful rest periods immediately after tasks, which may 

contribute to various types of memory and learning, ranging from VPL to motor skill 

acquisition and episodic memory formation [10,22,57]. 
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When you complete reading this thesis, your brain will not be the 

same as when you started [59]    

 

I think that's pretty amazing 
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