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Abstract 

Over the past decade, chaos theory has been purely studied for academic as a 

fascinating mathematical phenomenon, until latterly a new research aspect has emerged. 

As a result of many years of research and study, chaos has now been considered beneficial 

to actual applications especially in communication and cryptography. Regarding to the 

increasing interest on chaos, a circuit which offer chaotic behavior such a chaotic 

oscillator circuit has become a subject of increasingly and extensively research and study 

and led to an introduction of many new design chaotic oscillator circuits.  

Beside the increasing interest in research on chaotic oscillator, a major part of 

cryptography such a true random number generator has also recently attracted a lot of 

research attention due to the increasingly demand on security and privacy. Typically, the 

true random number generator is utilized in confidential key generation, however it can 

also be used in some computational algorithm. Although the dynamics of chaotic systems 

is deterministic, the highly sensitivity to change of initial condition and aperiodic 

characteristic of the chaotic system still make chaotic oscillator suitable for the use as a 

randomness source of true random number generator.  

This dissertation mainly aims to develop new chaotic oscillators as well as 

research and investigation on new chaotic maps and their chaotic dynamic. The circuit 

structures of the oscillators are expected to be simple and compact, yet proper chaotic 

dynamics such a robustness are also expected. The design strategy for the chaotic 

oscillator is the development of circuit regarding the exiting chaotic maps and the new 
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propose chaotic maps. Hence, the implementation of application regarding chaotic 

oscillators such a true random number generator is also develop as a practical example. 

Through the literature reviews, a hypothesis can be defined that the chaotic oscillator 

circuit can be built by using a nonlinear circuit with the specific transfer characteristic. 

The first topic of study is to design new chaotic oscillators using nonlinear circuit with 

V-shape and S-shape (sigmoid) characteristic in order to prove the hypothesis. The 

second and third topics are aim to study and develop two new chaotic maps based on 

sigmoidal function and parabolic function. The results of the study from both chaotic 

maps show the feasibility of offering robust chaotic.  

As mentioned, the first study presents two CMOS based discrete-time chaotic 

oscillators and its application for random number generator (RNG). The first design 

method of chaotic oscillator was given by the use of 3 transistors to construct chaotic map 

circuit in order to achieve a V-shape characteristic (inverse tent map). Simulation of the 

chaotic oscillator is described and examined in terms of bifurcation diagram and transient 

waveform to show that it has a desirable output and suitability for a true random number 

generator (TRNG). The TRNG is designed using chaotic oscillator as random signal 

generator which also known as entropy source and randomness of output signal can be 

increased by a dual oscillator sampling method and a XOR operation. The second design 

method of chaotic oscillator is based on a chaotic map with reverse sigmoid characteristic. 

Then, a hybrid random number generator (HRNG) based on a combination of discrete-

time chaotic oscillator and a linear feedback shift register (LFSR) is presented. A random 

signal is produced by the chaotic oscillator and then, to increases the randomness; the 

signal is combined with LFSR signal through XOR gate. The resulting output from both 

RNG are evaluated using the NIST SP800-22 test suite. 
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The second study is interested regarding a sigmoidal chaotic map, which has 

never been distinctly investigated. A generic form of the sigmoidal chaotic map with three 

terms, i.e., xn+1 = ∓AfNL(Bxn) ± Cxn ± D, where A, B, C, and D are real constants is 

introduced. The unification of modified sigmoid and hyperbolic tangent (tanh) functions 

reveals the existence of a “unified sigmoidal chaotic map” generically fulfilling the three 

terms, with robust chaos partially appearing in some parameter ranges. A simplified 

generic form, i.e., xn+1 = ∓fNL(Bxn) ± Cxn, through various S-shaped functions, has 

recently led to the possibility of linearization using (i) hardtanh and (ii) signum functions. 

This study finds a linearized sigmoidal chaotic map that potentially offers robust chaos 

over an entire range of parameters. Chaos dynamics are described in terms of chaotic 

waveforms, histogram, cobweb plots, fixed point, Jacobian, and a bifurcation structure 

diagram based on Lyapunov exponents. Hence, the chaotic oscillator based the linearized 

sigmoidal chaotic map is shown as well as a true random number generator based on the 

proposed chaotic oscillator is demonstrated as a practical example. The resulting output 

of the random number generator is evaluated using the NIST SP800-22 test suite and 

TestU01. 

As the proposed generic form of chaotic map is introduced in the study of 

sigmoidal chaotic map, the third study is interested in introducing a new chaotic map 

based on nonlinear function with parabola curve transfer characteristic. A parabola 

chaotic map is based on various parabola curve functions which led to the linearized 

parabola chaotic map using. The linearized chaotic map can of offer a robust chaos over 

the entire range of parameter. Chaos dynamics were described in terms of fixed point, 

Jacobian, chaotic waveforms, cobweb plots, bifurcation diagram, and Lyapunov 

exponents. A discrete-time chaotic oscillator circuit based on the proposed parabola 
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chaotic map is presented. Simulation results of the circuit such a bifurcation diagram and 

chaotic waveforms are presented in order to investigate the chaotic dynamic of the circuit 

which also revealed that the proposed chaotic oscillator can offer robust chaos nearly the 

entire range of parameter. 

The proposed circuits show that chaotic oscillator can be achieved by using a 

simple structure with specific transfer characteristic such as V-shape or S-shape (sigmoid) 

characteristic and the simulation results show the feasibility and compatibility as a 

randomness source for true random number generator. The conclusion of the proposed 

chaotic oscillators is led to the proposed chaotic maps which based on sigmoidal function 

and parabolic function. Furthermore, the proposed chaotic maps based on the linearized 

functions have demonstrated the robustness property of chaotic system.  
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Chapter 1 

Introduction 

For a long time, chaos theory has only been research and study mainly for the 

academic purpose. Up until lately where there has been remarkable interest of using chaos 

in many actual applications. As a result, circuit design and implementation of nonlinear 

systems which offer chaotic behavior such a chaotic oscillator have been increasingly and 

widely study. Cryptography application can be considered one of the applications that 

chaotic oscillator is suited for. The random number generator which is the key to most of 

cryptography application is now received increasingly interested in as well as the chaotic 

oscillator. 

This chapter initially introduces chaos theory, chaotic dynamic measurement 

tools and random number generator. The motivation and objective of this dissertation are 

included. Thesis organization is finally summarized. 

1.1 Chaos Theory 

Chaos theory is the study in complicated mathematical regarding to the behavior 

of nonlinear dynamical systems. While most traditional scientific theory is the study of 

predictable phenomena like gravity, electricity, or chemical reactions, nonlinear 

dynamical systems are highly sensitive to initial conditions and unpredictable. The chaos 
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theory explores the effects of small occurrences dramatically affecting the outcomes of 

seemingly unrelated events. 

In the early 1960s, Chaos theory was discovered and experimental by Edward 

Lorenz, a mathematician and meteorologist, who was working with a system of equations 

to theoretically model and predict weather conditions.  He began to realize that seemingly 

insignificant factors in a dynamic system such as the atmosphere or a model of the 

atmosphere could cause vast and often unsuspected results.  

Chaotic behavior exists in many natural systems, such as weather and climate. 

This behavior can be studied through analysis of a chaotic mathematical model, or 

through analytical techniques such as recurrence plots and Poincaré maps. Although no 

universally accepted mathematical definition of chaos exists, commonly used properties 

for a dynamical system to be classified as chaotic are: 

• All chaotic systems have an extremely sensitive to the initial conditions. 

• The trajectory of systems never repeats. 

• All chaotic systems are nonlinear. 

Hence, Chaos is aperiodic long-term behavior in a deterministic system that 

exhibits sensitive dependence on initial conditions [1]. Classical example of the chaotic 

behavior is Brownian motion, change of the weather, behavior of the financial markets, 

the biological processes in the living organisms, the fluctuation of the astronomical orbit, 

etc.  

For a long time, the study of chaotic circuits has generally been purely for 

academic and theoretical reasons. Chaotic circuits were built as physical tools to study 

the nonlinear dynamics described by a set of governing equations. Mathematicians and 

theoretical physicists built chaotic circuits to explain the dynamics of complex systems, 



3 

 

though engineers usually see chaotic behavior as an undesirable effect to be avoided in 

designed systems until recently. Through an extensively research and study for decade, a 

new perspective of chaos shows that chaos may offer substantial benefits many 

applications [2-10], including communications, remote sensing, and cryptography. As a 

result, many new types of chaotic oscillators are increasingly being introduced to meet 

the needs in such applications [11-17]. 

1.2 Chaotic Measurement 

In order study chaotic system, there are many tools that can be employed. 

However, to preliminary investigate the chaotic behavior there are 2 measurement tools 

that widely used such as the bifurcation diagram and the Lyapunov Exponents (LE) [18-

20]. The bifurcation diagram is admittedly accepted as a tool for qualitative measure 

which shows the possible long-term values of a system. Depending on the initial 

conditions of the system, the behavior can follow different branches to chaos. The 

example of chaotic maps which is the most well-known and widely used in many areas 

of applications is a logistic map [21] and the logistic equation is written as follows 

 ( )1
1

n n n
x rx x

+
= −  (1.2) 

 Fig.1.1 depicts the plot of bifurcation diagram of the Logistic map showing 

effects of the parameter r in the equation, a periodic system will have one point while a 

system exhibiting period doubling will have two points and a chaotic system will have 

multiple points. The thick region can be considered a chaotic region and the existing of 

periodic windows between chaotic region indicate whether its robust chaos or not. 
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Figure 1.1 The plot of Lyapunov Exponents (LE) and bifurcation diagram of the 

Logistic map showing effects of the parameter r. 

On the other hand, the LE is admittedly and widely used as a tool for quantitative 

measurement. The LE is defined as a quantity that characterizes the rate of separation of 

infinitesimally close trajectories and is given by 

 
N

n 1
2n

n 1 n

dX1
LE lim log

N dX
+

→
=

=       (1.1) 
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where N is the number of iterations Typically, the positive LE, indicates chaotic behaviors 

of dynamical systems and the larger value of LE results in higher degree of chaoticity.  

Other than the investigation on chaotic dynamic using quantitative and 

qualitative tools such a LE and bifurcation diagram, chaotic dynamic can be investigated 

using the Jacobian [22], which can be calculated through a first derivative as |J(xn)| = 

f’(xn). Typically, the discrete time system becomes unstable in the condition of |J(xn)| > 1, 

while the chaotic map needs to operate under an unstable condition in order to induce the 

chaos. 

1.3 Random Number Generator  

A Random Number Generator (RNG) is a computational or physical device 

designed to generate a sequence of numbers which randomness. Random numbers are 

useful for a variety of purposes in many fields of application, such as generating data 

encryption keys, statistical sampling, simulating and modeling complex phenomena and 

other areas where producing an unpredictable result is desirable.  

There are many computational methods for random number generation; 

nevertheless, it can be classifying into two principal approaches to generate random 

numbers: Pseudo-Random Number Generators (PRNGs) and True Random Number 

Generators (TRNGs). The approaches have different characteristics and its advantages. 

1.3.1 Pseudo Random Number Generator 

A pseudorandom number generator (PRNG), also known as a deterministic 

random bit generator, is an algorithm that uses mathematical formulae for generating a 

sequence of numbers whose properties approximate the properties of sequences of 
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random numbers. The PRNG-generated sequence is not truly random, because it is 

completely determined by a relatively small set of initial values, called the PRNG's seed 

(which may include truly random values). 

PRNGs are important for their speed in number generation and their 

reproducibility which make them suitable for applications where many numbers are 

required and where it is useful that the same sequence can be replayed easily. The PRNGs 

are mainly uses in application such as cryptography, simulation and modeling 

applications, or games. 

 Characteristic of PRNGs are efficient and deterministic, meaning they can 

produce many numbers in a short time and a given sequence of numbers can be 

reproduced if the starting point in the sequence is known. PRNGs are typically also 

periodic, which means that the sequence will eventually repeat itself. 

1.3.2 True Random Number Generator 

TRNG is a device that generates random numbers from a physical process, rather 

than a computer program. TRNGs are often based on measurement from natural 

phenomena such as atmospheric noise, thermal noise, other external electromagnetic, the 

photoelectric effect and other quantum phenomena. 

The major use for electronic hardware TRNG is in cryptography. TRNGs can 

produce sequences of numbers that are unpredictable, which is greatest security when 

used to encrypt data. However, this hardware based random number generators generally 

produce a limited number of random bits per second which depend on source harvesting. 

The characteristics of TRNGs are different from PRNGs. First, TRNGs are 

generally rather inefficient compared to PRNGs, taking considerably longer time to 
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produce numbers. They are also nondeterministic which meaning that a given sequence 

of numbers cannot be reproduced. Lastly, TRNGs have no period, meaning a generated 

sequence number will not repeat. Table 1.1 shows characteristics of the two types of 

random number generators. However, many existed TRNGs are implemented using a 

circuit based chaotic oscillator as a randomness source [23-27]. Though chaotic oscillator 

theoretically is a deterministic system, the chaotic signal generated from the circuit based 

chaotic oscillator is a result on many immeasurable parameters such as thermal noise.  

Table 1.1 Characteristics of the two types of random number generators 

Characteristic PRNGs TRNGs 

Efficiency Fast Slow 

Determinism Deterministic Nondeterministic 

Periodicity Periodic Non periodic 

 

Typically, RNG is consists of 3 part including an entropy source (or randomness 

source), an entropy harvester, and a post processor as depicted in Figure 1.2. Beside from 

randomness source, the TRNG also required a post processor as for the purpose of 

statistical improvement. 

 

Figure 1.2 Structure of random number generator. 
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1.4 Statistical Test 

Various statistical tests can be applied to a sequence to attempt to compare and 

evaluate the sequence to a truly random sequence. The properties of a random sequence  

can be characterized and described in terms of probability. There are an infinite number 

of possible statistical tests, each assessing the presence or absence of a “pattern” which, 

if detected, would indicate that the sequence is nonrandom. 

The NIST Test Suite from National Institute of Standards and Technology is a 

statistical package consists of 15 tests which are generally accepted as a standard test suit 

for any random number generators [28]. NIST were developed to test the randomness of  

 (arbitrarily long) binary sequences produced from random number generators by. Table 

1.2 describes the general characteristics of each of the statistical tests.  

All the statistical tests attempt to extract the presence of a pattern that indicates 

non-randomness of the sequences through probability methods described in terms of p-

value. For each test in NIST, this p-value indicates the strength of evidence against perfect 

randomness hypothesis, i.e. a p-value greater than a typical confidence level of 0.01 

implies that the sequence is random with a confidence level of 99%.  

Another tool for randomness test is TestU01 which is a software library, 

implemented in the ANSI C language, and offering a collection of utilities for the 

empirical statistical testing of uniform random number generators [29]. The library was 

first introduced in 2007 by Pierre L’Ecuyer and Richard Simard of the Université de 

Montréal. The library implements several types of random number generators, including 
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some proposed in the literature and some found in widely used software. It provides 

general implementations of the classical statistical tests for random number generators, 

as well as several others proposed in the literature. Each statistical test in TestU01 can 

generate a P-value as well as the NIST test suite, which is considered as an indicator of 

passing the test. 

Table 1.2 Characteristics of the NIST Statistical Tests 

Statistical Tests Descriptions 

Frequency (mono-bit) Too many zeroes or ones. 

Frequency Block Too many zeroes or ones within M-bit blocks. 

Runs 

Large (small) total number of runs indicates that 

the oscillation in the bit stream is too fast (too 

slow). 

Longest Run of Ones Block Deviation of the distribution of long runs of ones. 

Binary Matrix Rank 

Deviation of the rank distribution from a 

corresponding random sequence, due to 

periodicity. 

Discrete Fourier Transform 

(Spectral) 
Periodic features in the bit stream. 

Non-overlapping Template 

Matching 
Too many occurrences of non-periodic templates 

Overlapping Template Matching Too many occurrences of m-bit runs of ones. 

Universal Statistical Compressibility (regularity). 

Linear Complexity 
Deviation from the distribution of the linear 

complexity for finite length (sub) strings. 

Serial 
Non-uniform distribution of m-length words. 

Similar to Approximate Entropy. 

Approximate Entropy 
Non-uniform distribution of m-length words. 

Small values of ApEn(m) imply strong regularity. 
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Cumulative Sums 
Too many zeroes or ones at the beginning of the 

sequence. 

Random Excursions 
Deviation from the distribution of the number of 

visits of a random walk8 to a certain state. 

Random Excursions Variant 

Deviation from the distribution of the total 

number of visits (across many random walks) to a 

certain state. 

 

1.5 Thesis Developments and Organizations  

1.5.1 Objective and Motivation 

As the demand on chaotic oscillator is gradually increased during the past decade 

which led to the research and development of this dissertation. Chaos theory, which exited 

in many natural phenomena, can also be considered as a very fascinating mathematical 

and found in many applications through various areas of research. Many existing chaotic 

oscillator circuits are designed with a complicated circuit structure and required large 

amount of number of elements. Hence, the design and development of chaotic oscillator 

with simple and compact structure is needed. Despite many exiting chaotic maps, only a 

few of those maps have been investigated in term of robustness. The search for new 

chaotic map with robustness property is also considered. The application with regarding 

to the chaotic oscillator circuits such a true random bit generator is also interesting. 

1.5.2 Thesis Organization 

This thesis is organized into five chapters. The following chapter 2 presents the 

research and study of two CMOS based discrete-time chaotic oscillators and its 
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application for random bit generator (RBG). The first design approach of chaotic 

oscillator was given by the use of 3 transistors to construct chaotic map circuit in order to 

achieve a V-shape characteristic (inverse tent map). Simulation of the chaotic oscillator 

was described and examined in terms of bifurcation diagram and transient waveform to 

show that it has a desirable output and suitability for a true random bit generator (TRBG). 

The TRBG is designed using chaotic oscillator as random signal generator which also 

known as entropy source and randomness of output signal can be increased by a dual 

oscillator sampling method and a XOR operation. The second design approach of chaotic 

oscillator is based on a chaotic map with reverse sigmoid characteristic. Then, a hybrid 

random number generator (HRNG) based on a combination of discrete-time chaotic 

oscillator and a linear feedback shift register (LFSR) is presented. A random signal is 

produced by the chaotic oscillator and then, to increases the randomness; the signal is 

combined with LFSR signal through XOR gate. The resulting output from both RBG are 

evaluated using the NIST SP800-22 test suite. 

Chapter 3 presents the research and study regarding a 1-D sigmoidal chaotic 

map, which has never been distinctly investigated. In this chapter, a generic form of the 

sigmoidal chaotic map with three terms is introduced. The unification of modified 

sigmoid and hyperbolic tangent (tanh) functions reveals the existence of a “unified 

sigmoidal chaotic map” generically fulfilling the three terms, with robust chaos partially 

appearing in some parameter ranges. A simplified generic form through various S-shaped 

functions, has recently led to the possibility of linearization using (i) hardtanh and (ii) 

signum functions. This study finds a linearized sigmoidal chaotic map that potentially 

offers robust chaos over an entire range of parameters. Chaos dynamics are described in 

terms of chaotic waveforms, histogram, cobweb plots, fixed point, Jacobian, and a 
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bifurcation structure diagram based on Lyapunov exponents. As a practical example, a 

true random bit generator using the linearized sigmoidal chaotic map is demonstrated. 

The resulting output is evaluated using the NIST SP800-22 test suite and TestU01. 

Chapter 4 presents the research and study regarding a parabola chaotic map, 

which has never been distinctly investigated. Regarding the proposed generic form of 

chaotic map with three terms which introduced in the Chapter 3, a new chaotic map based 

on nonlinear function with parabola curve transfer characteristic is proposed. A simplified 

parabola chaotic map is based on various parabola curve functions which led to the 

linearized parabola chaotic map using Absolute Value function. The linearized chaotic 

map can of offer a robust chaos over the entire range of parameter. Chaos dynamics were 

described in terms of fixed point, Jacobian, chaotic waveforms, cobweb plots, bifurcation 

diagram, and Lyapunov exponents. A discrete-time chaotic oscillator circuit based on the 

proposed parabola chaotic map is presented. Simulation results of the circuit such a 

bifurcation diagram and chaotic waveforms are presented in order to investigate the 

chaotic dynamic of the circuit which also revealed that the proposed chaotic oscillator 

can offer robust chaos nearly the entire range of parameter. 

Chapter 5 finally draws a conclusion of all three approaches of designing chaotic 

oscillator as well as the research and study of two new chaotic maps. The proposed 

chaotic oscillators implementation using a simple structure and few numbers of 

components while maintaining chaotic dynamic and feasibility of utilizing in other 

applications.  
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Chapter 2 

Chaotic Oscillators based on Transfer Characteristic  

This chapter presents the research and study of two CMOS based discrete-time 

chaotic oscillators and its application for random bit generator (RBG). Through the 

literature reviews, a hypothesis can be defined that the chaotic oscillator circuit can be 

construct by using a nonlinear circuit with the specific transfer characteristic such as V-

shape or S-shape (sigmoid) characteristic. 

The first design approach of chaotic oscillator was given by the use of 3 

transistors to construct chaotic map circuit in order to achieve a V-shape characteristic 

(inverse tent map). Simulation of the chaotic oscillator was described and examined in 

terms of bifurcation diagram and transient waveform to show that it has a desirable output 

and suitability for a true random bit generator (TRBG). The TRBG is designed using 

chaotic oscillator as random signal generator which also known as entropy source and 

randomness of output signal can be increased by a dual oscillator sampling method and a 

XOR operation. The second design approach of chaotic oscillator is based on a chaotic 

map with reverse sigmoid characteristic. Then, a hybrid random number generator 

(HRNG) based on a combination of discrete-time chaotic oscillator and a linear feedback 

shift register (LFSR) is presented. A random signal is produced by the chaotic oscillator 

and then, to increases the randomness; the signal is combined with LFSR signal through 
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XOR gate. The resulting output from both RBG are evaluated using the NIST SP800-22 

test suite. 

Firstly, the introduction and overview of discrete-time chaotic oscillators are 

given. Then, the discrete-time chaotic oscillator circuit based on chaotic map with V-

shape characteristic and its application as dual oscillator sampling based true random bit 

generator are presented. Subsequently, the discrete-time chaotic oscillator circuit based 

on a chaotic map with reverse sigmoid characteristic and its application as hybrid random 

bit generator are also presented. Finally, the conclusion is drawn. 

2.1  Introduction 

Chaotic oscillator is one of the most interesting topics of research and the 

designing of the circuit been extensively studied for many decades [30-33]. Primary aim 

of chaotic oscillator design is to construct a circuit that able to provide truly random 

signals and extremely sensitivity to initial condition or changing parameter as well as a 

random bit generator.  

In general, chaotic oscillator chaotic oscillators can be classified into discrete-

time and continuous-time chaotic oscillators. As for continuous-time chaotic oscillators, 

their differential equations define the future state in terms of the rate of change associated 

with the current state variables, while the future state of discrete-time chaotic systems is 

defined by the difference equations depends only on the value of current state. Even 

though the continuous-time chaotic oscillators have been studied for decade, in circuit 

design, most of continuous-time chaotic oscillators usually implemented using resistor-

capacitor network or an inductor which required a large area of circuit. While discrete-

time chaotic systems have been attracted more attention due to their numerous techniques 
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to design while remain capability of complex and chaotic behavior. Thus, the compact 

structure discrete-time chaotic oscillator circuits with feasibility to produce a robust 

chaotic signal for some partial portion of parameter space are presented.  

xn Nonlinear 

Circuit
S/H Buffer S/H

xn+1

 

(a) 
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(b) 

Figure 2.1 Discrete-time chaotic oscillator (a) with buffer, (b) without buffer. 
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Figure 2.2 The sample and hold circuit using transmission gate. 
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Figure 2.3 Circuit diagram of the proposed two-stage Op Amp circuit. 

Discrete-time chaotic oscillator can generate chaotic signals though a nonlinear 

iteration function (chaotic map) which can be defined as follows: 

 
( )nn XfX =+1  (2.1) 

Typically, a discrete-time chaotic oscillator can be designed using a common 

structure [34] as shown in Figure 2.1. In addition to a nonlinear (chaotic map) circuit, the 

chaotic oscillator requires two sample and hold circuits as depicted in Figure 2.1a, and 

occasionally, also requires a buffer between the sample and hold as shown in Figure 2.1b. 

The sample-and-hold circuits are used to delay the signals similar to the memory, and the 

buffer circuit is used to feed signals into the next iteration. Both of the proposed chaotic 

oscillator is designed based on the structure of chaotic oscillator based on Figure 2.1a. 

The buffer circuit and the sample and hold circuit of the proposed chaotic oscillator in 
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this chapter are implemented by sample and hold circuit using transmission gate and two-

stage operational amplifier (Op Amp) as shown in Figure 2.2 and Figure 2.3 respectively. 

The element sizes and performance of the Op Amp are listed in Table 2.1 and Table 2.2 

respectively. 

Table 2.1 Elements parameter of the proposed two-stage Op Amp circuit. 

Elements Size (μm) 

M1, M2 2/0.18 W/L(μm) 

M3, M4 4/0.18 W/L(μm) 

M5 1.2/0.18 W/L(μm) 

M6 4/0.18 W/L(μm) 

M7 1.2/0.18 W/L(μm) 

M8 1.2/0.18 W/L(μm) 

M9 10.8/0.18 W/L(μm) 

M10 5.4/0.18 W/L(μm) 

Rc 2.5 kΩ 

Cc 0.5 pF 

 

Table 2.2 Performance simulation of the proposed two-stage Op Amp circuit. 

Performance Values Units 

Offset voltage 57 µV 

DC gain 70 dB 

Phase margin 67 Degree 

Slew rate  +56/-44 µV/S 

ICMR 0.55-1.75 V 
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2.2  Discrete-Time Chaotic Oscillator: V-shape Transfer 

Characteristic 

Numerous discrete-time chaotic oscillator circuits are proposed using the design 

technique of imitating V-shape or N-shape nonlinear transfer function of the chaotic 

oscillator [35-38]. This technique is effective to provide the robust chaotic signals in both 

voltage and current mode.  
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v
ou

t

vB

vin

vout

vdd

M1 M2

M3
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Figure 2.4 V-shape characteristic chaotic map (a) circuit and (b) transfer 

characteristic from various biasing voltage VB. 

2.2.1 Design and Implementation 

A discrete-time chaotic oscillator circuit is designed using V-shape characteristic 

chaotic map circuit (inverse tent map). This map circuit designed using 3 transistors as 

illustrates in Figure 2.4 (a) and also the DC characteristic of chaotic map circuit with 

various biasing voltage between 0V to 1.8V is depicted in Figure 2.4 (b). Where M1 is 

operated in low voltage region, while M2 is operated when input of chaotic map circuit 

is greater than threshold voltage. Furthermore, the transfer characteristic of the proposed 
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chaotic map circuit can be modified by the adjusting of the bias voltage VB at transistor 

M3.  

In order to generate the chaotic signal, a two-phase clock is required to control 

overall process. On phase φ1 the chaotic map circuit was fed by value of xn, through the 

transfer function f(xn), the output xn+1 is generated and then stored in capacitor C1. On 

phase φ2 the stored value xn+1 is shifted through the buffer to capacitor C2. Subsequently, 

the value is fed back into the input of chaotic map and all of process continues iteratively. 

C1 C2

Ф1

Ф1

Ф2

Ф2

vout

vdd

M1 M2

M3vB

 

Figure 2.5 Circuit diagram of discrete-time chaotic Oscillator Circuit based on V-

shape characteristic chaotic map. 

2.2.2 Simulation Result 

The discrete-time chaotic oscillator using approximation of V-shape 

characteristic chaotic map circuit is shown in Figure 2.5. The system was designed using 

Cadence and simulated using Hspice simulation with 0.18 µm CMOS technology. The 

system is supplied with 1.8V and clock 25 MHz to operate. The chaotic map circuit is 

made of transistors M1, M2 and M3 and the size of MOS transistors are 4/0.18 µm, 2/0.18 

µm and 1.2/0.18 µm, respectively.   
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Figure 2.6 Plots of bifurcation diagram of the proposed chaotic oscillator circuit 

based on V-shape characteristic chaotic map. 
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Figure 2.7 Transient waveforms for bias voltage VB is 0.68V. 
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Figure 2.8 The proposed true random bit generator based on of chaotic oscillator 

with on V-shape characteristic chaotic map. 

In order to examine the chaotic dynamics, Figure 2.6 depicts the plots of 

bifurcation diagram of the simulated chaotic oscillator circuit, obtained by plotting output 

signal samples when bias voltage (VB) at transistor M3 was swept between 0V and 1.8V. 

The bifurcation can be simply to observed, white and blue regions in the diagram 

represent non-chaotic (windows of periodic behavior) and chaotic dynamics, 

respectively. It can be considered through the bifurcation diagram that the proposed 

chaotic oscillator circuit shows chaotic behaviors output. Figure 2.7 shows transient 

waveforms output of the circuit for the value of VB at 0.68V which demonstrated non-

periodic signal.  

2.2.3 Dual Oscillator Sampling based True Random Bit Generator   

Random bit generators are generally use in scientific and engineering. There are 

two principal methods used to generate random numbers. First, Pseudo Bit number  
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Figure 2.9 Output bit streams from generated from proposed true random bit 

generator; (a) before processing (b) after processing. 

generator (PRBG) is based on deterministic algorithms, depending on an initial seed 

value. This type generator is vulnerable to observation and replication the output. On the 

other hand, True random bit generator (TRBG) is mainly based on physical source which 

is expected to be a randomness to generate random numbers sources such as nuclear 

decay, intrinsic topology imperfections, and thermal noise. The output bit sequences of a 

TRBG is expected to be unpredictable and statistically independent. 



23 

 

Typically, TRBG consists of three parts: entropy source, entropy harvesting 

mechanism and a post processing mechanism. From many literatures, the entropy sources 

have been described such as thermal noise, metastability stages of oscillator or chaotic 

oscillator. Various implementations of entropy source using chaotic oscillator. By reason 

of circuits can be designed where it has an extremely sensitivity to initial conditions and 

system parameters which cause it practically unpredictable the output. Entropy 

harvesting, is used to capture nondeterministic randomness from entropy sources. This is 

also a critical part which effect to quality of a TRBG. The random bit stream generated 

using an entropy harvesting mechanism may not fully robust for TRBG hence post-

processing mechanism is required to improve quality.  

In order to generate a true random signal, Figure 2.8 shown block diagram of 

true random bit generator using a combination of proposed discrete-time chaotic 

oscillator, dual oscillator sampling method [39] and Exclusive-OR gate (XOR), these 

components are used as an entropy source, entropy harvesting mechanism and post 

processing, respectively. The dual oscillator sampling method using a D flip-flop to 

exploits the association between two independent free running oscillators, a low 

frequency oscillator and high frequency oscillator. Output bits are generated where the 

output signal of a fast oscillator sampling at the rising edge of the slower clock. 

Subsequently, XOR gate was used. Two random bit streams from Chaotic Oscillator and 

D flip-flop are XORed to remove any correlation and increase the randomness of output 

and result the proposed TRBG to have a throughput of 23 Mbps. The output bit streams 

before and after the post processing is shown in Figure 2.9.  

The true random bit generator was designed using chaotic oscillator as an 

entropy source of the generator which causes the system qualified as true random bit 
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generator. In addition, the dual oscillator sampling method and XOR were used to 

increase the randomness of output. The entire system was Cadence and simulated using 

Hspice simulation in 0.18µm CMOS technology using a simple and compact structure of 

circuit for the advantage in compatibility.  

2.2.4 Randomness Performance Evaluation 

According to the properties of a random sequence which can be described in 

terms of probability, the various statistical tests have been used to investigate the 

randomness of output sequence from random generator. This paper, the proposed true 

random bit generator was examined by NIST test suit 

The NIST test suite issued by the National Institute of Standards and Technology 

which is a statistical test package consists of 15 tests and generally accepted as a standard 

test suit for any pseudo random bit generators (PRBG) or true random bit generators 

(TRBG). The test was use to examine the binary sequence by detected an existing pattern 

of value that indicates non-randomness of the sequences through the probability values 

(P-value). The p-value indicates a randomness of the generated binary sequences against 

perfect randomness hypothesis. It can be seen that generated binary sequences from the 

proposed TRBG pass all test methods in NIST test suit as shown in Table 2.3.  

2.2.5 Conclusion 

The design of V-shape characteristic chaotic map circuit using 3 transistors can 

be used properly as a nonlinear function of the discrete-time chaotic oscillator which 

exhibits a chaotic behavior. The oscillator was examined in terms of bifurcation diagram 

and output behaviors observation.  
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Table 2.3 Results of the NIST test suite  

Test Methods P-value Results 

Frequency (mono-bit) 0.527 Pass 

Frequency Block 0.818 Pass 

Runs 0.147 Pass 

Longest Run of Ones Block 0.940 Pass 

Binary Matrix Rank 0.291 Pass 

Discrete Fourier Transform 0.745 Pass 

Non-overlapping Template Matching 0.995 Pass 

Overlapping Template Matching 0.898 Pass 

Universal Statistical 0.245 Pass 

Linear Complexity 0.548 Pass 

Serial  0.777 Pass 

Approximate Entropy 0.777 Pass 

Cumulative Sums 0.973 Pass 

Random Excursions 0.534 Pass 

Random Excursions Variant 0.612 Pass 

 

The proposed true random bit generator (TNRG) based on discrete-time chaotic 

oscillator has a throughput of 23 Mbps and evaluation the output signal through NIST 

tests suite which pass all the test. TRBG circuit was designed using Cadence in 0.18μm 

CMOS technology with 1.8 voltage supply and the simulation results was demonstrated 

through Hspice simulation. Furthermore, the TRBG offers a compact structure and high 

efficiency which suitable for many applications. 
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2.3  Discrete-Time Chaotic Oscillator: reverse sigmoid 

characteristic 

2.3.1 Design and Implementation 

Regarding to the previous section, the chaotic oscillator circuit can be designed 

using chaotic map with V-shape characteristic. In this section, discrete-time chaotic 

oscillator circuit based on a chaotic map with reverse sigmoid characteristic. The 

proposed chaotic map is designed using an inverter and a subtractor Op Amp. The 

proposed chaotic map and its transfer characteristic is shown in Figure 2.10 (a) and (b), 

respectively.
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Figure 2.10 reverse sigmoid characteristic chaotic map (a) circuit and (b) transfer 

characteristic from various gain value Gdc. 

Regarding to the proposed chaotic map, by setting R1 = R2, R3 = R4 , the transfer 

function for subtractor circuit can be given by: 

 
)( ininvdcout VVGV −=

 (2) 

where DC gain (Gdc) of circuit is defined as R3 /R1. The DC characteristic of the chaotic 

map circuit with various biasing voltage from 0 V to 1.8V is shown in Fig.2.10 (b) and It 
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can be seen that the characteristic can adjust by the value of Gdc.  
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Figure 2.11 Circuit diagram of discrete-time chaotic oscillator circuit based on 

reverse sigmoid characteristic chaotic map. 
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Figure 2.12 Plots of bifurcation diagram of the proposed chaotic Oscillator 

Circuit based on reverse sigmoid characteristic chaotic map. 
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Figure 2.13 Transient waveforms of the proposed chaotic Oscillator Circuit based 

on reverse sigmoid characteristic chaotic map for the specific value of Gdc = 2.2. 

2.3.2 Simulation Result 

The proposed discrete-time chaotic oscillator circuit based on reverse sigmoid 

curve chaotic map was designed in Cadence and simulated HSPICE simulator while using 

0.18 µm CMOS technology with 1.8 voltage supply. The size of the transistors used as 

inverter are as follow: M1 = 4/0.18µm, M2 = 2/0.18µm. The subtractor Op Amp circuit is 

same circuit as presented in Figure 2.3. The chaotic dynamics was examined by the plot 

of bifurcation diagram as depicted Figure 2.12. The plot of bifurcation diagram is 

obtained by plotting of the output signal from the simulated chaotic oscillator circuit 

where the value of gain Gdc vary between 0 to 3. The white region of the bifurcation 

represents nonchaotic behavior (periodic) while the black region represents the chaotic 

behavior (non-periodic). It can be considered through the bifurcation diagram that this 

proposed chaotic oscillator circuit based on reverse sigmoid curve chaotic map can offer 

a robust chaotic behavior. Figure 2.13 shows the transient simulation output of the circuit 
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for the value of Gdc = 2.2 and represents the complexity of chaotic behaviors. 
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Figure 2.14 Classification of random bit generators 
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Figure 2.15 General structure of HRBG for both (a) series and (b) parallel 

connection  

2.3.3 Hybrid Random Bit Generator 

For decades of study, a countless of RBGs have been proposed. Typically, the 

statistical property of RBGs is relied on their randomness sources and most of the 

proposed RBGs can be classified into 2 types with respect to their randomness sources 

such a pseudo random bit generator (PRBG), a true random bit generator (TRBG). 

Though, lastly a combination of TRBG and PRBG as known as hybrid random bit 

generator (HRBG) was introduced [40-41]. This classification of RBG is shown in Figure 
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2.14. The PRBG is computational algorithms based random bit such as linear congruential 

generator or LFSR which also considered as deterministic RBG. On the other hand, 

TRBG is mostly based on the observation of some physical phenomenon that expected to 

be random such electrical noise, jitter, and chaotic which the output is completely 

unpredictable. 

Hybrid random bit generator (HRBG) is a combination of TRBG and PRBG and 

typically, there are 2 types of connection as shown in Figure 2.15. First, The TRBG and 

PRBG can be connected in series as shown in Figure 2.15a by using the TRBG as a seed 

generator for PRBG which make the PRBG always produce an unpredictable output. 

Another approach is a parallel connection as shown in Figure 2.15b which can be done 

by XORing between the output of TRBG and PRBG. 

According to mathematical statistics, the variance of linear combination of two 

sets of numbers is equal to the sum of the variances of each set as long as there is no 

correlation between the two sets. The linear combination of two sets of numbers can be 

done by adding, subtracting or XORing.  This principle can be expressed as: 

 yXXY VVV +=  (3) 

In order to construct the HRBG, Figure 2.16 shows the block diagram of the 

proposed HRBG which is based on the combination of discrete-time chaotic oscillator 

based TRBG and LFSR using a parallel connection. Since the output of proposed TRBG 

is independent from PRBG, it can be assumed that the output of HRBG from XORing the 

output of TRBG and LFSR can provide a better statistical property than either the TRBG 

or the LFSR. 
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Figure 2.16 The Proposed HRBG based chaotic oscillator 

2.3.4 Linear feedback shift register based Pseudo random bit generator 

A linear feedback shift register (LFSR) is a chain of shift registers where the 

inputs are linear function of their previous state. In general, LFSR can be designed using 

exclusive-or (XOR) and flip-flop as a linear function and shift register. Each flip-flop 

output is connected to the next flip-flop input. The positions of shift registers, that output 

bit affected to the next stage, are called taps. 

The initial value (also called the seed) is required for LFSR. The operation of 

register is deterministic with a finite number of possible states, which make the output of 

LFSR is determinable. Though the well-chosen feedback can make the LFSR produce all 

possible output values and this LFSR can be called maximal length LFSR.  

D Q D Q D Q D Q D Q D Q D Q D Q

1 2 3 4 5 6 7 8

 

Figure 2.17 A Block Diagram of 8-bit Fibonacci LFSR 
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As the output of maximal length LFSR can typically pass all statistical tests, an 

8-bit maximal length LFSR is implemented on MATLAB using Fibonacci structure where 

the taps are 8th, 6th, 5th and 1st as shown in Figure 2.17. The proposed LFSR is used to as 

a PRBG due to its deterministic output sequence. 

2.3.5 Randomness Performance Evaluation 

The random output of HRBG has been examined, according to the properties of 

a random sequence which can be described in terms of probability. Although the variety 

of statistical tests is existed, NIST test suit is the most widely used statistical test to 

investigate the randomness of output sequence from random bit generator.  

The NIST test suite issued by the National Institute of Standards and Technology 

which is a statistical test package consists of 15 tests and generally accepted as a standard 

test suit for any random bit generators. The test can be used to examine the bit sequence 

by detected an existing pattern of value that indicates non-randomness of the sequences 

through the probability values (P-value) which is convenient in determining whether the 

random bit generator is suitable for cryptography or not. The P-value indicates a 

randomness of the test sequences where the P-value greater than 0.01, the sequence can 

be considered as random and accepted, otherwise rejected. 

Table 2.4 shows the comparison of the results of NIST test suit from the raw bit 

sequence from the chaotic oscillator based random bit generator and the output sequence 

from the purposed HRBG. In this test, the raw bit sequence was generated from chaotic 

oscillator without any post processing method which can be seen that the raw bit sequence 

has failed many tests from NIST test result. Hence, the same NIST test suit was applied 

to output sequence from the purposed HRBG which was corrected from XOR operation 
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between the output of LFSR and chaotic oscillator based RNG. The statistically 

improvement of the result from the proposed HRBG can also be seen from NIST test 

result. 

2.3.6 Conclusion 

Traditionally, random bit generators (RBGs) are designed based on either 

physical phenomenon or computational algorithm as known as true random bit generator 

(TRBG) and pseudo random bit generator (PRBG), respectively. In this chapter a hybrid 

random number generator (HRBG) based on a combination of TRBG and PRBG was 

presented. A chaotic oscillator circuit was designed as a randomness source of TRBG 

using 0.18μm CMOS technology in Cadence software and simulated through HSPICE. 

An 8-bit LFSR as PRBG was designed in MATLAB software. The output of chaotic 

oscillator based TRBG and LFSR are XORed together to produce a random bit sequence. 

By such a simple structure, the proposed HRBG provides a throughput of 1 Mbps which 

has been statistically analyzed through NIST statistical tests suite and proved to be 

suitable for cryptography.  

2.4 Conclusion and Discussion 

In this chapter two discrete time chaotic oscillators have been presented. The 

first chaotic oscillator is a compact circuit based on chaotic map with only 3 transistors 

in order to achieve an approximate V-shape characteristic. The second proposed chaotic 

oscillator is based a chaotic map which is constructed in order achieve a reverse sigmoid 

characteristic. This chaotic oscillator may require a larger number of components though, 

the oscillator exhibits a robust chaotic behavior which can be seen from the plot of 
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bifurcation diagram. It can be seen from both transfer characteristic based chaotic 

oscillators that nonlinear functions with at least 1 turning point in transfer characteristic 

could induce chaos. Moreover, both chaotic oscillators show capability of using as a 

randomness source for the TRBGs and the output bit sequence is statistically analyzed 

through NIST tests suite which can pass all the test.  

Table 2.4 Comparison of the results of the NIST test suite. 

Test Methods 

Without HRBG The Proposed HRBG 

P-value Results P-value Results 

Frequency (mono-bit) x Fail 0.964 Pass 

Frequency Block 0.034 Pass 0.474 Pass 

Runs 0.405 Pass 0.658 Pass 

Longest Run of Ones Block x Fail 0.841 Pass 

Binary Matrix Rank 0.421 Pass 0.291 Pass 

Discrete Fourier Transform 0.013 Pass 0.218 Pass 

Non-overlapping Template Matching 0.014 Pass 0.566 Pass 

Overlapping Template Matching 0.637 Pass 0.898 Pass 

Universal Statistical 0.057 Pass 0.537 Pass 

Linear Complexity 0.451 Pass 0.868 Pass 

Serial 0.097 Pass 0.785 Pass 

Approximate Entropy x Fail 0.605 Pass 

Cumulative Sums x Fail 0.462 Pass 

Random Excursions x Fail 0.074 Pass 

Random Excursions Variant x Fail 0.315 Pass 
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Chapter 3 

Robustification of a One-Dimensional Generic 

Sigmoidal Chaotic Map with Application of True 

Random Bit Generation 

This chapter presents the research and study regarding a 1-D sigmoidal chaotic 

map, which has never been distinctly investigated. In this chapter, a generic form of the 

sigmoidal chaotic map with three terms is introduced. The unification of modified 

sigmoid and hyperbolic tangent (tanh) functions reveals the existence of a “unified 

sigmoidal chaotic map” generically fulfilling the three terms, with robust chaos partially 

appearing in some parameter ranges. A simplified generic form through various S-shaped 

functions, has recently led to the possibility of linearization using (i) hardtanh and (ii) 

signum functions. This study finds a linearized sigmoidal chaotic map that potentially 

offers robust chaos over an entire range of parameters. Chaos dynamics are described in 

terms of chaotic waveforms, histogram, cobweb plots, fixed point, Jacobian, and a 

bifurcation structure diagram based on Lyapunov exponents. As a practical example, a 

true random bit generator using the linearized sigmoidal chaotic map is demonstrated. 

The resulting output is evaluated using the NIST SP800-22 test suite and TestU01. 
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3.1. Introduction 

In 1993, Majumdar and Mitra [42] first coined the phrase “robust chaos” in 

dynamic optimization models represented by a quadratic map family. Later in 1996, a 

search for robust chaos in a discrete-time neural network was conducted by R. Dogaru et 

al. [43] to discover a compact set of parameters, included in a weight space, that could 

sustain chaotic behaviors but remain unchanged. In 1998, S. Banerjee et al. [44] defined 

robust chaos as “the absence of periodic windows and coexisting attractors in some 

neighborhood of the parameter space.” Such a definition implies that any changes or 

variations in system parameters would not result in the fragility of chaos. A practical example 

of robust chaos in a 2-D piecewise smooth system was also demonstrated through a current-

mode controlled boost converter. 

A search for robust chaos generation approaches has been of considerable 

interest due to the suitability of robust chaos in practical applications in science and 

engineering, such as cryptography and secure communications [45-50]. Andrecut and Ali 

[51,52] reconstructed 2-D smooth unimodal maps via non-integer powers for robust chaos 

by means of mapping a critical point into an unstable fixed point that was not in the basin 

of attraction of a periodic attractor where, consequently, no periodic attractors occurred. 

G. Perez [53] has further analyzed the linear interpolation between fully chaotic logistic 

and quartic maps suggested by S. Thomae, and the results reveal a bifurcation diagram 

without any periodic windows.  

Recently, several approaches to the generation of robust chaos have been 

reported, involving techniques relating to (i) the determination of critical behavior of the 

Lyapunov exponent near the transition to robust chaos via type-III intermittency for a 1-



37 

 

D singular map [54], (ii) two methods for a prescribed invariant measure and varying 

Lyapunov exponent as well as a prescribed constant invariant measure and varying 

Lyapunov exponent [55], (iii) a structural synthesis of a state space energy-based adaptive 

controller [56], (iv) the basis of symmetry violations in attractors [57], and (v) the 

invariant center manifold [58].  

In 2012, the open problem on “Is a unifying chaotic dynamic system possible?” was 

raised by Z. Elhadj and J. C. Sprott [59], and a multifunction mathematical model, a so-

called unified chaotic map, was proposed with the capability of generating hyperbolic, 

Lorenz-type, and quasi-attractors [60]. J.C. Sprott [61] also introduced a particular 2-D 

unified piecewise smooth map that contained Hénon and Lozi maps. It is remarkable to 

note that the unification of a piecewise smooth map could exhibit robust chaos in some 

portions of a bifurcation parameter region, which is, in fact, a transition between Hénon 

and Lozi maps. 

In accordance with [60,61], it is natural to wonder whether there is a possibility 

of the unification of a category of simple 1-D smooth chaotic maps that can generate robust 

chaos. Exhaustive searches and investigations into a family of S-shaped functions have led 

to a generic form for a smooth sigmoidal chaotic map, presented in this paper. The 

unification and simplification of the generic smooth sigmoidal chaotic map will be 

discussed. The linearization of a simplified smooth sigmoidal chaotic map using either 

the hardtanh or the signum function potentially exhibits robust chaos over an entire range 

of parameters. Chaos dynamics will be described in terms of apparent time-domain 

chaotic waveforms and their histogram, cobweb plots, frequency spectrum, equilibria, 

Jacobian, bifurcation structure diagram based on Lyapunov exponents, bifurcation diagram, 

and recurrence plot (RP). As for practical examples, a true random bit generator (TRBG) 
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with statistical tests results from the NIST SP800-22 test suite and TestU01 using the 

linearized sigmoidal chaotic map will be demonstrated. 

3.2. Generic One-Dimensional Sigmoidal Chaotic Maps 

3.2.1 Unification of Generic Sigmoidal Chaotic Map 

The proposed unification process commences by considering a generic 

sigmoidal chaotic map, which can be preliminarily defined by the recurrence relation of 

the form  

 1 NL
( )

n n n
x Af Bx Cx D

+
=  

 (3.1) 

where xn is a real variable, fNL(xn) is a sigmoidal function, and the parameters A, B, C, and 

D are real constants. With reference to (3.1), this paper initially considers a typical 

sigmoid function, which exhibits S-shaped transfer function characteristics within the 

range (0, 1) throughout an entire domain (-∞, +∞). In other words, a mathematical model 

is f(x) = 1/(1 + exp(−x)). Nonetheless, the substitution of the sigmoid function as fNL(xn) in 

(3.1) could not induce chaos. Therefore, this paper realizes a modified sigmoid function 

fmod(x) as follows: 

 
mod

1
( ) 2 1

1 x
f x

e−
 

= − 
+   (3.2) 

It is seen in (3.2) that the range of fms(x) is a typical sigmoid function where the function 

is doubled and shifted down to be (−1, 1). Notice that the nonlinearity in (3.2) apparently 

associates to a hyperbolic tangent (tanh) function, i.e., 

 

2

2 2

1 1
( ) tanh ( ) 2 1

1 1 n

x

x x

e
f x x

e e

−

− −

−  
= = = − 

+ +   (3.3) 
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Note that the constant 2 is essential as a result of the mathematical 

transformation. Realizing functions (3.2) and (3.3) in the generic sigmoidal chaotic map 

results in a unified sigmoidal chaotic map that contains modified sigmoid and tanh 

functions given by 

 
1

1
2 1

1 n
n nBx
x Cx

e
+ −

 
=   

+   (3.4) 

It is clear that Equation (3.4) provides three complete mathematical terms to the 

generic sigmoidal chaotic map described in (1), where parameters A and D are 2 and 1, 

respectively, while parameters B and C are assigned as bifurcation parameters. Equation 

(3.4) also comprises a conjugate of two unified sigmoidal chaotic maps as follows: 

 
1

1
2 1

1 n
n nBx
x Cx

e
+ −

 
= − − 

+   (3.5) 

 
1

1
2 1

1 n
n nBx
x Cx

e
+ −

 
= − − + 

+   (3.6) 

In order to investigate the chaotic dynamics of the unified sigmoidal chaotic 

maps, the Lyapunov exponent (LE) is calculated. The LE is defined as a quantitative 

measure that characterizes the rate of separation of infinitesimally close trajectories, and 

can be described as 

 

N
1

2N
1

d1
LE lim log

N d
n

n n

x

x
+

→
=

= 
 (3.7) 

where N is the number of iterations. A positive LE typically indicates chaotic 

behaviors, and a larger value of LE results in a higher degree of chaoticity. The LEs of 

the system are calculated by using 100,000 iterations of data. Figure 3.1 illustrates plots 
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of a bifurcation structure of parameters C versus B of the unified sigmoidal chaotic map 

in (3.5), where the heat diagram indicates a positive LE and a white color represents a 

non-chaotic region while the black color represents the maximum LE of 1. The shading 

means that the LE increases correspondingly from yellow to red. Within the region of 

parameters 0 < B < 100 and 1 < C < 2, the white color roughly indicates where LE ≤ 0, 

and it appears in a few regions. However, there is some partial portion of parameter space 

that appears to be robust.  

 

Figure 3.1. Plots of a bifurcation structure of parameters C versus B of the unified 

sigmoidal chaotic map in (3.5), where the heat diagram indicates a positive 

Lyapunov exponent. 
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Figure 3.2 shows the characteristics of time-domain chaotic waveforms and the 

histogram, cobweb, and frequency spectrum using periodogram plots at specific 

parameters B = 75 and C = 1.9, arbitrarily selected from the chaotic region. The 

waveforms in the time domain are apparently chaotic but are slightly different. The 

histograms for both Equations (3.5) and (3.6), obtained from 100,000 iterations, are very 

similar. However, the characteristics of the cobweb plots are significantly different. 

Equation (3.5) exhibits a superimposed square pattern, while Equation (3.6) reveals a 

hexagon pattern. It can be seen from the frequency spectrum that both Equations (3.5) 

and (3.6) offer a flat spectrum feature. 

 

Figure 3.3. Plots of transfer function characteristics of the nonlinear functions of 

the cases NM1 to NM6. 
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3.2.2 Simplification of Generic Sigmoidal Chaotic Map 

With reference to a generic sigmoidal chaotic map in (3.1), it is also possible to 

simplify a mathematical model through the utilization of other S-shaped nonlinear 

functions through the specific parameters A = 1 and D = 0. In other words, the simplified 

generic sigmoidal chaotic map is  

 1 NL
( )

n n n
x f Bx Cx

+
= 

 (3.8) 

Table 3.1 summarizes six simplified chaotic maps based on (3.8), the results of 

utilizing nonlinear functions fNL(x) with S-shaped transfer function characteristics. With 

respect to the mathematical aspects, the cases NM1, NM2, and NM3 are based on inverse 

trigonometric properties. Meanwhile, the case NM4 is a special function in the form of an 

integral, which is originally derived from a Gaussian function, while NM5 and NM6 are 

special differentiable algebraic functions. 

In order to investigate and compare S-shaped transfer function characteristics, 

Figure 3.3 depicts plots of transfer functions of the six nonlinear functions. It is apparent 

that only NM4 has a range in the y-axis in the region (−1, 1), which closely resembles 

nonlinearity in a unified sigmoidal chaotic map, whereas the range of NM2 appears to be 

(−∞, +∞). The ranges of the four remaining cases are limited at certain specific levels. 

This phenomenon implies that the S-shaped nonlinearity that plays an important role in 

inducing chaos occurs in a short domain of approximately (−2, 2), and, therefore, the 

parameter B, which was introduced in the generic sigmoidal chaotic map, consequently 

becomes a significant factor in determining the chaos dynamics. 
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Table 3.1 Summary of six simplified sigmoidal chaotic maps involving nonlinear 

functions fNL(x) with S-shaped transfer function characteristics. 

Cases Descriptions fNL(x) with No 

Parameters 

Chaotic Maps 

NM1 Inverse 

Tangent 

Function 

( )-1

NL1
( ) tanf x x=  

-1

1 tan ( )+ = n n nx Bx Cx  

NM2 Inverse 

Hyperbolic 

Sine Function 

( )-1

NL2
( ) sinhf x x=  

-1

1 sinh ( )+ = n n nx Bx Cx  

NM3 Gudermannian 

Function 
( )( )-1

NL3
( ) tan sinhf x x=  

-1

1 tan (sinh ( ))+ = n n nx Bx Cx  

NM4 Error Function 2

NL4 0

2
( )

x
tf x e dt



−=   
2

1 0

2 Bx
t

n n
x e dt Cx



−

+
=   

NM5 Soft Signum 

Function NL5
( )

1

x
f x

x
=

+
 

1 1
n

n n

n

Bx
x Cx

Bx+
= 

+
 

NM6 Specific 

Algebraic 

Function 

NL6 2
( )

1

x
f x

x
=

+

 
1 21 ( )

n
n n

n

Bx
x Cx

Bx
+
= 

+
 

3.3 Linearization of Simplified Sigmoidal Chaotic Map for Robust 

Chaos 

Regarding (3.8), rather than utilizing any S-shaped nonlinear functions, the 

linearized sigmoidal functions including the hardtanh and signum functions are 

employed. In other words, the proposed linearized sigmoidal chaotic maps are as follows: 

 1 hardtanh ( )+ = n n nx Bx Cx  (3.9) 

 1 sgn( )+ = n n nx Bx Cx  (3.10) 

where the hardtanh and signum are defined as 
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( )
1; 1

hardtanh ; 1 1

1; x 1

x

x x x

−  −


= −  
   (3.11) 

 

( )
1; 1

; 0
sgn 0; 0

1; x 1 0; 0

x x
x

xx x

x

−  − 
 

= = = 
  =  (3.12) 

 

The linearized sigmoidal chaotic map based on the hardtanh function in (3.9) is 

a conjugate of two chaotic maps, i.e., 

 1 hardtanh ( )+ = −n n nx Bx Cx  (3.13) 

 1 hardtanh ( )+ = − +n n nx Bx Cx  (3.14) 

Meanwhile, the linearized sigmoidal chaotic map for (3.10), based on the signum 

function, is also the conjugate of two chaotic maps and can be expressed as 

 
1 sgn( )+ = −n n nx Bx Cx  (3.15) 

 
1 sgn( )+ = − +n n nx Bx Cx  (3.16) 

 

In order to investigate the chaotic dynamic of the linearized sigmoidal chaotic 

maps, the Jacobian of the linearized sigmoidal chaotic map, which can be calculated 

through a first derivative as |J(xn)| = f’(xn), is considered. Typically, the discrete time 

system becomes unstable in the condition of |J(xn)| > 1, while the chaotic map needs to 

operate under an unstable condition in order to induce the chaos. With reference to (3.9), 

the unstable region of the linearized sigmoidal chaotic maps based on the hardtanh 

function, which is the parameter region where the chaos can occur, is calculated and 
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provides the following result, 

 1 1C C B  −   (3.17) 

whereas the unstable region of the linearized sigmoidal chaotic maps based on the signum 

function in (3.10) is calculated and results in 

 
1C 

 (3.18) 

 

Figure 3.4. The plots of unstable and chaos regions with reference to (3.17), 

where the regions in grey and blue represent the unstable region and the chaos 

region, respectively. 

Within the region of parameters 0 < B < 15 and 1 < C < 3, Figure 4 depicts the 

plots of the unstable and chaos regions, where the grey region represents the unstable 

region regarding (3.17), while the chaos region, which is considered a subset of the 

unstable region, is represented by the blue region. The chaos region in Figure 3.4 

corresponds to the plots of the bifurcation structure of parameters C versus B with regard 

to the linearized sigmoidal chaotic maps based on the hardtanh function in (3.13), as 

shown in Figure 3.5. Nonetheless, the plots of the bifurcation structure of parameters C 
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versus B for the linearized sigmoidal chaotic map based on the signum function in (3.15), 

which is illustrated in Figure 3.6, shows the exact same values of LE for any values of B 

with respect to the signum function in (3.12). It is noticeable that the bifurcation structure 

in Figures 3.5 and 3.6 illustrate the results according to the unstable regions in (3.17) and 

(3.18), respectively.  

The chaotic map, considered the system xn+1 = f(xn), typically has a point where 

x* = f(x*) and is considered a fixed point (equilibrium). Table 3.2 summarizes the fixed 

points of the linearized sigmoidal chaotic maps based on the hardtanh function in (3.13) 

and (3.14) and the signum function in (3.15) and (3.16), all of which appear to have three 

fixed points.  

Table 3.2 Summary of the fixed points of the linearized sigmoidal chaotic maps. 

Chaotic Map Equations x* = f(x*) Fixed Points x* 

(3.10) * hardtanh ( *) *x Bx Cx= −  1
0,

1C −
 and

1

1C
−

−
 
 

(3.11) * hardtanh ( *) *x Bx Cx= − +  1
0,

1C +
 and 

1

1C
−

+  

(3.12) * sgn ( *) *= −x Bx Cx  1
0,

1C −
 and

1

1C
−

−
 
 

(3.13) * sgn ( *) *=− +x Bx Cx  1
0,

1C +
 and 

1

1C
−

+  
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Figure 3.5. Plots of a bifurcation structure of parameter C versus B of the 

hardtanh-based linearized sigmoidal chaotic map in (3.13), where the heat 

diagram indicates a positive Lyapunov exponent. 

 

Figure 3.6. Plots of a bifurcation structure of parameters C versus B of the 

signum-based linearized sigmoidal chaotic map in (3.15), where the heat diagram 

indicates a positive Lyapunov exponent. 
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Figures 3.7 and 3.8 show the characteristics of the chaotic waveforms in the time 

domain as well as the histogram and cobweb plots at specific parameters, which were 

arbitrarily selected with regard to the chaotic regime, as seen in the bifurcation structure 

in Figures 3.5 and 3.6. The characteristics of the cobweb plots are associated with the 

fixed points of the chaotic maps, as shown in Table 3.2 In the case where the fixed point 

is 0, it is a globally asymptotically stable point, as in |J(0)| = 0. The stability of the fixed 

point appears in the cobweb plot, where the inward spiral corresponds to the attraction of 

the stable fixed point, while the outward spiral corresponds to the repelling of the unstable  

fixed point. The complex closed loops in the cobweb represent a high period of orbit, 

which indicates an infinite number of non-repeating values. The cobweb plots also relate 

to the boundary values of xn+l, which depend upon the nonlinear term of the chaotic map, 

and for both cases of the linearized sigmoidal chaotic map in (3.9) and (3.10), the values 

of xn+l fall into the region (−1, 1). 

The linearized sigmoidal chaotic maps based on the hardtanh function offer robust 

chaos over the entire range of parameters where B > 3 and 1 < C < 2, while the linearized 

sigmoidal chaotic map based on the signum function shows robust chaos over the entire 

range of parameters where 1 < C < 2.  

Other than the proposed measurement tool, the bifurcation diagram is employed 

as a tool for a qualitative measure. A plots bifurcation diagram and LEs were used to 

identify the chaotic behavior as well as the continuity of the proposed chaotic maps as 

shown in Figure 3.9. While parameter C is considered a bifurcation parameter, the 

bifurcation diagrams of the linearized sigmoidal chaotic maps in (3.13) and (3.15), as 

shown in Figure 3.9b–c, illustrate chaotic behavior over the entire range of parameters 

where 1 < C < 2, which corresponded to the LEs in Figure 3.9e–f. In other words, the 
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linearized sigmoidal chaotic maps can offer robust chaos over the entire range of 

parameters. Conversely, the bifurcation diagrams and the LEs of the unified sigmoidal 

chaotic maps in (3.5) as shown in Figure 3.9a appear to have some periodic windows and 

illustrate intermittently chaotic behavior, which means the unified sigmoidal chaotic 

maps can only offer robust chaos for some partial portion of the parameter. 

The chaotic dynamics of the chaotic maps can also be described through a 

recurrence plot (RP) [62], as a typical random time series exhibits the RP with no structure 

while a periodic system causes the RP to exhibit some pattern. Figure 3.10 shows the RPs 

of the signum-based linearized sigmoidal for two different dynamic regimes. The purpose 

of the RP is to visualize the behavior of trajectories in phase space through a two-

dimensional plot, which is especially beneficial in the case of high-dimensional systems. 

A dynamic system is represented by the trajectory ( ix
→

) in d-dimensional phase space; 

hence, the recurrence plot, which can be viewed as the recurrence of a state at time i at a 

different time j, is defined by the matrix 

 
,

R , , 1, , ,i ji j
x x i j N
→ → 

=  − − = 
 

 (3.19) 

where ( )  is the Heaviside function, N is the number of points ix
→

, and  is a threshold. 

Figure 3.10a illustrates the RP which appear to be a dot pattern as a result the system that 

operated in the periodic regime, while Figure 3.10b illustrates the RP while the system is 

operated in the chaotic regime which results in a RP with no structure. 
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Figure 3.10. Recurrence plots of the signum-based linearized sigmoidal chaotic 

map in (3.15) for two different dynamic regimes, at specific parameter B = 1; (a) 

periodic regime: parameter C = 0.5, (b) chaotic regime: parameter C = 1.9. 

3.4. True Random Bit Generation Based on the Linearized 

Sigmoidal Chaotic Map 

The proposed true random bit generator (TRBG) is designed with respect to the 

typical structure of a true random bit generator, which consists of an entropy source, an 

entropy harvester, and a post-processor, as shown in Figure 3.11. The linearized 

sigmoidal chaotic map based on the signum function, which is driven by a sample and 

hold, is employed as the entropy source, and a comparator that acts as a 1-bit analog to 

the digital converter is considered the entropy harvester, while a quasi-shift register 

(QSR) is selected as the post-processor.  
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Figure 3.11. Proposed true random bit generator based on the signum-based 

linearized sigmoidal chaotic map. 

 

Figure 3.12. Circuit realizing the chaotic map with reference to the signum-based 

linearized sigmoidal chaotic map in (3.15). 

3.4.1 True Random Bit Generator: Entropy Source 

Theoretically, a chaotic map is deterministic, which means that if the initial 

condition of a chaotic map is exactly known, the output behavior can be exactly predicted. 

However, chaotic maps in practical implementation operate without the initial condition by 

inherent noise of the system and are amplified in the positive gain feedback loop by the 

iteration of the output signal in the map function. The output of the chaotic map will be 

unpredictable and suitable for true random bit generation. 
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A chaotic map can typically be considered as an entropy source of true random 

bit generation [63-65] though the robustness of the chaotic map is a concern. The robust 

chaos means the absence of a periodic window, and the existence of the periodic windows 

in the range of parameters of the chaos region implies that a small variation of the 

parameters would remove the system from the chaotic regime and discontinue the chaotic 

behavior [66].  

Figure 3.12 shows the designed circuit of the chaotic map as the entropy source 

of the proposed TRBG, with reference to the signum-based linearized sigmoidal chaotic 

map in (3.15). The circuit consists of three operational amplifiers, (i) a comparator, (ii) a 

non-inverting operational amplifier, and (iii) a differential amplifier. The comparator 

operational amplifier is employed as the signum function, and it can be defined as 

 

V ; V V
comp(V )

V ; V V

cc

cc

+ +  −
+ = 

− +  −  (3.20) 

where V+ and V− are the inverting and non-inverting input of the comparator, respectively. 

The V+ can be considered an input xn of the signum function, as a result of specifying the 

V−, which is a reference voltage of the comparator, as 0. In order for the comparator to 

perform as the signum function, the circuit is supplied with +1V and −1V as +Vcc and –

Vcc, respectively. 

Regarding the chaotic map in (3.15), the input xn is amplified by the non-

inverting operational amplifier gain, as Vout = Vin(1 + R2/R1), where R3, R4, R5, and R6 are 

set to be equal. The subtraction of the output of the comparator from the amplified input 

axn results in the output of the chaotic map, xn+1. 
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3.4.2 True Random Bit Generator: Entropy Harvester 

The comparator with threshold T, which is the entropy harvester, as shown 

Figure 3.11, digitizes the generated signal from the chaotic map; this can be expressed 

mathematically as  

 

0;
com( )

1;

x T
x

T x


= 

  (3.21) 

The threshold is carefully chosen in order to generate numbers with a high level 

of randomness, or in other words, to harvest the entropy where it is at its maximum. 

Shannon’s entropy is defined as  

 

1

2
0

log
i i

i

H P P
=

= −
 (3.22) 

The entropy is calculated over the entire range of parameters, where 1 < C < 2, resulting 

in the three-dimensional plot in Figure 3.13. The entropy is plotted versus the threshold 

value and parameter C of the signum-based linearized sigmoidal chaotic map in (3.15); 

note that the maximum entropy can be achieved when the threshold value is at 0 for any 

value parameter C in the chaotic regime.  

3.4.3 True Random Bit Generator: Post-Processor 

Even though the result from the entropy harvester is a random bit sequence, the 

post-processor is still required to improve the statistical imperfections of the generated 

sequences. Although there are many post-processing methods, the quasi-shift register was 

selected as the post-processor in the proposed TRBG due to its simple structure [67], with 

only a single input required, and its property of reducing the imperfection of the random 

bit sequences while still maintaining its generation rate. The structure of the quasi-shift 
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register comprises four shift registers, with a selected length n = 8, as depicted in Figure 

3.14. The post-processor initially starts by memorizing the generated bit from the TRBG 

into the first shift register, and then it performs XOR operation between shift registers. 

These processes are repeated several times in order to increase the complexity of the bit 

sequence.  

n-7 nn-6 n-7 nn-6

n-7 nn-6 n-7 nn-6

In

Out
 

Figure 3.14. Structure of the quasi-shift register-based post-processor. 

3.5 Randomness Performance Evaluation 

3.5.1 NIST SP800-22 Test Suite 

The random bit sequence from the TRBG was examined according to the 

properties of a random sequence that can be described in terms of probability. Although 

there are a variety of statistical tests, the NIST SP800-22 test suite is the statistical test 

most widely used to investigate the randomness of the output sequence from the TRBG. 

The NIST test suite [28], issued by the National Institute of Standards and Technology, 

is a statistical test package consisting of 15 tests; it is generally accepted as a standard test 
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suite for any random number generators. The test can be used to examine the bit sequence 

by detecting a pattern of values that indicates the non-randomness (periodic) of the 

sequences, resulting in the probability values (P-values). The P-values for each test 

indicate a randomness of the bit sequences, with regard to the NIST, the bit sequence that 

result to P-values greater than 0.01 is considered pass; otherwise, they are rejected. 

Typically, the test is considered to be passed for the proportion of the passing P-values 

that greater 0.9. 

The performance of the proposed TRBG was evaluated through the NIST 

statistical test suite with 100 Mbit data. The generated bit sequence is divided into 100 

sequences with the length of 1Mbit for each block. The proportion passing P-values, as 

shown in Table 3.3, indicate that the proposed TRBG can pass all the tests. 

3.5.2 TestU01 

TestU01 is a software library for statistically testing random bit generators [29]. 

The TestU01 library provides several test batteries, while each test battery also contains 

a collection of empirical statistical tests. Each statistical test can generate a P-value as 

well as the NIST test suite, which is considered as an indicator of passing the test. The 

test is considered passed if the generated P-value from the test falls into the interval 

[0.001, 0.999]. 

Three binary sequences with lengths 220, 225, and 230 bits were generated from the 

proposed TRBG. The bit sequences were applied to the batteries Rabbit, Alphabit, and 

BlockAlphabit to evaluate the randomness. Each battery contains a different number of 

test. The Alphabit contains 17 statistical tests while the BlockAlphabit applies the Alphabit 

repeatedly to the reordered bits with the 6 different blocks sizes which are 1, 2, 4, 8, 16, 
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and 32. In other words, the BlockAlphabit contains a total number of 17 × 6 = 102 

statistical tests. The Rabbit applies 38, 39, and 40 test to the bit sequence with lengths 220, 

225, and 230 bits, respectively. The results of the TestU01 are presented in Table 3.4. The 

proposed TRBG can pass all the tests. 

3.5. Conclusions 

In this chapter, the unified and simplified forms of the generic sigmoidal chaotic 

map and the linearized sigmoidal chaotic map were presented. Chaos dynamics were 

described in terms of chaotic waveforms, histogram, cobweb plots, fixed point, Jacobian, 

and a bifurcation structure diagram based on Lyapunov exponents; these revealed that both 

hardtanh function-based and signum function-based linearized sigmoidal chaotic maps 

have the potential to offer robust chaos over the entire range of parameters. In other words, 

it can be summarized that based on a linearized sigmoidal, the proposed sigmoidal chaotic 

map can offer robust chaos over the entire range of parameters. The true random bit 

generator based on the linearized sigmoidal chaotic map was demonstrated as a practical 

example; hence, the robust chaotic map is suitable as an entropy source. The resulting 

random bit sequence passed the NIST statistical test suite and the TestU01. Performance 

test results from both statistical tests show that the proposed linearized sigmoidal chaotic 

maps are suitable for application such as a TRBG. 
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Table 3.3 National Institute of Standards and Technology (NIST) statistical test 

suite.  

Test Methods P-Value Proportion Result 

Frequency (monobit) 0.7981 0.99 Pass 

Block Frequency  0.5544 0.99 Pass 

Runs 0.6163 1.00 Pass 

Longest Run 0.7399 1.00 Pass 

Binary Matrix Rank 0.2133 1.00 Pass 

Discrete Fourier Transform 0.7791 1.00 Pass 

Non-overlapping Template Matching 0.4980 0.99 Pass 

Overlapping Template Matching 0.9114 0.98 Pass 

Universal Statistical 0.7597 0.99 Pass 

Linear Complexity 0.6579 0.99 Pass 

Serial  0.4983 0.98 Pass 

Approximate Entropy 0.3669 1.00 Pass 

Cumulative Sums 0.5139 0.99 Pass 

Random Excursions 0.3322 0.98 Pass 

Random Excursions Variant 0.3384 0.99 Pass 
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Table 3.4. TestU01 

Random Bit Generator Test Batteries 

Rabbit Alphabit BlockAlphabit 

Proposed TRBG (220 bits) 38/38 17/17 102/102 

Proposed TRBG (225 bits) 39/39 17/17 102/102 

Proposed TRBG (230 bits) 40/40 17/17 102/102 
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Chapter 4 

Parabola chaotic map with CMOS-based circuit 

realization 

This chapter presents a new chaotic map of various parabola functions and their 

linearized function with regarding the proposed generic form of chaotic map with three 

terms which introduced in the Chapter 3. The parabola chaotic map is based on various 

parabola curve functions which led to the linearized parabola chaotic map using Absolute 

Value function. The linearized chaotic map can of offer a robust chaos over the entire 

range of parameter.  The chaotic oscillator realizing the proposed chaotic map is designed 

with a simple structure and implemented using 0.18 µm CMOS technology. Simulations 

and analysis of the proposed chaotic map and circuit are presented to demonstrate the 

characteristics and chaotic behaviors. The results show that the proposed chaotic 

oscillator circuit offers a robust chaotic behavior for nearly the entire parameter range, 

which is suitable for applications where a chaotic signal is required as well as stability in 

generating such a signal. 
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Figure 4.1 bifurcation diagrams of the Logistic map. 

4.1 Introduction 

Chaotic behaviors exist widely in many natural and non-natural phenomena [68]. 

Over the past few decades, nonlinear systems that exhibit chaotic behavior have received 

significant attention in various areas such as behavior modeling [69], communications 

[70], cryptography [71], and systems control [72]. Examples of chaotic behavior for these 

types of research can be provided by a discrete-time dynamic model known as a chaotic 

map. As chaotic oscillators are the result of realizing chaotic maps, many types of circuits 

and maps have been reported, including the tent map [73], the difference map [74], and 

the zigzag map [75]. 

This chapter presents a new chaotic map based on a nonlinear function with 

parabola transfer characteristics. Following our previous work [76], the parabola chaotic 

map is based on various parabola functions, including one in which the absolute value 

function, considered as a linearized parabola function, was employed. The chaotic 
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behaviors of the proposed chaotic maps were investigated using bifurcation diagrams and 

Lyapunov exponents. The parabola chaotic map demonstrates intermittently chaotic 

behavior while the linearized parabola chaotic map offers a robust chaos over the entire 

range of the parameter. A discrete-time chaotic oscillator circuit to create the proposed 

parabola chaotic map is also presented. The circuit is designed based on 0.18 µm CMOS 

technology. The chaotic behaviors of the circuit are described through bifurcation 

diagrams and chaotic waveforms. Simulation results indicate that the proposed chaotic 

oscillator can offer robust chaos for nearly the entire range of the parameter. 

4.2 Chaotic map based on a parabola function 

4.2.1 Previous Work  

The Logistic map is a first-order difference equation that widely arises in the 

economic, social and biological sciences. The map is a one-dimensional discrete-time 

chaotic map and mathematically, the logistic map can be defined as 

 
( )1
1

n n n
x rx x

+
= −

 (4.1) 

where the parameter r ∈ [0, 4] and variable xn is limited into the interval [0, 1]. 

Equilibrium point (or fixed point) is the element of a function’s domain that maps to itself. 

The Logistic map’s equilibrium point x* can be calculated by substituting x* into xn and 

xn+1 in (4.1). As a result, the equation becomes 

 
( )* * 1 *= −x rx x

 (4.2) 

Solving Eq. (4.2) yields two equilibrium points which is 0 and (r – 1)/r. Figure 

4.1 shows bifurcation diagram of the Logistic map with the change of its parameter r. 
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Observed from the bifurcation diagram, the Logistic map offers chaotic behavior when r 

∈ [3.6, 4]. 

Standing alongside the well-known chaotic maps, such as the tent map, logistic 

map, and gauss map, the sigmoidal chaotic map developed in our previous work [77] was 

described as 

 1 NL
( )

n n n
x Af Bx Cx D

+
=  

 (4.3) 

where the parameters A, B, C, and D are real constants, xn is a real variable, and 

fNL(x) is any S-shaped nonlinear function or so-called sigmoidal. It can be seen from Eq. 

(4.3) that the sigmoidal chaotic map is different from a typical chaotic map in that it can 

offer different behavior based on the sigmoidal function that is used.  

4.2.2 Parabola chaotic map 

Motivated by the sigmoidal chaotic map, in which the nonlinear function can be 

replaced by any S-shaped nonlinear function, the question of whether it is possible to 

replace the sigmoidal function with other nonlinear functions arose. Thorough 

investigations led to the creation of a chaotic map using parabola functions. The proposed 

parabola chaotic map can be defined by a simple mathematical model of the form 

 1 NL
( )

n n
x Af Bx C

+
= 

 (4.4) 

where the parameters A and B are real constants, xn is a real variable, and fNL(x) is a 

parabola function. A summary of the chaotic maps based on Eq. (4.4) using various 

parabola functions is shown Table 4.1 Moreover, it is apparent that the proposed chaotic 

map based on Eq. (4.5) is a conjugation of two chaotic maps, which can be expressed as  

 1 NL
( )

n n
x Af Bx C

+
= −

 (4.5) 
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 1 NL
( )

n n
x Af Bx C

+
= − +

 (4.6) 

Table 4.1 Summary of three parabola chaotic maps involving the nonlinear 

functions fNL(x) with parabola transfer characteristics 

Case Description 
fNL(x) with no 

parameters 
Chaotic maps 

PM1 

Polynomial 

function with 

even degree 
( )NL1

( )
N

f x x=  ( )1

N

n nx A Bx C+ =   

PM2 
Gaussian 

function 

2

NL2
( ) xf x e−=  

2

1

Bx

nx Ae C−

+ =   

PM3 
Hyperbolic 

cosine function 
( )=

NL3
( ) coshf x x  ( )1 coshnx A Bx C+ =   

 

Chaotic behavior can be investigated qualitatively and quantitatively through the 

use of bifurcation diagrams and Lyapunov exponents (LE). While a bifurcation diagram 

indicates possible long-term values of a system, involving fixed points or periodic orbits, 

as a function of a bifurcation parameter, the LE is widely accepted as an indicator of the 

existence of chaos as it represents the average divergence of two close trajectories in a 

dynamic system. An LE can be defined as 

 

+

→
=

= 
N

n 1
2n

n 1 n

dx1
LE lim log

N dx
  (4.7) 

where N is the number of iterations. A positive value of LE indicates chaotic behavior in 

dynamic systems, and the larger the value, the higher the degree of chaos.  
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Figure 4.2 Bifurcation diagrams (left) and Lyapunov exponent (LE) plots (right) 

of the parabola chaotic maps with A = 1 and B = 1; (a, b) case PM1, (c, d) case 

PM2, and (e, f) case PM3. 

In order to identify the chaotic behavior as well as the continuity of the proposed 

parabola chaotic maps in Eq. (4.5), both bifurcation diagrams and LE plots were 

employed, as shown in Figure 4.2. Parameters A and B were set to 1, while parameter C 

was used as the bifurcation parameter. The bifurcation diagrams in Figs. 1a, 1c, and 1e 
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depict a similarity of chaotic behavior of the parabola chaotic maps for cases PM1, PM2, 

and PM3, respectively. It is notable that the bifurcation diagrams appear to have some 

periodic windows and illustrate discontinuously chaotic behavior, which correspond to 

the LE plots. This means the parabola chaotic maps for all three cases offer robust chaos 

for some portion of parameter C. 

 

Figure 4.3 Bifurcation diagram (left) and Lyapunov exponent (LE) plot (right) of 

the linearized parabola chaotic map in Eq. (8) at specified parameters B = 1 and C 

= 1.  

4.2.3 Linearization of parabola chaotic map 

In addition to the use of nonlinear functions with parabola transfer 

characteristics, the proposed parabola chaotic map can also use a triangular function, such 

an absolute value function, which can be considered a linearized parabola function. 

Therefore, the linearized parabola chaotic map is described as 

 1n n
x A Bx C

+
= 

 (4.8) 

Similar to the proposed parabola chaotic map in Eq. (2), the linearized parabola 

chaotic map based on the absolute value function is also a conjugate of two chaotic maps, 
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which can also be expressed as 

 1n n
x A Bx C

+
= −

 (4.9) 

 1n n
x A Bx C

+
= − +

 (4.10) 

Figure 4.3 illustrates the bifurcation diagram and LE plot of the linearized 

parabola chaotic map based on the absolute value in Eq. (4.10). Parameter A is the 

parameter used to generate the bifurcation, while parameters B and C are set to 1. As seen 

in the corresponding LE plot, the bifurcation diagram of the linearized parabola chaotic 

map shows continuously chaotic behavior over the entire range of parameter A. 

The dynamic behavior of the linearized parabola chaotic map is analyzed using 

the Jacobian which can be found through of the first derivative as 

 1( )
( ) += n

n

d x
J x

dx
  (4.11) 

Typically, the discrete time system needed to becomes unstable in order to induce 

the chaos which happened in the case where |J(xn)| > 1. The discrete-time chaotic map can 

generate chaotic signals though a nonlinear iteration function (chaotic map) which can be 

defined as follows: 

  
( )nn XfX =+1  (4.12) 

The chaotic map typically has a point where x* = f(x*) which is the element of 

a function’s domain that maps to itself and this is considered an equilibrium point (or 

fixed point). Table 4.2 summarizes the fixed points and Jacobians of the linearized 

sigmoidal chaotic maps based on the absolute value function.  
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Table 4.2 Summary of the fixed points of the linearized sigmoidal chaotic maps. 

Chaotic Map Equations Fixed Points x* Jacobian 

(4.9) 
𝑪

𝟏 ± 𝑨𝑩
 ( )signAB Bx  

(4.10) 
𝑪

−𝟏 ± 𝑨𝑩
 ( )signAB Bx−  

 

xn
+1

xn

-2

2

0

2-2 0

 

Figure 4.4 Plots of Cobweb of the linearized parabola chaotic maps based on 

Absolute Value on (4.11) at specific parameter A = 1.9, B = 1, and D = 1. 

Other than the proposed measurement tool, a cobweb plot, which is typically a 

graphical method, is employed in chaotic map in order to investigate the long-term status 

of an initial condition under repeated application as qualitative behaviors of one-

dimensional iterated function. In cobweb plot, a stable fixed point corresponds to an 

inward spiral while an unstable fixed point is an outward one. A chaotic orbit would show 
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a thick area, indicating an infinite number of nonrepeating values.  

The cobweb plots of the linearized parabola chaotic maps based on Absolute 

Value on (4.10) at specific parameters is depicted in Figures 4.4, which were arbitrarily 

selected with regard to the chaotic regime, as seen in the bifurcation diagram in Figures 

4.3. The boundary values of xn+l observed from the cobweb plots shows that the value of 

xn+l fall into the region (−1, 1) which also agreed to the bifurcation diagram. 

4.3 Discrete-time parabola chaotic oscillator 

4.3.1 Circuit designs and implementations   

Eq. (2) models a parabola chaotic map consisting of three control parameters A, B, and 

C. For the benefit of creating a simple circuit, the chaotic map equation is rewritten in a simpler 

form by setting parameter B equal to 1 and considering parameter C equal to parameter A. As a 

result, with reference to Eq. (4.6), the parabola chaotic map with one control parameter can be 

described as  

 
( )( )1

1
n n
x A f x

+
= −

 (4.13) 

Typically, a discrete-time chaotic oscillator in voltage mode requires two sample 

and hold circuits in order to generate a chaotic signal, as well as a nonlinear circuit. Using 

the parabola chaotic map equation with one control parameter in Eq. (4.13), the chaotic 

oscillator circuit was designed as shown in Figure 4.5. It is notable that the chaotic 

oscillator consists of a nonlinear circuit constructed out of three transistors, a voltage 

subtractor Op Amp with bias voltage Vb, and two sample and hold circuits based on a 

transmission gate. The size (W/L) of transistors M1, M2, and M3 are 4/0.18 µm, 0.54/0.54 

µm and 4/0.18 µm, respectively. Hence, the transfer function of the nonlinear circuit in 



74 

 

Figure 4.5 can be written as 

 
( )out p in

V f V=
 (4.14) 

 

Figure 4.5 The chaotic oscillator circuit based on the parabola chaotic map model 

with one control parameter in Eq. (4.13). 

The value of resister R1 was set equal to R2, and resister R3 was set equal to R4, 

so the transfer function of the subtract circuit can be defined as 

 
( )

out b a
V V V= −

 (4.15) 

where the voltage gain α is given by 

 

3

1

R

R
 =

 (4.16) 

Consequently, the transfer function of the proposed chaotic oscillator circuit in 

Figure 4.4 with a specific bias voltage value of Vb=1V can be expressed as 

 
( )( )1

1
n p n
x f x

+
= −

 (4.17) 

It can be seen that the transfer function of the proposed chaotic oscillator 

C1 C2

Ф1

Ф1
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Ф2

xn+1
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R2
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corresponds to the parabola chaotic map equation with one control parameter in Eq. 

(4.13).  

4.3.2 Simulation results 

The proposed CMOS chaotic oscillator circuit has been implemented based on 

0.18 µm CMOS technology using a Cadence virtuoso environment. The chaotic oscillator 

circuit is supplied with 1.8 V driven by two non-overlapping clocks (Ф1 and Ф2) of 500 

kHz. In HSPICE simulation.  

To confirm the validity of the chaotic oscillator, the output signals, resulting 

from varying the voltage gain α in the range of 0–2, were used to plot the bifurcation 

diagram shown in Figure 4.6a. The output waveform in transient of the chaotic oscillator 

where the voltage gain α was set to 1.9 resulted in an output voltage between 0.78 V and 

1.17 V, as shown in Figure 4.6b. It can be clearly seen from the bifurcation diagram that 

only one periodic window exists. In other words, a proposed chaotic oscillator circuit 

based on the parabola chaotic map can offer a robust chaotic behavior for nearly the entire 

range of voltage gain. 

4.4 Conclusion 

In this chapter, a chaotic map based on parabola functions and their linearized 

function has been presented. The chaotic behaviors were investigated through bifurcation 

diagrams and LE plots. The linearized parabola chaotic map based on a nonlinear such an 

Absolute Value function has revealed that the parabola chaotic maps also have the 

potential to offer robust chaos over the entire range of parameters. The operation of the 

chaotic oscillator circuit realizing the proposed map was verified by HSPICE simulations. 
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The results show that the circuit can provide a similar chaotic behavior to the proposed 

chaotic map can offer robust chaos nearly the entire range of parameter 
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Figure 4.6 Bifurcation diagram and Lyapunov exponent (LE) plot of the proposed 

chaotic oscillator. 
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Chapter 5 

Conclusion and Discussions 

This dissertation has presented new chaotic oscillator circuits as well as new 

chaotic maps. Additionally, the development of true random bit generators based on the 

proposed chaotic oscillators are also demonstrated. Chapter 1 has introduced the chaos 

theory, many measurement tools for chaotic dynamics and random number generator. The 

main objective of this dissertation is to develop new chaotic oscillators as well as research 

and investigation on new chaotic maps and their chaotic dynamic. The designed chaotic 

oscillators are expected to be simple, compact, and offer robust chaotic behavior. Other 

than chaotic oscillator, new chaotic maps are also presented. The chaotic dynamics of 

each proposed chaotic oscillators and the proposed chaotic maps are investigated through 

various methods such as the quantitative and qualitative tools which are the plot of 

bifurcation diagram and LEs, respectively, or the system stability analysis using Jacobian 

and fixed point. Moreover, the true random bit generators, which considered major part 

of cryptography, designed based on various proposed chaotic oscillator are demonstrated 

as a practical example of chaos-based application and the output is statistically tested in 

order to shows the feasibility of the proposed chaotic oscillator circuits as a randomness 

source for the generator.  

The design strategy for the chaotic oscillators are based on the hypothesis, which 
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can be defined that the chaotic oscillator circuit can be built by using a nonlinear circuit 

with the specific transfer characteristic such as approximate V-shape or N-shape, and also 

based on the circuit realization of the new chaotic map so call sigmoidal chaotic map and 

parabola chaotic map.  

As for the proof of the hypothesis as mentioned above, the chapter 2 has 

presented two discrete time chaotic oscillators. The first chaotic oscillator is a compact 

circuit based on chaotic map with only 3 transistors in order to achieve an approximate 

V-shape characteristic. The second proposed chaotic oscillator is based a chaotic map 

which is constructed in order achieve a reverse sigmoid characteristic. This chaotic 

oscillator exhibits a robust chaotic behavior which can be seen from the plot of bifurcation 

diagram. Other than the proposed of the research and study on chaotic oscillators, this 

chapter proposed a true random number generator (TRBG) based on discrete-time chaotic 

oscillator which can offer a throughput of 23 Mbps and the output bit sequence is 

evaluated NIST tests suite which can pass all the test. Subsequently, a hybrid random 

number generator (HRBG) based on a combination of TRBG and pseudo random bit 

generator (PRBG). The output of chaotic oscillator based TRNG and linear feedback shift 

register (LFSR) are XORed together to produce a random bit output. By such a simple 

structure, the proposed HRNG provides a throughput of 1 Mbps which has been 

statistically analyzed through NIST statistical tests suite and proved to be suitable for 

cryptography. 

In chapter 3, the unified and simplified forms of the generic sigmoidal chaotic 

map and the linearized sigmoidal chaotic map were presented. Chaos dynamics were 

described in terms of chaotic waveforms, histogram, cobweb plots, fixed point, Jacobian, 

and a bifurcation structure diagram based on Lyapunov exponents; these revealed that 
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both hardtanh function-based and signum function-based linearized sigmoidal chaotic 

maps have the potential to offer robust chaos over the entire range of parameters. In other 

words, it can be summarized that based on a linearized sigmoidal, the proposed sigmoidal 

chaotic map can offer robust chaos over the entire range of parameters. The true random 

bit generator based on the linearized sigmoidal chaotic map was demonstrated as a 

practical example; hence, the robust chaotic map is suitable as an entropy source. The 

resulting random bit sequence passed the NIST statistical test suite and the TestU01. 

Performance test results from both statistical tests show that the proposed linearized 

sigmoidal chaotic maps are suitable for application such as a TRBG. 

Finally, chapter 4 has presented the parabola chaotic map with simplified and 

linearized forms based on the generic form of chaotic map proposed in the Chapter 3. 

Chaos dynamics were described in terms of fixed point, Jacobian, chaotic waveforms, 

cobweb plots, bifurcation diagram, and Lyapunov exponents. As a result, the linearized 

parabola chaotic map based on a nonlinear such an Absolute Value function has revealed 

that the parabola chaotic maps also have the potential to offer robust chaos over the entire 

range of parameters. In other words, it may be able to assumed that the linearized chaotic 

map based on the proposed generic form of chaotic map offer robust chaos over the entire 

range of parameters. A new chaotic oscillator based on parabola chaotic map was 

introduced. The proposed chaotic oscillator was designed based on 0.18 µm CMOS 

technology through the use of 3 transistors with subtractor Op Amp to construct a 

compact chaotic map circuit. Simulation results of the circuit indicate the proposed 

chaotic oscillator can offer robust chaos nearly the entire range of parameter 

This dissertation has proposed many chaotic oscillator implementations using a 

simple structure. Simulation results show the feasibility and compatibility for application 
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based on all the proposed chaotic oscillators. The true random bit generators based on 

each proposed chaotic oscillator were presented with the statistical evaluation. It can be 

concluded that chaotic oscillator circuit can be achieved by using a nonlinear circuit with 

specific transfer characteristic such as V-shape or S-shape (sigmoid) characteristic 

Moreover, a research and study on two new chaotic maps are also presented. The 

proposed chaotic maps were developed, with regarding to conclusion of the proposed 

chaotic oscillators, based on sigmoidal function and parabolic function. Furthermore, the 

proposed chaotic maps based on the linearized functions have demonstrated the 

robustness property of chaotic system.  
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