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ABSTRACT 
 

Instability in Social Dilemma Games: Experimental Evidence 
 

Starting from the discovery of “prisoner’s dilemma” (originally framed by Merrill Flood and 

Melvin Dresher in 1950), in more than half a century, a lot of economic researches devoted to 

study the problem of social dilemma.  The social dilemma refers to a situation in which 

individuals in a group profit from self-interested action unless all group members make the 

self-interested choices, then which results in the loss of the whole group. In experimental 

economics, based on the basic game of the prisoner’s dilemma, the voluntary contribution 

mechanism (VCM) and the common-pool resources (CPR) successively have been proposed. 

Each of them attempts to capture the conflict between the individual interest and the group 

interest in different situations. Because of the concise of game theory framework, all of those 

previous studies employed an equilibrium analysis based on the core concept of Nash 

equilibrium in game theory. However, they overlooked the discussion for the stability of the 

Nash equilibrium in such games. Once the Nash equilibrium is unstable, the equilibrium 

analysis is invalid. 

           Recently, Saijo (2014, 2015) and Saijo et al. (2016) investigated the stability property in 

both the VCM and the CPR situations. Through a dynamic analysis, the Nash equilibrium is 

unstable or non-globally stable under some particular conditions. Furthermore, by examining 

previous experimental studies, he found that a lot of published literature using the equilibrium 

analysis actually employed an experimental design in which the Nash equilibrium is unstable. 

This result raises a doubt whether the results from previous experimental studies are valid.   

          In order to determine the implications of this new theoretical insight in the field of 

experimental studies, in this thesis, we employ the methodology of experimental economics. 

Specifically, we design new experiments or reanalyze the data from previous experimental 

studies to examine the distance between theoretical predictions of Saijo (2014, 2015) and Saijo 

et al. (2016) and experimental observations.   

         First, we conduct a new experiment with a homogeneous design to investigate the 

dynamic pattern of contributing behavior in the VCM with two different quasi-linear payoff 

functions. The design of this study is based on the theory of Saijo (2014). As the theory 

predicted, one treatment is stable, and the other one is unstable.  Although we have not found 

a clearly unstable pulsing in the group total contribution from the unstable treatment, we 

found a significant difference in the dynamic patterns of contributing behavior between the 

two treatments. The experimental results show that, the system is converging to the interior 

dominant equilibrium in the stable treatment. The average contribution decreases with 

https://en.wikipedia.org/wiki/Merrill_Flood
https://en.wikipedia.org/wiki/Melvin_Dresher
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repeated trials and individual contributions converge and become steady. In contrast, in the 

unstable treatment, although contributions on average are also decreasing in repeated trials 

with no clearly unstable pulsing in the group’s total contribution, individual contributions 

diverge and continuously change.  Since these observations do not support the hypothesis that 

the system of the unstable treatment is asymptotically stable, it indicates that only a 

comparative static analysis might not be suitable for the VCM with this setting. 

         Second, based on the theory of Saijo (2015), we introduce the heterogeneity in benefits 

from the public good into the design of the unstable treatment in the first study and design 

four treatments with an identical Nash equilibrium, but with different stability properties. We 

clearly observe significant differences in the belief formation process, the responding process 

and the convergence of contributing behavior of subjects across the four treatments. The Nash 

equilibrium is a good predictor for the two globally stable treatments. However, for the two 

locally stable treatments, it is not. Furthermore, the non-convergence in the two locally stable 

treatments does not stem from the local stability, but from the changes in both the belief 

formation process and the responding process of subjects. 

        Third, I turn to the instability in the CPR. Based on the theory of Saijo et al. (2016), we 

reanalyze the data from the previous studies. We make a connection between the new insight 

of local instability and the unexplained pulsing behavior among players. Moreover, the 

reanalysis shows that the local instability is also a reason for the inefficiency in experiments 

summarized by Ostrom et al. (2006).   
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Chapter 1 

 

INTRODUCTION 
 

 

The content of this thesis reaches the experimental investigation for the instability argument in 

two social dilemma games: the voluntary contribution mechanism (VCM) and the common-

pool resources (CPR) game. Chapter 2 investigates the experimental performance for the 

theoretical argument of instability in the VCM with a homogeneous design. In Chapter 3, we 

investigate the experimental performance for the theoretical argument of global or non-global 

stability in the VCM with a heterogeneous design. Finally, in Chapter 4, we investigate the 

experimental performance for the theoretical argument of instability in the CPR.1 Therefore, in 

the introduction part, I successively introduce the basic models of the VCM and the CPR. Then, 

I clarify the theoretical instability arguments and their implications. Finally, I explain the 

methodology of experiment economics that I employed to empirically examine the theoretical 

results. 

    

1.1 Voluntary Contribution Mechanism 
The VCM usually is mentioned as a mechanism for privately providing public goods. 

Therefore, it is also called the public goods game. When a group of people face a situation that 

a common project needs to be funded and then everyone in the group can benefit from this 

common project, a simple mechanism could be proposed for the problem, which is the VCM. 

Each of the group members could voluntarily decide how much he/she want to contribute to 

the group account from his/her own private account.  

          Bergstrom et al. (1986) provides a general theoretical discussion for the VCM. Here, I use 

a simple linear model to illustrate the basic idea of the VCM. In economics, from a simple case, 

economists always attempt to use a mathematic model to capture the relation between the 

group members’ personal decisions and their outcomes at the end. For example, consider a 

VCM environment that a group of villagers want to build a road for their village via voluntary 

contributions. In this game, for a set of players 𝛪 = {1, … , n}, each has a differentiable quasi-

linear payoff function 𝜋𝑖 from consuming a private good (money) 𝑥𝑖 and a single public good 

                                                           
1 Chapter 2 is a joint work with Tatsuyoshi Saijo, Xiangdong Qin and Junyi Shen. An earlier version 
was published as Feng et al. (2018). Chapter 3 is developed in collaboration with Yoshio Kamijo and 
Tatsuyoshi Saijo. Chapter 4 is a part of the content in a joint work with Tatsuyoshi Saijo and Yutaka 
Kobayashi. The full version can be found in Saijo et al. (2017).   
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(road) 𝑆 that is the sum of all individual contributions (hours of labor input) denoted by 𝑠𝑖  

from players.2 That is 𝜋𝑖(𝑥𝑖 , 𝑆) = 𝑥𝑖 + 𝑡𝑖(𝑆), where 𝑆 = ∑ 𝑠𝑖
𝑛
𝑖=1  and 𝑡𝑖(𝑆) is player i’s personal 

benefits from 𝑆. Generally, 𝑡𝑖(𝑆) might be nonlinear functions and different among players. 

However, most previous studies employ a linear and homogeneous design for them. Here, for 

simplicity, I also follow the usual design in this introduction but in the below studies, the 

assumption is changed with the purpose of discussions. Let 𝑡𝑖(𝑆) = 𝛼𝑆, where 𝛼 is a positive 

constant, and 𝐸𝑖 denote the endowment of player i such that 𝐸𝑖 = 𝑥𝑖 + 𝑠𝑖. Then, player i faces 

the following maximization problem. 

 

    𝑀𝑎𝑥𝑠𝑖
 𝑥𝑖 + 𝛼(𝑠𝑖 + 𝑆−𝑖) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑖 = 𝑥𝑖 + 𝑠𝑖,                                                                      (1.1) 

 

where 𝑆−𝑖 = ∑ 𝑠𝑗𝑗≠𝑖 . Let 𝜋𝑖(𝐸𝑖 − 𝑠𝑖 , 𝑠𝑖 + 𝑆−𝑖) = 𝑣𝑖(𝑠𝑖 , 𝑆−𝑖). A combination of individual 

contributions 𝑠̂ = (𝑠̂1, 𝑠̂2, ⋯ , 𝑠̂𝑛) is a Nash equilibrium if for all i, 𝑣𝑖(𝑠̂𝑖, 𝑆̂−𝑖) ≥ 𝑣𝑖(𝑠𝑖, 𝑆̂−𝑖) for all 

𝑠𝑖 ∈ [0,  𝐸𝑖], where 𝑆̂−𝑖 = ∑ 𝑠̂𝑗𝑗≠𝑖 . Then, we have the following three different cases in which we 

can get  

(1). 𝛼 ≥ 1. In this case, since the benefit from contributing the hours of labor to building the 

road is always larger than keeping it privately, the best choice for player i is contributing all his 

endowments of hours to build the road. The Nash equilibrium, therefore, is 𝑠̂ = (𝐸1, 𝐸2, ⋯ , 𝐸𝑛).   

(2). 𝛼 ≤ 1/𝑛. This case is totally contrasted to the above case. Now, since the benefit from 

contributing the hours of labor to building the road is always smaller than keeping it privately, 

the best choice for player i is contributing zero to build the road. The Nash equilibrium, 

therefore, is 𝑠̂ = (0,0, ⋯ ,0).   Furthermore, since 𝛼 is so small, even smaller than 1/n, if all group 

members still decide to build the road and ask every group member to contribute, the benefit 

at the end is still dominated by the benefit from not constructing the road.   

(3). 1/𝑛 < 𝛼 < 1. The third case is in the midway of above two cases. First, since 𝛼 < 1, since 

the benefit from contributing the hours of labor to building the road is always smaller than 

keeping it privately, the best choice for player i is contributing zero to build the road. The Nash 

equilibrium, therefore, is also 𝑠̂ = (0,0, ⋯ ,0). However, since 1/𝑛 < 𝛼, if all group members 

decide to build the road and ask every group member to contribute, the benefit at the end is 

larger than the benefit from not constructing the road. Thus, for individual group members, 

the best choice is contribute nothing but for the whole group, the best choice is contribute 

everything. 

         Since case (3) captures the conflict between the individual interest and the group interest 

in the VCM, the design of case (3) always attracts a lot of academic discussions. Therefore, in 

                                                           
2 Note that, here, I assume that the production function for building the road is 𝑓(𝑥) = 𝑥.  
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economics, when we talk about the problem of the VCM or the public goods game, we usually 

refer to the situation of case (3). 

 

1.2 Common-Pool Resources 
The common-pool resource refers to an open access resource. The classic example of the 

common-pool resources is the fishing ground. Consider an example of local fishery with 𝑛 

fishers. Assume that the number of fisher i’s fishing hours is 𝑥𝑖 and the output 𝑦 of the fishing 

ground is a function of the total number of hours of fishing, ∑ 𝑥𝑖
𝑛
𝑖=1 . That is 𝑦 = 𝑓(∑ 𝑥𝑖

𝑛
𝑖=1 ), 

where 𝑓(. ) is an increasing, differentiable and strictly concave function. Therefore, the average 

output for each fishing hour is 𝑓(∑ 𝑥𝑖
𝑛
𝑖=1 )/ ∑ 𝑥𝑖

𝑛
𝑖=1 . Then, for fisher i, his/her expected output 

from his/her fishing hours 𝑥𝑖 is 𝑓(∑ 𝑥𝑖
𝑛
𝑖=1 )𝑥𝑖/ ∑ 𝑥𝑖

𝑛
𝑖=1 . Furthermore, assume that the 

opportunity cost for each fishing hour is a positive constant 𝑐 and let 𝑤𝑖 denote the endowment 

of fishing hours for fisher i. Then, fisher i faces the following maximization problem. 

 

     𝑀𝑎𝑥𝑥𝑖
 𝑣𝑖(𝑥𝑖 , 𝑋−𝑖) = 𝑐(𝑤𝑖 − 𝑥𝑖) +

𝑥𝑖

𝑥𝑖+𝑋−𝑖
𝑓(𝑥𝑖 + 𝑋−𝑖),                                                            (1.2) 

 

where 𝑋−𝑖 = ∑ 𝑥𝑗𝑗≠𝑖 . Then a list of inputs 𝑥̂ = (𝑥̂1, 𝑥̂2, … , 𝑥̂𝑛) is a Nash equilibrium if, for all i, 

𝑣𝑖(𝑥̂𝑖 , 𝑋̂−𝑖) ≥ 𝑣𝑖(𝑥𝑖 , 𝑋̂−𝑖)  for all 𝑥𝑖 ∈ [0, 𝑤𝑖], where 𝑋̂−𝑖 = ∑ 𝑥̂𝑗𝑗≠𝑖 . Since all fishers have the 

symmetric value function 𝑣𝑖, in equilibrium, we get 𝑥̂1 = 𝑥̂2 = ⋯ = 𝑥̂𝑛. Therefore, from the 

first-order condition of the maximization problem (1.2), we can get, 

       

      𝑓′(𝑥̂𝑖 + 𝑋̂−𝑖) = 𝑛𝑐 − (𝑛 − 1)
𝑓(𝑥̂𝑖+𝑋̂−𝑖)

𝑥̂𝑖+𝑋̂−𝑖
,                                                                                               (1.3) 

 

         An important insight of this model is that each fisher in this situation has a strong 

incentive to obtain more and more resources, which finally results in an inefficient outcome or 

overexploitation of the CPR. To see this, we can consider that, if all fishers belong to a fishery 

company and their working hours is corresponding to the arrangement of the company. 

Assume that the opportunity cost for each fishing hour is a positive constant 𝑐 and let 𝑤 denote 

the endowment of fishing hours for the company. Then, the fishery company faces the 

following maximization problem. 

 

     𝑀𝑎𝑥𝑧 𝑐(𝑤 − 𝑧) + 𝑓(𝑧).                                                                                                             (1.4) 
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We can get the optimal choice 𝑥̂ from the first-order condition of equation (1.4). It satisfies, 

  

     𝑓′( 𝑧̂) = 𝑐,                                                                                                                           (1.5) 

 

Then, we can compare two equations (1.3) and (1.5). Since the function 𝑓(. ) is a strictly concave 

function, we have 𝑧̂ < 𝑥̂𝑖 + 𝑋̂−𝑖 if 𝑛 ≥ 2 and 𝑐 <
𝑓(𝑥̂𝑖+𝑋̂−𝑖)

𝑥̂𝑖+𝑋̂−𝑖
 which is the participation constraint. 

Since 𝑥̂ represents the optimal choice for the group of fishers, it is the efficient outcome. This 

simple result indicates that if 𝑛 ≥ 2, the sum of every fisher’s best choice will larger than the 

optimal choice for the group of fishers, which leads to a overexploitation problem for the CPR. 

This is called “the tragedy of the commons” (Harding, 1968). Therefore, in this situation, there 

is also a conflict between the individual interest and the group interest.  

 

1.3 Instability: Theoretical Implications 
Instability in games, in particular, in economics, refers to the convergence of an equilibrium, i.e. 

a Nash equilibrium. For example, when we say that a system is locally asymptotically stable, 

it indicates that, for an equilibrium of the system, all nearby solutions not only stay nearby 

but also tend to the equilibrium (see formal discussions and definitions in Chapter 2). 

Therefore, by contrast, if a system is not locally asymptotically stable, it informally means that 

all nearby solutions will not tend to the equilibrium. Related formal definitions with 

respect to different stability properties can be found in each chapter, before we discuss 

concrete theoretical predictions.   

        The theoretical argument of instability in the VCM and the CPR consists of three parts, 

respectively applied to three different settings: the VCM with homogeneous design, the VCM 

with heterogeneous design and the CPR. A notable difference between the VCM and the CPR 

is that different players might benefit differently from the common project in the VCM, but 

usually people benefit identically from the CPR since they can sell the resource in the 

downstream market. Therefore, the theoretical argument of instability is separately discussed 

in the homogeneous and heterogeneous designs. In the following, we explain them 

successively. 

        First, as I mentioned, in most previous experimental studies, researchers employ a linear 

payoff function (for a survey, see Ledyard, 1995). However, in most practical situations, the 

private good is money, hence its marginal return could be assumed as a constant, but the 

marginal return from a specific public good usually decreases as the level of the public good 

increases. Some researchers, therefore, pay much attention to this quasilinear payoff function 

in their investigation (for a survey, see Laury and Holt, 2008). If the payoff function is a 
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homogeneous quasilinear setting that is linear with respect to the private good and nonlinear 

with respect to the public good, it induces multiple static Nash equilibria.3 Saijo (2014) argues 

that all Nash equilibria are not asymptotically stable under the assumption of self-interested 

players and myopic best response dynamics in which players make best response to the last 

observation of their opponents’ actions. This leads to pulsing of contributions (alternating 

between contributing nothing and contributing everything). 

       Second, if the payoff function is a heterogeneous quasilinear setting that different 

players benefit differently from the public good, the multiple static Nash equilibria are 

degenerated to a unique Nash equilibrium (Bergstrom et al., 1986; Saijo, 2015). Under the same 

assumption of self-interested players and myopic best response dynamics, Saijo (2015) 

argues that, if the number of players exceeds two, there is a necessary and sufficient condition 

for the global stability of the unique Nash equilibrium in this asymmetric environment. If the 

setting of the system does not satisfy this condition, the unique Nash equilibrium is non-

globally stable which indicates that the sequences start from some initial points will be pulsing 

after several periods between two contribution levels under the assumption of best response 

dynamics.   

        Third, still under the same assumption of self-interested players and myopic best 

response dynamics, Saijo et al. (2016) argue that, if the number of players exceeds two, there 

is a necessary and sufficient condition for the local stability of the Nash equilibrium in the 

system of the CPR. Furthermore, this result indicates that, if the number of players is two, 

the difference equation system is always locally stable at the Nash equilibrium and if the 

number of players is at least four, then the difference equation system is always locally 

unstable at the Nash equilibrium. When n = 3, the stability is indeterminate. Moreover, when 

the system is locally unstable at the Nash equilibrium, the choices of player will be pulsing 

between two extraction levels. 

        Overall, all of these theoretical arguments are based on the assumption of self-interested 

players and best response dynamics. The result is that, if the setting of the system does not 

satisfy a particular condition, the contributions or the extraction levels will be pulsing, which 

indicates the Nash equilibrium in these games is not a good predictor for players’ decisions. 

Therefore, an obvious implication is that the Nash equilibrium is not a suitable standard of 

comparison for the empirical investigations in such the environments with the unstable 

settings.  

        However, although the Cournot best response dynamic is useful in the theoretical analysis, 

it is usually too strict to explain the experimental observations. First, players in the game might 

not be so myopic and forming their beliefs according to not only the last observation. Second, 

players might not be so self-interested; they might also care about the difference between 

                                                           
3 We will explain more details in chapter 2. 
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his/her own payoff and the other’s payoff. Therefore, to examine the assumptions the 

theoretical arguments that are based on those assumptions, a useful method is the 

methodology of experimental economics. In the next subsection, I will explain it and introduce 

some new insights in economics benefited from this methodology. 

 

1.4 Methodology of Experimental Economics       
Experimental economics as an empirical method is formally introduced by Vernon L. Smith in 

1970s (Plott and Smith, 2008). Due to this contribution, he has been awarded Nobel Prize in 

2002. Originally, he wants to investigate the predictions from the basic economic theory, i.e. 

supply and demand, market structure, using the experiment with human subjects. Since, in the 

design of lab experiments, experimenters can rule out all other factors that cannot be 

controlled in reality, the environment of lab experiments becomes a perfect place to test the 

prediction of economic theories with human subjects. 

         Since all economic theories are based on various assumptions, experimental method 

could be looked as a tool to examine the basic assumptions of economic theory. This might be 

the most important contribution of experimental economics to the economic theory. For 

example, since nineteenth century, a widely used assumption in various economic theories is 

the economic man that is a selfish and rational person in the economic environment. Under 

this widely accepted assumption, economics has achieved great success, especially, the wide 

use of game theory in economics. However, it also provides a lot of problem, i.e., charitable 

giving, that economic theory cannot explain. It seems that, although the assumption of 

economic man is important to economic theories, people in reality are not as selfish and 

rational as economists assumed. Then, experimental economics, due to its many advantages, 

provides very clean experimental evidence to show the distance between the theoretical 

predictions and the real performance of human subjects. Following the introduction of 

experimental economics, behavioral economics has been established. It changes the norm. The 

widely used assumption in behavioral economics is no longer the economic man but a social 

man with bounded rationality and social preferences. Therefore, behavioral economics 

becomes an inter-discipline interacting with psychology.  

        However, although the method of experimental economics is much like the method of 

experimental psychology, there are still some differences between these two disciplines. Let 

me manifest the methodology of experimental economics.  

        (i). Random Assignment. In experimental economics, likes the experimental psychology, the 

most important regulation or the basis of the empirical tests is the design of the random 

assignment in the experiment. This is the key step to control the unspecific factors in the 

experiment. Through random assigning subjects across treatments, the effects of unspecific 
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factors, i.e. the individual heterogeneity, could be averaged among treatments. Therefore, these 

unspecific factors cannot becomes an alternative explanation for the experimental results. 

        (ii). Anonymity. It is also like the experimental psychology. The identity of human subjects 

is classified in the experiments of experimental economics. Since the investigations in 

experimental economics usually focus on the decision-making in an environment of social 

interaction, through controlling the identity of subject, we can rule out the complex social 

intentions in the lab experiments and make clean the experimental data. 

        (iii). Incentive Compatibility. This might be the most important trait. Because of this, 

experimental economics is different from experimental psychology and surveying method that 

is the traditional empirical method in economics and sociology. The incentive compatibility 

indicates that the performance of human subjects should be consistent with the basis of 

rewards. It is also the basis of trustworthy for the experimental data. Human subjects make 

decisions in the experiments, because they want to get more and more rewards from the 

experiments. Therefore, it is a mechanism to ensure every decision could be considered as a 

true reflection of their intentions. A usual way of rewards is money, since money might be the 

item with the smallest individual heterogeneity in preference among human subjects. 

Obviously, if the experimenters can control the individual heterogeneity in the preference, 

anything could be used as a reward in the experiments. But, usually, in the experiment with 

student subjects, we use money. The incentive compatibility also indicates that subjects must 

be voluntarily participating in the experiments. If a subject is not voluntarily participating, the 

experimenter cannot make sure whether he/she cares about the rewards from the experiment. 

In other words, the experimental data from his/her decisions also cannot be trusted.   

        (iv). Faithfulness. This is another trait that is different from experimental psychology. The 

design of experiments in experimental economics requests a faithful formulation. The subjects 

should not be deceived during the experiments. Since most experimental studies in 

experimental economics investigate the economic decision-making, a faithful and coherence is 

necessary for subjects to connect decisions and outcomes during the experimental environment. 

Especially, for the repeated use of the subject pool and the lab, the reputation of the lab could 

significantly influence the experimental data of the successive experiments. 

        After explaining four basic traits in experimental economics, I will manifest the procedure 

of the experiments. Usually, the lab of experimental economics is equipped with one server 

and about twenty clients and each client locates in a closed chamber. A local network links all 

of these computers. The procedure of experimental treatments is programed by a computer 

software.4  

                                                           
4 Usually, it is Z-tree (see Fischbacher, 2007). Other network software is also useful, for example, the 
web server with PHP. 
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        When subjects are randomly chosen from the pool and enter the closed chambers, the 

experimenter should read loudly the instructions of the experiment. When every subject 

understands the meaning of the instructions, they are requested to answer the control 

questions. Through the answer of the control questions, the experimenters can identify 

whether a particular subject understands the rule of the experiment. If a subject does not seem 

well-understood, more private instructions are suitable. Furthermore, the answer of the control 

questions could also be a standard to select the experimental data.  

       The subjects usually are randomly assigned to a group with several persons in order to 

achieve the anonymity. And, no communication is allowed during the experiment. When the 

experiment is completed, each subject should be paid the rewards privately. All experimental 

data and material will be preserved for years.  

       After the collection of the experimental data, economists usually use the analysis tools 

from econometrics to analysis the data. It includes not only nonparametric statistic tests that 

are very common in the data analysis of experimental psychology, but also the regression 

models or other statistic models. These methods enrich the analysis of the experimental data. It 

allows the economists not only to identify the treatment effects of the experiment design, but 

also to investigate the particular reasoning behind the treatment effects. Therefore, 

experimental studies in experimental economics usually are plenty of insights.  

       In this thesis, I will employ the methodology of experimental economics to investigate not 

only the treatment effects but also the economic reasoning based on the theoretical arguments 

of instability in social dilemma games. The experimental investigations can provide an 

intuitive understanding of the distance between the theoretical results and the empirical 

results. Basically, I want to answer the questions how the theoretical reasoning fits the 

experimental data and whether the assumption behind the theory is suitable for analyzing the 

experimental data.     

 

1.5 Challenges to the methodology of Experimental Economics 
There are two main challenges to the methodology of Experimental Economics nowadays. One 

comes from the other traditional areas of Economics. The main criticism is that, the researches 

of Experimental Economics usually are conducted in a virtual environment. Although those 

unimportant influences could be eliminated in such an environment, there is a certain distance 

from the realistic economic decision-making environment. For example, a critical difference is 

that players in a virtual environment usually are unfamiliar with the decision environment 

they have to take time to understand and make trials in these environments created by 

economists, but in a realistic economic environment, the decision-makers usually are very 

familiar with surrounding economic environments, especially, some of them might have years 

of related experience. Such information or experience can significantly affect subjects’ risk 



14 
 

attitude (Harrison and List, 2004). This criticism seems very simple. However, it directly points 

out that the experimental observation in the lab experiments might not reflect the practice in 

reality, especially, in some researches regarding market structure and industry organization. 

Recently, an emerging discipline, called Field Experimental Economics, attempts to solve this 

criticism. The new discipline follows the related methodology of Experimental Economics, but 

conducts experiments in a more realistic environment. The researchers from this discipline 

make effort to render their experiments happened in a realistic environment which is very 

familiar to subjects.  

        The other challenge comes from natural science, especially, Biology and Neuroscience. For 

many years, Neuroscience and Psychology are gradually integrated together. The new 

disciplines, called Cognitive Neuroscience and Social Neuroscience start to investigate the 

neural basis behind human cognitive activities and social interactions. It is natural to see 

Neuroscience intrudes into Experimental Economics, since any economic decision is a 

consequence of brain activity. Without a basis of brain activity, any finding that deviated from 

the assumption of economic-man cannot be thoroughly understood (Glimcher and Fehr, 2013). 

Therefore, a new discipline, called Neuroeconomics, has been established recently. It aims to 

investigate the neuro basis of human economic decision-making with the method of 

neuroscience. In such a discipline, the methodologies of Experimental Economics and 

Neuroscience are integrated together.    
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Chapter 2 

 

Instability in the Voluntary Contribution Mechanism with a 

Quasi-Linear Payoff Function 
       

 

2.1 Introduction 

Experimental economists have investigated the voluntary contribution mechanism (VCM) 

for many years for the purpose of understanding the public goods provision problem.5 

The linear payoff functions such as 𝑢(𝑥𝑖, 𝑦) = 𝑥𝑖 + 𝑏𝑦, where xi is a private good of player i, 

y is a public good, and b is a positive constant is widely employed by most researchers in 

this field. However, a number of scholars argue that this setting cannot represent real-

world VCM environment because the self-interested choice (Nash equilibrium) and the 

optimal social choice are located at opposite boundaries of the feasible choice set (see, e.g., 

Sefton and Steinberg, 1996; Laury and Holt, 2008).  

        This problem could be mitigated by adopting quasi-linear payoff functions to make 

interior solutions for the self-interested and optimal social choices. In most real-world 

situations, the private good 𝑥𝑖 is money, the marginal return of which could be assumed to 

be constant. However, for a specific public good 𝑦, its marginal return is nonlinear. Thus, 

the first quasi-linear payoff function is, 𝜋(𝑥𝑖, 𝑦) = 𝑥𝑖 + 𝑡(𝑦) (see Isaac et al., 1985; Isaac and 

Walker, 1991; Sefton and Steinberg, 1996; Isaac and Walker, 1998; Laury et al., 1999; Hichri 

and Kirman, 2007). We refer to this as “QL1.” Conversely, one might consider a reverse 

case in which the marginal return of the payoff function is linear with respect to y and 

nonlinear with respect to 𝑥𝑖. Thus, that is 𝜋(𝑥𝑖 , 𝑦) = ℎ(𝑥𝑖) + 𝑦 (see Sefton and Steinberg, 

1996; Keser, 1996; Falkinger et al., 2000; Willinger and Ziegelmeyer, 2001; van Dijk et al., 

2002; Uler, 2011; Maurice et al., 2013; Cason and Gangadharan, 2014). We refer to this as 

QL2. This payoff function could be employed to model a relatively rare situation that is 

the decrease (constant) of the marginal return of the private (public) good.  

         Different theoretical predictions are presented in these two designs. For the VCM with 

QL1, multiple static Nash equilibria coexist, which induces a coordination problem. 

Conversely, for the VCM with QL2, a unique dominant equilibrium exists, which is similar 

to the VCM with linear payoff functions. A previous study compared contribution levels 

                                                           
5 See Ledyard (1995) and Chaudhuri (2011) for surveys on experiments regarding the VCM. 
Bergstrom et al. (1986) discuss the basic theoretical properties of the VCM. 
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between QL1 and QL2 environments (Sefton and Steinberg, 1996). They use a randomly 

re-matched group setting to suppress the feedback from the results of previous periods in 

the experiments. Theoretically, they argue that the presence of the coordination problem 

should be a reason for the fact that the average of individual contributions is significantly 

above the Nash equilibrium in their VCM experiment with QL1. However, their 

experimental results show a slight difference in contribution levels between the two 

experiments.  

        Differing from Sefton and Steinberg (1996), this study devotes to investigate the VCM 

experiments with QL1 and QL2 under a fixed group setting. Because the game is 

transformed into a super game in the fixed group setting, players might play strategically 

in the experiment (for details, see the discussions in Sefton and Steinberg, 1996). Moreover, 

Healy (2006) provides experimental evidence that subjects appear to best respond to recent 

observations in the VCM experiment with QL1 using a fixed group setting. This indicates 

that, in the fixed group setting, the feedback from preceding periods contributes to belief 

formation much more directly in the fixed group setting than it does in the randomly re-

matched group setting. 

        A recent study shows that all Nash equilibria are not asymptotically stable in the 

difference dynamic system of the VCM with QL1 under the assumptions of self-interested 

players and myopic best response dynamics (Saijo, 2014).6 This results in a pulse of 

contributions (alternating between some particular numbers). This dynamic analysis 

predicts that the coordination problem will be worsened by the feedback from repeated 

trials in the VCM with QL1. Furthermore, previous studies show that the symmetric Nash 

equilibrium is not a good predictor of individual contributions and that mean 

contributions also vary widely among individuals, even within a single experiment (Laury 

et al., 1999; Hichri and Kirman, 2007). The experimental observations and the theoretical 

instability argument suggest a complex interaction among subjects in the VCM experiment 

with QL1.  

       The instability arguments are experimentally discussed in the field of industrial 

organization (see Cox and Walker, 1998; Rassenti et al., 2000; Huck et al., 2002). However, 

those discussions differ from the current study. Andreoni (1995) points out that, subjects 

are called upon to generate positive externalities in the VCM environment, whereas they 

are asked to generate negative externalities in the experiment of oligopoly competition.7 

                                                           
6 An intuitive explanation of asymptotic stability is that an equilibrium 𝑥̂ is asymptotically stable if 
all nearby solutions not only stay nearby but also tend to 𝑥̂ (Hirsch and Smale, 1974, p. 180). We 
provide the formal definition of asymptotic stability in Section 2.2.   
7 The VCM experiments usually frame the subject’s choice as contributing to the provision of public 
goods, which could benefit other players within the group, whereas the oligopoly experiments 
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Different effects on cooperation will be induced by the positive and negative framing (see 

Andreoni, 1995; Sonnemans et al., 1998; Cookson, 2000; Bowles and Polania-Reyes, 2012). 

Previous researchers have identified that cooperative behavior is widely observed in the 

VCM experiments (for a survey, see Chaudhuri, 2011). Therefore, the present study might 

provide an opportunity shedding light on the effect of instability in a cooperative 

environment.  

       More importantly, most experimental studies in the field of VCM experiment employ 

the linear payoff function, which might have failed to capture the real-world instability of 

the VCM. Therefore, this study aims to investigate that instability and provides dynamic 

analyses on the convergence of individual contributions in the VCM with QL1 using a 

fixed group setting. For the purpose of comparison, the results of the VCM experiment 

with QL2 serve as a reference.   

        Differing from the observation of a tiny difference between the QL1 and QL2 

environments with the randomly re-matched group setting in Sefton and Steinberg (1996), 

the experimental observations of our study show a significant difference in the 

convergence of individual contributions between the QL1 and QL2 environments with the 

fixed group setting.  Experimental evidence clearly shows that the decreasing dispersion 

of individual contributions and the diminishing the absolute changes of individual 

contributions in the experiment with QL2. 8 These observations indicate the convergence of 

individual contributions and suggest more and more steady individual contribution. In 

contrast, in the experiments with QL1, our observations show that the dispersion of 

individual contributions increases progressively and that individual contributions are still 

volatile in the experiments’ last periods, but we do not find a clearly unstable pulsing in 

the group’s total contribution. This indicates that individual contributions diverge. 

Therefore, the coordination problem is not alleviated and individual contributions are not 

converging to any equilibrium in the experiments with QL1. Our main result is that the 

experimental observations provide supporting evidence for the non-convergence of 

individual contributions in the QL1 environment using a fixed group setting, but there is 

still a significant distance between the theoretical instability argument and our 

experimental observations.  

       Moreover, our data show considerable cooperation across players in all experiments in 

line with the findings of previous studies. In each experiment, about 50 percent subjects 

could be regarded as typical conditional cooperators, and about 20 percent subjects are 

                                                                                                                                                                                 
usually frame the subject’s choice as providing a product, which will lower the market price and 
result in a disbenefit to others within the group. 
8 Absolute changes are the absolute values of the first-order differences of individual contributions. 
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weak free riders.9 Based on this observation, possible explanations are discussed for the 

distance between our theoretical predictions and the experimental observations in the 

conclusion.  

       The remainder of this chapter is organized as follows. Section 2.2 summarizes several 

theories concerning the VCM with QL1 and QL2. Section 2.3 presents our experimental 

design. Section 2.4 reports the experimental observations. Finally, the last section discusses 

the results and concludes the study. 

        

2.2 Theories of the VCM with QL1 and QL2 

2.2.1 VCM with QL1 

In an n-player VCM with QL1, all players are homogeneous and have the same payoff 

function and the same endowment E. Hence, a simple specification of the payoff is as 

follows: 

 

     𝜋𝑖 = 𝐸 − 𝑠𝑖 + 𝑎𝑆 − 𝑏𝑆2,                                                                                                   (2.1) 

 

where a and b are positive constants, 𝑠𝑖 denotes the individual contribution of player i, 

and 𝑆 = ∑ 𝑠𝑖
𝑛
𝑖=1  is the group’s total contribution. More precisely, we assume that 1 ≤ 𝑎 ≤

2𝑏𝑛𝐸 + 1, 
𝑎−1

2𝑛𝐸
≤ 𝑏, and 

𝑎−1

2𝑏𝑛
≤ 𝐸. For this simple game, a list of individual contributions 𝑠̂ = 

(𝑠̂1, 𝑠̂2, ⋯ , 𝑠̂𝑛) is a Nash equilibrium if, for all i, 𝜋𝑖(𝑠̂𝑖, 𝑆̂−𝑖) ≥ 𝜋𝑖(𝑠𝑖, 𝑆̂−𝑖) for all 𝑠𝑖 ∈ [0,  𝐸], 

where 𝑆̂−𝑖 = ∑ 𝑠̂𝑗𝑗≠𝑖 . Therefore, from the first-order condition, the sum of Nash equilibrium 

contributions is  

 

     𝑆̂ =
𝑎−1

2𝑏
, 𝑆̂ ∈ [0, 𝑛𝐸].                                                                                                         (2.2) 

 

Hence, any combination of individual contributions constitutes a static Nash equilibrium 

as long as the total contribution equals 𝑆̂ (Bergstrom et al., 1986). 

                                                           
9 Typical conditional cooperators are those players who always try to match the average 
contribution of others in the previous period and whose contribution is insignificantly different 
from the average contribution of others. Weak free riders are those whose contribution is 
significantly below the average contribution of other players in the group and who are affected by 
the difference between their individual contributions and the average. 
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Anderson et al. (1998) introduce decision errors into this model. They find an 

interesting result. Although there is a continuum of Nash equilibria, a unique logit 

equilibrium exists that is symmetric across players. The equilibrium density is a (truncated 

at the boundary of the choice set) normal density for the quadratic public goods game (the 

VCM with QL1).10 Furthermore, they suggest that this model can easily be generalized to 

allow for individual differences in error parameters. The equilibrium thus becomes a 

unique asymmetric logit equilibrium. Moreover, the distribution is truncated by the 

boundary of the choice set, and the expected contribution of the logit equilibrium, 

therefore, is also sandwiched between the symmetric Nash equilibrium level and half of 

the endowment. These findings seem consistent with the experimental observations from 

Isaac and Walker (1998). The nature of this comparative static analysis is that the feedback 

from repeated trials will help subjects achieve the equilibrium consistency condition of the 

logit equilibrium and solve the coordination problem.11 

       However, this comparative static analysis is built on the assumption that the dynamic 

system of VCM is stable and converging to the unique logit equilibrium. If belief updating 

process cannot lead players to reach the equilibrium consistency condition of the logit 

equilibrium, this implies that the system is unstable, and the comparative static analysis 

might thus not be suitable.   

       Then, we show the dynamic analysis conducted by Saijo (2014) for exploring the 

equilibrium in the VCM with QL1. The best response function in the VCM with QL1 is as 

follows: 

  

     𝑠𝑖 = 𝑚𝑖𝑛{𝑚𝑎𝑥{− ∑ 𝑠𝑗𝑗≠𝑖 + 𝑆̂, 0} , 𝐸},                                                                               (2.3) 

 

where 𝑆̂ is the Nash prediction for the aggregate contribution given by equation (2.2) (see 

Bergstrom et al., 1986). The myopic Cournot best response dynamics indicates that player 

i’s contribution at period t directly responds to the total contribution of others in the group 

at period t-1. Hence, the best response function (2.3) then becomes 

 

     𝑠𝑖
𝑡 = 𝑚𝑖𝑛{𝑚𝑎𝑥{− ∑ 𝑠𝑗

𝑡−1
𝑗≠𝑖 + 𝑆̂, 0} , 𝐸}.                                                                         (2.4) 

                                                           
10 See Proposition 3 in Anderson et al. (1998). 
11 The equilibrium consistency condition is that player i’s expectations of other players’ actions are 
equal to the means of the actual equilibrium distributions (Anderson et al., 1998). 
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       Now, let us look at the stability property of this dynamic difference system. In the 

analysis, we employ the following definition of asymptotic stability. 

 

Definition 2.1. An equilibrium 𝑥 is locally asymptotically stable, if and only if there exists 

some open neighborhood 𝑂 of 𝑥 such that, for any 𝑥𝑡 ∈ 𝑂, 𝑥𝑡 converges to 𝑥 as 𝑡 

approaches infinity.  

 

The following property is useful to decide whether the Nash equilibria in the difference 

equation system of equation (2.4) are asymptotically stable (see Bischi et al., 2009; Saijo, 

2014).  

 

Property 2.1. Let k be the slope of the best response function at the Nash equilibrium. The 

system 𝑠𝑖
𝑡 = 𝑟(𝑠−𝑖

𝑡−1), (i = 1, 2, ..., n), is locally asymptotically stable if and only if |k(n −

1)| < 1.  

 

Because the slope of equation (2.4) is -1 and n-1≮1 if n≥2, all equilibria are not locally 

asymptotically stable. This indicates that, under the assumptions of self-interested subjects 

and myopic best response, contributions will alternate between contributing nothing and 

contributing everything after a few rounds (if 𝑆̂ ≥ 𝐸) in a simultaneous difference equation 

system of the VCM with QL1. The nature of this theoretical result is that the feedback from 

repeated trials will not alleviate the coordination problem, but worsen it. This insight 

implies the possibility that the dynamic difference system of a VCM experiment with QL1 

is unstable. 

 

2.2.2 VCM with QL2 

In an n-player VCM with QL2, a simple quadratic payoff function could be given as 

follows: 

 

    𝜋𝑖 = 𝑐(𝐸 − 𝑠𝑖) − 𝑑(𝐸 − 𝑠𝑖)2 + 𝑆,                                                                                     (2.5) 
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where 1 ≤ 𝑐 ≤ 2𝑑𝐸 + 1, 
𝑐−1

2𝐸
≤ 𝑑, and 

𝑐−1

2𝑑
≤ 𝐸. Then, from the first-order condition, we can 

get a dominant Nash equilibrium solution for every player 

 

    𝑠̂ =
1−𝑐

2𝑑
+ 𝐸, 𝑠̂ ∈ [0, 𝐸].                                                                                               (2.6) 

 

Therefore, due to a unique dominant equilibrium, the VCM environment with QL2 is 

similar to the VCM with linear payoff functions. The only difference is the location of the 

equilibrium in the choice set. Anderson et al. (1998) also introduce decision errors into the 

quadratic model of the VCM with QL2. They suggest that the decision error should 

partially explain excessive giving when the Nash equilibrium is less than half of the 

endowment, because the distribution of the logit equilibrium is also truncated by the 

boundary of the choice set. Willinger and Ziegelmeyer (2001) provide experimental 

evidence supporting this theoretical result.   

 

2.3 Experimental Design and Procedures 

We conducted the experiments at the Vernon Smith Experimental Economics Lab at 

Shanghai Jiaotong University (SJTU) in March 2015 (192 subjects) and March 2017 (96 

subjects). The subjects were recruited among SJTU students excluding those from the 

Department of Economics and Management. Subjects participated voluntarily and had no 

experience of VCM experiments using nonlinear payoff structures. The experiments 

consisted of 12 sessions. For each session, we recruited more than 30 subjects. We then 

used a lottery to select the participants. 24 subjects were selected in each session, and we 

paid a show-up fee to the rest. We used z-Tree to run the experiments (Fischbacher, 2007). 

Table 2.1 summarizes the parameters of our experiments.12 Four different experiments 

are implemented. Three of these (QL1N, QL1P, and QL1M) employ payoffs based on QL1, 

which is linear with respect to the private good and nonlinear with respect to the public 

good, while QL2N is based on QL2, which is linear in the public good and nonlinear in the 

private good.  

                                                           
12 Payoff lists and instructions translated from the Chinese version can be found among the 
supplementary documents. We also present graphs for the relation between returns and tokens for 
each account and clearly display which part indicates diminishing marginal returns. This makes 
our design close to the detailed information (DET) experiments in Laury et al. (1999). 
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Consistent with the design of Sefton and Steinberg (1996), we set the following 

consistency conditions for the two experiments with nonlinear designs (QL1N and QL2N): 

1. The same (symmetric) equilibrium contribution of two tokens per individual. 

2. The same (symmetric) socially optimal contribution of six tokens per individual. 

3. The approximately equal reward from (symmetric) equilibrium play. 

4. The approximately equal reward from (symmetric) socially optimal play.13 

 

Table 2.1 Parameters of the experiments 

Experiments                              QL1N                    QL1P                      QL1M                    QL2N 

Payoff function                          QL1N:  (𝐸 − 𝑠𝑖) + 1.4484𝑆 − 0.0137(𝑆)2 + 28 

                     QL1P and QL1M: {

10(𝐸 − 𝑠𝑖) + 15𝑆, 𝑆 ≤ 16; 

10(𝐸 − 𝑠𝑖) + 5(𝑆 − 16) + 240, 16 < 𝑆 ≤ 48;  

10(𝐸 − 𝑠𝑖) + (𝑆 − 48) + 400, 48 < 𝑆 ≤ 64.

 

                     QL2N:  11.5(𝐸 − 𝑠𝑖) − 0.875(𝐸 − 𝑠𝑖)2 + 𝑆 

Endowment (Tokens)                    8                           8                               8                             8 

Additional payment (E$)             28                          0                               0                             0 

(symmetric) 

Nash choice ŝ (Payoff)                 2(53.7)                2(300)                      2(300)                    2(53.5) 

(symmetric) 

Socially optimal s∗(Payoff)          6(68)                   6(420)                     6(420)                     6(67.5) 

Payment ratio                                 22:1                    110:1                       110:1                        22:1 

Periods                             15(Random ending)         30                            30               15(Random ending) 

Groups/Subjects                           12/96                  6/48                       6/48                        12/96 

 𝑠𝑖 denotes the individual contribution of player i; E represents the endowments; and S denotes the group’s 

total contribution. 

     

       However, our experimental design differs from that of Sefton and Steinberg (1996) in 

two crucial ways. First, our design employs an eight-player fixed group setting. In the 

                                                           
13 We set an additional payment to make the rewards from equilibrium play and socially optimal 
play approximately equal between the two experiments. 
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design of Sefton and Steinberg (1996), four individuals are randomly allocated to a group 

at the beginning of each period. We use a relatively large group, following Ostrom et al. 

(1992), who use an eight-player group setting to study common pool resource 

environments (see Chapter 4 for more details).  

        Second, because setting the coefficient of linear returns to be equal to one could be 

easier for subjects to understand the nonlinear return structure in the payoff table, we do 

not consider the 5th symmetric condition in Sefton and Steinberg (1996)—the same 

monetary loss from a one-token unilateral departure from equilibrium play. This design 

results in the opportunity costs among choices in the QL1N experiment are significantly 

lower than those in the QL2N experiment. As Smith and Walker (1993) shown, the 

opportunity costs among choices directly affect the dispersion of individual choices in 

experiments. Therefore, the relatively small opportunity costs might influence the 

convergence of choices.14 To ensure that our experimental observations do not originate 

from the design of relatively small opportunity costs, we implement the other two 

experiments (QL1P and QL1M) for robustness checks. The QL1P experiment employs a 

piecewise linear payoff function as the linear approximation for the nonlinear returns from 

the public good (similar to the payoff design in Cason and Gangadharan, 2014). The 

opportunity costs are also increased among choices.15 The QL1M experiment utilizes the 

same payoff function as that used in the QL1P experiment but with a different the payoff 

table in the instructions. The new payoff table uses a matrix to directly connect the choices 

to the payoffs (see, e.g., the design of payoff tables in Cason et al., 2004).  

 

The experiments with QL1 

 

The QL2N experiment 
                                                           
14 We thank an anonymous referee for pointing this out. 
15 Different from the QL1N experiment, we remove the fixed payment in each period and boost the 
magnitude of experimental payoffs by 10 times, but the exchange ratio from experimental dollars to 
real money increases by only five times (from 22:1 to 110:1) in the QL1P and QL1M experiments. 
For the choices around the Nash equilibrium, the opportunity cost in the piecewise linear design is 
significantly greater than is that in the nonlinear design.   
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Fig. 2.1 Stability property of the design 

 

       We draw the best response curves for the two environments to clearly illustrate the 

stability property of our design. In Figure 1, the horizontal axis is the total contribution of 

others in the group, and the vertical axis represents player i’s own contribution. For the 

three experiments with QL1, the myopic Cournot response curve (the bold black line “f-w-

j-h”) is 

  

    𝑠𝑖
𝑡 = min{max{− ∑ 𝑠𝑗

𝑡−1
𝑗≠𝑖 + 16,  0},  8}.                                                                       (2.7)  

    

For example, suppose that every player’s initial contribution is the same at a/7, which 

implies that the total contribution of others is initially “a.” Obviously, the best response to 

“a” is point “b.” Then, if players are symmetric, the total contribution of others goes to “c.” 

Then, we find the best response to “b” is point “d,” that to “d” is point “f,” and that to “f” 

is point “h.” Finally, the dynamic difference system will be pulsing between point “f” and 

point “h.” This example shows that, under the assumption of Cournot best response 

dynamics, the contributions of subjects will be pulsing between 0 and 8 after a few rounds. 

However, for the QL2N experiment, this curve is derived simply as follows: 

   

    𝑠𝑖
𝑡 = 2.                                                                                                                               (2.8) 

 

Therefore, the best response to any case is contributing two tokens. Given these theoretical 

results, we propose the following hypotheses: 

 

Hypothesis 2.1. In the experiment with QL2 (QL2N), individual contributions will 

converge to the unique Nash equilibrium, which indicates that (i) the dispersion of 
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individual contributions decreases and (ii) individual contributions become steady with 

repeated trials. 

 

Hypothesis 2.2. In the experiments with QL1 (QL1N, QL1P, and QL1M), individual 

contributions will not converge to the symmetric and asymmetric Nash equilibria, which 

indicates that (i) the group’s total contribution will be pulsing round after round (the 

sample autocorrelation statistic should be negative), (ii) the dispersion of individual 

contributions might not decrease because of the intergroup level heterogeneity, and (iii) 

individual contributions will be volatile even in the last periods.    

 

        For each session in the QL1N and QL2N experiments, we implement the experiment 

with a random ending rule. Subjects were certain to participate in the first 15 periods. 

From the beginning of the 16th period, the experiment would continue with a probability 

of 0.3. This setting helps to suppress strategic play (e.g., the endgame effect) in a repeated 

game with the fixed group setting.16 Data from the first 15 rounds were used for analysis. 

Furthermore, to show more information regarding the convergence of contributing 

behavior, the public goods game repeated 30 periods in each session of the QL1P and 

QL1M experiments. Since these two experiments serve as robustness checks for the 

observations from QL1N experiments, we have the following third hypothesis. 

 

Hypothesis 2.3. The dynamic patterns of contributions (concerning dispersion and 

contribution volatility) should not be significantly different among the QL1N, QL1P, and 

QL1M experiments.  

 

At the beginning of each period, each subject receives eight tokens. They are called 

upon to allocate these tokens into two accounts: the private account and the public account. 

All tokens have to be allocated in each period without communication with others, and the 

feasible choice set is {0,1, … ,7,8}. Each token in the private account produces a private 

return to oneself. Each token in the public account produces a public return to each 

member of the group. The framing of instructions was similar to that of Sefton and 

Steinberg (1996) and consistent across experiments. 

                                                           
16 See Dal B ó (2005). However, other studies find no significant difference between the finite period 
setting and the random terminated setting (e.g., Selten and Stoecker, 1986; Engle-Warnick and 
Slonim, 2004). 
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        At the end of each period, the result of that period is reported to each subject. The 

report consists of three parts: each subject’s own decisions, the total tokens in the public 

account, and his/her own payoff. No subject can observe the individual contributions of 

other members of the same group. This incomplete information setting is consistent with 

most studies of the literature on VCM experiments.  

        The instructions are distributed to each one, at the time when all 24 subjects enter the 

lab in each session. At the beginning of each session, a native speaking research assistant 

reads the instruction loudly. Then, control questions are required to be answered correctly 

to ensure that every subject understands the experimental procedure. At the end of each 

session, each subject receives his/her payment privately at a preannounced exchange rate 

of 22 experimental dollars (E$) to 1 Chinese RMB in the QL1N and QL2N experiments and 

110 experimental dollars (E$) to 1 Chinese RMB in the QL1P and QL1M experiments. The 

192 subjects earn RMB 44.5 (7.5 US dollars) each on average, with a range of RMB 36 to 

RMB 47 in the QL1N and QL2N experiments and the 96 subjects earn RMB 94 (15 US 

dollars) each on average, with a range of RMB 80 to RMB 108 in the QL1P and QL1M 

experiments. Each session lasts about one hour and a half, including the instruction and 

payment distribution time. 

 

2.4 Results  

This section consists of four subsections. The first gives an overview for the experimental 

data. The second investigates the dispersion of individual contributions. The third shows 

the dynamics of changes in individual contributions. The final subsection investigates the 

conditional cooperation in the four experiments and roughly categorizes subjects.    

 

2.4.1 Overview 

First, we present an overview of individual contributions. Figure 2.2 shows the average 

contributions at each period for the four experiments. A decreasing tendency of average 

contributions is shared by the four experiments. Individual contributions from periods 11 

to 15 are significantly lower than those from periods 1 to 5 in both the QL1N and QL2N 

experiments (p-values = 0.0000 by the Wilcoxon signed-rank tests) and that individual 

contributions from periods 21 to 30 are significantly lower than those from periods 1 to 10 

in both the QL1P (p-value = 0.0171) and QL1M (p-value = 0.0000) experiments.17  

                                                           
17 For all Wilcoxon signed-rank tests in this paper, we first compute two averages across periods 1 
to 5 and 11 to 15 for each subject in the QL1N and QL2N experiments and across periods 1 to 10 
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Fig. 2.2 Average contributions in the four experiments 

  

        Second, we show an overview of the group’s total contributions. Figure 2.3 shows 

time series plots of the group’s total contributions. It clearly shows that the total 

contributions of all groups are significantly above the Nash prediction. This observation 

indicates the presence of cooperation. The corresponding sample autocorrelation statistics 

(α) of each group are reported in Table 2.2. They are positive for all groups. There is a 

slight difference in autocorrelation statistics between the QL1N and QL2N experiments (p-

value = 0.0781 by the Wilcoxon rank-sum test). Figure 2.3 shows that the group’s total 

contribution is pulsing more in some groups in the QL1N experiment than in the QL2N 

experiment. However, the unstable pulsing seems to have been greatly smoothed 

compared to the prediction of instability in Saijo (2014). According to the theoretical 

prediction, serial correlation should be negative in the experiments with QL1. These 

observations reject the first prediction of hypothesis 2.2.  

                                                                                                                                                                                 
and 21 to 30 for each subject in the QL1P and QL1M experiments. Then, we conduct the Wilcoxon 
signed-rank tests over two samples of averages to eliminate correlation across periods.  
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Panel A: The three experiments with QL1 

 

 

Panel B: The QL2N experiment 

 

Fig. 2.3 Time series plots of groups’ total contributions 
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Table 2.2 Sample autocorrelation statistics of group’s total contributions 

The QL1N experiment 

   Group          1          2          3         4         5          6        7         8         9        10       11       12 

     α               0.43    0.27     0.21     0.39    0.55    0.27    0.18    0.11    0.03    0.33    0.53    0.34 

 

The QL1P experiment 

Group      1           2            3           4            5           6 

    α         0.68      0.62      0.83      0.71       0.41      0.65 

 

The QL1M experiment 

Group       1          2           3            4             5          6 

    α         0.42      0.47      0.29      0.68        0.35      0.53 

 

The QL2N experiment 

  Group      1         2         3         4         5        6         7         8          9       10       11       12 

  α            0.45    0.37    0.10    0.65    0.48    0.56    0.53    0.57    0.45    0.38    0.36    0.09 

 

 

2.4.2 Dispersion 

In this subsection, we show the dynamics of dispersion in the four experiments. A 

common way to do this in statistics is to use the coefficient of variation to compare 

dispersion between two samples with different averages. However, in this study, we focus 

on the dispersion of choices rather than the dispersion of numbers. In this context, each 

number of contributions represents each position of actions in the choice set. Hence, two 

contribution samples of {0,0,1,1,2,2,3,3} and {5,5,6,6,7,7,8,8} share an identical dispersion 

although their averages are different. Therefore, we still use the standard deviation as a 

measure of dispersion.      

 

Result 2.1 (Dispersion): Although average contributions are declining in all four 

experiments, the standard deviation of individual contributions is ascending in the three 
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experiments with QL1 at the aggregate level, whereas it is descending in the QL2N 

experiment. The ascending standard deviation of individual contributions at the aggregate 

level stems from the intragroup level in the three experiments with QL1. 

 

Support: Figure 2.4 shows the dynamic tendency of the standard deviations of individual 

contributions for the four experiments. The Spearman’s rank correlation tests reveal an 

ascending tendency shared by the three experiments with QL1 (ρ = 0.7857, p-value < 

0.001 for QL1N; ρ = 0.7130, p-value < 0.001 for QL1P; ρ = 0.7433, p-value < 0.001 for 

QL1M), yet a descending tendency appears in the QL2N experiment (ρ = −0.9464, p-value 

< 0.001).  

   

 

Fig. 2.4 Standard deviation of individual contributions 

    

       Figure 2.5 shows time series plots of the standard deviation at the group level in the 

four experiments. In the three experiments with QL1, eight out of 12 groups from the 

QL1N experiment, three out of six groups from the QL1P experiment, and five out of six 
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groups from the QL1M experiment share a significantly increasing pattern (p-values < 0.1 

for 16 groups; p-values < 0.05 for 11 groups by the Spearman’s rank correlation tests); and 

no group shows a significantly decreasing pattern. By contrast, eight out of 12 groups 

share a significantly decreasing pattern (p-values < 0.05), and no group shows a 

significantly increasing pattern in the QL2N experiment.  

 

Panel A: The three experiments with QL1 

 

 

Panel B: The QL2N experiment 
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Fig. 2.5 Time series plots of standard deviations in groups 

 

        To sum up, the observation that the standard deviation of individual contributions is 

ascending at the aggregate level emerges from the intragroup level in the three 

experiments with QL1. This observation does not support that individual contributions are 

converging to a symmetric equilibrium in the experiments with QL1. However, we also 

notice that the increasing dispersion at the aggregate level stems mainly from the 

intragroup level rather than the intergroup level.18 This observation is inconsistent with 

the reasoning of the second prediction of hypothesis 2.2.  

        Therefore, Result 2.1 supports the first prediction of hypothesis 2.1, but rejects the the 

second prediction of hypothesis 2.2. Furthermore, the observation that all the three 

experiments with QL1 share similar dynamics of dispersion supports hypothesis 2.3. 

      

2.4.3 Absolute Changes in Individual Contribution 

We use the absolute value of the first-order difference of individual contributions (|si
t −

si
t−1|, t ≥ 2; hereafter “AVFD”) to measure the pulsing of individual contributions. If the 

dynamic system is approaching an equilibrium, the degree of contribution pulsing, the 

AVFD, on average will diminish.  

 

                                                           
18 We also check the dynamical tendency of the standard deviation of the group’s total 
contributions across periods in the four experiments. The Spearman’s rank correlation tests show 
that ρ = 0.2536 and p-value = 0.3618 for QL1N, ρ = 0.5537 and p-value = 0.0015 for QL1P, ρ =

0.0007 and p-value = 0.9972 for QL1M, and ρ = −0.6643 and p-value = 0.0069 for QL2N. These 
results indicate that, in two of the three experiments with QL1, the dispersion at the intergroup 
level does not increase with repeated trials.  
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Result 2.2 (Absolute changes): The absolute changes on average are diminishing in the 

QL1P and QL2N experiments. In the QL1N and QL1M experiments, however, they do not 

decline relative to the beginning of the experiment.   

 

Support: Figure 2.6 shows the dynamic tendency of the average of AVFDs for the four 

experiments. Comparing sample 1 (the AVFDs from periods 2 to 6) with sample 2 (the 

AVFDs from periods 11 to 15), the Wilcoxon signed-rank test shows a significant decrease 

in the QL2N experiment (p-value = 0.0000), but an insignificant result for the QL1N 

experiment (p-value = 0.1312). Furthermore, for the QL1P and QL1M experiments, 

comparing sample 1 (the AVFDs from periods 2 to 11) with sample 2 (the AVFDs from 

periods 21 to 30), the Wilcoxon signed-rank test shows a significant decrease in the QL1P 

experiment (p-value = 0.0012), yet an insignificant result for the QL1M experiment (p-

value = 0.4817). Although there is also a decreasing tendency in the QL1P experiment, the 

AVFDs in the last 10 periods of the QL1P experiment are still significantly larger than 

those in the last five periods of the QL2N experiment (p-value = 0.0124, by the Wilcoxon 

rank-sum test).    
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Fig. 2.6 Average of AVFDs at each period 

 

        Combined with the observations in the previous subsection, the decreasing AVFDs in 

the QL2N experiment indicate that the experimental system is converging to the dominant 

equilibrium, which is symmetric across players. Conversely, the decreasing AVFDs in the 

QL1P experiment might indicate that some groups in the experiments with QL1 are 

converging to some asymmetric equilibrium. Therefore, we further check the AVFDs at 

the group level. Comparing sample 1 with sample 2 in each group of the three 

experiments with QL1 reveals a significant decrease in four groups (p-value = 0.0138 for 

group 10 in the QL1N experiment; p-value = 0.0117 for group 2 and p-value = 0.0687 for 

group 4 in the QL1P experiment; and p-value = 0.0929 for group 1 in the QL1M 

experiment). However, after checking the individual data in these four groups, we find 

that the individual contributions of a part of the group members are still volatile in the last 

periods of the experiment. This is not compatible with the fact that the experimental 

dynamic system is converging to a static asymmetric equilibrium.  

Therefore, Result 2.2 supports the second prediction of hypothesis 2.1 and the group 

level observations also support the third prediction of hypothesis 2.2. Furthermore, 

although the observation in the QL1P experiment at the aggregate level is different from 

those in the other two experiments with QL1, the group level observations show that 

individual contributions are volatile in the last periods of all the three experiments with 

QL1. This is consistent with the prediction of hypothesis 2.3.  

        Overall, our experimental data reveal a clear dynamic pattern showing that 

contributions are converging to the static equilibrium in the QL2N experiment. By contrast, 

our observations do not suggest the existence of a process that the dynamic system is 

approaching a symmetric or asymmetric equilibrium and that the coordination problem is 

alleviated in the three experiments with QL1. However, we also notice that there are some 

observations that cannot be explained by our instability theory. For example, there is not a 

significant pulsing in the group’s total contributions in the three experiments with QL1 

and the increasing dispersion of individual contribution comes mainly from the 

intragroup level. Therefore, in the following subsection, we investigate the heterogeneity 

among individuals in order to generate insights concerning these observations via a 

categorization of the subjects.      
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2.4.4 Conditional Cooperation 

In the VCM experiments with linear payoff functions, players are often classified into 

several categories. The three most common categories are free riders, conditional 

cooperators, and unconditional cooperators. Usually, free riders account for only around 

20 percent of the total population. However, conditional cooperators account for around 

50 percent (see Fischbacher et al., 2001; Sonnemans et al., 1999; Keser and van Winden, 

2000; for a survey, see Chaudhuri, 2011). These findings indicate that the experimental 

environment is much more complex than the assumption in Saijo (2014) implies. 

Furthermore, the previous study, Laury et al. (1999), finds that, in the QL1 environment, 

average contributions varied widely among individuals, even within a single experiment. 

This might imply that there is a systematic difference in the motivation of cooperation 

between the experiments with QL1 and QL2.19 In this subsection, we attempt to investigate 

the conditional cooperation from a myopic perspective to see whether there is a systematic 

difference in conditional cooperation across the experiments. 

        The individual decision rule is assumed to take the following form to isolate the 

motivation of conditional cooperation.  

 

     𝑠𝑖
𝑡 − 𝑠𝑖

𝑡−1 = 𝛼𝑖 + 𝛽𝑖 (𝑠𝑖
𝑡−1 −

1

7
∑ 𝑠𝑗

𝑡−1
𝑗≠𝑖 ) + 𝜀𝑖 , 𝑡 ≥ 2,                                                  (2.9) 

  

where εi is the residual term of player i. Equation (2.9) is estimated using the Seemingly 

Unrelated Regressions (SUR) for each group of eight players in the four experiments. In 

this regression (2.9), −
𝛼𝑖

𝛽𝑖
 approximately denotes the overall distance between player i’s 

contribution and the average contribution of other players in the group. Thus, two aspects 

of the subjects’ contribution behavior could be identified by this regression. First, it shows 

how many players are reacting to the difference between their own contribution and the 

average contribution of others (or how many players try to match the average contribution 

of others in the previous period). Second, It identifies the overall distance between player 

i’s contribution and the average contribution of other players. αi > 0 and βi < 0 indicate 

that subject i’s contribution is significantly above the average contribution of other players 

in the group and is also affected by the difference between his/her contribution and the 

average. This result means that this subject is a weak unconditional cooperator (WUC).20 In 

                                                           
19 Here, the term “systematic difference in the motivation for cooperation” is used to indicate the 
difference in the distribution among different types of subjects. 
20 We call them “weak unconditional cooperators” to distinguish them from those unconditional 
cooperators who always contribute six tokens throughout the experiment. 
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turn, αi < 0 and βi < 0 indicate a weak free rider (WFR). A typical conditional cooperator 

(TCC) should have αi = 0 and βi < 0, which implies that player i always tries to match the 

average contribution of others in the previous period and his/her contribution is 

insignificantly different from the average contribution of others. Moreover, unconditional 

cooperators (UC) are those who persisted in contributing a fixed number of at least six 

tokens; conversely, free riders (FR) are those who persisted in contributing a fixed number 

of no more than two tokens. Hence, through examining αi and βi, we can roughly classify 

all subjects into six categories.21     

 

Result 2.3 (Conditional cooperation): No systematic difference in conditional cooperation 

is observed across the four experiments. The individual estimates from the SUR show that 

around 50 percent of the players could be categorized as typical conditional cooperators; 

weak free riders and weak unconditional cooperators each account for about 20 percent of 

the total population in all experiments.  

 

Support: Table 2.3 summarizes the results of the SUR. Briefly, by comparing the number 

and proportion of subjects of each type, we have not found a systematic difference in 

conditional cooperation across the four experiments. In all experiments, almost half of the 

players could be regarded as typical conditional cooperators, while weak free riders and 

weak unconditional cooperators each account for about 20 percent of the total population. 

This result is consistent with the previous findings in the linear environment of the VCM 

experiments. The existence of a considerable proportion of conditional cooperators might 

be a reason for the smoothed pulsing in the group’s total contribution in the experiments 

with QL1. 

     

 Table 2.3 Conditional cooperation 

Form                                    si
t − si

t−1 = αi + βi (si
t−1 −

1

7
∑ sj

t−1
j≠i ) + εi, t ≥ 2     

Individual results 

  Category                         QL1N (96 subjects)   QL1P (48 subjects)  QL1M (48 subjects)  QL2N (96 subjects)                             

                                                           
21 There is one subject from the QL1N experiment who should be classified as αi < 0 and βi = 0. 
Because p-value = 0.049 for αi < 0 and only one observation is considered, we take this observation 
as an unimportant exception and assign this subject into category αi = 0 and βi = 0. 
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  UC                                                    3 (3%)𝑏                   1 (2%)                         2 (4%)                      1 (1%) 

WUC (αi > 0 and βi < 0𝑎)             19 (20%)                 11 (21%)                      7 (15%)                    17 (18%) 

 TCC (αi = 0 and βi < 0)                 40 (42%)                21 (44%)                      27 (56%)                   48 (50%) 

 WFR (αi < 0 and βi < 0)                21 (22%)                11 (23%)                      11 (23%)                    20 (21%) 

   FR                                                    1 (1%)                     0 (0%)                          0 (0%)                       5 (5%) 

 Unclassified (αi = 0 and βi = 0)   12 (12%)                 4 (8%)                           1 (2%)                       5 (5%) 

   a Both αi and βi of individual regressions (SUR) are judged by a two-tailed test at the 5% significance level 

(the null hypotheses are 𝛼𝑖 = 0 and 𝛽𝑖 = 0).  

   b Percentages of the total population are reported in parentheses.  

 

2.5 Discussion and Conclusion  

In this study, we conducted experiments to investigate the dynamic patterns of 

contributing behavior in the VCM with two quasi-linear payoff functions. We find clear 

evidence indicating that the system is converging to the dominant equilibrium in the 

QL2N experiment. Individual contributions decrease and converge with repeated trials, 

and become steady. By contrast, in the experiments with QL1, although contributions on 

average are also decreasing with no clearly unstable pulsing in the group’s total 

contributions, individual contributions diverge and change continuously.  

       These observations do not support that the dynamic system of the VCM with QL1 is 

converging to an equilibrium, indicating that a comparative static analysis alone might not 

be suitable for the VCM with QL1 using a fixed group setting. On the other hand, our 

observation is consistent with the finding of previous studies on the VCM experiments 

with linear payoff functions. That is, most players in the lab VCM experiment follow the 

decision rule of conditional cooperators. This might constitute a reason for the growing 

dispersion we observed in the three experiments with QL1.   

       Consider a repeated VCM game with two types of players—free riders and 

conditional cooperators. The decay of the average contribution could be explained by the 

classical scenario of the interaction between free riders and conditional cooperators if the 

game has a dominant strategy, such as that of a linear environment. Once the conditional 

cooperators become frustrated by free riding, they start reducing their contributions. Then, 

the average contribution becomes close to the dominant equilibrium. Our experimental 

evidence suggest that this may also be true in the VCM experiment with QL2 in which 

there is a dominant equilibrium. 
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       In contrast, in the three experiments with QL1, the observations of the dispersion and 

the absolute changes indirectly suggest another possible interpretation of the interaction 

between free riders and conditional cooperators in the VCM experiment with QL1. When 

conditional cooperators become frustrated by free riding, they will reduce their 

contributions to a certain level. The free riders may then have to increase their contribution 

to increase their payoffs if they expect that the total contribution of others will become less 

than the sum of the Nash equilibrium contributions. When the conditional cooperators 

find that the total contribution is increasing, they will seek to sustain this total contribution 

level. However, the free riders will then begin to free ride again, and a new round of the 

decreasing total contribution will begin. We thus conjecture that starting from the dynamic 

analysis of Saijo (2014) and incorporating the interaction between several different types of 

players might offer insights into the ascending dispersion we observed in this study.       

       Finally, two empirical implications of our experimental observations are worth 

mentioning. First, the growing dispersion indicates that the stability property of the 

mechanism itself might also be a reason for the diversity of individual contributions, in 

addition to the social preference heterogeneity among the players. Second, and more 

importantly, the experimental observation of non-convergence indicates that the Nash 

equilibrium might not be a suitable theoretical benchmark to use in empirical analyses of 

the real-world VCM environment if the system is not converging to it. 

 

Supplementary Documents 

Instructions and payoff tables in our experiments. 

There are four sets of instructions and payoff tables in this supplementary document.  

The QL1N experiment, the QL1P experiment, the QL1M experiment, and the QL2N experiment. 

 

 (The QL1N experiment) 

Instructions 

 

This is an experiment concerning economic decision-making. At the end of today's 

session, you will be paid in private and in cash. It is essential that you remain silent and do not 

watch at other people's decisions. Please shut down your cell phone and don’t talk with others. 

If you have any questions or need assistance of any kind, please raise your hand. If you 
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exclaim out loudly or violate any of the rules explained below, you may be asked to leave and 

will not be paid. This is necessary for our experiment. 

We thank you very much for your cooperation in this regard. 

 

Overview 

 

There will be at least 15 decision-making rounds in this experiment. You will each make 

a decision in each of these rounds. When the first 15 rounds are finished, the experiment will 

continue with a probability of 30%. In other words, the experiment will be directly terminated 

with a probability of 70%. At the end of each round, you will be informed your earnings for 

that round on the PC screen. The rules are similar in every round.  

In the first round, you will be randomly assigned to a group. Each group consists of eight 

members. The composition of your group will be fixed throughout the experiment. You will 

not know which of the other people in the lab are in your group in any given round. You will 

be paid the total of your earnings of all rounds at the end of today's session. 

 

Rules 

 

         In each round, you have eight tokens to allocate. You must decide the number of tokens 

to place into either or both of two accounts: a private account and a group account. All tokens 

must be placed in one account or the other. Each token you placed in the private account 

generates a return to you (and to you alone), and each token you placed in the group account 

generates a return to every member of your group. Returns from the two accounts are listed in 

the Earning Tables. Everybody has the exact identical Earning Tables. When the experiment 

begins, you need to enter your decisions in blanks on the screen. Your entries on the blanks 

must be whole numbers between 0 and 8 and must be summed to be 8. 

After everyone has made a decision, the computer will compute the total number of 

tokens placed in the group account for your group in this round, and prepare a “Report to 

Subject” for each of you. You can record the number that the computer has reported on the line 

entitled "Total Number of Tokens Placed By Your Group in Your Group Account was" and 

compute your earnings. Your earnings in each period are the sum of your earnings from the 

private account, your earnings from the group account, and an additional fixed payoff 28 E$. 

To determine your earnings from the private account, you need to find the number from the 

column headed "Private Account(E − xi)” and “Private return (E$)” on the Earning Tables, 
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according to your decisions. To determine your earnings from the group account, you need to 

find the correct number in the column headed “Group account (∑ x)” and “Individual return 

from the group account (E$)” on the Earning Tables. This part reports the amount you will 

earn from the group account. Your total payoff will be reported on the PC screen 

corresponding to the number of tokens you have placed in your private account and your 

group has placed in the group account in that round.  

          Next, you should check to see if your calculation is consistent with the computer’s report 

on the screen. It is extremely important that we both make this calculation and the results are 

consistent. If your calculation differs from the computer’s or if you are unsure on how to 

compute your earnings in any round, please raise your hand. When all things are correct, the 

next round will begin. 

         Finally, at the end of experiment, the earnings you have gotten in today’s session will be 

exchanged for Chinese yuan at an exchange rate of 22:1. 

 

Final Remarks 

 

(1) All subjects have the same Earning Tables. 

(2) This session will comprise of at least 15 rounds. From 16th round, the experiment will 

continue with a probability of 30%. 

(3) In each round, you and other members of your group will each have 8 tokens to allocate. 

(4) In each round, you should decide the number of tokens to place in your private account 

and the number of tokens to place in your group account. You must distribute all 8 tokens in 

each round.  

(5) Your earnings from the private account depend only on your decision (the number of 

tokens that you placed in the account). 

(6) Your earnings from the group account depend upon the total number of tokens your group 

placed in this account.  

(7) The members in your group will be fixed throughout the experiment. 

(8) The exchange rate from experimental dollars to Chinese yuan is 22:1. 

(9) Do not discuss your decisions with other subjects. 

 

Are there any questions? 
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If all things are clear, please click “next” on your screen and finish those questions. Note that 

the purpose of those questions is only to make you understand the instructions and your 

answers will not affect your earnings in the experiment. 

 

Appendix 

Earning Tables:   

Total payoff = Private return + Individual return from the group account+28 

Private 

account 

(E − xi) 

Private return 

(E$) 

Group 

account (∑ x) 

Individual 

return from 

the group 

account (E$) 

Group 

account (∑ x) 

Individual 

return from 

the group 

account 

(E$) 

0 0 0 0 33 32.9 

1 1 1 1.4 34 33.4 

2 2 2 2.8 35 33.9 

3 3 3 4.2 36 34.4 

4 4 4 5.6 37 34.9 

5 5 5 6.9 38 35.3 

6 6 6 8.2 39 35.7 

7 7 7 9.5 40 36.1 

8 8 8 10.7 41 36.4 

 9 11.9 42 36.7 

10 13.1 43 37 

11 14.3 44 37.2 

12 15.4 45 37.4 

13 16.5 46 37.6 

14 17.6 47 37.8 

15 18.7 48 38 

16 19.7 49 38.1 

17 20.7 50 38.2 

18 21.6 51 38.3 

19 22.5 52 38.3 

20 23.4 53 38.3 

21 24.3 54 38.3 

22 25.2 55 38.2 
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23 26.1 56 38.1 

24 26.9 57 38 

25 27.7 58 37.9 

26 28.4 59 37.8 

27 29.1 60 37.6 

28 29.8 61 37.4 

29 30.5 62 37.2 

30 31.1 63 36.9 

31 31.7 64 36.6 

32 32.3   

 

Tables of two kinds of return 
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Explanation for the calculator 

 

 

0

5

10

15

20

25

30

35

40

45

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Individual return from the group account (E$)

Individual return
from the group
account (E$)

This part is a 

calculator to help 

you query the 

Earning Tables. 
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(The QL1P experiment) 

Instructions 

 

This is an experiment concerning economic decision-making. At the end of today's 

session, you will be paid in private and in cash. It is important that you remain silent and do 

not watch at other people's decisions. Please shut down your cell phone and don’t talk with 

others. If you have any questions or need assistance of any kind, please raise your hand. If you 

exclaim out loudly or violate any of the rules explained below, you may be asked to leave and 

will not be paid. This is necessary for our experiment. 

We thank you very much for your cooperation in this regard. 

 

Overview 

 

You can enter any 

number of the 

tokens in your 

private account and 

group account here. 

When you press the 

button of “Calculate”, 

the results will appear 

here. 



45 
 

There will be 30 decision-making rounds in this experiment. You will each make a 

decision in each of these rounds. At the end of each round, you will be informed your earnings 

for that round on the PC screen. The rules are similar in every round.  

In the first round, you will be randomly assigned to a group. Each group consists of eight 

members. The composition of your group will be fixed throughout the experiment. You will 

not know which of the other people in the lab are in your group in any given round. You will 

be paid the total of your earnings of all rounds at the end of today's session. 

 

Rules 

 

In each round, you have eight tokens to allocate. You must decide the number of tokens 

to place into either or both of two accounts: a private account and a group account. All tokens 

must be placed in one account or the other. Each token you placed in the private account 

generates a return to you (and to you alone), and each token you placed in the group account 

generates a return to every member of your group. Returns from the two accounts are listed in 

the Earning Tables. Everybody has the exact identical Earning Tables. When the experiment 

begins, you need to enter your decisions in the blanks on the screen. Your entries on the blanks 

must be whole numbers between 0 and 8 and must be summed to be 8. 

After everyone has made a decision, the computer will compute the total number of 

tokens placed in the group account by your group in this round, and prepare a “Report to 

Subject” for each of you. You can record the number that the computer has reported on the line 

entitled "Total Number of Tokens Placed By Your Group in Your Group Account was" and 

compute your earnings. Your earnings in each period are the sum of your earnings from both 

the private account and the group account. To determine your earnings from the private 

account, you need to find the number from the column headed "Private Account(E − xi)” and 

“Private return (E$)” on the Earning Tables, according to your decision. To determine your 

earnings from the group account, you need to find the correct number in the column headed 

“Group account (∑ x)” and “Individual return from the group account (E$)” on the Earning 

Tables. This part reports the amount you will earn from the group account. Your total payoff 

will be reported on the PC screen corresponding to the number of tokens you have placed in 

your private account and your group has placed in the group account in that round.  

Next, you should check to see if your calculation is consistent with the computer’s report 

on the screen. It is extremely important that we both make this calculation and the results are 

consistent. If your calculation differs from the computer’s or if you are unsure on how to 

compute your earnings in any round, please raise your hand. When all things are correct, the 

next round will begin. 
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          Finally, at the end of experiment, the earnings you have gotten in today’s session will be 

exchanged for Chinese yuan at an exchange rate of 110:1. 

 

Final Remarks 

 

(1) All subjects have the same Earning Tables. 

(2) This session will last 30 rounds.  

(3) In each round, you and other members of your group will each have 8 tokens to allocate. 

(4) In each round, you need to decide the number of tokens to place in your private account 

and the number of tokens to place in your group account. You must distribute all 8 tokens in 

each round.  

(5) Your earnings from the private account depend only on your decision (the number of 

tokens that you placed in the account). 

(6) Your earnings from the group account depend upon the total number of tokens your group 

placed in this account.  

(7) The members in your group will be fixed in each round. 

(8) The exchange rate from experimental dollars to Chinese yuan is 110:1 

(9) Do not discuss your decisions with other subjects. 

 

Are there any questions? 

 

If all things are clear, please click “next” on your screen and finish those questions. Note that 

the purpose of those questions is only to make you understand the instructions and your 

answers will not affect your earnings in the experiment. 

 

Appendix 

Earning Tables:   

Total payoff = Private return + Individual return from the group account 

Private Private return Group Individual Group Individual 
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account 

(E − xi) 

(E$) account (∑ x) return from 

the group 

account (E$) 

account 

(∑ x) 

return from 

the group 

account 

(E$) 

0 0 0 0 33 325 

1 10 1 15 34 330 

2 20 2 30 35 335 

3 30 3 45 36 340 

4 40 4 60 37 345 

5 50 5 75 38 350 

6 60 6 90 39 355 

7 70 7 105 40 360 

8 80 8 120 41 365 

 9 135 42 370 

10 150 43 375 

11 165 44 380 

12 180 45 385 

13 195 46 390 

14 210 47 395 

15 225 48 400 

16 240 49 401 

17 245 50 402 

18 250 51 403 

19 255 52 404 

20 260 53 405 

21 265 54 406 

22 270 55 407 

23 275 56 408 

24 280 57 409 

25 285 58 410 

26 290 59 411 

27 295 60 412 

28 300 61 413 

29 305 62 414 

30 310 63 415 

31 315 64 416 

32 320   
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Tables of two kinds of return 
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Explanation for the calculator 

 

 

 

 

 

 

This part is a 

calculator to help 

you query the 

Earning Tables. 

 

You can enter any 

number of the 

tokens in your 

private account and 

group account here. 

 

When you press the 

button of “Calculate”, 

the results will appear 

here. 
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(The QL1M experiment) 

Instructions 

 

This is an experiment concerning economic decision-making. At the end of today's 

session, you will be paid in private and in cash. It is important that you remain silent and do 

not watch at other people's decisions. Please shut down your cell phone and don’t talk with 

others. If you have any questions or need assistance of any kind, please raise your hand. If you 

exclaim out loudly or violate any of the rules explained below, you may be asked to leave and 

will not be paid. This is necessary for our experiment. 

We thank you very much for your cooperation in this regard. 

 

Overview 

 

There will be 30 decision-making rounds in this experiment. You will each make a 

decision in each of these rounds. At the end of each round, you will be informed your earnings 

for that round on the PC screen. The rules are similar in every round.  

In the first round, you will be randomly assigned to a group. Each group consists of eight 

members. The composition of your group will be fixed throughout the experiment. You will 

not know which of the other people in the lab are in your group in any given round. You will 

be paid the total of your earnings for all rounds at the end of today's session. 

 

Rules 

 

In each round, you have eight tokens to allocate. You must decide the number of tokens 

to place into either or both of two accounts: a private account and a group account. All tokens 

must be placed in one account or the other. Your earnings are listed in the Earning Table. 

Everybody has the exact same Earning Tables. When the experiment begins, you need to enter 

your decisions in the blanks on the screen. Your entries on the blanks must be whole numbers 

between 0 and 8 and must be summed to be 8. 

After everyone has made a decision, the computer will compute the total number of 

tokens placed in the group account by the other members in your group in this round, and 

prepare a “Report to Subject” for each of you. You can record the number that the computer 
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has reported on the line entitled "Total Number of Tokens Placed By the Other Members of 

Your Group in Your Group Account was" and compute your earnings. In each round, your 

earnings depend on the tokens placed by your own and the total tokens placed by the other 

seven group members into the group account. In the Earning Table, you can find the column 

corresponding to the number of tokens placed to the group account by you own and the line 

corresponding to the total number of tokens placed to the group account by the other seven 

group members. The number at the intersection of the line and the column is your earning in 

that round. Your earnings will be reported on the PC screen corresponding to the tokens you 

have placed in the group account and the total tokens that the other seven members of your 

group have placed in the group account in that round.  

Next, you should check to see if your calculation is consistent with the computer’s report 

on the screen. It is extremely important that we both make this calculation and the results are 

consistent. If your calculation differs from the computer’s or if you are unsure on how to 

compute your earnings in any round, please raise your hand. When all things are correct, the 

next round will begin. 

          Finally, at the end of experiment, the earnings you have gotten in today’s session will be 

exchanged for Chinese yuan at an exchange rate of 110:1. 

 

Final Remarks 

 

(1) All subjects have the same Earning Table. 

(2) This session will last 30 rounds.  

(3) In each round, you and other members of your group will each have 8 tokens to distribute. 

(4) In each round, you need to decide the number of tokens to place in your private account 

and the number of tokens to place in your group account. You must allocate all 8 tokens in 

each round.  

(5) Your earnings depend on the tokens that you have placed in the group account and the 

total tokens that the other seven members of your group have placed in the group account. 

(6) The members in your group will be fixed in each round. 

(7) The exchange rate from experimental dollars to Chinese yuan is 110:1 

(8) Do not discuss your decisions with other subjects. 

 



52 
 

Are there any questions? 

 

If all things are clear, please click “next” on your screen and finish those questions. Note that 

the purpose of those questions is only to make you understand the instructions and your 

answers will not affect your earnings in the experiment. 

 

Appendix 

Earning Table:   

The tokens that you have  

placed in the group  

account  

The total tokens that the  

other seven members of  

your group has placed  

in the group account. 0 1 2 3 4 5 6 7 8 

0 80 85 90 95 100 105 110 115 120 

1 95 100 105 110 115 120 125 130 135 

2 110 115 120 125 130 135 140 145 150 

3 125 130 135 140 145 150 155 160 165 

4 140 145 150 155 160 165 170 175 180 

5 155 160 165 170 175 180 185 190 195 

6 170 175 180 185 190 195 200 205 210 

7 185 190 195 200 205 210 215 220 225 

8 200 205 210 215 220 225 230 235 240 

9 215 220 225 230 235 240 245 250 245 

10 230 235 240 245 250 255 260 255 250 
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11 245 250 255 260 265 270 265 260 255 

12 260 265 270 275 280 275 270 265 260 

13 275 280 285 290 285 280 275 270 265 

14 290 295 300 295 290 285 280 275 270 

15 305 310 305 300 295 290 285 280 275 

16 320 315 310 305 300 295 290 285 280 

17 325 320 315 310 305 300 295 290 285 

18 330 325 320 315 310 305 300 295 290 

19 335 330 325 320 315 310 305 300 295 

20 340 335 330 325 320 315 310 305 300 

21 345 340 335 330 325 320 315 310 305 

22 350 345 340 335 330 325 320 315 310 

23 355 350 345 340 335 330 325 320 315 

24 360 355 350 345 340 335 330 325 320 

25 365 360 355 350 345 340 335 330 325 

26 370 365 360 355 350 345 340 335 330 

27 375 370 365 360 355 350 345 340 335 

28 380 375 370 365 360 355 350 345 340 

29 385 380 375 370 365 360 355 350 345 

30 390 385 380 375 370 365 360 355 350 

31 395 390 385 380 375 370 365 360 355 

32 400 395 390 385 380 375 370 365 360 

33 405 400 395 390 385 380 375 370 365 

34 410 405 400 395 390 385 380 375 370 

35 415 410 405 400 395 390 385 380 375 
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36 420 415 410 405 400 395 390 385 380 

37 425 420 415 410 405 400 395 390 385 

38 430 425 420 415 410 405 400 395 390 

39 435 430 425 420 415 410 405 400 395 

40 440 435 430 425 420 415 410 405 400 

41 445 440 435 430 425 420 415 410 401 

42 450 445 440 435 430 425 420 411 402 

43 455 450 445 440 435 430 421 412 403 

44 460 455 450 445 440 431 422 413 404 

45 465 460 455 450 441 432 423 414 405 

46 470 465 460 451 442 433 424 415 406 

47 475 470 461 452 443 434 425 416 407 

48 480 471 462 453 444 435 426 417 408 

49 481 472 463 454 445 436 427 418 409 

50 482 473 464 455 446 437 428 419 410 

51 483 474 465 456 447 438 429 420 411 

52 484 475 466 457 448 439 430 421 412 

53 485 476 467 458 449 440 431 422 413 

54 486 477 468 459 450 441 432 423 414 

55 487 478 469 460 451 442 433 424 415 

56 488 479 470 461 452 443 434 425 416 

 

Explanation for the calculator 
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This part is a 

calculator to help 

you query the 

Earning Table. 

 

You can enter the 

numbers of any 

allocation here. 

When you press the 

button of “Calculate”, 

the results will appear 

here. 
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(The QL2N experiment) 

Instructions 

 

This is an experiment concerning economic decision-making. At the end of today's 

session, you will be paid in private and in cash. It is important that you remain silent and do 

not watch at other people's decisions. Please shut down your cell phone and don’t talk with 

others. If you have any questions or need assistance of any kind, please raise your hand. If you 

exclaim out loudly or violate any of the rules explained below, you may be asked to leave and 

will not be paid. This is necessary for our experiment. 

We thank you very much for your cooperation in this regard. 

 

Overview 

 

There will be at least 15 decision-making rounds in this experiment. You will each make 

a decision in each of these rounds. When the first 15 rounds are finished, the experiment will 

continue with a probability of 30%. In other words, the experiment will be directly terminated 

with a probability of 70%. At the end of each round, you will be informed your earnings for 

that round on the PC screen. The rules are similar in every round.  

In the first round, you will be randomly assigned to a group. Each group consists of eight 

members. The composition of your group will be fixed throughout the experiment. You will 

not know which of the other people in the lab are in your group in any given round. You will 

be paid the total of your earnings for all rounds at the end of today's session. 

 

Rules 

 

In each round, you have eight tokens to allocate. You must decide the number of tokens 

to place into either or both of two accounts: a private account and a group account. All tokens 

must be placed in one account or the other. Each token you placed in the private account 

generates a return to you (and to you alone), and each token you placed in the group account 

generates a return to every member of your group. Returns from the two accounts are listed in 

the 'Earning Tables'. Everybody has the same Earning Tables. When the experiment begins, 

you need to enter your decisions in the blanks on the screen. Your entries on the blanks must 

be whole numbers between 0 and 8 and must be summed to be 8. 
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After everyone has made a decision, the computer will compute the total number of 

tokens placed in the group account by your group in this round, and prepare a “Report to 

Subject” for each of you. You can record the number that the computer has reported on the line 

entitled "Total Number of Tokens Placed By Your Group in Your Group Account was" and 

compute your earnings. Your earnings in each period are the sum of your earnings from both 

the private account and the group account. To determine your earnings from the private 

account, you need to find the number from the column headed "Private Account(E − xi)” and 

“Private return (E$)” on the Earning Tables according to your decisions. To determine your 

earnings from the group account, you need to find the correct number in the column headed 

“Group account (∑ x)” and “Individual return from the group account (E$)” on the Earning 

Tables. This part reports the amount you will earn from the group account. Your total payoff 

will be reported on the PC screen corresponding to the number of tokens you have placed in 

your private account and your group has placed in the group account in that round.  

Next, you should check to see if your calculation is consistent with the computer’s report 

on the screen. It is extremely important that we both make this calculation and the results are 

consistent. If your calculation differs from the computer’s or if you are unsure on how to 

compute your earnings in any round, please raise your hand. When all things are correct, the 

next round will begin. 

          Finally, at the end of experiment, the earnings you have gotten in today’s session will be 

exchanged for Chinese yuan at an exchange rate of 22:1. 

 

Final Remarks 

 

(1) All subjects have the same Earning Tables. 

(2) This session will consist of at least 15 rounds. From 16th round, the experiment will continue 

with a probability of 30%. 

(3) In each round, you and other members of your group will each have 8 tokens to distribute. 

(4) In each round, you need to decide the number of tokens to place in your private account 

and the number of tokens to place in your group account. You must allocate all 8 tokens in 

each round.  

(5) Your earnings from the private account depend only on your decision (the number of 

tokens that you placed in the account). 

(6) Your earnings from the group account depend upon the total number of tokens your group 

placed in this account.  
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(7) The members in your group will be fixed in each round. 

(8) The exchange rate from experimental dollars to Chinese yuan is 22:1 

(9) Do not discuss your decisions with other subjects. 

 

Are there any questions? 

 

If all things are clear, please click “next” on your screen and finish those questions. Note that 

the purpose of those questions is only to make you understand the instructions and your 

answers will not affect your earnings in the experiment. 

 

Appendix 

Earning Tables:   

 

Total payoff = Private return + Individual return from the group account 

Private 

account 

(E − xi) 

Private return 

(E$) 

Group 

account (∑ x) 

Individual 

return from 

the group 

account (E$) 

Group 

account 

(∑ x) 

Individual 

return from 

the group 

account 

(E$) 

0 0 0 0 33 33 

1 10.6 1 1 34 34 

2 19.5 2 2 35 35 

3 26.6 3 3 36 36 

4 32 4 4 37 37 

5 35.6 5 5 38 38 

6 37.5 6 6 39 39 

7 37.6 7 7 40 40 

8 36 8 8 41 41 

 9 9 42 42 

10 10 43 43 

11 11 44 44 

12 12 45 45 

13 13 46 46 
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14 14 47 47 

15 15 48 48 

16 16 49 49 

17 17 50 50 

18 18 51 51 

19 19 52 52 

20 20 53 53 

21 21 54 54 

22 22 55 55 

23 23 56 56 

24 24 57 57 

25 25 58 58 

26 26 59 59 

27 27 60 60 

28 28 61 61 

29 29 62 62 

30 30 63 63 

31 31 64 64 

32 32   

 

Tables of two kinds of return 

 

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

Private return (E$)

Private return (E$)



60 
 

 

Explanation for the calculator 
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This part is a 

calculator to help 

you query the 

Earning Tables. 

You can enter any 

number of the 

tokens in your 

private account and 

group account here. 

When you press the 

button of “Calculate”, 

the results will appear 

here. 
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Chapter 3 

 

Belief formation, Response, and Convergence in the 

Voluntary Contribution Mechanism with Heterogeneous 

Quasi-Linear Payoff Functions 
 

 

3.1 Introduction 
In many situations, the equilibrium analysis plays a central role in economic studies. Most of 

these studies take an implicit assumption that the dynamic system they concerned eventually 

converges to the equilibrium benchmark used in the studies. However, if a dynamic system is 

not locally or globally stable at the equilibrium, only a static equilibrium analysis is not 

sufficed. For a long time, the empirical investigations regarding stability properties of the Nash 

equilibrium have attracted a lot of attention in the field of oligopoly competition (i.e. Cox and 

Walker 1998; Rassenti et al. 2000; Huck et al. 2002). By contrast, most of the experimental 

studies on the voluntary contribution mechanism (VCM) ignore this problem because they 

employ a design of linear environments in which there always exists a dominant equilibrium. 

This might fail to capture the problem of different stability properties of the Nash equilibrium 

in the real-world VCM scenarios (Saijo 2014; Feng et al. 2018).          

         In this study, we are interested in the quasi-linear VCM environment. In most practical 

cases of providing public goods using the VCM, the private good is money. Hence, the 

marginal return of the private good could be assumed to be a constant. However, the marginal 

return of a specific public good usually decreases as the level of the public good increases. 

Therefore, a quasi-linear VCM environment could be used to model these scenarios. In a 

homogeneous setting of this environment, there are multiple locally unstable Nash equilibria 

(Saijo 2014). Feng et al. (2018) have further empirically demonstrated the non-convergence of 

individual contributions although there still exists a distance between experimental 

observations and the instability argument of Saijo (2014). As an extension of their study, the 

current study devotes to investigating the heterogeneous setting of the quasi-linear VCM 

environment because participators usually benefit in different ways from the public good in 

the real-world scenarios. After including benefit heterogeneity in this environment, a unique 

static Nash equilibrium exists in the game (Bergstrom et al. 1986; Saijo 2015). Furthermore, 

based on the assumption of Cournot best-response dynamics in which players simultaneously 

make a self-interested best response to their last observations of their opponents’ actions, Saijo 

(2015) shows a necessary and sufficient condition for global stability at the unique Nash 

equilibrium in this asymmetric environment.  
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        This theoretical result implies that different heterogeneous settings induce different 

stability properties for the unique Nash equilibrium and, thus, the contribution behavior might 

also differ among these settings in the quasi-linear VCM experiments. However, previous 

studies focus only on comparing experimental observations between treatments with a 

heterogeneous design and those with a homogeneous design (for linear VCM environments, 

see Ledyard (1995); for nonlinear VCM environments, see Chan et al. (1999, 2012); McGinty 

and Milam (2013)). In other words, in order to better understand the effects of heterogeneous 

benefits, the theoretical results of Saijo (2015) deserve further experimental investigation. To 

the best of our knowledge, this is the first study that aims to provide experimental 

comparisons of contributions across different heterogeneous designs in a quasi-linear VCM 

environment.  

        On the basis of previous experimental observations, although the Cournot best-response 

dynamic is useful in theoretical analyses, its assumptions of the myopic belief formation 

process and the self-interested best response process are usually too strict to explain 

experimental observations in the VCM experiments. The challenges come from empirical 

evidence of both the belief formation process and the response process. 

        Regarding the belief formation process, Healy (2006) provides a theoretical discussion and 

experimental evidence based on a k-period average learning model, which assumes players 

form their beliefs in the current period from their observations of the previous k periods, in a 

quasi-linear VCM environment with a heterogeneous design. Fischbacher and Gächter (2010) 

further provide experimental evidence showing that belief formation in a linear VCM 

environment can be regarded as a weighted average of the belief and the observation of the 

previous period.  

        Regarding the response process, many studies on VCM experiments suggest that most 

players are conditional cooperators who always want to match the (average) contributions of 

others (Chaudhuri 2011). Several different motivations of conditional cooperation are well 

documented in the literature. For example, it can be explained by theoretical models with 

assumptions of inequity aversion and/or reciprocity. Fehr and Schmidt (2006) provide a 

survey of these other-regarding utility models. In particular, in the linear VCM environment, 

the observed conditional cooperation is closely related to the marginal per capita return 

(MPCR) (Goeree et al. 2002; Ledyard 1995). This is because different MPCRs of a VCM 

environment induce different opportunity costs among choices. A high MPCR has a strong 

positive impact on conditional cooperation because the opportunity cost of matching beliefs is 

relatively low.  

 However, in the quasi-linear VCM environment, the previous study, Healy (2006), finds 

that players seem to make the best response to the average of observations in previous up to 

seven periods. In addition, in the neighbor field of common-pool resources, Saijo et al. (2017) 

empirically show that subjects are relatively myopic and very close to the best-response 

behavior using the experimental data from Walker et al. (1990). Therefore, the current study 

still takes the predictions of the Cournot best-response dynamics from Saijo (2015) as a 
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theoretical benchmark. We intend to empirically investigate decision processes employed 

by subjects in a lab experiment and to show the distance between experimental 

observations and theoretical predictions. 

        Our analysis investigates the belief formation process, the response process, and their 

effects on convergence. To this end, for simplicity, we choose a three-player group setting, 

with two levels of benefits from the public good. Four treatments with different heterogeneous 

settings are designed to share an identical Nash equilibrium, but with different stability 

properties. Two treatments in our design are globally stable, while the other two are non-

globally stable, following the theoretical prediction of Saijo (2015).22 Moreover, in contrast to 

previous studies, we investigate the decision-making processes of players by eliciting their 

beliefs about individual contributions of the other group members, rather than about the 

average contributions of others, in the experiment. Therefore, the overall decision-making 

process in the experiment is divided into two parts: a belief-formation process and a response 

process. 

        Our data show significant differences in the belief-formation processes, the response 

processes, and the convergence of subjects’ contribution behavior across the four treatments. 

The Nash equilibrium is a good predictor for the two globally stable treatments, but not for the 

two non-globally stable treatments. However, even though the convergence of contributions 

differs among the four treatments, the groups’ total contributions are not significantly different 

in the last 10 periods of the experiments. Furthermore, in order to determine why the 

convergence in each of the four treatments differs, we use a simulation to compare the 

outcomes under several different counterfactual assumptions. Our main result is that the 

theoretical predictions are well supported by the experimental evidence in the two globally 

stable treatments, but that the non-convergence in the two non-globally stable treatments 

stems from changes in the decision-making processes of subjects, rather than from the non-

global stability of the Cournot best-response dynamics.  

       The remainder of the paper is structured as follows. In section 3.2, we describe the 

environment and the theoretical results of Saijo (2015). Section 3.3 presents our experimental 

design and procedure, and then we report our findings in section 3.4. In section 3.5, we 

conduct a simulation using a 2 × 2 design to investigate the isolated effect on the convergence 

of the belief-formation process and the response process. The final section concludes the paper. 

 

3.2 Environment and Theoretical Results 
Consider a voluntary contribution mechanism (VCM) environment. There are n players. For 

the set of players 𝛪 = {1, … , 𝑛}, each i has differentiable quasi-linear payoff functions from 

consuming private goods 𝑥𝑖 and the single public good 𝑆, which is the sum of all players’ 

                                                           
22 In this study, we say a dynamic system is non-globally stable at an equilibrium unless the 
dynamic sequences starting from all initial points in the feasible strategy space converge to the 
equilibrium. We provide a formal definition of the global stability in Section 3.2.     
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contributions (𝑠1, … , 𝑠𝑛). That is 𝜋𝑖(𝑥𝑖 , 𝑆) = 𝑥𝑖 + 𝑡𝑖(𝑆), where 𝑆 = ∑ 𝑠𝑖
𝑛
𝑖=1  and 𝑡𝑖(𝑆) is increasing 

and strictly concave in 𝑆. Let 𝐸𝑖 denote the endowment of player i. Then, player i faces the 

following maximization problem: 

 

        𝑀𝑎𝑥𝑠𝑖
 𝜋𝑖(𝑥𝑖 , 𝑠𝑖 + 𝑠−𝑖),                                                                                                            (3.1) 

 

 subject to 𝐸𝑖 = 𝑥𝑖 + 𝑠𝑖, where 𝑠−𝑖 = ∑ 𝑠𝑗𝑗≠𝑖 . In such a maximization problem, it is well known 

that the best response function is as follows: 

  

       𝑠𝑖 = 𝑀𝑖𝑛{𝑀𝑎𝑥{− ∑ 𝑠𝑗𝑗≠𝑖 + 𝑎𝑖 , 0}, 𝐸𝑖},                                                                                    (3.2)                                 

 

where 𝑎𝑖 = 𝑡𝑖
′−1(1), which is the intercept (Bergstrom et al. 1986; Saijo 2015). Let 𝜋𝑖(𝐸𝑖 − 𝑠𝑖 , 𝑠𝑖 +

𝑠−𝑖) = 𝑣𝑖(𝑠𝑖, 𝑠−𝑖). In such an environment, a list of individual contributions 𝑠̂ = (𝑠̂1, 𝑠̂2, ⋯ , 𝑠̂𝑛) is a 

Nash equilibrium if, for all i, 𝑣𝑖(𝑠̂𝑖, 𝑠̂−𝑖) ≥ 𝑣𝑖(𝑠𝑖, 𝑠̂−𝑖) for all 𝑠𝑖 ∈ [0,  𝐸𝑖], where 𝑠̂−𝑖 = ∑ 𝑠̂𝑗𝑗≠𝑖 . For 

simplicity, let 𝑎1 denote the intercept of the player with the largest intercept, and 𝑎j be the 

intercept of the best-response curve of player j. Then, the following proposition from Saijo 

(2015) shows the uniqueness of the Nash equilibrium. 

 

Proposition 3.1. Suppose that 𝑎1 > 𝑎𝑗 ≥ 0 for all j ≠ 1, and 𝐸𝑖 ≥ 𝑎𝑖 for all i. Then the unique 

Nash equilibrium is (𝑎1, 0, …, 0).  

 

Proposition 3.1 states that, in equilibrium, the player with the largest intercept contributes an 

amount equal to his/her own intercept, while all other group members contribute nothing. 

Before we discuss the stability property of this unique Nash equilibrium, it is necessary to 

define several concepts with regard to the stability property. In this study, the stability 

property of an equilibrium refers only to the asymptotical stability of the Cournot best-

response dynamics. The Cournot best-response dynamics indicate that the best-response 

function of equation (3.2) becomes  

 

      𝑠𝑖,𝑡 = 𝑀𝑖𝑛{𝑀𝑎𝑥{− ∑ 𝑠𝑗,𝑡−1𝑗≠𝑖 + 𝑎𝑖 , 0}, 𝐸𝑖},                                                                            (3.3) 

 

 where 𝑠𝑖,𝑡 indicates the contribution of player i at period t. An intuitive interpretation of the 

asymptotical stability is that if an equilibrium is asymptotically stable, all nearby solutions not 

only stay nearby but also tend to the equilibrium (see, Hirsch and Smale 1974). Hence, we refer 

to this stability property as the Cournot stability, where a system is globally stable if and only 

if the sequences starting from every possible initial point in the dynamic system converge to 
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some equilibrium with Cournot best-response dynamics.23 Formally, we employ the following 

definition of global stability. 

 

Definition 3.1. Let 𝑂 = ∏ [0, 𝐸𝑖]𝑖∈𝐼  denote the feasible strategy space of system (3.3). The system 

is globally asymptotically stable at an equilibrium 𝑠̂, if and only if, for any 𝑠𝑡 = (𝑠1,𝑡, … , 𝑠𝑛,𝑡) ∈

𝑂, 𝑠𝑡 converges to 𝑠̂ as 𝑡 approaches infinity.           

         

        Since Proposition 3.1 shows that the Nash equilibrium is unique, global stability indicates 

that sequences starting from every feasible initial point converge to the unique Nash 

equilibrium. Based on the assumption of Cournot best-response dynamics, the following 

proposition from Saijo (2015) shows the necessary and sufficient condition for the global 

stability of the Nash equilibrium. 

 

Proposition 3.2. Suppose that 𝑎1 > 𝑎𝑗 ≥ 0 for all j ≠ 1, and 𝐸𝑖 ≥ 𝑎𝑖 for all i. Then, the system is 

globally stable at the unique Nash equilibrium if and only if 𝑎1 > ∑ 𝑎𝑗
𝑛
𝑗=2 . 

 

Proposition 3.2 indicates that if the largest intercept is sufficiently large (larger than the sum of 

the other intercepts), then the system is globally stable at the unique Nash equilibrium; 

otherwise, it is non-globally stable at the unique Nash equilibrium. The non-global stability 

indicates that sequences starting from some initial points will not converge to Nash 

equilibrium and will be pulsing between some particular points after a few periods. This 

implies that contributions might become unstable (repeatedly alternate between some 

numbers). For details, see discussions in the next section.  

        Based on these two propositions of Saijo (2015), we design four treatments with an 

identical Nash equilibrium, but with different stability properties. For each of global stability 

and non-global stability, we design two treatments to serve as a robustness check for the 

experimental observations. In the next section, we explain our experimental design and 

procedure. 

 

3.3 Experimental Design and Procedure 
The experiments were conducted at the Vernon Smith Experimental Economics Lab at 

Shanghai Jiao Tong University (SJTU) in March 2016. We designed four treatments of three-

player repeated public goods games. Each treatment consists of four sessions. In each session, 

                                                           
23 Here, “all possible initial points” means all possible combinations of the initial play of every 

player. 
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there are 21 or 24 voluntary subjects. Subjects were recruited from among the SJTU students 

via an Internet recruiting system. The experiment was run on a local area network using a 

program called z-Tree (Fischbacher 2007).        

        At the beginning of the experiment, subjects are assigned randomly to a three-person 

group (𝑛 = 3). The composition of the groups remains the same throughout the session. Then, 

each player in a group is randomly assigned an investor number (1, 2, or 3). These investor 

numbers also remain fixed for subjects throughout the session.  In each session, the public 

goods game is repeated for 25 periods. 

At the beginning of each period, every player receives an endowment of 12 tokens and 

then decides on the number of tokens that he/she intends to contribute to a common project. 

The feasible choice set is 𝑠𝑖 ∈ {0,1, … ,12}. Contributing to the common project generates a 

payoff to every player in the group, given by the following payoff function: 

 

        𝜋𝑖 = 10[12 − 𝑠𝑖 + (𝑎𝑖 + 1) 𝑙𝑛(𝑆 + 1)] ;  𝑖 = 1, 2, or 3,                                                           (3.4) 

 

where 𝑠𝑖 denotes the individual contribution of player i, S is the group’s total contribution, and 

𝑎𝑖 is a positive constant.24 In this formula, 10(12 − 𝑠𝑖) denotes the income from the remained 

tokens and 10[(𝑎𝑖 + 1) 𝑙𝑛(𝑆 + 1)] denotes the income from the common project. In each group, 

the three players are divided into two different experimental roles, each with different 𝑎𝑖. The 

player with investor number = 1 obtains an outstanding benefit from the public good, while 

the other two players obtain a relatively lower, but identical benefit from the public good. 

Hence, in our experiment, we assume 𝑎1 > 𝑎2 = 𝑎3. In each session, there are two different 

payoff tables, both of which are given to every subject.25        

        Table 3.1 shows the parameters and theoretical predictions for our experiments. For all 

treatments, the unique Nash equilibrium is (10, 0, 0). This theoretical result indicates that, in 

Nash equilibrium, the player with investor number = 1 contributes 10 tokens, while the other 

two players contribute nothing. Furthermore, the system is globally stable at the unique Nash 

equilibrium in treatments (10, 2, 2) and (10, 4, 4). However, in the other two treatments, the 

system is non-globally stable.  

  

Table 3.1  Parameters and theoretical predictions 

Treatments (𝑎1, 𝑎2, 𝑎3)              (10,2,2)                (10,4,4)                 (10,6,6)                (10,8,8) 

                                                           
24 Note that, 𝑎𝑖 is the intercept of player i’s (self-interested) best-response curve for this payoff 

function. 
25 See Section 1 in the supplementary documents for the instructions and payoff tables translated 

from Chinese. In the experiment, we also design a calculator to help subjects quickly compare the 

possible outcomes. 
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Endowment                                     12                          12                          12                          12 

Unique Nash  

equilibrium (𝑠1
∗, 𝑠2

∗, 𝑠3
∗)               (10,0,0)                (10,0,0)                  (10,0,0)                (10,0,0) 

Cournot stability                         globally                globally             non-globally         non-globally 

Optimal social outcome  

(group’s total contribution)         16                          20                          24                         28      

Average MPCR                              6.43                       7.95                       9.46                     10.98 

Sessions                                            4                            4                            4                            4 

Groups/subjects                          30/90                   31/93                    32/96                    31/93 

Total period                                    25                          25                          25                          25 

 

       Because the theory predicts that the sequences starting from some initial points will not 

converge to the Nash equilibrium but from some other points will converge in such non-

globally stable situations, we conducted simulations to check the convergence of sequences 

starting from every possible initial point in the two non-globally stable treatments. The 

simulations show that sequences starting from 526 and 136 of 2197 (133) possible initial points 

converge to the unique Nash equilibrium with Cournot best-response dynamics in treatments 

(10, 6, 6) and (10, 8, 8), respectively. Figure 3.1 shows the positions of these stable initial points 

in a three-dimensional graph, where “Player i” denotes the initial contribution of the player 

with investor number i = 1, 2, or 3. The shapes of the stable regions in treatments (10, 6, 6) and 

(10, 8, 8) are irregular. Some initial points (e.g., (0, 0, 12)), are relatively far away from the Nash 

equilibrium but are still stable. Sequences starting from the unstable region pulse after several 

periods between (0, 0, 0) and (10, 6, 6) or between (2, 0, 0) and (10, 4, 4) in treatment (10, 6, 6), 

and between (0, 0, 0) and (10, 8, 8) or between (6, 0, 0) and (10, 2, 2) in treatment (10, 8, 8). 

 

  

                                                    

                   Panel A: Treatment (10,6,6)                                    Panel B: Treatment (10,8,8) 
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Fig. 3.1 Stable initial points (blue) versus unstable initial points (red) in treatments (10,6,6) and (10,8,8) 

 

       The optimal social outcomes are calculated with the Samuelson condition.26 In our design, 

although the marginal per capita return (MPCR) varies with the group’s total contribution, we 

still have a general ranking for the average MPCR of the two experimental roles across the four 

treatments.27 The average MPCR reported in Table 3.1 is increased continuously from 

treatment (10, 2, 2) to treatment (10, 8, 8). Note that, the MPCR of low benefit players (investors 

2 and 3) are different across treatments but, for those high benefit players (investor 1), it is 

identical. Thus, our experimental design also serves as an investigation of the behavioral 

changes of investor 1, when the external MPCR (the MPCR of other players) varies.                                                                   

       In addition to the choices of contributions, we also elicited each subject’s beliefs about the 

individual contributions of the other two group members.28 This is incentivized. We follow the 

design in Gächter and Renner (2010) and set the payoff function 𝑦𝑖𝑗 for the belief elicitation 

task as follows29: 

                                                           
26 The Samuelson condition refers to a condition for the efficient provision of public goods 

(Samuelson 1954). In our experiment, the Samuelson condition requires that the social optimum of 

the group’s total contribution be equal to 𝑎1 + 𝑎2 + 𝑎3 + 2. 
27 The MPCR refers to the individual benefit of the public good from one additional contribution to 

the public good. In our experiment, it is 10[
𝑎𝑖+1

𝑆+1
]. Because the payoff function is quasi-linear, the 

MPCR varies with the group’s total contribution, 𝑆. Therefore, we calculate the average of all 
possible MPCR of the three players for the comparisons across treatments, which is 

1

111
∑ ∑ 10[

𝑎𝑖+1

𝑆+1
]36

𝑠=0
3
𝑖=1 . 

28 Since each group consists of three players, each player should make two predictions in each 

period. The payoffs from the two predictions are calculated separately and then summed in each 

period.  
29 Note that, in this payoff design, the penalty increases when the distance from being correct 
becomes small, which is different from other designs (i.e. quadratic scoring rule). The main 
justification is that we intend to give higher incentive to making an exactly correct prediction. 

Nash Nash 

https://en.wikipedia.org/wiki/Public_good
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     𝑦𝑖𝑗 = {
150, 𝑖𝑓 𝐵𝑖𝑗 = 𝑠𝑗   

100

|𝐵𝑖𝑗−𝑠𝑗|
, 𝑖𝑓 𝐵𝑖𝑗 ≠ 𝑠𝑗

;   𝑖, 𝑗 = 1,2, 𝑜𝑟 3, 𝑖 ≠ 𝑗,                                                                      (3.5) 

 

where 𝐵𝑖𝑗 is player i’s stated belief about player j’s contribution, and 𝑠𝑗 is the observed 

contribution of player j. This payoff function indicates that, if player i’s prediction is exactly 

equal to player j’s choice, player i can get 150 experimental dollars, otherwise, the prediction 

payoff is equal to 100 divided by the absolute difference between player i’s prediction and 

player j’s choice.  

         In the payment procedure, following Blanco et al. (2010), we employ a special design to 

eliminate the hedging problem.30 At the end of the experiment, the real payments of all 

subjects in each session depend on either the total payoff from the contribution task or the total 

payoff from the prediction task, based on a random mechanism. Therefore, the scale of the 

payoffs in equation (3.5) is designed to be comparable to the income from the VCM. Blanco et 

al. (2010) set an equal probability (1/2 versus 1/2) for the payoff from each of the two tasks. 

Differing slightly from their design, we set different probabilities for the payoff from each of 

the two tasks. For all treatments, the real payments of players depend on the total payoff from 

the contribution task, with probability 5/6, or on the total payoff from the prediction task, with 

probability 1/6.  

        We also conducted two additional sessions with the settings of treatment (10, 8, 8) but 

using equal probabilities (1/2 versus 1/2) (see Section 2 of the supplementary documents for 

the report on these two additional sessions). The results show that the contributions from 

investors 2 and 3 are significantly higher in the experiment with the equal probability design 

than in the experiment with the different probability design. Therefore, we suggest that, in 

addition to the hedging problem, a high-incentivized design of belief elicitation still induces a 

significant change in contributions, compared to a low-incentivized design. Because we intend 

to make the influence stemming from the belief elicitation as small as possible (but not 

completely remove the incentivized design), we employ the design which assigns a high 

probability to the payoff of the contribution task and a low probability to the payoff of the 

prediction task.  

At the end of each period, each player receives feedback on the experimental results 

in that period. This includes his/her own payoffs from contribution and prediction tasks, 

and the individual contributions and investor numbers of group members. However, it 

                                                                                                                                                                                 
Because the choices and predictions are the whole numbers in a continuous interval, [0, 12], players 
might choose a middle number to hedge between several different predictions. This payoff design 
eliminates these hedging motives.   
30 The hedging problem in the experiments with belief elicitation refers to the fact that a risk-averse 

subject might act according to an optimistic belief, but report a pessimistic belief in order to hedge 

against the possible loss from the action. For details, see Blanco et al. (2010). 
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excludes the individual predictions of the other group members. Therefore, the experimental 

design is complete information for the VCM. Every player knows the payoff structure of each 

player, as well as the individual contribution and investor number of each group member. 

However, although the design provides complete information, subjects cannot link an 

experimental role to a real person, because they make decisions in a closed chamber and are 

not allowed to communicate with other subjects.    

        Subjects receive instructions at the beginning of each session when entering the lab. A 

native speaking research assistant reads the instructions loudly. Then, all subjects are required 

to answer control questions correctly. At the end of each session, each subject receives his/her 

payment privately at a pre-announced exchange rate of 130 experimental dollars to 1 Chinese 

RMB. The 372 subjects earned RMB 60 (8.8 US dollars) each, on average, including a 

participation fee, with a range of RMB 45-RMB 75. Each session lasts about one hour and a half, 

including providing the instructions and making the necessary payments. 

 

3.4 Results 
In this section, we discuss the experimental data from three aspects. In the first subsection, we 

provide observations with regard to the convergence of the contribution behavior. The second 

subsection analyzes the belief-formation process. Then, we investigate the response process in 

the third subsection. 

 

3.4.1 Contributions and Nash Equilibrium Benchmark 

 

Result 3.1: (Contributions and Nash Equilibrium) Individual contributions in the final 10 

periods are much closer to the Nash equilibrium in the two globally stable treatments than in 

the two non-globally stable treatments, for both roles of players. However, no significant 

differences are observed in the groups’ total contributions across the four treatments in the 

final 10 periods. 

 

Support: In each group, subjects play two roles, each with different payoff structures. Thus, the 

average contributions are calculated separately. Figure 3.2 shows the average contributions 

over time for the two roles in the four treatments. Panel A displays the average contributions 

of players with investor number = 1. Here, the average contributions from the two globally 

stable treatments are much closer to the Nash prediction than those from the two non-globally 

stable treatments are. Panel B of Figure 2 displays the average contributions for players with 

investor number = 2 or 3. The graph clearly shows a reverse ordering of average contributions 

for the four treatments. Moreover, for both roles, the Kruskal–Wallis test shows a significant 
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difference among the four treatments in the final 10 periods (d.f. = 3, p-values < 0.001).31 The p-

values of Dunn’s tests are presented in Table 3.2 in order to compare the individual 

contributions in the final 10 periods across the four treatments. Overall, the average 

contribution from treatment (10, 2, 2) is closest to the Nash prediction in the final 10 periods 

among the averages of the four treatments. 

 

 

Panel A: Players with investor number =1

 

Panel B: players with investor number = 2 or 3 

                                                           
31 For all Kruskal–Wallis tests in this paper, we first calculate the average over periods for each 

individual in order to eliminate autocorrelation among periods. Then, we conduct the Kruskal–

Wallis test over the samples of averages. Moreover, because there are four treatments in our 

experiment, we use Dunn’s test with the Bonferroni correction to conduct pairwise comparisons 

when the null hypothesis in the Kruskal–Wallis test is rejected (Dunn 1964). 
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Fig. 3.2 The average contribution per period for two roles of subjects 

          

Table 3.2 Pairwise comparisons for contributions in the final 10 periods (Dunn’s test with the 

Bonferroni correction) 

Players with investor number = 1 

Treatments                              (10,2,2)                                 (10,4,4)                               (10,6,6)           

   (10,4,4)                                  0.5262                     

   (10,6,6)                                  0.0066                                   0.2623 

   (10,8,8)                                  0.0000                                   0.0010                                 0.1735 

Players with investor number = 2 or 3 

Treatments                              (10,2,2)                                 (10,4,4)                               (10,6,6)          

    (10,4,4)                                  0.0426                     

    (10,6,6)                                  0.0000                                   0.0325 

    (10,8,8)                                  0.0000                                   0.0000                                0.0097 
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Panel A: Players with investor number =1 

 

Panel B: players with investor number = 2 or 3

 

Fig. 3.3 The proportion of the Nash play in each period 

 

        To see the convergence of individual contributions, Figure 3.3 shows the proportion of 

players who played their part of the unique Nash equilibrium in each period. Each line depicts 

a treatment in each graph. Panel A shows that, in the final periods, the proportions almost 
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reach the 50 percent level in treatments (10, 2, 2) and (10, 4, 4), but in treatments (10, 6, 6) and 

(10, 8, 8), they remain at a relatively low level. In Panel B, despite the fact that there is an 

ascending tendency shared by all treatments, the proportions are relatively lower in treatments 

(10, 6, 6) and (10, 8, 8) than those in treatments (10, 2, 2) and (10, 4, 4). At the group level, there 

are 11 groups in treatment (10, 2, 2), seven groups in treatment (10, 4, 4), one group in 

treatment (10, 6, 6), and one group in treatment (10, 8, 8) in which contributions converge to 

the unique Nash equilibrium, (10, 0, 0), when the experiment progresses to the last five periods. 

 

 

Fig. 3.4 The average of group total contributions per period 

 

Figure 3.4 reports the averages of the groups’ total contributions at each period, for all 

treatments. The Kruskal–Wallis test shows that, in the first 10 periods, the groups’ total 

contributions from the four treatments are significantly different (d.f. = 3, p-value = 0.0001). 

Dunn’s test further shows that the groups’ total contributions from treatment (10, 8, 8) are 

significantly higher than those from the other three treatments (p-values < 0.001 for the 

comparison with treatments (10, 2, 2) and (10, 4, 4), and p-value = 0.0387 for the comparison 

with treatment (10, 6, 6)). In addition, the groups’ total contributions from treatment (10, 6, 6) 

are higher than those from treatments (10, 2, 2) (p-value = 0.0130) and (10, 4, 4) (p-value = 

0.0906), but there is no significant difference between treatments (10, 2, 2) and (10, 4, 4) (p-

value = 1.0). However, in the final 10 periods, there is no longer a significant difference in the 
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groups’ total contributions across the four treatments (p-value = 0.459 by the Kruskal–

Wallis test).  

In summary, we observe a clear trend that indicates convergence to a unique Nash 

equilibrium in the two globally stable treatments. In contrast, the individual contributions 

are still far from the Nash prediction in the final 10 periods in treatments (10, 6, 6) and (10, 

8, 8). These results seem consistent with the theoretical prediction of Saijo (2015). However, 

we find that sample autocorrelations of groups’ total contributions are positive for most 

groups in treatments (10, 6, 6) and (10, 8, 8).32 The Kruskal–Wallis test further shows a 

slight difference over the sample autocorrelations across the four treatments (d.f. = 3, p-

value = 0.0520), but Dunn’s test shows that the only significant difference is between 

treatment (10, 2, 2) and treatment (10, 8, 8). The sample autocorrelations in treatment (10, 8, 

8) are significantly larger than those in treatment (10, 2, 2) (p-value = 0.0241). These results 

are inconsistent with the theoretical prediction that the Cournot best-response dynamics 

will induce pulsing contributions in some groups for treatments (10, 6, 6) and (10, 8, 8).33 

Therefore, to examine the reasons behind the differences in convergence, we release the 

assumption of Cournot best-response dynamics, and empirically investigate players’ 

belief-formation processes and response processes respectively in the following two 

subsections.  

 

3.4.2 Belief Formation Process  

First, we report the belief accuracy in the four treatments. Figure 3.5 shows the average 

absolute differences between stated beliefs and real choices in each period for the four 

treatments. The accuracy becomes higher and higher with repeated trials in all treatments (p-

values < 0.001 by comparing the observations from the first 10 periods with those from the 

final 10 periods in each treatment with the Wilcoxon signed-rank test). Moreover, there is a 

significant distinction between the two globally stable treatments and the two non-globally 

stable treatments in the final 10 periods. The accuracy of stated beliefs in the two globally 

stable treatments is significantly higher than that in the two non-globally stable treatments (p-

values < 0.001 by the Dunn’s tests), but there are no significant differences between the two 

globally stable treatments (p-value = 0.1185) and between the two non-globally stable 

treatments (p-value = 0.2263).  

                                                           
32 One might think that the sample autocorrelation of individual contributions is also a way to 

check for the pulsing behavior. However, if players within the same group are not synchronized, 
the pulsing behavior of each subject is not related to the non-globally stable argument. Thus, we 
check only the sample autocorrelation of the group’s total contributions.  
33 The pulsing contributions will induce negative sample autocorrelations for the groups’ total 

contributions in some groups. Thus, the sample autocorrelations in treatments (10, 6, 6) and (10, 8, 8) 

should be smaller than those in treatments (10, 2, 2) and (10, 4, 4). 
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      The non-global stability suggests that, if subjects follow the Cournot best-response 

dynamics, the distance between beliefs and choices will become larger and larger in the non-

converged groups. To verify this, we checked dynamics of belief accuracy in each group. The 

Spearman’s rank correlation tests show that the average difference at the group level 

significantly increases in only one group from treatment (10, 6, 6) (Spearman’s rho = 0.4214, p-

value = 0.0359) and two groups from treatment (10, 8, 8) (Spearman’s rho = 0.5661 and 0.4661, 

p-values < 0.05). 

 

 

Fig. 3.5 Average absolute differences between stated beliefs and real choices at each period 

 

       Then, we release the assumption of myopic Cournot learning and empirically investigate 

the belief formation processes of subjects.34 Fischbacher and Gächter (2010) suggest that belief 

formation in a linear VCM environment can be regarded as a weighted average of the belief 

and the observation of the previous period.35 Since this weighted average could be expressed 

                                                           
34 The term “myopic Cournot learning,” also called naive learning (e.g., Fischbacher and Gächter 

2010), means players’ beliefs are equal to the most recent observation.   
35 Fischbacher and Gächter (2010) also provide an intuitive interpretation for this argument. “In 

period 1 a subject can only rely on his or her intuitive (‘home-grown’) beliefs about others’ 

contributions. In period 2, he or she also makes an observation about others’ actual contribution in 

period 1. A subject may therefore update his or her period 2 belief on the basis of his or her period 1 
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as a weighted average of all previous observations and the prior belief, we introduce a model 

to estimate the belief formation process, using the argument of Fischbacher and Gächter (2010) 

as an assumption.36 The model is expressed as follows: 

           

         𝑏𝑖𝑗,𝑡+1 =
𝑠𝑗,𝑡+∑ 𝛾𝑖

𝑢𝑠𝑗,𝑡−𝑢
𝑡−1
𝑢=1 +

𝛾𝑖
𝑡

1−𝛾𝑖
𝐵𝑖𝑗,1

1+∑ 𝛾𝑖
𝑢𝑡−1

𝑢=1 +
𝛾𝑖

𝑡

1−𝛾𝑖

,                                                                                           (3.6) 

 

where 𝑏𝑖𝑗,𝑡+1 is player i’s belief about the contribution of player j at period t + 1, 𝑠𝑗,𝑡 is the 

contribution of player j at period t, 𝛾𝑖
𝑢 is the weight given to the observation of 𝑠𝑗,𝑡−𝑢 at period t 

– u, and 𝐵𝑖𝑗,1 is the stated belief about the contribution of player j at period 1.37  

        However, although the rewarding structure for eliciting beliefs in our design is similar to 

that of Fischbacher and Gächter (2010), we elicit beliefs about individual contributions. In 

contrast, Fischbacher and Gächter (2010) elicit beliefs about the average contributions of other 

group members. Therefore, an alternative model that can explain the belief-formation process 

in our experimental data is the smoothed (or noisy) 𝛾-weighted fictitious play model (see 

Cheung and Friedman 1997; Fudenberg and Levine 1998). To distinguish between these two 

models, we conduct a model selection procedure. The results indicate that the argument of 

Fischbacher and Gächter (2010) outperforms the smoothed γ-weighted fictitious play model in 

explaining the belief-formation process at the aggregate level.38    

       Then, we extend the analysis to the individual level. Define 𝛾𝑖
∗ ∈ [0, 1) for player i, which 

minimizes the sum of the squared errors (SSE) between the stated beliefs and the beliefs 

suggested by equation (3.6).39 That is, 

                                                                                                                                                                                 
beliefs and the observed period 1 contributions by others. A similar logic might hold in all 

remaining periods” (Fischbacher and Gächter 2010, p. 548).  
36 We also conduct regressions of three models to check the lag length of the information used by 

players. The first is the same as Model 3 in Fischbacher and Gächter (2010), which includes “belief (t 

– 1)” and “other’s contribution (t – 1)”. The second and third models include additional lagged 

variables. The results show that the argument of Fischbacher and Gächter (2010) is a reasonable 

assumption to explain the belief-formation process in our experiment. See Section 3 of the 

supplementary documents for details. 
37 See the appendix for the derivation of this model. 
38 See Section 4 of the supplementary documents for details. 
39 As Cheung and Friedman (1997) suggested, 𝛾𝑖

∗ might also be located outside the range [0, 1). Such 

cases are relatively counter-intuitive. Here, 𝛾𝑖
∗ > 1 indicates that player i pays more attention to old 

information than to recent information, and the effect of the prior belief is negative. Then,  𝛾𝑖
∗ < 0 

indicates that the effect of past information changes sign in each period. However, in our empirical 

analysis, since we are only interested how subjects form their stated beliefs based on the weighted 

average over all previous observations and their prior beliefs, we omit the discussion on those 
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      𝛾𝑖
∗ = arg 𝑚𝑖𝑛0≤𝛾𝑖<1{∑ (𝐵𝑖𝑗,𝑡 − 𝑏𝑖𝑗,𝑡)

225
𝑡=2 },                                                                                 (3.7) 

 

where 𝐵𝑖𝑗,𝑡 is player i’s stated belief on player j’s contribution at period t, and 𝑏𝑖𝑗,𝑡 is the 

constructed belief at period t given by equation (3.6). Here, 𝛾𝑖
∗ should be equal to 0 when 

player i exactly follows the myopic Cournot learning process. In contrast, 𝛾𝑖
∗ is close to 1 if 

player i pay much attention to previous observations and his/her prior belief. In this sense, 

this model is close to the k-period average model of Healy (2006) but assigns a high weight to 

the prior belief.  Briefly, the empirical model of equation (3.6) can be regarded as a time-

weighted average model, including the prior belief. Equation (3.7) is calculated twice for each 

individual because, in each period, each subject states two beliefs about the individual 

contributions of the other two players in the group.40 

  

Result 3.2: (Belief formation) The belief-formation processes of subjects are significantly more 

myopic in the two globally stable treatments than they are in treatment (10, 8, 8). Furthermore, 

the minimal SSE in the two non-globally stable treatments are significantly larger than those in 

the two globally stable treatments. 

 

Support: Penal A of Figure 3.6 shows the distributions of 𝛾𝑖
∗ in the four treatments. The left-

most bar decreases continuously from treatment (10, 2, 2) to treatment (10, 8, 8). This decrease 

has a significant impact on the distribution in treatment (10, 8, 8), which is significantly 

different to the distributions in treatments (10, 2, 2) (p-value = 0.006) and (10, 4, 4) (p-value = 

0.008), based on the two-sample Kolmogorov-Smirnov tests. The Kruskal–Wallis test also 

shows a significant difference in the distributions of 𝛾𝑖
∗ among the four treatments (d.f. = 3, p-

value = 0.0121). Furthermore, Dunn’s test shows that 𝛾𝑖
∗ in treatment (10, 8, 8) is significantly 

larger than that in treatments (10, 2, 2) (p-value = 0.0246) and (10, 4, 4) (p-value = 0.0082). 

Comparing minimal SSE from the four treatments, the Kruskal-Wallis test also shows a 

significant difference (d.f. = 3, p-value = 0.0001), and Dunn’s test further shows that the 

minimal SSE from treatments (10, 2, 2) and (10, 4, 4) are significantly smaller than those from 

treatments (10, 6, 6) and (10, 8, 8) (p-values < 0.01).  

 

                                                                                                                                                                                 
counter-intuitive situations. This design can also be found in the analysis of the belief-formation 

process in Hyndman et al. (2012).  
40 In 19 cases (eight cases in treatment (10, 2, 2), six cases in treatment (10, 4, 4), four cases in 

treatment (10, 6, 6), and one case in treatment (10, 8, 8)), players’ prior beliefs were equal to their 

group members’ contributions, and their group members did not change their contributions during 

the experiment. In such cases, since 𝛾
𝑖
 is canceled out in equation (3.6), we eliminate these data. The 

calculations were carried out 725 times. 
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Penal A: Periods 2-25 

 

Penal B: Periods 2-11 

 

Fig. 3.6 Distributions of 𝛾𝑖
∗ in the four treatments 

 



81 
 

       Moreover, note that, for the two globally stable games, many groups converge to the Nash 

equilibrium, which means that beliefs will converge too. This might make 𝛾𝑖
∗ a bit bias to zero. 

To rule out this problem, we conduct the estimations with the data from periods 2-11 as a 

double check. The results are shown in Penal B of Figure 3.6. These graphs are very similar to 

those in Penal A. Actually, the Wilcoxon signed-rank test shows that players in treatment (10, 6, 

6) are significantly more myopic in periods 2-11 than they are in periods 2-25 (p-value = 

0.0295), and it shows insignificant results in the other three treatments (p-value = 0.8096 for 

treatment (10, 2, 2), p-value = 0.2452 for treatment (10, 4, 4), and p-value = 0.7410 for treatment 

(10, 8, 8)). More importantly, the Dunn’s tests show that, in periods 2-11, the differences in 𝛾𝑖
∗ 

and minimal SSE between the two globally stable treatments and treatment (10, 8, 8) are 

consistent with the above results (p-values < 0.05).    

       Result 3.2 is rather interesting. It could indicate that when the system could approach 

equilibrium using the myopic Cournot learning process, subjects might be willing to follow 

this process because it incurs less of a cognitive cost than that of processing information from 

previous periods. However, when the system cannot approach equilibrium with the myopic 

Cournot learning process, subjects might have to process more previous information and, thus, 

incur greater cognitive costs.41 We consider this interpretation in the simulation section to 

show whether this change in the belief-formation process improves the stability of the system. 

In addition, the difference in the minimal SSEs across treatments might be the result of a 

higher number of decision errors in treatments (10, 6, 6) and (10, 8, 8) than in treatments (10, 2, 

2) and (10, 4, 4). However, the difference might also suggest that subjects employ more 

information beyond those of historical observations on choices in the two non-globally stable 

treatments.42 

 

3.4.3 Responding Process  

In this subsection, we release the assumption that players make self-interested maximization 

choices and empirically investigate subjects’ response processes. Since many experimental 

studies suggest that most players are conditional cooperators who always want to match the 

(average) contributions of other players (see Chaudhuri 2011), we incorporate this behavioral 

pattern into our empirical analysis.  

       Our experimental design includes three players and two roles in each group. Players with 

investor number = 1 might match the average of beliefs about the contributions of investor 2 or 

3 because the latter two players have the same payoff table. However, players with investor 

                                                           
41 Theoretically, when subjects take more previous observations into consideration, i.e. the fictitious 
play or best response to the average of all previous observations, the global stability at the Nash 
equilibrium will generally be improved (e.g., Thorlund-Petersen 1990; Hofbauser and Sandholm 
2002).  
42 See Milgrom and Roberts (1991) for a discussion on the different learning processes.  
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number = 2 or 3 may match the two beliefs separately because the other two players have 

different payoff tables.   

      Therefore, we assume different response processes for the two roles. Specifically, we 

assume that players with investor number = 1 adjust their contributions as follows: 

            

      𝑠𝑖,𝑡 − 𝑠𝑖,𝑡−1 = 𝛼 + 𝛽1(𝑅𝑖,𝑡 − 𝑠𝑖,𝑡−1) + 𝛽2(𝐵̅𝑖,𝑡 − 𝑠𝑖,𝑡−1) + ε,                                                     (3.8) 

 

where 𝑅𝑖,𝑡 is player i’s self-interested best response to his/her own stated beliefs at period t, 

and 𝐵̅𝑖,𝑡 is the average of the two beliefs held by player i about the contributions of the other 

two players. Then, investors 2 or 3 adjust their contributions as follows: 

     

      𝑠𝑖,𝑡 − 𝑠𝑖,𝑡−1 = 𝛼 + 𝛽1(𝑅𝑖,𝑡 − 𝑠𝑖,𝑡−1) + 𝛽2(𝐵𝑖,𝑡
1 − 𝑠𝑖,𝑡−1) + 𝛽3(𝐵𝑖,𝑡

23 − 𝑠𝑖,𝑡−1) + ε,                     (3.9) 

 

where 𝑅𝑖,𝑡 is again player i’s self-interested best response to his/her own stated beliefs at 

period t, 𝐵𝑖,𝑡
1  is player i’s stated belief about the contribution of investor 1, and 𝐵𝑖,𝑡

23 is player i’s 

stated belief about the contribution of the other player with investor number = 2 or 3.  

       We employ difference forms in the regressions, which are inconsistent with previous 

studies (i.e. Fischbacher and Gächter (2010)). The main justification is about multicollinearity. 

Note that beliefs enter the calculations of best responses and, particularly for investors 2 and 3, 

beliefs about the other same-role player’s contributions could be correlated with their own best 

response. Via making a difference form, we intend to reduce the correlation between 

independent variables in models (3.8) and (3.9). For the two independent variables of model 

(3.8), all the absolute values of Spearman’s rho are not larger than 0.36 and all the variance 

inflation factors are not larger than 1.12 in the four treatments. For the three independent 

variables in model (3.9), the maximum of the absolute values of Spearman’s rho is 0.6215 and 

the maximum of the variance inflation factors is 2.1186 among the four treatments. Therefore, 

all the variance inflation factors in our two models are smaller than the critical value of 10 

(Gujarati 2003).  

       These two regressions show the relative importance of the two behavioral patterns, namely 

self-interested maximization and matching beliefs, when players adjust their contributions.   

 

Results 3.3: (Response) The behavioral pattern of self-interested maximization accounts for a 

significantly larger proportion than that of matching beliefs does in the two globally stable 

treatments for players with investor number = 1 and in treatment (10, 2, 2) for players with 

investor number = 2 or 3. However, this is not the case in the two non-globally stable 

treatments for both roles. 
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Support: Table 3.3 shows the results of the above regressions.43 In each treatment, we compare 

the estimate of 𝛽1 to the estimate of 𝛽2  for players with investor number = 1 and compare the 

estimate of 𝛽1  to the sum of the estimates of 𝛽2 and 𝛽3 for players with investor number = 2 or 

3 (p-values are also reported in Table 3.3). Our results indicate that the behavioral pattern of 

self-interested maximization is significantly more common than that of matching beliefs in the 

two globally stable treatments for players with investor number = 1 and in treatment (10, 2, 2) 

for players with investor number = 2 or 3. However, this is not the case in the two non-globally 

stable treatments. Conversely, for players with investor number = 2 or 3 in treatment (10, 8, 8), 

the sum of the estimates of 𝛽2 and 𝛽3 is significantly larger than the estimate of 𝛽1.  

 

Table 3.3 Fixed-effects regressions for the response process 

Players with investor number = 1 

Dependent variable: 𝑠𝑖,𝑡 − 𝑠𝑖,𝑡−1 

                                               Treatment (10,2,2)           Treatment (10,4,4)            Treatment (10,6,6)          Treatment (10,8,8) 

 𝛽1                                                     0.466***                          0.389***                            0.475***                            0.260*** 

                                                         (0.071)                               (0.051)                                (0.096)                               (0.060) 

𝛽2                                                     0.238***                          0.215***                            0.399***                            0.398*** 

                                                         (0.076)                               (0.044)                                (0.067)                               (0.061) 

α                                                        1.627***                          1.315***                            1.692***                            1.004*** 

                                                         (0.530)                               (0.217)                                (0.218)                               (0.144) 

P-value (𝐻0: 𝛽1 = 𝛽2)                    0.013                                 0.024                                   0.529                                  0.158 

Subjects/Groups                            30/30                                 31/31                                  32/32                                  31/31 

Observations                                   720                                    744                                       768                                     744 

R-squared                                        0.24                                   0.21                                     0.34                                     0.26 

Players with investor number = 2 or 3 

Dependent variable: 𝑠𝑖,𝑡 − 𝑠𝑖,𝑡−1 

                                               Treatment (10,2,2)           Treatment (10,4,4)            Treatment (10,6,6)          Treatment (10,8,8) 

 𝛽1                                                    0.583***                          0.450***                            0.375***                            0.261*** 

                                                         (0.118)                             (0.093)                                 (0.061)                               (0.031) 

 𝛽2                                                     0.023                                0.007                                   0.080*                                0.214*** 

                                                           
43 The regressions are conducted using a fixed-effects model with clustered groups to isolate 

unspecified individual traits and to control for unspecified intragroup influence. 
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                                                         (0.027)                             (0.034)                                 (0.040)                               (0.030) 

 𝛽3                                                     0.194***                         0.312***                             0.289***                           0.285*** 

                                                         (0.052)                             (0.042)                                 (0.065)                               (0.039) 

α                                                       0.203                                0.604**                               0.508**                             0.283*** 

                                                         (0.276)                             (0.292)                                 (0.235)                               (0.096) 

P-value (𝐻0: 𝛽1 = 𝛽2 + 𝛽3)         0.035                                0.202                                    0.952                                 0.000 

Subjects/Groups                           60/30                                62/31                                   64/32                                 62/31 

Observations                                 1440                                  1488                                    1536                                   1488 

R-squared                                       0.34                                   0.27                                      0.26                                    0.27 

Clustered standard errors are shown in parentheses. Significantly different from zero at ∗ 10% level, ∗∗ 5% level, ∗∗∗ 1% level (all two-

tailed tests). 

 

         Furthermore, we conduct pairwise tests of the equivalence of the estimates of 𝛽2 across 

the four treatments with the seemingly unrelated regression. For players with investor number 

= 1, the estimates of 𝛽2 are not statistically significantly different between treatments (10, 2, 2) 

and (10, 6, 6) (p-value = 0.112), are slightly different between treatments (10, 2, 2) and (10, 8, 8) 

(p-value = 0.098), and are significantly different between treatments (10, 4, 4) and (10, 6, 6) (p-

value = 0.022) and between treatments (10, 4, 4) and (10, 8, 8) (p-value = 0.015). For players 

with investor number = 2 or 3, only the estimate of 𝛽2 in treatment (10, 8, 8) is significantly 

larger than that in the other three treatments (p-values < 0.01). These results suggest that 

players are less likely to match their beliefs about the contributions of players with different 

roles in the two globally stable treatments than they are in the two non-globally stable 

treatments. 

        For players with investor number = 1, the difference in conditional cooperation across the 

four treatments might stem from inequity aversion. As Fehr and Schmidt (1999) assumed in 

their inequity-aversion utility model, players suffer more from inequity that is to their 

disadvantage than they do from inequity that is to their advantage. If checking the payoff tables 

in the supplementary documents, we can find that, in treatments (10, 2, 2) and (10, 4, 4), the 

payoff of investor 1 increases much faster than the payoffs of the other two players when 

he/she unilaterally increases his/her own contribution. In contrast, in treatments (10, 6, 6) and 

(10, 8, 8), and especially in treatment (10, 8, 8), when investor 1 unilaterally increases his/her 

own contribution to 10 tokens, his/her own payoff becomes less than the payoffs of the other 

two players. Given this fact, investor 1 might be willing to contribute much more than investor 

2 or 3 do in the two globally stable treatments, but might not be willing to do so in the two 

non-globally stable treatments.  

        For players with investor number = 2 or 3, note that their MPCR varies between the four 

treatments. The difference in conditional cooperation, in particular, the difference in 𝛽2, across 
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the four treatments might stem from different magnitudes of opportunity costs when making 

contributions, in addition to social preferences. Because the benefits from keeping tokens for 

oneself are identical across the four treatments, the opportunity costs of contributions are 

continuously reduced from treatment (10, 2, 2) to treatment (10, 8, 8). Therefore, matching 

beliefs in treatment (10, 8, 8) induces lower costs than it does in treatment (10, 2, 2).   

       In the next section, we apply our empirical findings on the belief formation and response 

processes to the theory. We conduct a series of simulations to show whether the changes in the 

belief formation improve stability, to show how conditional cooperation affects convergence, 

and to explain our observations of the differences in the convergence of the contributions 

across the four treatments. 

 

3.5 Simulation 
We employ the simulation method because it allows us to compare the outcomes generated by 

different counterfactual assumptions. This method was also used by Fischbacher and Gächter 

(2010). We use a 2 × 2 simulation design to investigate the individual effects of the belief-

formation process and the response process. Table 4 summaries the simulation design. All 

simulations are conducted using the initial contributions of the subjects in our experiments.   

  

Table 3.4  2x2 Design of the simulation 

  Treatments                                                                                   Belief formation         

 Responding process                      Myopic Cournot learning                Empirical learning(each individual)               

Self-interested best                                       CS (baseline)                                        EiS 

response 

Empirical Responding                                   CEr                                                         EiEr 

 process(each role) 

 

              As shown in Table 3.4, the baseline treatment combines the myopic Cournot learning 

with the self-interested best response. We, therefore, refer to it as the CS treatment. It checks 

the theoretical predictions against the initial contributions in each group. By replacing myopic 

Cournot learning with the empirical estimates (periods 2-25) at the individual level in section 

3.4.2, but keeping the assumption of the self-interested best response, we get the EiS 
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treatment.44 By comparing the outcomes of the CS treatment and the EiS treatment, we isolate 

the effect of the empirical belief-formation process.45 Furthermore, by replacing the self-

interested best response with the empirical response process shown in Table 3.3, but keeping 

the assumption of myopic Cournot learning, we get the CEr treatment. Similarly, comparing 

the outcomes of the CS treatment and the CEr treatment, we isolate the effect of the empirical 

response process. Then, by comparing the EiEr treatment to the other three treatments, we can 

observe the joint effect of the empirical belief-formation process and the empirical response 

process. Finally, since we do not have individual response processes, the experimental 

observations will serve as a treatment for both the empirical belief-formation process and the 

empirical response process at the individual level. 

 

Penal: Treatment (10, 2, 2) 

 

                                                           
44 The empirical belief formation process indicates the equation (3.6) with estimates of 𝛾𝑖

∗ for each 
individual. Similarly, the empirical response process indicates models (3.8) and (3.9) with the 
estimates shown in Table 3.3 for each role.  
45 Recall that we do not have estimates for 19 cases of our experimental data. Since each subject 

needs to predict twice in our experiment, for those who have only one estimate, we simply use the 

estimate for both belief formation processes. Furthermore, for those subjects who do not have both 

estimates available, we keep the assumption of myopic Cournot learning.    
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Penal B: Treatment (10, 4, 4) 
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Penal C: Treatment (10, 6, 6) 
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Penal D: Treatment (10, 8, 8) 
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Fig. 3.7 Average contribution per period of simulation results for each role of players in four treatments 

 

         Figure 3.7 shows the average contribution in each period for each role, generated from 

these simulations and the experimental observations. First, the simulation results between the 

CS treatment and the EiS treatment are very similar in treatments (10, 2, 2) and (10, 4, 4). 

However, they are quite different in treatments (10, 6, 6) and (10, 8, 8). As predicted by Saijo 

(2015), at the group level, the simulation results show that 18 of 32 groups in treatment (10, 6, 6) 

and 30 of 31 groups in treatment (10, 8, 8) begin unstable pulsing in the CS treatment. Thus, we 

see significant pulsing in the averages. However, in the EiS treatment, no group enters 

unstable pulsing.46 Therefore, we conclude that the adaptive change in the belief-formation 

process improves the stability of the system in treatments (10, 6, 6) and (10, 8, 8).  

       Second, to compare the prediction power of these simulations, we calculate the prediction 

errors for each subject at each period.47 By comparing the prediction errors across these 

simulation treatments, the Wilcoxon signed-rank tests show that the simulation results from 

the CEr treatment and the EiEr treatment are quite similar in treatments (10, 2, 2) (p-value = 

0.8673) and (10, 4, 4) (p-value = 0.6966). However, the simulation results from the EiEr 

                                                           
46 Even though there is no unstable pulsing, four groups in treatment (10, 6, 6) and seven groups in 

treatment (10, 8, 8) still do not reach the unique Nash equilibrium within 25 periods in the 

simulation of the EiS treatment. 
47 The prediction error is the absolute difference (|𝑝𝑖

𝑡 − 𝑠𝑖
𝑡|) between the simulation result (𝑝𝑖

𝑡) and 

the experimental observation (𝑠𝑖
𝑡) for subject i at period t (similar to the analysis in Healy (2006)). 
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treatment are more accurate than those from the CEr treatment in treatments (10, 6, 6) (p-value 

< 0.001) and (10, 8, 8) (p-value < 0.001), although Figure 7 shows that their averages are similar. 

Furthermore, the simulation results from the CEr and EiEr treatments are more accurate than 

those from the other two simulation treatments (CS and EiS) in all experimental treatments (all 

p-values < 0.001, by the Wilcoxon signed-rank tests). Briefly, the simulation results from the 

EiEr treatment are closest to the experimental observations among these simulation treatments. 

These results confirm that the empirical belief-formation processes are close to myopic 

Cournot learning in the two globally stable treatments, and indicate that the differences in both 

the belief-formation and response processes contribute to the difference in the convergence of 

contributions across the four experimental treatments.   

 

3.6 Conclusion 
We have investigated the convergence of contribution behavior in VCM experiments with 

heterogeneous quasi-linear payoff functions. Four experimental treatments with different 

heterogeneous settings are designed to share an identical Nash equilibrium, but with different 

stability properties. We clearly observe a significant difference in the convergence of 

contributions across the four treatments. The Nash equilibrium is a good predictor for the two 

globally stable treatments, but not for the two non-globally stable treatments. In the two non-

globally stable treatments, the players that benefit more from the public good contribute far 

less than the Nash prediction, while the players that benefit less contribute much more than 

the Nash prediction. The overall result is that the groups’ total contributions from the four 

treatments with different average marginal per capita returns are not significantly different in 

the final 10 periods.  

        By estimating subject’s belief-formation and response processes, we find significant 

differences in both of them across treatments. Our experimental results indicate that the 

decision-making processes of subjects are closer to the assumption of Cournot best-response 

dynamics in the two globally stable treatments than they are in the two non-globally stable 

treatments. Moreover, using simulations, we find that the changes in the belief-formation 

process improve the stability of the system in the two non-globally stable treatments and that 

the differences across treatments in the convergence of the contributions come from the 

differences in both the belief-formation and response processes. 

       Our experimental findings might give some insights for the observation that the 

contribution from some particular individual/company accounts for more than 90% of the 

total contribution in a practical VCM situation, for example, the voluntary contributions to 

build anti-tsunami embankments at Hamamatsu city in Japan (Saijo, 2015). However, note that, 

in most real situations, the condition, 𝑎1 > ∑ 𝑎𝑗
𝑛
𝑗=2 , in Proposition 2 is not satisfied, which 

indicates the unique Nash equilibrium is not a good predictor in those situations. Our 

experimental results show that, in the two non-globally stable treatments, although the 

contributions are not converging to the Nash equilibrium, they are also not pulsing. These 
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experimental results might imply that they converge to some other equilibria (such as some 

inequity-averse equilibria). 

       Although two treatments in our experiment are non-globally stable based on the theory of 

Saijo (2015), our experimental results suggest that subjects’ belief-formation and response 

processes are, to a large extent, inconsistent with the Cournot best-response dynamics. Our 

observations of differences in the belief-formation process across treatments might indicate 

that the cognitive ability of human subjects can proactively choose the range of information 

used and employ different learning processes in situations with different stability properties. 

However, in the two non-globally stable treatments, because of the presence of conditional 

cooperation in the response process, the source of these adaptive changes in the belief-

formation process still needs further studies. This finding also raises a new question, can these 

adaptive changes maintain the stability of the system in an asymmetric quasi-linear VCM 

environment, if the number of players increases? 

         In our VCM experiment with quasi-linear payoff functions, we find that the argument of 

Fischbacher and Gächter (2010) explains the belief-formation process quite well. Therefore, we 

adopt their argument as an assumption and extend the analysis of the belief-formation process 

to the individual level. We suggest that this model is similar to the γ-weighted fictitious play 

model in Cheung and Friedman (1997), applied when players are more likely to be forming 

their beliefs using the average of historical observations rather than using the probability 

distribution. 

        Finally, Ledyard (1995) surveys the literature on VCM experiments with heterogeneous 

benefits in a linear environment, and conjectures that heterogeneous benefits have a negative 

effect on contributions and, thus, calls for additional research. Although our study is 

conducted in a quasi-linear environment, we find an interesting result. The decision-making 

processes of players are significantly different across different heterogeneous designs, but the 

groups’ total contributions are not statistically different in the final 10 periods of the 

experiment. This observation is also related to the convergence of contributions in the two non-

globally stable treatment. Related issues still need further studies.     

 

Appendix 
The derivation of equation (3.6).  We begin with the argument of Fischbacher and Gächter (2010). 

The belief at period t can be expressed as the weighted average of the last observation and the 

belief in period t – 1. That is,       

      𝑏𝑖𝑗,𝑡 = (1 − 𝛾𝑖)𝑠𝑗,𝑡−1 + 𝛾𝑖𝑏𝑖𝑗,𝑡−1, 

where 𝛾𝑖 ∈ [0,1) is the weighting factor. Then, we have the following series of equations: 

      𝑏𝑖𝑗,𝑡−1 = (1 − 𝛾𝑖)𝑠𝑗,𝑡−2 + 𝛾𝑖𝑏𝑖𝑗,𝑡−2, 

      𝑏𝑖𝑗,𝑡−2 = (1 − 𝛾𝑖)𝑠𝑗,𝑡−3 + 𝛾𝑖𝑏𝑖𝑗,𝑡−3, 

      …… 

       𝑏𝑖𝑗,2 = (1 − 𝛾𝑖)𝑠𝑗,1 + 𝛾𝑖𝑏𝑖𝑗,1. 
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After substituting all equations into the first equation, we have, 

       𝑏𝑖𝑗,𝑡 = (1 − γ𝑖  )𝑠𝑗,𝑡−1 + γ𝑖(1 − γ𝑖  )𝑠𝑗,𝑡−2 + γ𝑖
2(1 − γ𝑖  )𝑠𝑗,𝑡−3 + ⋯ + γ𝑖

𝑡−2(1 − γ𝑖  )𝑠𝑗,1 + γ𝑖
𝑡−1𝑏𝑖𝑗,1 

               = (1 − γ𝑖)[𝑠𝑗,𝑡−1 + γ𝑖𝑠𝑗,𝑡−2 + γ𝑖
2𝑠𝑗,𝑡−3 + ⋯ + γ𝑖

𝑡−2𝑠𝑗,1 +
γ𝑖

𝑡−1

1−γ𝑖
𝑏𝑖𝑗,1] 

               =
𝑠𝑗,𝑡−1+∑ 𝛾𝑖

𝑢𝑠𝑗,𝑡−1−𝑢
𝑡−2
𝑢=1 +

𝛾𝑖
𝑡−1

1−𝛾𝑖
𝑏𝑖𝑗,1

1

1−γ𝑖

.                                                                                              (A3.1) 

Since  
1

1−γ𝑖
= 1 + ∑ 𝛾𝑖

𝑢𝑡−2
𝑢=1 +

𝛾𝑖
𝑡−1

1−𝛾𝑖
, equation (A3.1) is exactly equation (3.6). 

 

Supplementary Documents 

1. Instructions and payoff tables in our experiments. 

There are one instruction and five payoff tables in this supplementary document. All 

treatments use the same instructions but different payoff tables in the experiment. 

 

Instructions 

 

This is an experiment in the economics of decision-making. At the end of today's session you 

will be paid in private and in cash. It is important that you remain silent and do not look at 

other people's work. Please turn off your cell phone and don’t talk with others. If you have any 

questions or need assistance of any kind, please raise your hand. If you exclaim out loud or 

violate any of the rules explained below, you may be asked to leave and will not be paid. 

We thank you for your cooperation in this regard. 

 

Overview 

There will be 25 decision-making rounds in this experiment. You will each complete two tasks 

in each of these rounds. At the end of each round you will be informed your earnings for that 

round on the PC screen. The rules are identical in every round.  

In the first round you will be randomly assigned to a group. Each group consists of 3 

members. When groups are created, each of you will be randomly given an Investor Number 

(1, 2 or 3). These numbers and the composition of your group will be fixed in every round. You 

will not know which of the other people in the experiment are in your group in any given 

round.  
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At the end of the session, one of two tasks will be randomly drawn. You will be paid the 

total of your earnings from the chosen task for the 25 rounds.  

 

Rules 

In each round you and your group members each have 12 tokens to allocate. Each of you must 

decide how many tokens you want to invest in a project. Returns for all possible allocations are 

listed in the 'Earnings Tables'. There are two Earnings Tables (table 1 and table 2) with 

different payoff structures in the appendix. The player whose investor number is 1, is 

corresponding to table 1. All other two players are corresponding to table 2. When the 

experiment begins, you should enter your decisions in the blanks on the screen. Your entries 

on the blanks must be whole numbers between 0 and 12. At the same time, you also need make 

a prediction regarding the individual investments of the other two members in your group.  

After everyone has made the decision and prediction, the computer will display the 

decisions of other two players in your group. You can record the entries that the computer has 

reported and compute your earnings according to the Earning Tables. The following 

illustrations show how to use the payoff table to compute your incomes from the investment 

task. In each round, you investment income depends on your own investment and the total 

investments from the other two group members. You can find the line corresponding to your 

own investment and the column corresponding to the total investment of other two group 

members. The number at the intersection of the line and the column is your payoff in that 

round.   

You also will gain an additional income from your prediction (since there are two other 

members in your group, the prediction incomes will be computed separately and summed 

together). The formula of this additional income is, 

 

𝜋𝑖
𝑟𝑏 = {

150, 𝑖𝑓 𝑠𝑗
𝑏 = 𝑠𝑗

𝑟  
100

|𝑠𝑗
𝑏−𝑠𝑗

𝑟|
,   𝑖𝑓 𝑠𝑗

𝑏 ≠ 𝑠𝑗
𝑟 , 𝑖, 𝑗 = 1,2,3, 𝑖 ≠ 𝑗 ,  

 

where 𝑠𝑗
𝑏 is your prediction about the investment from the group member j and 𝑠𝑗

𝑟 is the 

observed investment from group member j. This formula means that if your prediction about 

player j’s investment is exactly equal to his/her investment, you will get 150 experimental 

dollars. If they are different, you will get 100 divided by the difference.   
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Next, you will check to see if your calculation is consistent with the reported on the 

screen. It is very important that we both make this calculation and consistence. If your 

calculation differs from the computer’s or if you are unsure about how to compute your 

earnings in any round, please raise your hand. When all things are correct, the next round will 

begin. 

Finally, at the end of today’s session, the experimenter will invite three subjects to decide 

the incomes from which task will be set as the basis of your earnings for today’s experiment. 

Six cards (5 cards with numbers and one card with pictures) will be presented. Three subjects 

discuss and draw one card from these six cards. If the drawn card is the card with numbers, 

the incomes from the investment task will be the basis of the earnings of today’s experiment. In 

contrast, if the drawn card is the card with pictures, the incomes from the prediction task will 

be the basis of the earnings of today’s experiment. The exchange rate is 130 experimental 

dollars to 1 Chinese yuan. 

 

Final Remarks 

(1) Two Earnings Tables. Subject with investor number 1 is using table 1. Other two players are 

using table 2.  

(2) This session will consist of 25 rounds. 

(3) In each round, you and every other member of your group will each have 12 tokens to 

allocate.  

(4) In each round, you will decide how many tokens to invest in the project. The decision must 

be an integer and within the range of [0, 12].  

(5) In each round, you will predict the individual investments from other two players. The 

prediction must be an integer and within the range of [0, 12]. 

(6) Your earnings from the investment depend on your decision and the total investment from 

other two players. 

(7) Your earnings from the prediction depend on the distance between the prediction value 

and the observed value.  

(8) The members in your group will be fixed in each round. 

(9) The total income from one task (investment task or prediction task) will be randomly 

chosen as the basis of the earnings of today’s experiment. The exchange rate is 130 

experimental dollars to 1 Chinese yuan. 

(10) Do not discuss your decisions with other subjects. 
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Are there any questions? 

 

If all things are clear, please click “next” on your screen and finish those questions. Note that 

the purpose of those questions is only to make you understand the instructions and your 

answers will not affect your earnings in the experiment. 
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Payoff tables 

In each treatment, two payoff tables will be presented. For example, in treatment (10,2,2), the payoff tables with 𝑎𝑖 = 10 and 𝑎𝑖 = 2 will be presented to subjects. The yellow color blocks show the best response line in each payoff table, but 

is not presented during the experiment.    

1. 𝑎𝑖 = 10 

your contribution / 

the total contribution 

of others 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 120.0 196.2 240.8 272.5 297.0 317.1 334.1 348.7 361.7 373.3 383.8 393.3 402.1 410.3 417.9 425.0 431.7 437.9 443.9 449.5 454.9 460.0 464.9 469.6 474.1 

1 186.2 230.8 262.5 287.0 307.1 324.1 338.7 351.7 363.3 373.8 383.3 392.1 400.3 407.9 415.0 421.7 427.9 433.9 439.5 444.9 450.0 454.9 459.6 464.1 468.4 

2 220.8 252.5 277.0 297.1 314.1 328.7 341.7 353.3 363.8 373.3 382.1 390.3 397.9 405.0 411.7 417.9 423.9 429.5 434.9 440.0 444.9 449.6 454.1 458.4 462.5 

3 242.5 267.0 287.1 304.1 318.7 331.7 343.3 353.8 363.3 372.1 380.3 387.9 395.0 401.7 407.9 413.9 419.5 424.9 430.0 434.9 439.6 444.1 448.4 452.5 456.5 

4 257.0 277.1 294.1 308.7 321.7 333.3 343.8 353.3 362.1 370.3 377.9 385.0 391.7 397.9 403.9 409.5 414.9 420.0 424.9 429.6 434.1 438.4 442.5 446.5 450.4 

5 267.1 284.1 298.7 311.7 323.3 333.8 343.3 352.1 360.3 367.9 375.0 381.7 387.9 393.9 399.5 404.9 410.0 414.9 419.6 424.1 428.4 432.5 436.5 440.4 444.1 

6 274.1 288.7 301.7 313.3 323.8 333.3 342.1 350.3 357.9 365.0 371.7 377.9 383.9 389.5 394.9 400.0 404.9 409.6 414.1 418.4 422.5 426.5 430.4 434.1 437.7 

7 278.7 291.7 303.3 313.8 323.3 332.1 340.3 347.9 355.0 361.7 367.9 373.9 379.5 384.9 390.0 394.9 399.6 404.1 408.4 412.5 416.5 420.4 424.1 427.7 431.2 

8 281.7 293.3 303.8 313.3 322.1 330.3 337.9 345.0 351.7 357.9 363.9 369.5 374.9 380.0 384.9 389.6 394.1 398.4 402.5 406.5 410.4 414.1 417.7 421.2 424.6 

9 283.3 293.8 303.3 312.1 320.3 327.9 335.0 341.7 347.9 353.9 359.5 364.9 370.0 374.9 379.6 384.1 388.4 392.5 396.5 400.4 404.1 407.7 411.2 414.6 417.9 

10 283.8 293.3 302.1 310.3 317.9 325.0 331.7 337.9 343.9 349.5 354.9 360.0 364.9 369.6 374.1 378.4 382.5 386.5 390.4 394.1 397.7 401.2 404.6 407.9 411.1 

11 283.3 292.1 300.3 307.9 315.0 321.7 327.9 333.9 339.5 344.9 350.0 354.9 359.6 364.1 368.4 372.5 376.5 380.4 384.1 387.7 391.2 394.6 397.9 401.1 404.2 

12 282.1 290.3 297.9 305.0 311.7 317.9 323.9 329.5 334.9 340.0 344.9 349.6 354.1 358.4 362.5 366.5 370.4 374.1 377.7 381.2 384.6 387.9 391.1 394.2 397.2 

2. 𝑎𝑖 = 8 

your contribution / 

the total contribution 

of others 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 120.0 182.4 218.9 244.8 264.8 281.3 295.1 307.1 317.8 327.2 335.8 343.6 350.8 357.5 363.7 369.5 375.0 380.1 385.0 389.6 394.0 398.2 402.2 406.0 409.7 

1 172.4 208.9 234.8 254.8 271.3 285.1 297.1 307.8 317.2 325.8 333.6 340.8 347.5 353.7 359.5 365.0 370.1 375.0 379.6 384.0 388.2 392.2 396.0 399.7 403.2 

2 198.9 224.8 244.8 261.3 275.1 287.1 297.8 307.2 315.8 323.6 330.8 337.5 343.7 349.5 355.0 360.1 365.0 369.6 374.0 378.2 382.2 386.0 389.7 393.2 396.6 

3 214.8 234.8 251.3 265.1 277.1 287.8 297.2 305.8 313.6 320.8 327.5 333.7 339.5 345.0 350.1 355.0 359.6 364.0 368.2 372.2 376.0 379.7 383.2 386.6 389.9 

4 224.8 241.3 255.1 267.1 277.8 287.2 295.8 303.6 310.8 317.5 323.7 329.5 335.0 340.1 345.0 349.6 354.0 358.2 362.2 366.0 369.7 373.2 376.6 379.9 383.1 

5 231.3 245.1 257.1 267.8 277.2 285.8 293.6 300.8 307.5 313.7 319.5 325.0 330.1 335.0 339.6 344.0 348.2 352.2 356.0 359.7 363.2 366.6 369.9 373.1 376.1 

6 235.1 247.1 257.8 267.2 275.8 283.6 290.8 297.5 303.7 309.5 315.0 320.1 325.0 329.6 334.0 338.2 342.2 346.0 349.7 353.2 356.6 359.9 363.1 366.1 369.1 

7 237.1 247.8 257.2 265.8 273.6 280.8 287.5 293.7 299.5 305.0 310.1 315.0 319.6 324.0 328.2 332.2 336.0 339.7 343.2 346.6 349.9 353.1 356.1 359.1 361.9 

8 237.8 247.2 255.8 263.6 270.8 277.5 283.7 289.5 295.0 300.1 305.0 309.6 314.0 318.2 322.2 326.0 329.7 333.2 336.6 339.9 343.1 346.1 349.1 351.9 354.7 

9 237.2 245.8 253.6 260.8 267.5 273.7 279.5 285.0 290.1 295.0 299.6 304.0 308.2 312.2 316.0 319.7 323.2 326.6 329.9 333.1 336.1 339.1 341.9 344.7 347.4 

10 235.8 243.6 250.8 257.5 263.7 269.5 275.0 280.1 285.0 289.6 294.0 298.2 302.2 306.0 309.7 313.2 316.6 319.9 323.1 326.1 329.1 331.9 334.7 337.4 340.0 

11 233.6 240.8 247.5 253.7 259.5 265.0 270.1 275.0 279.6 284.0 288.2 292.2 296.0 299.7 303.2 306.6 309.9 313.1 316.1 319.1 321.9 324.7 327.4 330.0 332.5 
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12 230.8 237.5 243.7 249.5 255.0 260.1 265.0 269.6 274.0 278.2 282.2 286.0 289.7 293.2 296.6 299.9 303.1 306.1 309.1 311.9 314.7 317.4 320.0 322.5 325.0 

3. 𝑎𝑖 = 6 

your contribution / 

the total contribution 

of others 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 120.0 168.5 196.9 217.0 232.7 245.4 256.2 265.6 273.8 281.2 287.9 293.9 299.5 304.7 309.6 314.1 318.3 322.3 326.1 329.7 333.1 336.4 339.5 342.5 345.3 

1 158.5 186.9 207.0 222.7 235.4 246.2 255.6 263.8 271.2 277.9 283.9 289.5 294.7 299.6 304.1 308.3 312.3 316.1 319.7 323.1 326.4 329.5 332.5 335.3 338.1 

2 176.9 197.0 212.7 225.4 236.2 245.6 253.8 261.2 267.9 273.9 279.5 284.7 289.6 294.1 298.3 302.3 306.1 309.7 313.1 316.4 319.5 322.5 325.3 328.1 330.7 

3 187.0 202.7 215.4 226.2 235.6 243.8 251.2 257.9 263.9 269.5 274.7 279.6 284.1 288.3 292.3 296.1 299.7 303.1 306.4 309.5 312.5 315.3 318.1 320.7 323.3 

4 192.7 205.4 216.2 225.6 233.8 241.2 247.9 253.9 259.5 264.7 269.6 274.1 278.3 282.3 286.1 289.7 293.1 296.4 299.5 302.5 305.3 308.1 310.7 313.3 315.7 

5 195.4 206.2 215.6 223.8 231.2 237.9 243.9 249.5 254.7 259.6 264.1 268.3 272.3 276.1 279.7 283.1 286.4 289.5 292.5 295.3 298.1 300.7 303.3 305.7 308.1 

6 196.2 205.6 213.8 221.2 227.9 233.9 239.5 244.7 249.6 254.1 258.3 262.3 266.1 269.7 273.1 276.4 279.5 282.5 285.3 288.1 290.7 293.3 295.7 298.1 300.4 

7 195.6 203.8 211.2 217.9 223.9 229.5 234.7 239.6 244.1 248.3 252.3 256.1 259.7 263.1 266.4 269.5 272.5 275.3 278.1 280.7 283.3 285.7 288.1 290.4 292.6 

8 193.8 201.2 207.9 213.9 219.5 224.7 229.6 234.1 238.3 242.3 246.1 249.7 253.1 256.4 259.5 262.5 265.3 268.1 270.7 273.3 275.7 278.1 280.4 282.6 284.8 

9 191.2 197.9 203.9 209.5 214.7 219.6 224.1 228.3 232.3 236.1 239.7 243.1 246.4 249.5 252.5 255.3 258.1 260.7 263.3 265.7 268.1 270.4 272.6 274.8 276.8 

10 187.9 193.9 199.5 204.7 209.6 214.1 218.3 222.3 226.1 229.7 233.1 236.4 239.5 242.5 245.3 248.1 250.7 253.3 255.7 258.1 260.4 262.6 264.8 266.8 268.9 

11 183.9 189.5 194.7 199.6 204.1 208.3 212.3 216.1 219.7 223.1 226.4 229.5 232.5 235.3 238.1 240.7 243.3 245.7 248.1 250.4 252.6 254.8 256.8 258.9 260.8 

12 179.5 184.7 189.6 194.1 198.3 202.3 206.1 209.7 213.1 216.4 219.5 222.5 225.3 228.1 230.7 233.3 235.7 238.1 240.4 242.6 244.8 246.8 248.9 250.8 252.8 

 

4. 𝑎𝑖 = 4 

your contribution / 

the total contribution 

of others 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 120.0 154.7 174.9 189.3 200.5 209.6 217.3 224.0 229.9 235.1 239.9 244.2 248.2 252.0 255.4 258.6 261.7 264.5 267.2 269.8 272.2 274.6 276.8 278.9 280.9 

1 144.7 164.9 179.3 190.5 199.6 207.3 214.0 219.9 225.1 229.9 234.2 238.2 242.0 245.4 248.6 251.7 254.5 257.2 259.8 262.2 264.6 266.8 268.9 270.9 272.9 

2 154.9 169.3 180.5 189.6 197.3 204.0 209.9 215.1 219.9 224.2 228.2 232.0 235.4 238.6 241.7 244.5 247.2 249.8 252.2 254.6 256.8 258.9 260.9 262.9 264.8 

3 159.3 170.5 179.6 187.3 194.0 199.9 205.1 209.9 214.2 218.2 222.0 225.4 228.6 231.7 234.5 237.2 239.8 242.2 244.6 246.8 248.9 250.9 252.9 254.8 256.6 

4 160.5 169.6 177.3 184.0 189.9 195.1 199.9 204.2 208.2 212.0 215.4 218.6 221.7 224.5 227.2 229.8 232.2 234.6 236.8 238.9 240.9 242.9 244.8 246.6 248.4 

5 159.6 167.3 174.0 179.9 185.1 189.9 194.2 198.2 202.0 205.4 208.6 211.7 214.5 217.2 219.8 222.2 224.6 226.8 228.9 230.9 232.9 234.8 236.6 238.4 240.1 

6 157.3 164.0 169.9 175.1 179.9 184.2 188.2 192.0 195.4 198.6 201.7 204.5 207.2 209.8 212.2 214.6 216.8 218.9 220.9 222.9 224.8 226.6 228.4 230.1 231.7 

7 154.0 159.9 165.1 169.9 174.2 178.2 182.0 185.4 188.6 191.7 194.5 197.2 199.8 202.2 204.6 206.8 208.9 210.9 212.9 214.8 216.6 218.4 220.1 221.7 223.3 

8 149.9 155.1 159.9 164.2 168.2 172.0 175.4 178.6 181.7 184.5 187.2 189.8 192.2 194.6 196.8 198.9 200.9 202.9 204.8 206.6 208.4 210.1 211.7 213.3 214.8 

9 145.1 149.9 154.2 158.2 162.0 165.4 168.6 171.7 174.5 177.2 179.8 182.2 184.6 186.8 188.9 190.9 192.9 194.8 196.6 198.4 200.1 201.7 203.3 204.8 206.3 

10 139.9 144.2 148.2 152.0 155.4 158.6 161.7 164.5 167.2 169.8 172.2 174.6 176.8 178.9 180.9 182.9 184.8 186.6 188.4 190.1 191.7 193.3 194.8 196.3 197.8 

11 134.2 138.2 142.0 145.4 148.6 151.7 154.5 157.2 159.8 162.2 164.6 166.8 168.9 170.9 172.9 174.8 176.6 178.4 180.1 181.7 183.3 184.8 186.3 187.8 189.2 

12 128.2 132.0 135.4 138.6 141.7 144.5 147.2 149.8 152.2 154.6 156.8 158.9 160.9 162.9 164.8 166.6 168.4 170.1 171.7 173.3 174.8 176.3 177.8 179.2 180.5 
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5. 𝑎𝑖 = 2 

your contribution / 

the total contribution 

of others 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 120.0 140.8 153.0 161.6 168.3 173.8 178.4 182.4 185.9 189.1 191.9 194.5 196.9 199.2 201.2 203.2 205.0 206.7 208.3 209.9 211.3 212.7 214.1 215.3 216.6 

1 130.8 143.0 151.6 158.3 163.8 168.4 172.4 175.9 179.1 181.9 184.5 186.9 189.2 191.2 193.2 195.0 196.7 198.3 199.9 201.3 202.7 204.1 205.3 206.6 207.7 

2 133.0 141.6 148.3 153.8 158.4 162.4 165.9 169.1 171.9 174.5 176.9 179.2 181.2 183.2 185.0 186.7 188.3 189.9 191.3 192.7 194.1 195.3 196.6 197.7 198.9 

3 131.6 138.3 143.8 148.4 152.4 155.9 159.1 161.9 164.5 166.9 169.2 171.2 173.2 175.0 176.7 178.3 179.9 181.3 182.7 184.1 185.3 186.6 187.7 188.9 190.0 

4 128.3 133.8 138.4 142.4 145.9 149.1 151.9 154.5 156.9 159.2 161.2 163.2 165.0 166.7 168.3 169.9 171.3 172.7 174.1 175.3 176.6 177.7 178.9 180.0 181.0 

5 123.8 128.4 132.4 135.9 139.1 141.9 144.5 146.9 149.2 151.2 153.2 155.0 156.7 158.3 159.9 161.3 162.7 164.1 165.3 166.6 167.7 168.9 170.0 171.0 172.0 

6 118.4 122.4 125.9 129.1 131.9 134.5 136.9 139.2 141.2 143.2 145.0 146.7 148.3 149.9 151.3 152.7 154.1 155.3 156.6 157.7 158.9 160.0 161.0 162.0 163.0 

7 112.4 115.9 119.1 121.9 124.5 126.9 129.2 131.2 133.2 135.0 136.7 138.3 139.9 141.3 142.7 144.1 145.3 146.6 147.7 148.9 150.0 151.0 152.0 153.0 154.0 

8 105.9 109.1 111.9 114.5 116.9 119.2 121.2 123.2 125.0 126.7 128.3 129.9 131.3 132.7 134.1 135.3 136.6 137.7 138.9 140.0 141.0 142.0 143.0 144.0 144.9 

9 99.1 101.9 104.5 106.9 109.2 111.2 113.2 115.0 116.7 118.3 119.9 121.3 122.7 124.1 125.3 126.6 127.7 128.9 130.0 131.0 132.0 133.0 134.0 134.9 135.8 

10 91.9 94.5 96.9 99.2 101.2 103.2 105.0 106.7 108.3 109.9 111.3 112.7 114.1 115.3 116.6 117.7 118.9 120.0 121.0 122.0 123.0 124.0 124.9 125.8 126.7 

11 84.5 86.9 89.2 91.2 93.2 95.0 96.7 98.3 99.9 101.3 102.7 104.1 105.3 106.6 107.7 108.9 110.0 111.0 112.0 113.0 114.0 114.9 115.8 116.7 117.5 

12 76.9 79.2 81.2 83.2 85.0 86.7 88.3 89.9 91.3 92.7 94.1 95.3 96.6 97.7 98.9 100.0 101.0 102.0 103.0 104.0 104.9 105.8 106.7 107.5 108.3 
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2. Experimental observations from two additional sessions. 

Since we conducted our experiments with a special design that we set different 

probabilities for the incomes from two tasks, which is different from the original design in 

Blanco et al. (2010), we also conducted two additional sessions (24 subjects for each, 48 

subjects in total) with the setting of treatment (10,8,8) using the equal probabilities for the 

incomes from two tasks. We call this two additional sessions as treatment (10,8,8)a. In this 

document, we report the experimental observations from treatment (10,8,8)a and compare 

it with the experimental observations from treatment (10,8,8). 
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Fig. S1 Average contribution at each period 

 

          Figure S1 shows the average contribution at each period for both experimental roles 

of players in treatments (10,8,8)a and (10,8,8). The Wilcoxon rank-sum tests show that the 

contributions from the players with investor number =1 in treatment (10,8,8)a are not 

significantly different from that in treatment (10,8,8) (p-value = 0.4586). However, for the 

players with investor number = 2 or 3, the contributions are significantly larger in 

treatment (10,8,8)a than in treatment (10,8,8) (p-value = 0.0202).  

          The only difference between the two treatments is the design of equal or different 

probabilities for the incomes from two tasks. Compared to treatment (10,8,8)a, the structure 

changes stem from the design of belief elicitation is relatively smaller in treatment (10,8,8). 

Therefore, the difference in contributions comes from the difference in structure changes 

between the two treatments. This experiment observation shows a consistent result with 

the experimental observation in Gächter and Renner (2010). They find that the structure 

changes generated from the belief elicitation with payment incentives increases the 

contributions in a linear VCM environment with a homogeneous design. 

3. The lag length of information used by players 

Three models are discussed to check the lag length of information used by players. The first 

one is the same as Model 3 in Fischbacher and Gächter (2010), which includes “belief (t-1)” 

and “other’s contribution (t-1)”. The second and third models include additional lagged 

variables. The regressions are conducted over the pooled data of each treatment using the 

OLS model with clustered groups to control unspecified influence within the group.48  

 

Table S1 OLS regressions for belief formation 

Dependent variable: Belief (t) 

Model 1         

Variable                                Treatment (10,2,2)        Treatment (10,4,4)      Treatment (10,6,6)     Treatment (10,8,8)   

                                                           
48 Similar to the analysis in Fischbacher and Gächter (2010), we also conduct these regressions 
with the random effect model, the fixed effect model and the Tobit model. All these regressions 
produce quite significant estimates for the coefficients in Model 1 and Model 2, but some of the 
estimates become insignificant in Model 3. These models also produce pretty high values for the 
R-squared (> 0.8 for treatments (10,2,2) and (10,4,4), > 0.6 for treatments (10,6,6) and (10,8,8)), 
except the Tobit model (around 0.35 for treatments (10,2,2) and (10,4,4) and around 0.2 for 
treatments (10,6,6) and (10,8,8)).  
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Belief (t-1)                                 0.472***                            0.425***                         0.409***                   0.396*** 

                                                   (0.038)                                 (0.025)                            (0.029)                       (0.027) 

Contribution (t-1)                    0.504***                            0.548***                          0.451***                  0.484*** 

                                                   (0.040)                                 (0.021)                            (0.060)                       (0.023) 

Constant                                   0.083*                                 0.173**                           0.585**                      0.516*** 

                                                   (0.044)                                 (0.075)                            (0.265)                       (0.103) 

Obs.                                            4320                                     4464                                4608                           4464 

R-squared                                   0.87                                      0.83                                 0.61                            0.62 

P-value (= 1)                            0.052                                    0.217                              0.042                          0.000                                           

Dependent variable: Belief (t) 

Model 2           

Variable                                Treatment (10,2,2)        Treatment (10,4,4)      Treatment (10,6,6)     Treatment (10,8,8)   

Belief (t-1)                                 0.292***                            0.243***                      0.142*                          0.240***                                                                           

                                                    (0.061)                                (0.060)                         (0.082)                         (0.037)          

Contribution(t-1)                     0.413***                            0.457***                      0.373***                     0.446***                                                   

                                                    (0.044)                                (0.034)                          (0.082)                        (0.030) 

Belief (t-2)                                0.173***                             0.110***                      0.200***                    0.141*** 

                                                   (0.035)                                 (0.021)                          (0.053)                        (0.019) 

Investment (t-2)                     0.123**                                0.190**                        0.246**                      0.110* 

                                                   (0.060)                                  (0.073)                         (0.097)                        (0.040) 

Constant                                  -0.002                                    0.070*                          0.166**                      0.231** 

                                                  (0.026)                                   (0.041)                          (0.065)                       (0.080) 

Obs.                                            4140                                      4278                             4416                           4278 

R-squared                                  0.89                                        0.85                             0.68                             0.65 

P-value (= 1)                            0.977                                     0.957                            0.046                          0.001                               

Dependent variable: Belief (t) 

Model 3           

Variable                                Treatment (10,2,2)        Treatment (10,4,4)      Treatment (10,6,6)     Treatment (10,8,8)   

Belief (t-1)                                 0.275***                               0.224**                     0.133**                         0.231*** 

                                                   (0.066)                                    (0.071)                       (0.072)                          (0.042) 

Contribution (t-1)                    0.402***                               0.443***                   0.359***                       0.435***                              
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                                                   (0.053)                                    (0.040)                      (0.075)                           (0.031) 

Belief (t-2)                                0.173***                                0.070**                     0.188**                         0.108*** 

                                                   (0.053)                                    (0.034)                       (0.080)                          (0.024) 

Contribution (t-2)                    0.123**                                  0.196**                     0.250**                         0.105* 

                                                   (0.054)                                    (0.071)                       (0.098)                          (0.039) 

Belief (t-3)                                0.085***                                0.094***                   0.082***                      0.076*** 

                                                   (0.020)                                    (0.027)                       (0.027)                          (0.015) 

Contribution (t-3)                    -0.053                                     -0.018                        -0.041                             0.004  

                                                   (0.058)                                    (0.035)                       (0.051)                          (0.016) 

Constant                                   -0.012                                       0.024                         0.095                              0.120 

                                                   (0.022)                                     (0.031)                      (0.066)                          (0.070) 

Obs.                                             3960                                       4092                          4224                              4092 

R-squared                                   0.90                                         0.86                           0.68                               0.65 

P-value (= 1)                             0.384                                      0.225                         0.137                             0.004 

Clustered standard errors are shown in parentheses. Significantly different from zero at ∗ 10% level, ∗∗ 5% level, ∗∗∗ 1% level (all 

two-tailed tests). 

 

        Table S1 shows the results of these regressions. All regressions produce a pretty high 

R-squared (> 0.8 for treatments (10,2,2) and (10,4,4) and > 0.6 for treatments (10,6,6) and 

(10,8,8)).  Moreover, in all treatments, the estimates of the coefficient of the lagged variable 

“other’s contribution (t-3)” are not significant, which indicates that the weighted 

observations should be limited within the previous two periods. We also report the p-

values in the table for testing whether the sum of the estimated coefficients is equal to one 

for each regression.49 It is accepted by all models in treatment (10,4,4) but rejected by all 

models in treatment (10,8,8). This result indicates that there is a systematic difference in the 

belief-formation process across the four treatments. Given these observations, we suggest 

that the argument from Fischbacher and Gächter (2010) also gives a reasonable explanation 

for the belief-formation process in our experiment. 

4. A model selection procedure for the belief-formation process 

In this document, we conduct a model selection procedure to compare the performance of 

two models in explaining the belief-formation process at the aggregate level in our 

experiment. 

                                                           
49 If the sum of coefficients is equal to one and the constant of the regression is insignificantly 
different from zero, it gives a perfect support for the argument of Fischbacher and Gächter 
(2010).    
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Model 1: The weighted average model   

Fischbacher and Gächter (2010) claim a weighted averaging process in the belief-formation 

process of subjects in the experiment of a public goods game. That is equation (3.6) in the 

paper. Subject’s belief-formation process is a weighted average over all previous 

observations and his/her priori belief.  That is, 

           

           𝑏𝑖𝑗,𝑡+1 =
𝑠𝑗,𝑡+∑ 𝛾𝑖

𝑢𝑠𝑗,𝑡−𝑢
𝑡−1
𝑢=1 +

𝛾𝑖
𝑡

1−𝛾𝑖
𝐵𝑖𝑗,1

1+∑ 𝛾𝑖
𝑢𝑡−1

𝑢=1 +
𝛾𝑖

𝑡

1−𝛾𝑖

,                                                                                         (s1) 

 

where 𝑏𝑖𝑗,𝑡+1 is player i’s belief about the contribution of player j  at period t+1, 𝑠𝑗,𝑡 is the 

contribution of player j at period t, 𝛾𝑖
𝑢 is a weight given to the observation of 𝑠𝑗,𝑡−𝑢 at period 

t-u, and 𝐵𝑖𝑗,1 is the prior stated belief about the contribution of player j at period 1. Define 

𝛾𝑖
∗ for the representative player that minimizes the sum of the squared errors (SSE) between 

the stated beliefs and the beliefs suggested by equation (s1). That is, 

  

            𝛾𝑖
∗ = arg 𝑚𝑖𝑛 {∑ ∑ (𝐵𝑖𝑗,𝑡 − 𝑏𝑖𝑗,𝑡)

225
𝑡=2

𝑁
𝑖=1 },                                                                        (s2) 

 

where 𝐵𝑖𝑗,𝑡 is player i’s stated belief about player j’s contribution at period t, and 𝑏𝑖𝑗,𝑡 is the 

constructed belief at period t given by equation (s1). 

 

Model 2: The smoothed 𝛄-weighted fictitious play model  

A usual way to explain the belief-formation process in a normal form game is based on a 

distribution of historical observations (for example, the fictitious play).  Cheung and 

Friedman (1997) introduce the time decay into the fictitious play model, which is referred 

to as the γ-weighted fictitious play model. Furthermore, Fudenberg and Levine (1998) 

propose the smoothed fictitious play model to incorporate decision errors into the fictitious 

play. Therefore, in our experiment, the process of belief elicitation could be modeled by the 

smoothed γ-weighted fictitious play model. That is, players follow the γ-weighted fictitious 

play to form their underlying beliefs, and then report their stated beliefs via a stochastic 

response process. Therefore, the underlying belief is, 

            

            𝑏𝑖,𝑡+1
𝑘 =

1𝑡(𝑎𝑘)+∑ 𝛽𝑖
𝑢1𝑡−𝑢(𝑎𝑘)𝑡−1

𝑢=1

1+∑ 𝛽𝑖
𝑢𝑡−1

𝑢=1
 ,                                                                                             (s3) 



105 
 

 

Where 𝑏𝑖,𝑡+1
𝑘  is player i’s belief about the possibility that his/her opponent will choose 

action 𝑎𝑘 at period t+1, 1𝑡(𝑎𝑘) is an indicator that equals to 1 if action 𝑎𝑘 is chosen at period 

t and 0 otherwise, and 𝛽𝑖
𝑢 is a weight given to the observation of 𝑎𝑘 at period t-u.  Then, 

based on this underlying belief, player i will form an expected payoff for each choice in the 

guessing task at period t. That is, 

 

           𝑣̅𝑖
𝑡(𝐵𝑖,𝑡) = ∑ 𝑏𝑖,𝑡

𝑘12
𝑘=0 𝜋𝑖(𝐵𝑖,𝑡 , 𝑘) ,                                                                                             (s4) 

 

where k denotes a contribution of k tokens, 𝐵𝑖,𝑡 is player i’s stated belief at period t, 𝑏𝑖,𝑡
𝑘  is 

the constructed belief given by equation (s3), and 𝜋𝑖(𝐵𝑖,𝑡 , 𝑘) is the payoff from the guessing 

task, which is 150 when 𝐵𝑖,𝑡 = 𝑘 or 100/|𝐵𝑖
𝑡 − 𝑘| when 𝐵𝑖,𝑡 ≠ 𝑘. This expected payoff 

function is maximized when player i report the choice with the highest probability he/she 

believes. Based on these expected payoffs, we assume subjects stated his/her belief via a 

stochastic response rule at period t. That is, 

   

            𝑟(𝐵𝑖,𝑡|𝑏𝑖,𝑡(𝛽𝑖), 𝜆𝑖) =
exp (𝜆𝑖 𝑣̅𝑖

𝑡(𝐵𝑖,𝑡))

∑ exp (𝜆𝑖 𝑣̅𝑖
𝑡(𝑠))12

𝑠=0
,                                                                                   (s5) 

 

where  𝜆𝑖 denotes player i’s sensitivity to the difference in payoffs between choices. When 

𝜆𝑖 → 0, this distribution will assign equal probability to all feasible choices. Whereas, when 

𝜆𝑖 → ∞, player i always chooses to report the belief that generates highest expected payoff. 

We maximize the following log-likelihood function to find estimates for the representative 

player in each treatment.50 

              

            ln𝐿(𝛽𝑖 , 𝜆𝑖) = ∑ ∑ 𝑙𝑛 ( 𝑟(𝐵𝑖,𝑡|𝑏𝑖,𝑡(𝛽𝑖), 𝜆𝑖))25
𝑡=2

𝑁
𝑖=1  .                                                                (s6) 

 

Model Selection       

We estimate both the models over the data of the four treatments, and compute the Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC), respectively.  

 For Model 1, AIC = 2k + nln (
RSS

n
) + nln(2π) + n, 

                        BIC =  kln(n) + nln (
RSS

n
) + nln(2π) + n, 

                                                           
50 In the estimation, the computation starts from period 1. We omitted any beliefs prior to 
period 1. 
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 For Model 2, AIC = 2k − 2lnL,  

                        BIC =  kln(n) − 2lnL, 

where k is the number of parameters, n is the number of observations, RSS is the residual 

sum of squares, and lnL is the maximum of the log-likelihood function. Table s2 

summarizes these results.   

 

Table S2 Estimation results 

Model 1 

Treatment                        (10,2,2)                 (10,4,4)                  (10,6,6)                  (10,8,8) 

      𝛾𝑖                                      0.516                     0.492                        0.597                       0.567 

     Obs.                                  2160                       2232                        2304                         2232 

     RSS                                 10275.66              11730.18                  20280.44                 16524.26 

     AIC                                 9500.70                10039.63                  11551.69                 10804.45 

     BIC                                  9506.38                10045.34                  11557.43                 10810.16 

Model 2 

Treatment                        (10,2,2)                 (10,4,4)                  (10,6,6)                  (10,8,8) 

      𝛽𝑖                                     0.659                      0.613                        0.706                       0.672 

      𝜆𝑖                                     0.043                      0.043                        0.039                       0.037 

     Obs.                                  2160                       2232                         2304                        2232 

      lnL                                -5064.29                 -5470.02                  -7497.74                 -7578.21 

     AIC                                10132.58                10944.04                  14999.48                15160.42 

     BIC                                 10143.94                10955.46                  15010.96                15171.84 

 

        The results in table S2 show that both the AIC and BIC of Model 2 are close to those of 

Model 1 in the two globally stable treatments, but quite larger than those of model 1 in the 

two non-globally stable treatments. It seems that both the models have almost equal 

explanatory power in the two globally stable treatments. However, in the two non-globally 

stable treatments, the explanatory power of Model 1 is stronger than that of Model 2.  

        Overall, these results indicate that Model 1 outperforms Mode 2 in explaining the 

belief-formation process of subjects in our experiment. 

 



107 
 

Chapter 4 

 

Analyzing Instability in Common-Pool Resources Games 
        

 

4.1 Introduction 
A problem of common-pool resource (CPR) refers to the overexploitation to an open access 

resource, i.e. a fishing ground, which is called “the tragedy of the commons” (Harding, 

1968). Usually, to understand the appropriation dilemma in the analysis is using the Nash 

equilibrium concept in which the labor input of each appropriator is a strategy. This simple 

analysis shows that the Nash equilibrium labor inputs for production results in 

overexploitation (see, for example, Gordon (1954), Gould (1972), Dasgupta and Heal (1979), 

and Falk, Fehr and Fischbacher (2001)). 

        However, this standard equilibrium analysis implicitly assumes that the equilibrium in 

the system is stable. Here, we say that an equilibrium of a game is stable if it is 

asymptotically stable in a dynamic version of the game. Thus, the stability of an 

equilibrium depends on the decision-making processes of players in a repeated game. In 

the theoretical analysis of Saijo and Kobayashi (2016), they focus upon the so-called best-

response dynamics, i.e., each discrete time step each player makes the best response to 

other players’ decisions in the previous time step.  This is due to recent observations by 

Healy (2006), and Healy and Mathevet (2012) who confirmed that subjects appeared to best 

respond to recent observations in five public goods mechanisms including the voluntary 

contribution mechanism. The results show that the equilibria of CPR systems tend to be 

unstable under reasonable settings. 

        Thus, the theoretical foundations of the tragedy of the commons based on static 

analysis might no longer be reliable. In fact, the theoretical analysis in Saijo and Kobayashi 

(2016) reveals that the instability is likely to bring additional inefficiency to the system, 

meaning that previous authors underestimated the level of inefficiency. This implies that 

dynamical instability is a practical problem for management of CPR and deserves detailed 

mathematical and empirical investigations.  

        With the data from the experiments by Walker, Gardner and Ostrom (hereafter, WGO) 

(1990), we focus on estimating the response functions of players.51 In the estimation, we 

consider three key aspects in players’ decision-making processes: belief formation, other-

regarding preference and decision errors.  In the modeling of belief formation, the main 

purpose is to investigate to what extent players are myopic in an experiment. In the 

modeling of other-regarding preference, we want to show how large the difference from 

the self-interested assumption in the experiments. Furthermore, the modeling of decision 

                                                           
51 We thank Professor James Walker who provided us the individual data in WGO (1990). 
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errors shows to what extent the experimental environment is different from a deterministic 

system. Overall, our purpose in this paper is to show how large the distance between the 

theoretical analysis in Saijo and Kobayashi (2016) and the experimental data of WGO (1990). 

 

4.2 Theoretical results and Implications for the observations in WGO 

(1990) 
In this section, we briefly explain the theoretical results in Saijo and Kobayashi (2016). First, 

we describe the CPR problem with a general setting. Second, we introduce the two main 

theoretical propositions of Saijo and Kobayashi (2016). Finally, we interpret the 

implications for the observations in WGO (1990). 

        Consider a local society with n (≥2) appropriators. Assume that the output 𝑦 of the 

fishing ground is a function of the total number of hours of fishing ∑ 𝑥𝑖
𝑛
𝑖=1 . That is 𝑦 =

𝑓(∑ 𝑥𝑖
𝑛
𝑖=1 ), where 𝑓(. ) is an increasing, differentiable and strictly concave function. 

Therefore, the average output for each fishing hour is 𝑓(∑ 𝑥𝑖
𝑛
𝑖=1 )/ ∑ 𝑥𝑖

𝑛
𝑖=1 . Then, for fisher i, 

his/her expected output from his/her fishing hours 𝑥𝑖 is 𝑓(∑ 𝑥𝑖
𝑛
𝑖=1 )𝑥𝑖/ ∑ 𝑥𝑖

𝑛
𝑖=1 . Furthermore, 

assume that the opportunity cost for each fishing hour is a positive constant 𝑝 and let 𝑤𝑖 

denote the endowment of fishing hours for fisher i. Then, appropriator i’s income or payoff 

is defined by 

 

 

        𝑚𝑖(𝑥𝑖 , 𝑥−𝑖) = 𝑝(𝑤𝑖 − 𝑥𝑖) +
𝑥𝑖

𝑥𝑖+𝑥−𝑖
𝑓(𝑥𝑖 + 𝑥−𝑖),                                                             (4.1) 

                

where 𝑥−𝑖 = ∑ 𝑥𝑗𝑗≠𝑖 . Each appropriator faces a decision problem of how to divide her 

endowment between catching fish and personal leisure time to maximize 𝑚𝑖(𝑥𝑖 , 𝑥−𝑖) subject 

to 0 ≤ 𝑥𝑖 ≤ 𝑤𝑖  given 𝑥−𝑖. 

        Assume that the endowment of each appropriator is large enough to ensure that all 

Nash equilibria are interior points. Suppose that the production function is concave, that is, 

f”(x) < 0. Furthermore, assume that  f(0) = 0 and  f(x) > 0 if x > 0. Suppose that appropriator i 

chooses 𝑟(𝑥−𝑖
𝑡 ) at time t + 1, where . Then, the system 

 

      𝑥𝑖
𝑡+1 = 𝑟(𝑥−𝑖

𝑡 )   (i = 1,2,...,n)                                                                                            (4.2)   

             

is locally stable at Nash equilibrium 𝑥̂ if the linear approximation of the system (4.2) is 

stable at the Nash equilibrium 𝑥̂. Then we have the following proposition from Saijo and 

Kobayashi (2016) shows the necessary and sufficient condition for the local stability. 

 

Proposition 4.1. The system (4.2) is locally stable at the Nash equilibrium 𝑥̂ if and only if  

                                   
ˆ( )1

ˆ ˆ"( )( 2) '( ) ( 1)( 4) 0.
ˆ ˆ

f x
f x n f x n n

x x

 
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 
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Then, based on simple interpretations of Proposition 4.1, the following proposition from 

Saijo and Kobayashi (2016) shows the stability properties corresponding to the number of 

players.  

 

Proposition 4.2. (i) If the number of appropriators is two, then system (4.2) is locally stable 

at the Nash equilibrium.  

(ii) If the number of appropriators is at least four, then the system is locally unstable at the 

Nash equilibrium. 

 

      Therefore, according to proposition 4.2, the system of the design in WGO (1990) is 

locally unstable.The theoretical result from Saijo and Kobayashi (2016) indicates that the 

choice of players will be pulsing after several periods between 1 and 10 in the experiment 

with wi = 10 or between 0 and 25 in the experiment with wi = 25. This could be a plausible 

answer to “some unexplained pulsing behavior” in Ostrom (2006), although it is not fully 

consistent. Furthermore, the theoretical analysis indicates that the behavior pulsing that 

stems from instability tends to reduce efficiency even compared with the Nash equilibrium 

due the concavity of the payoff function.  

      Given these theoretical implications from Saijo and Kobayashi (2016), in the next 

section, I empirically estimate the response function of players with the data from WGO 

(1990) and connect the observations of pulsing behavior with the estimation results. 

Furthermore, I also provide an empirical investigation for the inefficiency stems from the 

pulsing. 

 

4.3 Reanalysis of the data from WGO (1990) 

4.3.1 The empirical model 

The model consists of three parts in the decision-making. They are the belief formation 

process, the other-regarding preference and the stochastic best response. The purpose of 

this model is to determine the distance between the myopic best response and the actual 

decision-making process of players. 

      (i). The belief formation process. Since players might take serval previous observations 

into account, in the empirical analysis of the belief formation, the key part is to determine 

the lag length of the information used by players in the experiment. Healy (2006) provides 

the experimental evidence to support a k-period average model that assume players form 

their beliefs at the current period based on the observations in previous k periods. Here, we 

slightly modify his idea of the average over the fixed k periods, but use a time-weighted 

average to model the belief formation.52 More precisely, it is, 

 

                                                           
52 The idea is borrowed from Cheung and Friedman (1997) in which they introduced a 𝛾-
weighted fictitious play model. 
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                                                                                                  (4.3)                                                                        

 

where  𝑏𝑖,𝑡+1 is player i’s belief about the total choices of other players in the group at 

period t+1, 𝑠−𝑖,𝑡 is the observed total choices of other players at period t and 𝛾𝑖
𝑢 is a time-

dependent weighting factor assigned to the observation at period u. If 𝛾𝑖 = 0, the belief is 

exactly the observation at the previous period. In contrast, if 𝛾𝑖 = 1, the belief is the average 

of all previous observations.53 In this sense, the amount of 𝛾𝑖 will determine the lag length 

of the information used by player i. Therefore, this model is an analogue of the k-period 

average model. Note that, the summation starts from period 1. So, this model omitted any 

beliefs prior to period 1.  

         (ii). The other-regarding preference. To empirically capture players’ concerns about 

other group members’ payoffs, following the design of Cox et al. (2007), we simply assume 

the utility function of player i as follows: 

                                                        

         𝑢𝑖(𝑦𝑖 , 𝑦̅−𝑖) = 𝑦𝑖 + 𝛽𝑖𝑦̅−𝑖                                                                                                   (4.4)                                                                                    

 

where 𝑦𝑖 is the material payoff of player i, 𝑦̅−𝑖 is the average material payoff of other group 

members and 𝛽𝑖 captures the other-regarding concerns. If 𝛽𝑖 = 0, player i is self-interested. 

If 𝛽𝑖 > 0, player i is altruistic or positive reciprocal. If 𝛽𝑖 < 0, player i is spiteful or negative 

reciprocal.  

        (iii). Stochastic best response. With the utility given by equation (4.4), we assume 

subjects make decisions with a stochastic best response dynamic (see Fudenberg and 

Levine, 1998). That is, 

  

         𝑝(𝑠𝑖,𝑡+1|𝛾𝑖 , 𝜆𝑖 , 𝛽𝑖 , 𝑠−𝑖,𝑡, … , 𝑠−𝑖,1) =
exp (𝜆𝑖𝑢𝑖,𝑡+1(𝑠𝑖,𝑡+1|𝛾𝑖 , 𝛽𝑖 , 𝑠−𝑖,𝑡, … , 𝑠−𝑖,1))

∑ exp (𝜆𝑖 𝑢𝑖,𝑡+1(𝑘|𝛾𝑖 , 𝛽𝑖 , 𝑠−𝑖,𝑡 , … , 𝑠−𝑖,1))
𝑤𝑖
𝑘=0

,                   (4.5)    

            

where 𝑠𝑖,𝑡+1 is the observed choice of player i at period t+1, 𝑢𝑖,𝑡+1 is the utility of player i at 

period t+1, 𝑤𝑖 is the endowment of player i and  𝜆𝑖 > 0 is a factor that captures the decision 

errors of player i. Equation (4.5) defines the probability that player i chooses 𝑠𝑖,𝑡+1 at period 

t+1 given 𝑠−𝑖,𝑡 , 𝑠−𝑖,𝑡−1, … , 𝑠−𝑖,1. If 𝜆𝑖 → 0, all choices for player i have equal probability, 

                                                           
53 As Cheung and Friedman (1997) suggested, 𝛾𝑖 also might locate at outside of the range [0, 1]. 
In such cases, it is relatively counter-intuitive. 𝛾𝑖>1 indicates player i pays more attention to the 
old information than the recent information. 𝛾𝑖<0 indicates the effect from past information 
changes sign in each period.  
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which means that  player i randomly makes decisions. As i becomes large, player i 

becomes more sensitive to the difference in utility between different choices; in particular, 

when  𝜆𝑖 →∞, player i chooses the best strategies (i.e. the strategies resulting in the 

maximum utility) with probability one. We maximize the following log-likelihood function 

to find estimates for the representative player. 

 

        𝑙𝑛𝐿(𝛾𝑖 , 𝜆𝑖 , 𝛽𝑖) = ∑ ∑ 𝑙𝑛 ( 𝑝(𝑠𝑖,𝑡+1|𝛾𝑖 , 𝜆𝑖 , 𝛽𝑖 , 𝑠−𝑖,𝑡 , … , 𝑠−𝑖,1))𝑇−1
𝑡=1

𝑁
𝑖=1  ,                            (4.6)                    

 

4.3.2 Estimation results 

Table 4.1 summaries the estimation results. The estimation is separately conducted over 

two samples: the data from the beginning half periods and the data from the latter half 

periods. 

 

Table 4.1 Estimation results  

                                                                          Experiments  

                                               w=10                                                              w=25  

                    Periods 2-16                    Periods 16-30     Periods 2-11                    Periods 11-20 

𝛾𝑖 

 

𝛽𝑖 

 

𝜆𝑖 

 

   Obs. 

    lnL 

        0.410                                 0.653 

       (0.007)                              (0.003) 

       -1.581                                -0.491 

       (0.055)                              (0.011) 

        0.095                                 0.340 

       (0.002)                              (0.005) 

          360                                   360 

      -677.80                             -631.11 

        0.833                                 0.641 

       (0.009)                              (0.003) 

       -0.998                               -0.290 

       (0.016)                              (0.010) 

        0.045                                 0.082 

       (0.001)                              (0.001) 

         240                                    240 

      -718.50                             -681.30  

 Jackknifed standard errors are shown in parentheses. 

 

         Based on the meanings of parameters, it is clear that players are exactly following the 

best response dynamics when 𝛾𝑖 → 0, 𝛽𝑖 → 0, and 𝜆𝑖 →∞. Now, let us interpret the 

estimation results. Basically, we think the model captures the decision-making process 

quite well. First, in both the experiments, 𝜆𝑖 becomes larger with period progress, which 

indicates the decision errors become fewer (𝜒2(1) = 24.98 for the experiment with w=10, and 
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𝜒2(1) = 9.52 for the experiment with w=25 by the likelihood ratio tests). We also notice that 

it is larger in the experiment with w=10 than in the experiment with w=25. This result is 

intuitive, since the number of possible choices are much fewer in the experiment with w=10 

than that in the experiment with w=25. 

       Second, we turn to see the estimates of 𝛽𝑖. All estimates are negative. This result is 

intuitive, since the environment of common pool resource (CPR) is competitive. An 

interesting finding is that, in both the experiments, the estimates of 𝛽𝑖 become closer to zero 

when periods progress (𝜒2(1) = 13.14 for the experiment with w=10, and 𝜒2(1) = 8.44 for the 

experiment with w=25 by the likelihood ratio tests). It indicates that, players are feeling 

worse when other group members increase their working hours in the beginning half of the 

experiment than they do when it happens in the latter half of the experiment. This result 

implicates that, subjects become more self-interested with repeated trials in both the 

experiments. 

       Final, the interpretation for estimates of 𝛾𝑖 is not very obvious. It seems players 

becomes more myopic in the latter half of the experiment with w=25 than in the beginning 

half. However, it appears that the opposite is the case, i.e. players are more myopic in the 

beginning than in the latter half in the experiment with w=10. 

 

Result 4.1: The estimation results support that, decision errors become fewer and players 

become more self-interested over time. Therefore, subjects become closer to making best 

response to previous observations (not only the last observation) with repeated trials in 

both the experiments.   

 

4.4 Connection between estimation results and pulsing behavior 

Our estimation results suggest that players’ decisions become closer to the best responses 

to previous observations with periods. Therefore, given our theoretical results that best 

response dynamics will induce some pulsing behavior, we can make a hypothesis. 

   

Hypothesis 4.1: The group sum will be pulsing more in the latter half of the experiment 

than it does in the beginning half of the experiment. 

 

       To test this hypothesis, we computed the sample autocorrelation for the group sum in 

each group.54 Table 4.2 summarizes the results. 

                                                           
54 The sample autocorrelation is also used in Rassenti et al. (2000) as a measure of the pulsing 
behavior. The sample autocorrelation of individual choices is also a way to check the pulsing 
behavior. However, if players within the same group are not increasing and reducing their 
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Table 4.2 The sample autocorrelations 

                                                                                Experiments                   

                                                   w=10                                                           w=25     

     Group           Periods 2-16             Periods 16-30            Periods 2-11         Periods 11-20 

         1 

         2 

         3 

         -0.133                        -0.137 

         -0.005                        -0.344  

          0.086                        -0.279 

       -0.131                    -0.366                     

        0.025                    -0.210 

        0.140                    -0.221 

  

      These results support our hypothesis quite well. All groups generate a negative sample 

autocorrelation in the latter half of the experiment, which indicates pulsing. However, 3 out 

of 6 groups have a positive sample autocorrelation in the beginning half of the experiment.  

 

Result 4.2: The sample autocorrelations of all groups in the latter half of the experiment are 

negative and less than those in the beginning half of the experiment.  

 

Now, let us consider whether pulsing caused inefficiency in the experiments. As Table 5.2 

(page 117) and Figure 5.4 (page 119) in OGW (1994) show, the low efficiency in the 

experiment with w=25 mainly stems from the beginning half of the experiment. However, 

we should not use the data from the beginning half of the experiments because players’ 

behaviors are in a transient phase. I therefore use the data from the latter half of the 

experiments. Table 4.3 shows some statistics to test the hypothesis that pulsing caused 

inefficiency. 

 

Table 4.3 Statistics  

                                                                                                   Experiments                                 

                                                                      w=10, Periods 16-30          w=25,Periods 11-20  

Centile (25%) 

Centile (75%) 

Interquartile range 

62 

68 

6 

60 

71 

11 

                                                                                                                                                                          
working hours simultaneously, the pulsing might not be related to our theoretical analysis. In 
this sense, I only check the sample autocorrelation for the group sum.   
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Average payoff (standard deviation) 

Predicted payoff, Nash 

T-statistic* 

63.81 (8.16) 

66 

-2.12 

133.56 (22.87) 

141 

-3.59 

*We first compute the average across periods for each individual, and then conduct the t-test 

over the sample of those averages. 

 

       We use the interquartile range to measure the amplitude of the pulsing in the group 

sum. It shows the amplitude of the pulsing is larger in the experiment with w=25 than in 

the experiment with w=10. Second, we report the statistics of individual payoffs and 

compare them with the Nash prediction. The t-tests reject the null hypothesis that the 

average payoff equals the predicted payoff of the Nash equilibrium for both the 

experiments at 5% level. This result supports our theoretical analysis that the pulsing 

around the Nash equilibrium will results in a lower payoff. Furthermore, we also 

compared the efficiency between the two experiments to see whether the larger pulsing 

amplitude will induce a lower efficiency.55 The Wilcoxon rank-sum test shows that the 

efficiency in the experiment with w=10 is significantly higher than in the experiment with 

w=25 (p-value = 0.0259).56 Given these findings, we suggest that WGO’s (1990) result is 

consistent with the theory of Saijo and Kobayashi (2016) regarding the efficiency.       

       

4.5 Conclusion 
In this paper, we conducted some statistical analyses to test the hypothesis that the pulsing 

behavior in labor inputs observed in WGO’s (1990) experiment is due to myopic best-

response behavior. The result shows that individuals were resorting to fairly myopic and 

rather deterministic decision rules. The analyses also revealed that the labor inputs are 

indeed pulsing (negative autocorrelation was found between labor inputs in succeeding 

periods) rather than in an equilibrium in the latter half of the experiments. Furthermore, 

our statistical analyses support the hypothesis that the difference in efficiency between the 

two experiments by WGO (1990), which are different in initial endowment, is partially due 

to pulsing. Given these empirical facts, the empirical result provides a support for the 

theoretical analysis in Saijo and Kobayashi (2016). 

 

 

 

 

 

 

 

                                                           
55 We use the same index of the efficiency as used in WGO (1990).  
56 Similar to the t-test, we also compute the average across periods for each individual to 
eliminate the time series autocorrelation, and then conduct the Wilcoxon rank-sum test over the 
sample of those averages. 
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Chapter 5 

 

CONCLUSION 
 

 

The goal of this thesis is to examine the three theoretical arguments of instability in social 

dilemma games. They are, the instability in the VCM with homogeneous design, the global 

and non-global stability in the VCM with heterogeneous design, and the instability in the 

CPR game. With the empirical method of experimental economics, the experimental results 

reflect some distance to the theoretical predictions. 

       In the first study, the group total contributions are not pulsing as much as the 

theoretical prediction. However, the experimental results show an increasing dispersion 

among individual contributions. The main source of this observation might be due to the 

presence of conditional cooperators. However, without a precise theoretical background 

for the interaction among players with several different other-regarding preferences in an 

unstable VCM environment, this conjecture is hard to be tested. But, on the theoretical 

basis, our observation regarding the increasing dispersion still indicates that the 

experimental system is not asymptotical stable. In other words, we are missing the 

theoretical connection between this observation and the theoretical results of instability. 

This remains as an open question in our study. 

      In the second study, the experimental results basically rejected the non-global stable 

argument from the theory in the environment with the particular experimental design. The 

main reason is that human subjects changed their strategical thinking in the belief 

formation process and the responding process in the non-globally stable treatments. This 

adaptive change makes the experimental system more stable than the theoretical prediction. 

As we pointed out in the conclusion of chapter 3, since our experiments chose the simplest 

design, whether this adaptive change can keep the stability for the system still remains 

unknown in the experimental design with more than three players in the group. 

      In the third study, the analysis of the experimental data from WGO (1990) supports that 

subjects become closer to making best response to previous observations. Therefore, the 

argument of instability can at least partially explain the pulsing behavior in the group sum. 

Furthermore, we clearly show that the pulsing behavior induces additional inefficiency in 

the CPR. 

      Overall, via the experimental studies, we find some consistent results corresponding to 

the theoretical predictions. More importantly, the inconsistent results reflect some flaws in 

the theoretical assumptions. First, these observations point the way for the refinement of 

assumptions in the next step. Especially, it is necessary to build up a theory regarding the 

interaction of several different social oriented players in a nonlinear VCM environment. 
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Second, the experimental evidence show that some theoretical predictions, i.e. unequal 

payoff distributions among players and inefficiency from the pulsing, point out new 

problems in social dilemma games, which stem from the instability. These new findings 

deserve more theoretical and empirical investigations in the future. Third, generally 

speaking, the uncertainty to decision-makers is greater in an unstable game environment 

than in a stable game environment. Our finding indicates that human subjects are willing 

to take more cognitive costs in an unstable game environment. This interesting finding in 

the second study sheds some new lights in the field of cognition and decision in 

uncertainty environment. 

      Finally, based on the insight of instability, these studies firstly reveal some more 

profound understanding regarding the social dilemma games than previous studies. 

However, they also show that the related works are still at the initial stage.   
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